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Thermal equilibrium states in perturbative Algebraic Quantum
Field Theory in relation to Thermal Field Theory

João Braga Vasconcellos

Abstract

In the first part, we analyse the properties of an interacting, massive scalar field
in an equilibrium state over Minkowski spacetime. We compare the known real- and
imaginary-time formalisms of Thermal Field Theory with the recent construction by
Fredenhagen and Lindner of a KMS state for perturbative interacting theories in the
context of perturbative Algebraic Quantum Field Theory, in the adiabatic limit. In
particular, we show that the construction of Fredenhagen and Lindner reduces to the
real-time formalism only if the cocycle which intertwines between the free and interact-
ing dynamics can be neglected. Furthermore, the Fredenhagen and Lindner construc-
tion reduces to the ordinary imaginary-time formalism if one considers the expectation
value of translation invariant observables. We thus conclude that a complete descrip-
tion of thermal equilibrium for interacting scalar fields is generally obtained only by
means of the state constructed by Fredenhagen and Lindner, which combines both for-
malisms of Thermal Field Theory. We also discuss the properties of the expansion of
the Fredenhagen and Lindner construction in terms of Feynman diagrams in the adia-
batic limit. We finally provide examples showing that the real- and the imaginary-time
formalisms fail to describe thermal equilibrium already at first or second order in per-
turbation theory. The results presented in this part are summarized in [BDP19].

In the second part, we discuss the so-called secular effects, characterized by the ap-
pearance of polynomial divergences in the large time limit of truncated perturbative
expansions of expectation values in Quantum Field Theory. We show that, although
such effect is an artifact of perturbation theory, and thus may not be obtained via ex-
actly solving the dynamical equation (whenever this is possible), they do not represent
the breakdown of perturbation theory itself. Instead, we show that the polynomial di-
vergences follow from a bad choice of state, and we present examples of states which
produce expectation values whose perturbative expansion does not present secular ef-
fects. In particular, we point that it is possible to obtain non time-divergent perturbative
expressions from thermal equilibrium states for the interacting theory. This last part is
based on a research project which, by the time this thesis was delivered, had not been
concluded yet.
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Introduction

Quantum field theory (QFT) corresponds to a general, abstract terminology for the
physical description of force fields, in accordance with the laws of relativity and quan-
tum physics. Based on the results of different experiments, it is possible to say that
many theories, all considered within the broad terminology of Quantum Field Theories,
provide very accurate descriptions of certain physical systems. For instance, the experi-
mental value of the electron magnetic momentum has a relative uncertainty of the order
of 3× 10−10,1 and agrees with theoretical predictions up to order 10−9, (cf. [Fre]) which
illustrates the accuracy obtained in the context of quantum electrodynamics. More-
over, results obtained from the many experiments in the Large Hadron Collider (LHC)
have been abble to confimr theoretical previsions such as the existence of quark-gluon
plasma, besides the validity of the standard model of particles physics. Classical refer-
ences for QFT in the physics literature are [IZ80; BS80; PS95].

From the theoretical perspective, QFT involves different and complex theories, sup-
ported in different areas of mathematics. From its early days after the pubblication of
Dirac’s paper “The Quantum Theory of the Emission and Absorption of Radiation” in 19272)
to the present, it continues to motivate the analysis of PDEs, different aspects of geom-
etry, commutative and non-commutative algebra, harmonic analysis, logic, category
theory and number theory, for instance.

Following the ideas presented in [BC97; Em0], the general description of a physical
system may be structured upon states and observables, which may be described by dif-
ferent mathematical objects depending on the context. For instance, an observable may
be given by a self-adjoint operator over some Hilbert space in the realm of Quantum
Mechanics, or it may be a functional over the space of smooth sections of a vector bun-
dle, as we shall see later in this thesis. In general, however, one should heuristically
think of observables as the the elements of the physical system which are measured,
and the states as the configurations of the experimental apparatus at the moment prior
to the measurement. A clear and elegant description of this basic description of physi-
cal systems in the context of QFT may be found also in [Ara99]. An abstract and general
characterization of quantum field theories, directly based upon observables and states,
was formulated along these lines by R. Haag and D. Kastler in [HK64] in the early 1960s.

