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Abstract

Natural languages vary widely in the degree to which they make use of nested compositional

structure in their grammars. It has long been noted by linguists that the languages historically spo-

ken in small communities develop much deeper levels of compositional embedding than those

spoken by larger groups. Recently, this observation has been confirmed by a robust statistical anal-

ysis of the World Atlas of Language Structures. In order to examine this connection mechanisti-

cally, we propose an agent-based model that accounts for key cultural evolutionary features of

language transfer and language change. We identify transitivity as a physical parameter of social

networks critical for the evolution of compositional structure and the hierarchical patterning of

scale-free distributions as inhibitory.

Keywords: Social network; Language evolution; Language change; Agent-based model;

Grammaticalization; Language complexity

1. Introduction

Natural languages vary widely in grammatical structure, especially in the degree to

which they make use of nested composition. A graduated divide in this typological space

is the extent to which words themselves make use of compositional patterning. That is,

the degree on average to which words possess internal structural hierarchies (morphologi-

cal composition), beyond their arrangement in the phrasal hierarchy of a sentence (syntac-

tic composition). In some languages, such as Chinese, morphological structure is virtually

nonexistent, whereas others, like Lushootseed (an indigenous, Salishan language of North

America), have so much morphological structure that entire utterances can be a single,

highly complex word. It is not yet understood how such typological patterns emerge his-

torically and why natural languages vary in this property over time.
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Computational modeling researchers have proposed both symbolic (Smith, Brighton, &

Kirby, 2003) and neural architectures (Batali, 1998) to demonstrate that compositional

language structure develops where cultural evolutionary forces are at work (Kirby, Cor-

nish, & Smith, 2008). Indeed, compositional structures appear to evolve as an efficient

way to handle the information bottleneck that occurs between generations—a learner

must induce the rules of a language from a small sample of observed linguistic usage—
emerging as a natural solution to this incomplete information (Tria, Galantucci, & Loreto,

2012). In addition, while non-compositional systems may have been required to initially

bootstrap human language, compositionality is preferable once the space of meanings

needed to be transmitted grows large; few meanings are easily handled by small iconic

expressions, but this strategy becomes untenable over time (Roberts, Lewandowski, &

Galantucci, 2015).

This previous work has provided a clear understanding as to why compositionality

emerges in communication systems, but languages compose signals in both syntactic and

morphological ways. There is no clear preference for one strategy over the other, as evi-

denced by the even distribution of languages over the spectrum of possible language con-

figurations (Lupyan & Dale, 2010). However, linguists have long noted that rich

morphological patterns tend to appear in languages spoken by small groups more than in

larger ones (Evans & Levinson, 2009), and some have suggested that smaller social

groups are simply better at supporting the kinds of linguistic innovations that lead to

these developments (Nettle, 2012; Trudgill, 2011). In addition, languages seem to favor

syntactic means over morphological ones as their communities of speakers grow in size

(Lupyan & Dale, 2010).

For example, historical records and linguistic reconstruction both posit much more

complex morphological patterns for the ancestors of Modern Chinese and English. The

set of complex features they each possessed has diminished over time as the speaker pop-

ulation grew and spread. This stands in contrast to their genetically related cousins, for

example, Japhug and German, respectively, that have not spread as widely and retained

such features (Jacques, 2012; Ringe, 2008). Indeed, empirical evidence suggests the typo-

logical patterning that languages display may be connected to aspects of the social net-

work of the speakers.

A recent survey of the World Atlas of Language Structures (Dryer & Haspelmath,

2013) has pushed this observation further to statistical correlation; it was found that

after controlling for phylogenetic and areal influence, a novel measure of population

spread was highly correlated with the number of grammatical features marked by mor-

phological means (Lupyan & Dale, 2010). Specifically, languages with smaller and

more isolated speaker populations tend to make much greater use of morphology than

those with larger and more wide-spread populations. Relatedly, evolutionary methods

applied to a vocabulary database of Polynesian languages (Bromham, Hua, Fitzpatrick,

& Greenhill, 2015) found statistically robust evidence of an influence of population

size on the rate of language change, such that larger populations tend to have higher

rates of gain of new words whereas smaller populations have higher rates of word

loss.
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However, beyond correlational evidence, a mechanistic account of how languages

gain and maintain complexity is lacking. Prominent sociolinguistic proposals are

descriptive in nature (Trudgill, 2011), lacking explanatory power, although computer

modeling work from the network theory perspective has made some initial inroads in

explaining how demographic factors might affect language evolution (Bentz & Winter,

2013; Dale & Lupyan, 2012; Reali, Chater, & Christiansen, 2018). However, these

accounts focus on why languages should become structurally simpler with larger com-

munities and assume an initial level of development by fiat. How morphological com-

plexity was acquired in the first place is not accounted for explicitly by the above

studies. A further major limitation with extant approaches is the assumption that the

mechanism by which language changes diffuse is epidemic in nature (Ke, Gong, &

Wang, 2008). Under these accounts, innovations are like viruses, and contact with

someone else infected with the innovation causes one to become infected oneself. This

process continues until the innovation spreads completely over the network. However,

while language innovation certainly depends on contact with others, language innova-

tion does not spread like a virus but is instead the result of a multifaceted process of

social learning. It requires both horizontal diffusion within a population of speakers,

and repeated, vertical transmission.

A final limitation of current accounts, and focus of this paper, is that population

size and degree of isolation may be conflated and are only a few among several other

potential social network variables whose contribution has not yet been investigated

(Lupyan & Dale, 2016; Nettle, 2012; Perfors & Navarro, 2014). Similarly, while the

processes that generate morphological complexity have been identified in the linguis-

tics literature, where they are studied under the subfield of grammaticalization, they

have not been explicitly incorporated into existing models. While our model is still

unquestionably high level and abstract, it aims to replicate the central grammaticaliza-

tion mechanism of reanalysis.
In this paper, we apply network science to model observations from linguistics and

cognitive science, and simulate how human languages may change over time across a

social network of speakers. We provide a proof of concept that the topology of a net-

work modulates the developmental direction and depth of linguistic innovation in a

given community, everything else being held constant. In particular, we directly test

the hypothesis that topologies typical of small human populations promote the devel-

opment of morphological structures, while those of larger communities lack such

capacity, and may in fact lead to inhibitory conditions that encourage the shift to syn-

tactic over morphological patterns. Results from our simulations support this case, thus

offering a first causal explanation for the emergence (and not only the simplification)

of grammatical patterning as a function of social properties of a community. Impor-

tantly, we find that the structural pattern of connectivity within the community is a

strong mediator of this interaction. Finally, our results have implications for real-world

language communities trying to revitalize or maintain their traditional speech, as

the creation of appropriate community relations between speakers may be vital for

success.
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2. How grammatical complexity develops

Language is transmitted and altered structurally via the mechanism of cultural evolu-

tion (Smith et al., 2003). Each learner must observe the linguistic behavior of others and

use their endogenous abilities to discover a grammar that accounts for this input (Han,

Musolino, & Lidz, 2016). These abilities interject a bias toward certain analyses, and so

subtle changes in the input can lead to novel patterns different from those used by the

previous generation (Gr€unwald, 2007; Langley & Stromsten, 2000; Senghas & Coppola,

2001).