1According to the 2018 Committee on Data for Science and Technology (CODATA) publication. See
the USA National Institute of Standards and Technology Reference on Constants, Units and Uncertainty,
https://physics.nist.gov/cgi-bin/cuu/Value?muem.

2P.A.M. Dirac, Proc. Royal Soc. Lond. A 114, pp. 243–265, (1927).
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Introduction

Given the fact that the set of observables of a quantum field theory may be endowed
with an algebra structure, their work explores a net of such ∗-algebras, labeled by rela-
tively compact regions of spacetime. The authors recollected the basic physical assump-
tions for a QFT in a list of axioms for the net of algebras of obserables, which result in
an algebraic description of quantum field theories. Though in [HK64] the authors ad-
dress theories on the flat Minkowski spacetime, in [Dim80] Dimock showed how this
formalism may be extended to quantum field theories over more generic spacetimes.
We may consider the Haag-Kastler formalism via the following set of axioms for the
observables of a physical QFT.

Although the concepts below will be further discussed in chapter I, for now one
may think of a spacetime as a particular four dimensional smooth manifold, endowed
with a Lorentzian metric, a non positive-definite metric with signature (+,−,−,−). A
Cauchy surface would then be thought in terms of a hypersurface {t} × R3 for some
fixed t ∈ R, and a spacetime which may be differentially foliated by Cauchy surfaces is
what we shall call a globally hyperbolic spacetime. All the precise definitions may be
found in the first section of chapter I. In this context, the Haag-Kastler axioms may be
summarized as follows.

I. Let M be a globally hyperbolic spacetime3. To each relatively compact region
O ⊂ M , it is associated a unital ∗-algebra A (O), interpreted as the local algebra
of observables of O.

II. (Isotony) If O1 ⊂ O2 ⊂M , then A (O1) ⊂ A (O2).

III. Given a net of local algebras
(
A (On)

)
n∈I with A (On) ⊂ A (On+1) and I an or-

dered indexing set such that
⋃
n∈I On = M , then we define the universal algebra

of observables via the indutive limit

A (M) := lim
n→∞

A (On).

IV. (Causality) LetO1, O2 ⊂M be two causally separated, relatively compact regions
of M .4 Then the respective algebras commute, i.e.[

A (O1),A (O2)
]

= {0}.

V. (Time-slice condition) If O1 ⊂ O2 have a common Cauchy surface5, then A (O1)
and A (O2) are isomorphic.

It is evident, however, that the above axioms address only observables and not states,
which are given by suitable (linear, positive and normalized) functionals over the ∗-
algebra A (M). In this manner, the combination of observables and states produce

3Cf. definitions 2 and 3
4Cf. subsection I.1.1.
5See subsection I.1.1.
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numbers, interpreted as expectation values of observables, or mean values of repeated
measurements of the the same observable in a given state. We shall discuss states in
chapter I, section I.3. The fact that the above list of axioms considers only observables
turns out to be a great advantage of AQFT. Since states are to be considered separately
from the basic axioms for quantum theories, the algebra itself is independent of states.
This is not the case, for instance, in the Wightman description of QFT described in
[SW00].

The abstract formulation of a quantum field theory based on the above axioms has
been called Algebraic QFT (AQFT). In this thesis, the ∗-algebra of observables will be
considered in the sense of formal power series in the quantum parameter ~, as will be
described in the first chapter. We anticipate that the time-slice condition, which may be
seen as a week form of determinism by initial conditions, plays an important role in the
work by Fredenhagen and Lindner, [FL14; Lin13], on which we shall base our analysis.

The usual description of quantum field theories is developed considering systems
at very low temperatures, with the either implicit or explicit assumption of vanish-
ing temperature T = 0K. Though this may provide a good approximation for some
physical systems, that may not be the case in different contexts, and one is then forced
to search for a description of quantum systems at finite temperature. Systems out of
thermal equilibrium are considerably more complex and beyond the scope of this the-
sis. Hence, the main problem consists of the characterization of thermal equilibrium
in quantum field theory. This analysis may be physically motivated also by the high
temperature thermal equilibrium achieved in the early universe during some time, for
instance, in addition to other examples of physical systems provided below. Such char-
acterization is usually implemented by means of a proper construction of thermal equi-
librium states which depends on the temperature of the system. In other words, the
analysis of thermal systems in equilibrium concerns the construction of suitable states,
which, according to the work of Haag, Hugenholtz and Winnink [HHW67], are deter-
mined by the inverse temperature β > 0 of the system and which are characterized by
the so-called KMS condition (after Kubo, Martin and Schwinger). This is motivated as
follows. In the context of quantum statistical mechanics, an ideal gas contained in a fi-
nite volume, once it achieves thermal equilibrium with the walls of its container acting
as a thermal reservoir, is described in terms of a density matrix, given as the exponential
of the Hamiltonian operator times the inverse temperature 0 < β < +∞. This permits
to construct states, the so-called Gibbs states, which are completely characterized by
the analytic continuation of expectation values into a strip of the complex plane. In
general, states fulfilling analogous analytic conditions are called β-KMS states. This
will be properly explained in definitions 34 and 35, chapter II. Hence, when consider-
ing thermal equilibrium states in other, more general situations, according to [HHW67]
we shall adopt the KMS condition as a characterization of thermal equilibrium states.

For the case of free scalar theories, the construction of a KMS state is then straight-
forward, as we shall see in section II.1. If one is interested in interacting theories, how-
ever, the situation is considerably more complex. Considering the quantum scalar field
φ as an algebraic-valued distribution over Minkowski spacetime M for what concerns
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Introduction

this introduction, we examine a system described by the Lagrangian functional

L(φ) =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − LI(φ), (1)

where m > 0 is interpreted as a mass constant, and LI(φ) is some polynomial in the
field φ, which is interpreted as a field self-interaction term. This contribution to the total
Lagrangian will be discussed in section I.4, where interacting fileds will be constructed
with perturbation methods over the free theory. Since the KMS condition concerns the
group of automorhisms which implement dynamics over the algebra of observables,
as the introduction of an interaction term LI(φ) perturbs this dynamics, the KMS state
for the free state is not expected to correspond to a KMS state of the interacting theory.
In the physical literature, the problem of describing thermal equilibrium states for in-
teracting theories originated what is often called Thermal Field Theory (TFT). We briefly
recall some of its basic aspects, and refer to the classical references [LW87; Bel00] for
further details.

Thermal Field Theory is also seen as a combination of quantum field theory and
aspects proper to statistical mechanics, and it has been founded more than fifty years
ago with the pioneering works of Matsubara [Mat55a], Keldysh [Kel65] and Schwinger
[Sch61] (see also [NS84], [Hov86]). At that time, one of the main physical motivations
was the analysis of phase transitions of hadronic matter predicted to occur at high tem-
perature in quantum cromodynamics, (cf. [McL84]), the quantum theory describing the
strong interaction between quarks and gluons. The formalism of thermal field theory
has also been applied, for instance, to the analysis of baryogenesis in the early-universe
(see e.g. [Kaj85; CH88; PSW04a; PSW04b]) and to derive transport equations for a sys-
tem of quantum fields, such as in the study of the dynamics of a quark-gluon plasma
(for a more recent application, see [CM05]).

Although in particular situations the differential equation describing the dynami-
cal behaviour of expectation values, which descends from the Lagrangian functional
(1), may be solved exactly, this in general is not the case in theoretical and mathemat-
ical physics. In this thesis, an exactly solvable interacting system will be discussed
in light of the Principle of Perturbative Agreement, to be discussed at the end of I.4. In
the absence of an exact solution to the dynamical equation, interactions are treated by
means of perturbation theory. In this way, considering the polynomial interaction term
LI(φ) = λφn, λ ∈ C is treated as a perturbation parameter. In this approach to inter-
acting quantum field theories, the interacting observables are then represented within
the algebras of the free theory, introduced in the Haag-Kastler axioms, as a subalgebra
of formal power series in λ. This representation concerns only the algebraic level, and
thus it does not consider the effect the interaction term LI may have upon states. For
perturbative computations, it is particularly convenient to have expectation values of
the interacting theory written in terms of some state of the free theory. This is possible
at zero temperature, and for the vacuum state one obtains the so-called Gell’Mann-Low
formula for the interacting state Green function, which contains the dynamical infor-
mation for expectation values. In more generic situation, a similar expression is not
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possible, and one has to consider the modifications upon the state produced by the in-
teraction. In TFT, however, we may find a representation of thermal Green function in
terms of free states, where the effect of LI upon states is transferred to the product of
fields, which are now to be ordered along a certain contour in the complex plane. The
generic description is the following.