In order to model the evolution of structure in language, the assumptions of viral mod-

els of innovation must be revised; the gradual, usage-based process through which gram-

matical changes occur must be accounted for. We aimed to build a model that is

sufficiently veridical and thus informed. First, we review the linguistic theory of observed

language change, in particular, the role of intergenerational reanalysis as the mechanism

that compounds and creates new grammatical structures in natural languages. Then, we

suggest a way to model this process, and we estimate the capacity of a network to sup-

port such structural development.

2.1. Grammaticalization

The linguistic signals used in human language, both signed and spoken, lie on a

gradient that ranges from lexical to grammatical in kind. Lexical signals characteristi-

cally provide labels for objects and their properties, while grammatical signals provide

relatively little semantic content and instead coordinate the mechanics of language

usage. The linguistics subfield of grammaticalization studies the processes by which

lexical signals change over time to become grammatical signals. A number of major

findings have emerged, including the hypothesis that all grammatical signals originally

evolved from earlier lexical origins, as well as the discovery that cross-linguistically

there are regular semantic and structural developmental clines (Hopper & Traugott,

2003).

In terms of structural change, signals slowly progress from independent entities to

being dependent on other signals for their expression. In general, successive change econ-

omizes the physical complexity of the signal and restricts its compositional potential to

smaller and smaller subsets of the language. Eventually, this continual reduction in com-

positional scope and physical expression leads to the signal being unanalyzable by lan-

guage learners as an independent entity, and eventually it is lost from the language.

Important for the current model, such structural changes are almost universally unidirec-

tional (Heine, 2003).

A classic example of the entire grammaticalization process is the history of the future

tense from Proto-Indo-European (PIE) down to the Romance languages, here exemplified

by Spanish. In PIE, there was no future tense; however, from the PIE desiderative, Classi-

cal Latin developed a dedicated future inflection, for example, Latin amab�o “I will love.”

However, this inflexion was lost by the time of Vulgar Latin, and the use of the auxiliary
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verb habere “to have” became conventionalized to express the future tense; “I will love”

had become amare habe�o, or “I have to love.” In the individual Romance languages, this

convention followed language-specific phonetic changes. The progression in the ancestor

of Spanish resulted in amar he* and eventually the auxiliary verb became the future

inflexional endings of modern Spanish, amar�e. Here the process began with an existing

PIE inflexional suffix being co-opted for a new purpose in Classical Latin, but it soon

reduced in form so much that it was lost. Then a typical lexical item, the verb ‘to have’,

is progressively reduced in physical form—habe�o -> he -> -�e—while losing semantic

content and becoming more restricted in compositionality; it progressed from a free, gen-

eral-purpose verb to a bound verbal inflexion, simply expressing the future tense. In

another several hundred years, it is likely that this inflexion too will be lost, and the pro-

cess will begin anew.

2.2. Mechanisms of language change

Grammaticalization originally focused on how individual words evolve into grammati-

cal ones, but that is now seen as a specific case of more general processes of language

change (Narrog & Heine, 2011). Three interacting mechanisms seem to underly the gen-

eral process of language change: extension, reduction, and reanalysis.1 The first two

mechanisms are driven by competent speakers of the language, while the latter is driven

by language learners.

Extension occurs when speakers use existing patterns in novel ways, often for prag-

matic reasons. In the future tense example above, the use of the PIE desiderative to

express future time resulted from the novel equating of things we desire to mean things

that have yet to happen. The later PIE future with to have develops similarly. As men-

tioned above, such semantic pathways are often attested in other languages, and in fact,

English is currently using them both: I have to love and I will love are both used to

express future actions.

Reduction is the second mechanism carried out by competent speakers. As a signal

becomes more predictable, it requires fewer distinguishing physical features to be under-

stood. In the example above, as the verb habere became more specialized as a sign of the

future tense, its occurrence became more predictable from context where future action

was implied. With this increase in predictability, less articulatory effort was spent by

speakers, and the length of this signal shortened as learners began to internalize the

reduced realization.

The final mechanism, reanalysis, occurs when language learners internalize such novel

patterns in their input due to extension and reduction by existing speakers. While compe-

tent speakers know when a signal is being used in a novel way (extension) or is being

expressed more succinctly (reduction), learners do not have such background knowledge

of the underlying forms. Instead, there is the chance that these novelties will be taken as

fundamental, and the underlying language patterns learned by one generation are different

that the one before. In the future tense example, reanalysis occurs when the PIE desidera-

tive shifts from expressing desire for actions that have not yet taken place, to simply
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expressing future time without reference to desire. This, again, is precisely what hap-

pened with English will. Structural reanalysis is also seen above when the reduced form

-�e occurred so predictably after the verb that it became understood to be a suffix rather

than a separate element of the utterance.

2.3. Linguistic reanalysis and structural complexity

The three mechanisms of extension, reduction, and reanalysis together produce the

gradual, directed change from free, lexical signals to dependent, grammatical ones. As

signals are extended, learners typically attribute a more general meaning to the signal

than was originally understood by prior generations of speakers. For example, the mean-

ing of desire for an action to occur implicitly implies a future time frame for the action.

However, as current speakers use it more to imply the temporal meaning than to express

their desires, new learners can internalize the temporal meaning as primary, eliding the

notion of desire entirely from the use of the signal. In the linguistics literature, this kind

of semantic change that makes a signal more general through repeated reanalysis of gen-

eralized contexts is called bleaching (Hopper & Traugott, 2003), as in some sense the

colorful patterns of the signal have been transformed into a generic, white mass.