Consider a free quantum field theory, described by the Lagrangian functional

L0(φ) =
1

2
∂µφ∂

µφ− 1

2
m2φ2. (2)

Suppose this system had been initially prepared in a free thermal equilibrium state at
some inverse temperature 0 < β < +∞, and as of a certain time ti, the perturbative
interaction was switched on, so that the system is then described by Lagrangian (1).
With both the state and the dynamics perturbed, the system has then been left to evolve.
One is now interested in expectation values of observables supported in the future of
ti, and, in particular, the n-point Green functions for points located in this region are
formally given by

G(x1, . . . , xn) =
1

Z(0)

δn

δj(x1) . . . δj(xn)

〈
TC exp i

∫
C
dx0

∫
R3

dxLI(x) + j(x)φ(x)

〉∣∣∣∣
j=0

.

(3)
Here the brackets correspond to averaging with respect to the initial free equilibrium
state, and j is a complex-valued source. The time ordering TC and the integral of the
interaction Lagrangian LI over the time coordinate x0 is performed along a contour
C in the complex plane. The standard contour in TFT is known as Keldish-Schwinger
contour (see fig. II.1, page 86), which usually has three pieces. It starts at ti, goes on to
some later tf > ti, chosen in such a way that it is also later than the time coordinates of
every point xi. The second branch then goes back from tf to ti, and the final one goes
from ti to ti−iβ. The first two lines take into account the perturbation of the fields in the
interaction picture, while the last one, on the other hand, is necessary in order to modify
the free into an interacting equilibrium state. As we shall consider only the Keldysh-
Schwinger contour, we shall write C = C ∪ Cv, where C represents the two real lines,
and Cv the vertical, imaginary one. In resume, according to the discussion presented
throughout chapter II and III, the contour C formally corresponds to the effect of the
interaction over fields, while Cv accounts for the modification upon the state.

In some situation, when one is interested in computing expectation values of ob-
servables which do not depend on time, it is possible to discard the real contour C and
consider an integration from ti directly to ti − iβ. This analysis is named imaginary-
time, or Matsubara formalism. The very same analysis holds if one is interested in
computing correlation functions at imaginary times. We notice the n-point functions
with all the time arguments along this vertical complex contour are correlation func-
tions of an Euclidean field theory. Arguably, one of the greatest advantages of this
formalism lies on the fact that the set of Feynman rules, which provide a prescription
for the calculation of expectation values, obtained with such analysis is quite similar to
those of a field theory in a vacuum state. However, in order to obtain time dependent
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Green functions in Minkowski spacetime, it is necessary to perform an extension of the
propagators obtained in the Matsubara formalism for real times, a task which is usu-
ally non trivial. We refer to [OS75a; OS75b] for details about the analytic continuation of
correlation functions. An alternative method is possible if the imaginary contribution
to (3) factorizes from the correlation functions instead. If this is the case, the compu-
tational scheme obtained is known as real-time formalism. As a result, in this case
equation (3) involves the free state only, and one ends up with a thermal equivalent to
Gell’Mann-Low formula. That is, if the Cv-contribution to equation (3) does factorize,
it is possible to obtain expectation values of the interacting theory without considering
any modification on the initial state.

For a generic contour other than the immaginary Matsubara contour Cv, however,
it is not easy to obtain a set of Feynman rules for the perturbative representation of (3).
Furthermore, if the interaction is switched on instantaneously, divergences in certain
correlation functions are expected. This problem could be overcome using an adiabatic
or smooth switching on function. Unfortunately, in this way the interaction Hamilto-
nian is not local in time, hence the integration over the imaginary part of the path turns
out to be problematic. Moreover, in the limit where ti → −∞ the contribution of rela-
tive partition function, (i.e. the integration of the last path from ti to ti − iβ) factorizes
only in very special cases, see [DFP18] for further details.

Recently, Fredenhagen and Lindner presented in [FL14; Lin13] an alternative con-
struction of a thermal equilibrium state in perturbative AQFT, which will serve as start-
ing point ans basis for our discussion. Their analysis follows the work of Araki in
the context of quantum statistichal mechanics [Ara73]. The state is constructed after
the perturbative formulation of a cocycle U(t), which relates the one-parameter group
of automorphisms implementing dynamics in the free theory, with the analogous dy-
namics of the interacting theory. The result is a thermal equilibrium state that may be
written in terms of a thermal equilibrium state of the free theory at the same inverse
temperature β, but which also considers the effect of interaction. In fact, in their work
the authors show that it is necessary to modify the initial state, in order to obtain a
thermal equilibrium state for the perturbative theory.

In the first chapter we shall present the basic aspects of quantum field theory upon
which this thesis is based. We shall start by setting the basic concepts and notation for
the background geometry. Since AQFT provides a suitable description of quantum sys-
tems over a curved, globally hyperbolic background, we shall first introduce its basic
aspects in a more general form and later on restrict to Minkowski spacetime. We shall
then properly address the algebraic approach to free field theories, in order to consider
perturbative models later on. The construction of the algebras of observables will be
performed in steps. That is, we shall first consider the algebra of observables of a clas-
sical theory, and address its quantization via the construction of a non commutative
product which implements the so-called canonical commutation relations (CCR) of quan-
tum physics. As will be discussed then, the result of this construction, at this stage, will
not be enough to contain some physically interesting observables, and in fact already
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the squared field is not present within this first algebra of quantum observables. In or-
der to include objects which are more singular than the linear observables obtained in
the previous step, we have to deform the quantum product, and then to extend the al-
gebra, in a state-independent way, in order to obtain the final algebra of the free theory
A 0. Then, considering perturbative interacting theories, an important topic depicted
in the first chapter will be the representation of interacting observables into the free
algebra, as mentioned previously, by means of the Bogolubov map RV , which is con-
structed as the (functional) derivative of a formal scattering matrix. This requires the
construction of a time-ordered product of observables, which will be briefly discussed
in light of Epstein and Glaser analysis [EG73]. This formalism permits to obtain the
algebra of observables of the interacting theory as a subalgebra A I ⊂ A 0. All this con-
struction, of a broad algebra of observables for the interacting quantum theory, will be
performed for observables supported in some relatively compact region of Minkowski
spacetime, and considering a compactly suported interaction term. In order to obtain
a universal algebra A (M), as discussed in point III of the above Haag-Kastler axioms,
we shall first extend the support of functionals, considering the interaction term sup-
ported within a neighbourhood of a Cauchy surface. This will be made possible thanks
to two observations. First, we shall notice that such an extension of the interaction term
is possible as an inductive limit in its support. Second, due to the validity of time-slice
property for perturbative theories, cf. proposition 16, chapter I, as proved in [CF09],
we shall observe that restricting the interaction term to a neighbourhood of the Cauchy
surface is enough to describe the whole algebra, up to terms which vanish on-shell. We
shall conclude the first chapter with a brief discussion about graphic representations
for the product of observables.

At this point, since a state has been defined as a suitable functional ω : A 0 → C
over the algebra of the free theory, due to the representation of interacting observables
into A 0 in the sense of formal power series, it will be possible to consider an interacting
state from the restriction of ω to the subalgebra A I ⊂ A 0. The definition of an inter-
acting state as ωI := ω ◦ RV in terms of a free state ω, where RV is the Bogolubov map
mentioned in the previous paragraph, may not be suitable for the same physical inter-
pretations as ω. The most important example of this fact in this thesis will be precisely
a thermal equilibrium state, to be properly defined in chapter II. That is, if ω is a ther-
mal equilibrium state for a free theory, extending the same interpretation to ω ◦ RV as
a thermal equilibrium state for the interacting theory results in an incomplete analysis,
as will be shown in chapter III, even though the object ω ◦ RV may be a well defined
state over A I . This incompleteness manifest the necessity of considering the effect of
interaction upon states.