When a signal is “bleached” in this manner, its frequency of usage increases, as it is

able to be applied to meet an increased range of communicative needs. Speakers can

more precisely express themselves without implications introduced by generalizing alter-

native signals that are less bleached, and thus have additional connotations. This increase

in usage makes the bleached signal more predictable, as it occurs more and more fre-

quently in similar contexts, and it becomes a target for reduction. As reduced forms of

the signal are reanalyzed by subsequent generations as underlying, the signal becomes

more likely to be structurally reanalyzed as a dependent element of other signals, usually

first syntactically, and then eventually morphologically.

Given the hypothesis that all grammatical signals in language are the result of this

grammaticalization process, the amount of reanalysis a signal has undergone provides a

proxy for its structural development (Bybee, Perkins, & Pagliuca, 1994; Fortescue, 2016);

all bound morphology is the result of repeated cycles of extension and reduction that get

cemented through reanalysis. There is no deterministic relationship between the exact

number of reanalyses a signal must undergo to become a bound morpheme, but repeated

reanalysis is a necessary condition for bound morphemes, and furthermore, the likelihood

of being bound increases with the number of repeated reanalyses (Hopper & Traugott,

2003).

3. Methods

In this paper, we develop an agent-based model of language change that accounts for

the fundamental mechanisms of grammaticalization described above. A language in the

model consists of a fixed number of core meanings to be communicated and holistic
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signals that exist to express these meanings. Agents communicate by presenting these sig-

nals to each other, and depending on their dynamic language experience, either under-

standing the signal or taking creative action to repair communicability. After a fixed

number of exchanges, each agent is replaced by a new one that acquires its linguistic

knowledge from the experiences of the agent it is replacing; the new agent acquires the

language from the input it receives and forms the next generation of agents.

3.1. Language model

We simulate language as sets of meaning-signal pairings. In all experiments, the agents

could express one of three meanings (each represented by an integer value) that stand for

a core, grammatical function, for example, tense, aspect, plurality. These meanings are

taken to be implicit in the cognition of events, and thus present at all stages of the lan-

guage, but may vary in the signals used to represent them. Consider the constant need in

the history from PIE to Spanish to express the future time of an action but the various

signaling means employed over time.

The agents communicate with signals, represented as a sequence of four integer values.

The first integer value is the meaning that it communicates. The second integer value is

the lexical origin of the signal. In the PIE example above, two origins would be present:

the original lexical origin of the PIE desiderative suffix, and the verb “to have” that is still

present in the daughter languages. The third integer value is the number of reanalyses
through intergenerational transfer that have occurred, and the fourth and final integer value

is a unique identifier for the signal. As described above, a given reanalysis results in a

semantic or structural change to the signal, but a signal representing the same meaning

and having the same lexical origin might be reanalyzed the same number of times with

different effects. For example, Spanish and Italian share the same general historical devel-

opments of the future tense inflexion, but different sound changes took place in each set of

speakers (thus there are two languages instead of one) and so even though they share the

same lexical origin and similar number of reanalyses, the signals are not identical.

3.2. Agents

An agent consists of four parts: an active repertoire of signals, a passive repertoire of

signals, a history of usage experiences, and an identifier. The active and passive reper-

toires are implemented as sets of signals, where the active repertoire contains signals that

the agent uses to communicate with other agents, and the passive repertoire contains all

of the active signals, as well as additional signals that the agent comes to understand

from others but does not (yet) produce. The identifier is a unique integer value that iden-

tifies the agent’s position in the network across generations, and the history is a sequence

of pairs, where each pair consists of the identifier of another agent that communicated

with the agent, and the signal that other agent used for that communication; the history is

a record of who said what to the agent.
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Initially, and after each intergenerational transfer, an agent has exactly one signal for

each meaning in the language and an empty history. At first, both the active and passive

repertoires consist of just these signals and are identical. As communication progresses,

described in detail below, each agent comes to understand signals used by others and

adds them to the passive repertoire. With additional exposure, signals from the passive

repertoire can be added to the active and thus become produced as well as understood.

3.3. Agent–agent communication

An outline of the communication procedure is presented in Fig. 1 (left). Communica-

tion proceeds with the “speaker” agent selecting a signal from their active repertoire and

presenting it to their partner, the “hearer” agent. Their partner then uses their own passive

repertoire to see if they know that signal already, or if the signal is not known, they

search the passive repertoire for a significantly close signal of the same meaning they can

use to interpret it with. The mechanics of significantly close, explained shortly, capture

the fact that while speakers of a language may have different internal understandings of a

signal, on the surface their usage is still intelligible to others. Again, consider the future

tense example. At one point a generation of Spanish speakers understood the -�e of the

future tense to be the helper verb “to have” while their children or grand children under-

stood that same sound to be simply a verbal suffix that just expressed tense. However,

grammaticalization is always gradual, and on the surface all speakers were producing

phonetically the same sequences, and always in a context where future time was implied.

Something as seemingly different in analysis as a helper verb and suffix can coexist and

be mutually intelligible amongst all speakers.

For one of the passive repertoire signals to be sufficiently close, and thus facilitate

intelligibility, requires that the integer values of the two signals (the speaker’s chosen sig-

nal and the passive one being checked) are comparable. First, the meanings must match.

Fig. 1. Communication and intergenerational transfer. The chart on the left, beginning with “speaker selects

signal,” is the communication procedure, and the right, beginning with “agent selects meaning,” is the inter-

generational transfer procedure. Green arrows and red arrows represent the path taken for yes and no answers

to the question in the box, respectively.
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Second, the lexical origins must match, so that the fundamental semantic and physical

properties of the signal are similar. Finally, the level of reanalyses must be within a set

threshold from each other, thus allowing for differences to emerge between the usage of

different generations, but not so different that mutual intelligibility is lost. Alternatively,

if the signal being used has zero levels of reanalysis, and thus not having undergone any

grammaticalization, it is simply a lexical construction with no potential for misunder-

standing. Such zero-level signals are immediately understood without need for any speci-

fic knowledge from the passive repertoire.

If a signal in an agent’s passive repertoire can be found such that the signal being shared

with it is intelligible, the agent adds it to the passive repertoire if not already present, and

adds a pair consisting of the speaker’s identifier and the shared signal to its history. Addi-

tionally, if the hearer already possesses the signal in their passive repertoire, that is, it is

being exposed again, it undergoes a small chance to add the signal to its active repertoire.

In this manner, agents can adapt to and adopt the usage patterns of others.

However, if a signal that facilitates communication cannot be found in the passive

repertoire, the speaker will try and repair the communication by using any other active

signals it possesses with the same meaning. Again, for each such repair the hearer will

attempt to understand it using the available passive knowledge. If no such communicable

signal can be found to communicate the intended meaning, the agents will coin a new

signal to fill the expressibility gap. Computationally, a new signal with the same meaning

as the signal attempted to be shared is created, and given a new origin, a new identifier,

and zero levels of reanalysis. This corresponds to the observed behavior in language con-

tact and second language user situations when communication is obstructed by grammati-

cal intricacies. In these situations speakers use periphrastic constructions, that is, whole

word phrases, that appeal to adult biases in language understanding (Hickey, 2010; Sebba,

1997). In terms of the model, the new origin captures the lexical content of this new peri-

phrastic construction, and it is given zero levels of reanalysis as it is structurally ungram-

maticalized. It should be noted that this is not meant to represent a difference in

difficulty on the part of the agents to process signals with reanalysis levels greater than

zero. Simply, signals with zero levels of reanalysis have yet to accrue any of the changes

that happen during grammaticalization that might prevent them from being understood.

3.4. Intergenerational transfer

After a set number of communication events, each agent undergoes a replacement pro-

cess that simulates intergenerational transfer, and this is diagrammed in Fig. 1 (right). For

each meaning in the language the “child” agent selects a single signal to represent it. To

pick the representative signal, the agent searches the history of the “parent” agent it is

replacing and attempts to select the signal used by the most interlocutors, that is, the sig-

nal that was most generally used to represent the meaning. If there are more than one

candidates, then the signal is chosen at random.

After this usage based selection, the mechanisms of extension and reduction are simu-

lated together, as they are linked with respect to the mechanism of reanalysis. Extension
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is a constant force in human language, as speakers continually innovate for pragmatic,

rhetorical, and descriptive motivations, and as forms become more predictable, their phys-

ical structure is elided. These speaker-driven changes directly lead to the possibility that

structural changes (whether they are semantic, grammatical, or physical) occur. To

account for this, each one of the selected signals undergoes reanalysis as determined by a

small base probability for change, representing latent extension and reduction that all

speakers interject, multiplied by the number of unique speakers that used the signal in the

history. This chance is calculated for each signal that was chosen in the previous step,

and each signal probabilistically increases its level of reanalysis based on its individual

probability. If a signal does undergo a reanalysis, its reanalysis level is increased by one,

and it is assigned the next available identifier to capture the fact it has changed. Again, it

should be noted that our model does not attempt to distinguish the nuances of different

kinds of structural changes (e.g., semantic bleaching), but rather the more general fact of

structural change.

Finally, signals eventually become so reduced in physical form that they become

eroded from the language as learners fail to detect their presence. Recall the gradual

reduction from the full Vulgar Latin helper verb habere to -�e in Modern Spanish. Eventu-

ally, signals are so reduced that they become lost, much like the PIE desiderative suffix

that disappeared and created the need to coin the periphrastic construction with habere in

the first place. To account for this, any signal that is above a set threshold for reanalyses

undergoes a chance to be lost from the language. If a signal is lost, the speaker replaces

it with a new periphrastic signal, using the same procedure as when two speakers cannot

communicate.

Once the new signals have been selected and undergone the mechanisms of language

change and loss, the new agent is ready to communicate. Its begins with an empty history

and with active and passive repertoires that consist of just these chosen signals.

4. Simulation 1: Network transitivity and linguistic reanalysis

The processes of extension and reduction directly feed reanalysis, and repeated reanal-

ysis drives increased morphological complexity. This has led linguists to propose the “in-

timacy” of small communities as a crucial factor for their high levels of complexity

(Nettle, 2012; Trudgill, 2011). While informal, the idea is intuitive. When most speakers

know and converse with each other, language learners are exposed to a high degree of

variation in the input, which supports rich potential for reanalysis. In turn, such ties allow

for quick diffusion of innovations within the community, increasing the likelihood they

become adopted and available for repeated reanalysis in the future.

The goal of Simulation 1 is to capture the idea of intimacy mechanistically and in a

quantifiable way. We propose that network transitivity—also known as the global cluster-
ing coefficient (Newman, 2010)—is a structural measure from network science that for-

malizes this concept. Transitivity quantifies the average density of mutual connections

within a social network. In a social context, if a network has high transitivity, then the
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friends of an individual are likely to be friends with each other, as is the case described

above in small and “intimate” communities.

Formally, transitivity can be measured in two ways: globally, reducing the entire net-

work to a single density measure, or locally, capturing the density surrounding an individ-

ual agent. The global measure is defined as the number of closed triplets divided by the

total number of triplets. A triplet is a unique set of three agents and two connections that

link them together in the graph. A closed triplet is a unique set of three agents, and three

edges that link them together, that is, a triangular relationship among the agents. The

local measure of transitivity, defined for an individual agent, is number of edges that exist

between the agents neighbors divided by the total number of possible edges that could

exist between the neighbors.

4.1. Network architecture and communication

To assess the effect of transitivity, random networks (Erd€os & R�enyi, 1959) were con-

structed with varying probabilities of connection between agents. Connection probability

in random networks is equivalent to average transitivity (Barab�asi, 2014), and so a spec-

trum of networks was created with connection probabilities ranging from 1.0 to 0.1, with

intermediate step sizes of 10%. Fig. 2 shows two random networks with connection prob-

abilities of 0.7 and 0.2 among a population of 25 agents.

Each network was constructed with 25 agents and used the same initial language

across all simulations. Each agent was initialized with the same signal set: one signal for

each of three possible meanings, where each signal possessed no initial level of reanaly-

sis; all agents initially used the same, completely periphrastic means of communication.

For each connection probability level, 100 unique networks were generated and allowed

Fig. 2. Example of random networks used in Simulation 1, with connection probability 0.2 (top) and con-

nection probability 0.7 (bottom). Model parameters are listed to the right.
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to undergo 1,000 intergenerational transfer events. Before each intergenerational transfer,

agents were allowed to communicate for 10 rounds of communication, where a round of

communication consisted of each agent communicating a randomly selected active signal

to each of their interlocutors in the graph. The order of these communications was ran-

domized each round to avoid ordering effects.