In [FL14; Lin13], the state obtained by the authors is written in terms of a KMS state
of the free theory at the same inverse temperature, ωβ , but it also involves the change
in the dynamics produced by the interaction upon states. More precisely, with U(t)

a cocycle intertwining the interacting dynamics αLIt and the one-parameter group of
∗-automorphisms (αt)t∈R as

αVt RVA = U(t)αtRV (A)U(t)−1 (4)
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for a suitable observables A, Fredenhagen and Lindner showed that the function

R 3 t 7→
ωβ
(
RVAU(t)

)
ωβ
(
U(t)

) ,

where ωβ is a KMS state of the free theory, has an analytic extension onto the strip
{z ∈ C : =z ∈ (0, β)} and is continuous along its borders. In addition, they showed
that, cf. equation (II.23),

ωβ,V (A) :=
ωβ
(
RVAU(iβ)

)
ωβ
(
U(iβ)

) (5)

satisfies the KMS condition with respect to the interacting dynamics, and hence it cor-
responds to a thermal equilibrium state of the interacting theory. We then see that the
thermal equilibrium state is not of the form ω ◦RV , since the cocycle U presents an im-
portant contribution. Throughout this thesis we shall present arguments attesting that
ignoring the cocycle contribution produces a different state, which may not be regarded
as describing an interacting system in thermal equilibrium.

Starting from the Fredenhagen and Lindnder’s analysis, in this thesis we shall es-
tablish a formal relation between the FL-state and the Keldish-Schwinger formalism,
respectively summarized in equations (5) and (3). In fact, a relation between TFT and
the analysis by Fredenhagen and Lindner may be established from noticing that the
real-time formalism is formally equivalent to neglecting the term U(iβ) in ωβ,V . By jus-
tifying this claim, we shall be able to affirm the inequivalence between the formalisms,
and to discuss in which situations the real-time formalism produces a precise descrip-
tion of thermal equilibrium. In this thesis we are interested in the modifications pro-
duced by interaction terms upon thermal equilibrium states. We shall discuss the re-
lation between a thermal equilibrium state for the perturbative theory, constructed by
Fredenhagen and Lindner [FL14; Lin13], and the usual description of thermal equilib-
rium systems in the physics literature in chapter II.

In the third chapter we establish the relation between the two approaches to thermal
theories. In particular, we shall show that the Fredenhagen and Lindner state reduces to
either the Matsubara or to the real-time formalism in particular cases, but that a com-
plete and general description of thermal systems is obtained only via the state ωβ,V ,
when the two are altogether considered. To the best of our knowledge, this was the
first time the two formalisms where combined to provide a complete characterization
of thermal equilibrium. We shall also present a graphic representation scheme for the
perturbation series of expectation values ωβ,V ◦ RV (A). We shall conclude the chapter
presenting two concrete computations showing the importance of considering the co-
cycle U , the first considering LI ' λφ2, a situation which will permit to discuss also the
case with LI ' λφ4, and the second with LI ' λφ3 interaction. Therefore, in the last
section of the third chapter we shall present an explicit calculation for the difference
between the estimations for the self-energy in the real-time and in the Fredenhagen-
Lindner formalism. We shall see differences in the first order terms of the perturbation
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series for the quadratic interaction, but we shall have to consider second order terms
in the cubic theory in order to see the effect of U(iβ). Considering the λφ3-theory, we
shall conclude that this difference in the self-energy estimated with the state ωβ,V and
with the real-time, it depends on the time cutoff function of the interaction term, in-
troduced in (I.37), via the Fourier transform of its derivative. This result allows us to
conclude that, in this case, the real-time formalism presents a sensibility with respect
to how the interaction is turned on, which is absent from the Fredenhagen-Lindner for-
malism. Therefore, the more abruptly the interaction is turned on, the larger will be the
contribution this difference between formalisms.