The communication and intergenerational transfers were conducted as explained in the

language model section above, with the specific parameters as given in Fig. 2: Reanalysis

threshold is how close the reanalysis levels of two signals, otherwise matching in mean-

ing and origin, could be and still considered intelligible. Adoption probability is the

chance at each repeated exposure to a known signal that it would be promoted from pas-

sive to active. The erosion threshold is the maximum reanalysis level a signal could

reach, above which each time the signal went through intergenerational transfer it was

removed with chance equal to the erosion probability. Finally, variation probability is

level of latent extension and reduction of the agents; the number of unique speakers expe-

rienced using the signal, multiplied by variation probability, yielded the chance a signal

would be reanalyzed.

4.1.1. Prediction
As an agent’s learning algorithm is usage-based, and sensitive to the kind of signal

variation described in the linguistic literature, we expect that network capacity to support

sustained reanalysis will correlate positively with increasing transitivity; more intimacy,

as operationalized through transitivity, should predict higher levels of reanalysis. This

should happen for two reasons. First, high levels of transitivity result in greater variation

in each agent’s input, and second, they provide denser connectivity that aids dispersal of

innovations. Finally, as the statistical correlation of social spread and morphological com-

plexity was linear in the WALS database (Lupyan & Dale, 2010), we would expect a

similar linear relationship.

4.2. Results

In order to track the capacity of a network for linguistic complexity, levels of reanaly-

sis were measured in each agent after each intergenerational transfer. At this point in

time, directly after intergenerational transfer, every agent has the same number of signals

—one for each meaning. The agents have acquired their individual signals from experi-

ence, but they have yet to begin communicating. The reanalysis level of every signal used

by every agent in a given network was totaled, and then divided by the number of agents,

to provide a mean value estimate for the complexity of the language in a particular net-

work at a particular generation. The mean level of reanalysis is displayed in Fig. 3 with

each network colored by measure of transitivity. After initial fluctuations in reanalysis

values, all networks stabilized by the 500th generation. A mixed-effects model was fitted

with individual networks as random factor, and transitivity, as a fixed factor, to predict

levels of reanalysis. We selected data from the last 1,000th generation, as we were inter-

ested in the stable behavior of the models at the end of their evolutionary path. In line
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with our prediction, the statistical model yielded a positive effect of transitivity

(b = 3.24; t = 9.27; p < .001), with more connected networks sustaining higher values of

linguistic reanalysis.

4.3. Discussion

As a physical proxy for ‘intimacy’ the effect of transitivity is in line with correlational

findings that more intimate societies develop greater usage of bound morphology (Lupyan

& Dale, 2010). As network transitivity increases so does the capacity for repeated linguis-

tic reanalysis, and thus the likelihood of morphological complexity. However, the effect

of transitivity on linguistic reanalysis is non-linear, evident in the unequal increases in

reanalysis despite equal increase in transitivity across conditions. Further, there appears to

be a threshold between 0.3 and 0.4 for which networks above the threshold perform qual-

itatively identical. Above the threshold, reanalysis quickly rises and reaches a high stable

state, while in contrast, below the threshold reanalysis stabilizes at far lower levels.

To explore the mechanism driving this finding, we examined the corresponding agent-

level measure of connection density, local transitivity. The mean level of reanalysis as a

Fig. 3. Results of Simulation 1: Mean levels of linguistic reanalysis as a function of network connectivity

over 1,000 generations.
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function of local transitivity is presented in Fig. 4. Each data point is averaged across all

networks and agents in Simulation 1 with the given local transitivity measurement.

As seen after one intergenerational transfer (top left) there is virtually no effect of the

local density of connections surrounding an agent. However, by generation 100 (top right)

the interconnectedness of an agent’s immediate neighbors is highly correlated with the level

of reanalysis in the signals it produces. By the end of the networks’ simulation at generation

1,000, the reanalysis levels have stabilized, as seen in Fig. 3 above. Looking at the local

transitivity measures for generation 1,000 (Fig. 4, bottom left), though, we can see that there

is still substantial variation between agents, and increasingly so as local transitivity declines.

Indeed, averaging over all generations (bottom right) agents with low local transitivity pro-

duce signals with lower levels of reanalysis across the lifetime of the network.

It appears that the differences in global levels of reanalysis observed in Fig. 3, and by

proxy, overall language complexity, are connected to the local levels plotted in Fig. 4.

The distribution of local transitivity by network group is plotted in Fig. 5, with the top

row consisting of the two networks immediately above the threshold and the bottom row

the two networks immediately below the threshold. In networks below the threshold (bot-

tom row), the majority of agents possess local transitivity values that place them in the

Fig. 4. Local transitivity: Mean levels of linguistic reanalysis as a function of local transitivity. The top two

graphs and bottom left are averaged over the individual generation listed, and the bottom right is averaged

over all generations.
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highly varied region for average reanalysis as seen in Fig. 4. In this region the range of

different reanalysis levels among the agents is greater than the threshold for communica-

bility, which causes periphrastic signals to be generated in order to repair this communi-

cation gap. Conversely, those networks with global transitivity above the threshold have

the majority of their agents with local transitivity values along the stable, constant region

for averaged reanalysis.

While the networks with high levels of transitivity are good models of small communi-

ties, those with low levels are not. Human social networks are characterized by dense con-

nectivity, especially in small groups, and so the low transitivity networks in Simulation 1

are poor proxies for reality. While these models allow the effect of transitivity to be easily

observed in a controlled fashion, the language model must be applied to networks that accu-

rately embody the network properties of both large and small human societies.

5. Simulation 2: Network topology and linguistic reanalysis

As mentioned in Simulation 1, the web of social interaction in small communities is

dense, with most members communicating with most other members. As societies grow,

Fig. 5. Distribution of local transitivity: Agent counts are taken from all networks generated at the listed

connection probability.
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though, they lose this dense connectivity, and communities within communities form

(Newman, 2010). People have limits on the amount of time and effort they can input into

social interactions (Dunbar, 1998; McCarty, Killworth, Bernard, Johnsen, & Shelley,

2001), and as population size increases, this pressure results in local clusters of social ties

(Jin, Girvan, & Newman, 2001). In large linguistic groups, for example, English speakers,

people socialize with a small fraction of the whole. Human social networks, both large

and small, demonstrate high levels of clustering, but large communities display a major

structural characteristic that small communities do not: Large networks are typically

scale-free (Newman, 2003; Ravasz & Barab�asi, 2003).
The scale-free property refers to the fact that on average most agents know only a

small percentage of the others, but there exist some agents that know a much larger per-

centage; there is no set scale in terms of how few or how many connections the typical

person may have, and so-called hubs with numerous connections cross-cut locally con-

nected communities. Consider an exemplary scale-free network, that of airports and

flights between them. The majority of airports are regional, sending a few flights in a

local area, while a few hub airports send the majority of flights across nations and the

globe (Barab�asi, 2014).

5.1. Network architecture and communication

We modeled four distinct network topologies. In order to capture the connectivity pat-

terns of small groups, a complete network (Complete) was used, where by definition all

agents interact with all others; it is analogous to the organization found in a small village.

This is the top network of Fig. 6. In contrast, to capture the topology of larger societies,

a hierarchical network (Hierarchical) designed specifically to mimic the social hierarchy

of larger human social networks was used (Ravasz & Barab�asi, 2003); this is a model of

connected communities, analogous to a physically divided network of villages or the

socially divided network of a modern city. It is shown in the bottom of Fig. 6. By way of

control, two additional networks were tested. The first, Barabasi-Albert (BA), is com-

monly used in viral models of innovation and allows for the creation of a scale-free net-

work with zero transitivity (Barab�asi & Albert, 1999). By eliminating transitivity from

the network, the effect of hub agents can be assessed in isolation. In viral models, the

presence of hubs drives the spread of innovation by linking large numbers of agents that

otherwise may be distant from each other.

It would be ideal to also compare the common BA model with the transitivities present

in the hierarchical network; however, a number of problems exist for this at present. First,

the traditional BA model does not produce the requisite levels of transitivity present in

observed social networks (Ravasz & Barab�asi, 2003; Varga, 2015). Second, while modi-

fied versions of the BA model exist to try and make this property an adjustable parameter

(Jin et al., 2001; Varga, 2015), as well as novel procedures to produce scale-free net-

works with tunable transitivity (Chakrabarti, Heath, & Ramakrishnan, 2017; Herrera &

Zufiria, 2011), no method yet exists that accounts for the distribution of connection den-

sity in a way that mimics social networks and/or allows for manipulation of that density
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measure beyond a narrow range. A key issue is that in large, scale-free human social net-

works, the local transitivity of an agent is inversely proportional to its number of connec-

tions, for example, to its degree (Soffer & Vazquez, 2005). At present, generative models

of social network structures are an ongoing area of active research, as represented in the

above works.

Lastly, a random network (Random) was also created (Erd€os & R�enyi, 1959). The con-

nection probability was lnN
N , the threshold for single connected components, and where N

is the number of agents. This allows for the creation of a non-scale-free network with no

assumptions about the hierarchical distribution of agent ties.

As with Simulation 1, each network contained a fixed number of 25 agents across all

conditions, starting with the same initial language at generation 0. Only the typology was

varied. The population size of the agents, the initial language, and the number of commu-

nications per agent were the same in all conditions; the only difference was the patterns

of connectivity. All simulation parameters were identical to Simulation 1, Fig. 2.

5.1.1. Prediction
The transitivity values for these networks are summarized on the right side of Fig. 6,

and both Complete and Hierarchical are above the threshold for maximal linguistic

reanalysis seen in Simulation 1, while BA and Random are far below it. If it is the case

that transitivity alone affects the ability of a network to support sustained reanalysis, then

given these values, we expect Complete and Hierarchical to support similar, maximal

levels of reanalysis, and BA and Random to support little to none.

Fig. 6. The complete (top left) and Hierarchical (bottom left) networks used in Simulation 2 exemplify con-

nectivity properties of two common types of human social communities, respectively: the village and the

modern city. The transitivity measures for all networks (BA and Random not pictured) are given to the right

(the Complete network depicts only 10 agents for clarity).
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However, Simulation 1 did not account for the kinds of hierarchical structure seen in

actual human social networks. If it is the case that these hub connections that develop in

scale-free networks are important for supporting sustained reanalysis, then we would

expect that BA and Hierarchical to have an advantage over Complete, as both of these

networks are scale-free and Complete is not. This is especially so for Hierarchical, which

has a transitivity level above the observed threshold for maximal reanalysis.

5.2. Results

Complexity was measured using the same method as Simulation 1, and is plotted in

Fig. 7 as a function of generation and network topology. Different paths of evolution of

reanalysis are noticeable across network topologies. In particular, Complete exhibits an

initial large increase with further stabilization, while Hierarchical and Random proceed

along more gradual increases, while Barabasi hardly takes off. To confirm these trends, a

mixed-effects model was fitted with individual networks as random factor, and topology

at the final generation as a fixed factor, to predict amount of reanalysis. The model

yielded main effects of topology, such that the Complete network yielded larger levels of

reanalysis. In particular, as predicted the Complete network developed significantly higher

reanalysis than the Hierarchical model (b = 4.27; t = �315; p < .001). Conversely, the

Barabasi model exhibited significantly lower reanalysis than the Hierarchical model

(b = �5.09; t = �14.82; p < .001). The Random network did not differ from Hierarchi-

cal (b = �0.21; t = �0.63; p = 0.52).

5.3. Discussion

A seemingly surprising finding is that despite the level of transitivity being above the

threshold for maximal reanalysis, the capacity for reanalysis in Hierarchical is no differ-

ent than Random. A crucial difference, though, is in how that transitivity is distributed

within the networks. The high transitivity in Hierarchical is due to the dense connectivity

within its five-agent clusters (c.f. Fig. 6), with a transitivity of 0.7 each. However, com-

munication between these small, near-complete subcommunities is mediated through the

central agent of the central cluster, the hub agent of the network. It is this mediation

through the hub that counteracts the complexity generated by these dense clusters.

Zooming in on a single network provides a clearer interpretation. The top of Fig. 8

plots the average level of reanalysis over the 1,000 generations of a single, typical, run of

Hierarchical. Characteristic of simulations on Hierarchical is the steady climb of reanaly-

sis levels, as predicted by the high transitivity of the individual clusters, but punctuated

by both small and catastrophic declines. While there is always the possibility that a mutu-

ally intelligible signal with a lower level of reanalysis may replace another, the small and

catastrophic declines are caused when the signals in one group become mutually unintelli-

gible with the others.