In addition, we shall see in (III.30) that this difference between ωβ,V and real-time
estimations involves a term which depends on the renormalization constant c, but not
on the time cutoff of the interaction term. Since the renormalization constant has to
be state independent, due to the principle of general covariance described in [HW01;
BFV03], it may not depend on the inverse temperature β. It is possible to consider c = 0
in particular, but, in the limit of zero temperature β →∞, the whole difference between
formalisms vanishes either way. We highlight the fact that this regards only the case of
a λφ3-interaction, and that the situation is considerably different in the case of a λφ2

interaction, which produces inequivalent results if we consider the FL state or the real
time formalism. As we shall see then, this result permits to obtain the same conclusion
for the λφ4 theory.

The results presented in chapter III are also described in the reference [BDP19], on
which the first part of this thesis is based.

Chapter IV addresses a different problem, in the same lines. In the physics liter-
ature such as [AAP14; AP15; AGP16], secular effects are described as the presence of
unbounded terms with respect to time in the perturbative expansion of expectation
values of QFT. Though the perturbation series for interacting quantum field theories
hardly ever converges, it is possible to obtain accurate results from its truncation at a
certain order in the perturbation parameter, as may be seen e.g. in [PS95]. The presence
of terms with a polynomial dependence on time in the perturbative theory, whose de-
gree grows with the perturbation order, however, changes the situation considerably.
In the truncated series, for whatever λ � 1 fixed, if after a long enough time the nth
term, in presenting a factor tn, becomes comparable or lager than each term of lower
order, then the basic assumption justifying the truncation of the perturbative series in
a first place is itself violated. Such secular effects have been said in the mentioned
references to be a consequence of the break down of perturbation theory. However,
considering the analysis by Fredenhagen and Lindner, we do know that perturbation
theory may produce time-translation invarian results. As we shall see in chapter IV, this
divergences are expected if we consider a perturbation theory upon certain states out
of thermal equilibrium, but are not present in certain exact theories. Furthermore, we
shall also explicitly describe how perturbation theory for a thermal equilibrium state
must not present such effect, considering also the fact that thermal equilibrium states
are translation invariant. In order to do so, we shall consider an interaction term similar
to the one the considered in [AAP14] (see also comments in [AP15]). We shall finally
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conclude that secular effects follow from an imprecise choice of state, instead of being
an intrinsic result to perturbative representations of expectation values.

This last chapter is based on a research project which, by the time this thesis was
written, had not been concluded yet. We shall then present the first results obtained,
but only indicate a dynamical stability result for certain states.
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Notation and conventions

Though many of the following objects will be properly defined throughout this thesis,
we have decided to add this section for the reader’s convenience.

• Mathematical definitions will be denoted with the symbols “:=” or “=:”. The
symmetric symbol “≡” will be used both to denote uniform equality (i.e., f |x>0 ≡
1 meaning the same as f(x) = 1 ∀x > 0) and to present an alternative notation to
an already defined object.

• We shall employ the notations

N = {1, 2, 3, . . . }, N0 = N ∪ {0}.

In addition, if A is a set, its cardinality will be denoted as #A.

• For any n ∈ N, a multindex is a n-tuple α = (α1, . . . , αn) ∈ Nn0 . Its absolute value
is defined as the sum of its components, |α| := α1 + · · · + αn. If α, β are two
multindices, then we denote α ≤ β if and only if αi ≤ βi for all i = 1, . . . , n. For
x ∈ Rn, xα := xα1

1 × · · · × ααnn . In addition, higher order partial derivatives are
denoted with multindices as ∂α := ∂α1

1 . . . ∂αnn , where ∂αii ≡ ∂αi/∂x
αi
i .

• Minkowski spacetime will be denoted as M, and we shall adopt the convention
(+,−,−,−) for its metric’s signature.

• The space of smooth, complex-valued functions over M will be denoted E(M),
where by smooth we shall always mean of class C∞. The subspace of real-valued
smooth functions on M will be denoted as C∞(M) ⊂ E(M). In addition, the sub-
space of compactly supported functions in E(M) will be denoted D(M) ⊂ E(M),
whereas compactly supported functions in C∞(M) will be denoted as C∞0 (M) ⊂
C∞(M). We shall also eventually substitute the symbol M by R4, when consider-
ing only the topological space structure over the set R4.