It is impossible for the hub agent to learn and actively produce every distinct sig-

nal for all five clusters, and thus over many generations the signals within a group
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may become locally more complex than those of their neighbors, or become so com-

plex that they erode and are replaced. At this point communication is broken across

the groups, and periphrastic signals are generated as the hub tries to maintain commu-

nicability. These periphrastic signals, which are automatically understood regardless of

passive knowledge, may spread and replace the natural grammaticalization process of

another origin. This would be analogous to the will future in English becoming domi-

nant and replacing the more reanalyzed going to future and its variants, for example,

gonna, gun’, goin’, and so on.

Often, this small reduction in average reanalysis is isolated to the central community

in which the hub is embedded and one or two local clusters with which communication

was repaired, and it only results in a small dip in overall network reanalysis levels. How-

ever, the hub is in contact with all five communities, and even when its own central clus-

ter and others are undergoing such a replacement, it may continue to acquire signals with

high levels or reanalysis still in use in other groups. This distinct hub behavior leads to

catastrophic declines, as occurs around generation 500 in Fig. 8.

Fig. 7. Study of hierarchical network 3: Top figure displays average reanalysis levels across all 100 genera-

tions of the network. The middle and bottom figures center around the large drop in reanalysis at generation

500 and are broken down into the physical clusters of agents (middle) and central hub agent versus others

(bottom).
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The bottom two graphs of Fig. 8 are centered around this catastrophic decline, with

the middle graph showing the average complexity in the individual clusters (named for

their physical positions in Fig. 6) and the average complexity of the hub agent versus the

others. We can see that a repair happens between the central and bottom left groups,

causing the sharp decline in average reanalysis as periphrastic signals replace existing

ones. However, even as the hub’s central group drops ever lower, the hub-agent itself

retains high-level signals until all but one group has declined. At this point, the hub agent

has caused a number of now competing periphrastic variants to emerge, and rather than

quickly recovering, the entire network must undergo a period of little to no growth; com-

pare the quick v-shaped drop and rise after small declines, such as at generations 170 and

210, with the protracted and u-shaped pattern surrounding the catastrophic decline around

generation 500. Not until winning variants emerge can they slowly undergo joint reanaly-

sis in the individual clusters.

This innovative behavior of hubs is also predicted by cultural evolutionary theory, as

they form bottlenecks that restrict the flow of information (Smith et al., 2003). When the

transfer of social knowledge is incomplete, there is a pressure exerted to innovate and fill

the same cultural and communicative function. The hub agents do precisely this, respond-

ing to the pressure caused by gaps in communicative ability, and innovate new signals to

fill them. If this constraint to maintain communicability were removed, the five local clus-

ters in Hierarchical would go on to develop individual languages, and the linguistic com-

munity would fracture. The price for maintaining cohesion of language as it spreads

across such bottlenecks, be they physical or social, may be payed with morphological

complexity.

Finally, the periodicity of these collapses was investigated with additional simulations

that examined the interaction of two key model parameters: the number of communica-

tion rounds before intergenerational transfer, and the multiplier used to determine when

an innovation that leads to reanalysis occurs.

Fig. 8. Results of Simulations 2 and 3: Simulation 2 (left), mean levels of linguistic reanalysis in four differ-

ent 25-agent network architectures for 1,000 generations. Simulation 3 (right), mean levels of linguistic

reanalysis in two 125-agent networks of interest for 500 generations.
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One would expect that increasing the rounds of communication between transmissions

would reduce the frequency of collapses like those seen in Fig. 8. The chance that two

agents are unable to communicate decreases, as each additional round of communication

provides more opportunities for innovative signals to diffuse across the network. If agents

are more readily able to maintain communication, then fewer repairs will take place, and

thus fewer opportunities to trigger a collapse will be present.

Conversely, as the probability that innovations are introduced increases, one

would expect that the number of collapses would also increase. As more innova-

tions occur, there are more signals in competition for expressing a given meaning,

and this competition reduces the likelihood that agents are able to communicate.

With each failure to communicate, a repair is made that may potentially lead to a

collapse.

To explore this interplay, the effects of these two parameters were tested with the fol-

lowing values: rounds of communication was varied across 10, 20, and 30 rounds, while

the variation probability was tested at 0.001, 0.005, 0.01, 0.05, and 0.01. As a reminder,

the simulations reported in the previous sections had 10 rounds of communication before

transmission, and as reported in Fig. 2 (right) a ‘variation probability’ of p = .01 was

used.

In order to calculate the average time between collapses, local maxima and minima

were identified using the discrete analogs of traditional calculus. Specifically, the for-

ward difference between points was used to approximate the first and second deriva-

tive information. As seen in Fig. 8 (top), the mean reanalysis per generation is quite

noisy, with many small rises and falls, and so to de-noise the data only every tenth

generation was considered. On this smoothed data, any time a drop in mean reanalysis

of greater than 50% occurred, it was classified as a collapse. For each pair of condi-

tions, and additional 100 hierarchical networks were run, and the results summarized

in Fig. 9.

As predicted for variation probability, increasing the likelihood for additional competing

innovations has the effect of decreasing the average time between collapses. However, in

general, the predicted effect of increased communication rounds is not present. That is, as

more rounds are afforded to the agents to communicate, the average time between col-

lapses remains constant. The lowest variation probability (p = .001), though, does conform

to the expectation that increasing communication rounds also increases stability.

It seems then that the stability of such hierarchical networks is most sensitive to the

general amount of innovation introduced by the speakers. Moreover, this constraint on

stability seems to persist despite increased diffusion of signals across the network. How-

ever, it may be the case that if innovation is so gradual as to not cause competition,

increased diffusion does translate to increased stability. In particular, for the p = .001

case, at 30 rounds of communication before transfer, the average interval between col-

lapses is approaching the length of the simulation. This means that, behaviorally, as com-

munication rounds increase the collapses that characterize the hierarchical networks (as

opposed to the complete networks) may be averted.
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6. Simulation 3: Revisiting network size

In Simulations 1 and 2, only the connectivity patterns of the agents were being manip-

ulated—all networks consisted of 25 agents throughout and began with identical lan-

guages. While population size has been reported recently as a highly predictive variable

in other computational and correlative studies of language complexity (Bromham, Hua,

Fitzpatrick, & Greenhill, 2015; Reali et al., 2018), it is also conflated with social structure

(Carneiro, 1967; Soffer & Vazquez, 2005), and indeed it may limit the range of possible

structures for individual agents (Dunbar, 1998). In particular, the size of complete or near

complete networks may be limited to about 100-200 social connections (Gonc�alves, Perra,
& Vespignani, 2011). In order to examine how our language model may be informed by

these findings, we constructed 125-agent versions of the Complete and Hierarchical net-

works used in Simulation 2. To keep computational time to run on PC computers, we

reduced the replications of each network topology from 100 to 50. In addition, because

network behaviors in Simulation 2 stabilize after around 300 generations, we also reduce

the number of generations from 1,000 to 500. While not discussed here, both Simulation

Fig. 9. Interplay of parameters. On the x-axis are the number of rounds of communication allowed before

transmission, and the color codes for values of the variation probability, the multiplier used to determine

when innovations lead to reanalyses. The y-axis is the mean number of generations between collapses.
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1 and the additional networks used in Simulation 2 (BA and Random) can be found in

the supplementary materials.

6.1. Results and discussion

A mixed-effects model was fitted with individual networks as random factor, topol-

ogy, and network size (25 vs. 125 agents), and their interactions as fixed factors. The

dependent variable was the mean level of reanalysis for each network at generation

500, as seen on the right of Fig. 7. The model yielded main effects of topology, such

that the Complete network yielded larger levels of reanalysis (b = 3.65; t = 10.79;

p < .001). A main effect of netsize also obtained, with 25-agent networks yielding

overall larger values of reanalysis over 125-agent networks (b = �5.41; t = �12.88;

p < .001). Finally, the topology x netsize interaction was significant (b = �4.51;

t = 7.71; p < .001). Fig. 10 reveals that driving the interaction was a larger mean dif-

ference in reanalysis between Hierarchical and Complete for the 125-agent networks. In

addition, mean values of reanalysis for Complete were comparable, if not higher in the

25-agent compared to the 125-agent networks, while mean values of reanalysis were

lower for Hierarchical in 125-agent networks. This pattern of results suggests that net-

work size amplifies the effect of network structure not by boosting complexity in larger

Complete networks, but by limiting the opportunities for complexification in larger

Hierarchical networks.

While the relative performance of these networks at the 125-agent level mirrors their

25-agent counterparts, their trajectory before reaching stability was slightly different. In

the 125-agent Complete, signals rose in reanalysis in virtual unison, until becoming so

high-level that then began to erode and be replaced. In the 25-agent Complete, the signals

did not all rise and erode in such a tight time scale, and so there are some perturbations

before the steady state is reached. Looking at the 125-agent Hierarchical, it undergoes a

slow rise like its 25-agent counterpart, and peaks as each of its five 25-agent Hierarchical

clusters stabilize. However, these clusters themselves participate in a hierarchical arrange-

ment, and the presence of these additional hubs leads to additional declines, driving the

overall complexity down again.

7. Conclusion

It has long been posited that dense, “intimate” social ties are responsible for creating

conditions that support greater morphological complexity. Insofar as network transitivity

captures that idea, the ability of networks to sustain reanalysis of signals over many gen-

erations supports this hypothesis. Global transitivity of a network is a reliable predictor

for the performance of complete and near complete social networks, which model small

and localized populations of speakers. Further, the effect of global transitivity could be

seen to reflect different behaviors in the individual neighborhoods of agents, as captured

by the measure of local transitivity.
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However, as seen in Simulation 2, the capacity for dense connections in a network to

support reanalysis at high levels, can be largely overridden as hierarchical structure is

introduced. This is contrary to what epidemic diffusion models would predict (Ke et al.,

2008) and underscores the need for modeling in network science to closely consider

means of propagation, as well as looking beyond questions of “time to spread” or “time

to convergence” when considering intergenerational phenomena.

Beyond positing a mechanistic explanation of the observed correlation between mor-

phological complexity of a language and the demography of its speakers, this research

may have practical implications as well. Language maintenance and revitalization efforts

are increasingly important as languages spoken by smaller languages continue to be lost

as globalization prioritizes larger languages of economic and political importance. In par-

ticular, many such small languages possess high degrees of complexity which may be

best retained if minimum levels of local transitivity are ensured, and hierarchical structure

in the domains where revitalization efforts take place are minimized.

Fig. 10. Interaction between network topology and network size in Simulation 3.
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The present work represents an initial exploration at the intersection of network

science and computational linguistic modeling. For instance, our model generalizes over

the distinctions between semantic and grammatical structure, instead focusing on the gen-

eral process that unifies them. It may very well be the case that further more complex

interactions emerge once this level of resolution is added in future work. Also, as clear

from the contrast of the hub versus other low local-transitivity nodes in the random net-

works, the effects of network structure surrounding such measures is also clearly an area

requiring further effort.

Further afield, while our simulations focused on the intimacy of speakers as a cau-

sal variable, it is entirely possible that structural aspects of natural languages be

affected by a combination of other social variables, some of which are discussed at

length by Trudgill (2011) and Nettle (2012): community size and degree of isolation;

degree of language contact; type of language contact; degree of social stability; den-

sity of social networks (modeled here); amount of communally shared information;

vocabulary size of the community; ratio of child to adult language learners in the

community.

Our findings match the observations made by linguists, as well as the statistical find-

ings derived from the World Atlas of Language Structures on population spread and com-

positional structure (Dryer & Haspelmath, 2013; Lupyan & Dale, 2010). Small

populations with dense connections are able to support sustained reanalysis, and thus one

would suspect the average level of morphological composition to be higher. Conversely

the effect of hierarchical social structure, which emerges as human social networks grow,

places a pressure for innovations that ease communication rather than being the product

of repeated reanalysis. In these hierarchical structures, the previous reliance on morpho-

logical composition is replaced with more syntactic composition. This complex interac-

tion between network structure and usage-based transmission provides the first

mechanistic explanation consistent with both linguistic theory and observed history of

natural language change.

8. Open data

All raw data and code to generate and analyze it are available at https://gitlab.com/ska

git/SNLLC for public use.
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Note

1. Within the linguistics literature, extension is referred to as analogy, while reanaly-

sis refers specifically to changes in grammatical structure, while an additional term,

bleaching, is used to refer to changes in semantic structure. In this paper we high-

light the more general means of novel usage with the term extension; much novelty

that leads to language change has nothing to do with analogy as conventionally

understood in the context of English grammar. Similarly, structural change happens

at various levels of language use, and so we use the term reanalysis throughout to

refer to structural change regardless of kind.
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