• We shall adopt for the Fourier transform of a function on Rn the convention

(
Ff
)
(p) ≡ f̂(p) =

1

(2π)n

∫
Rn
dx f(x)e−ipx,

(
F−1f

)
(p) =

∫
Rn
dx f̂(p)eipx.

• The following propagators will be properly defined in chapter I, but we anticipate
that the two point function of some state ω over an algebra of observables will be

17



Notation

denoted as ∆+. If ω = ω0 is the vacuum state, then its two-point function (Wight-
man function) will be denoted as ∆+

0 . On the other hand, the two point function
of a β-KMS state ωβ will be denoted as ∆+

β . (Remark: one should not interpreted
from this notation the vacuum state as the limit of a β-KMS state for β → 0. In
fact, β corresponds to an inverse temperature, and the index 0 is not related to
β). However, in some points in chapter IV, there will be far too many symbols to
characterize the propagators, and we shall eventually interchange the position of
symbols 0 or β and +, for instance, in order to obtain a cleaner notation. We hope
and believe the object of our interest will then be kept clear in the given context.

• We shall in general adopt a system o physical units such that

kB = ~ = c = 1.

In some situations, however, we shall keep the parameter ~ explicitly written, in
order to keep explicitly the fact that observables in the perturbative theory are
given as formal power series in ~.
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I. Basic Aspects of Perturbative Algebraic
Quantum Field Theory

In this chapter we shall present the basic aspects of quantum field theory upon
which this thesis is based. We shall address the algebraic approach to field theories,
and of our particular interest will be perturbative interacting models. As the general
description of a physical theory is based on expectation values as the composition of
observables and states of a system, in this chapter we intend to lay down the basic
concepts which allow for a precise and physically meaningful definition of these ob-
jects and their mutual relations. We emphasize that we shall consider only real scalar
field theories in this thesis, and the formalism presented in this chapter restricts to this
purpose.

We shall begin by discussing aspects of the background geometry. Although in the
chapters to come we shall restrict our analysis to quantum field theories on the flat
Minkowski spacetime, we shall discuss such first aspects in a rather more general form
than it shall be required later. This choice is justified by the fact that a great advantage
of the algebraic approach lies precisely on its description of quantum systems over
curved, globally hyperbolic spaces. We shall work on the so called functional formalism
of quantum field theory, to be explained in section (I.3), and hence we shall present a
brief discussion of functional calculus and distributions theory.

After that, we shall consider the algebra of observables for the quantum field theory,
which will be constructed in steps. We first consider the algebra of observables of the
free theory, which will contain only regular functionals. Next, the process of quantiza-
tion of this algebra, which produces the observables of the free quantum theory, will
be considered via the introduction of a non-commutative product which implements
the canonical commutation relations. The construction of an algebra of observables of
the quantum theory in this form will be called deformation quantization. However,
we anticipate that, at that point, physically meaningful objects such as φ4 will remain
excluded from the algebra of observables. The last step, concerning free systems, will
therefore consist of the extension of the quantum algebra of regular observables to more
singular objects, via the algebraic implementation of Wick powers. This will require a
discussion on states over the algebra. This last step itself is actually composed of two
parts, a further deformation of the product followed by an extension of the algebra, in
order to include more singular, local observables.

Finally, we shall address the perturbative approach to interacting quantum field
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I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

theories, considering a local interaction term. The construction of the algebra of observ-
ables for the interacting theory will follow the formalism established in [BS80]. This is
based on the implementation of the time-ordered product of local functionals within the
algebra of the free theory, and, subsequently, the description of interacting observables
in terms of the formal S-matrix, constructed as the time-ordered exponential of the
interacting term. We shall briefly discuss the essential properties of the time-ordered
product and renormalization procedure in the sense of [EG73]. In addition, given the
scope of this thesis we may content ourselves with stating that such a product may be
extended to globally hyperbolic spacetimes, as it has been shown in a series of pub-
lications about algebraic quantum field theory in curved spacetimes [HW01; HW02;
HW05].

We conclude this chapter with a brief discussion about graphic representations for
the product of observables and expectation values, which will prove to be an important
and elegant way of formulating the analysis in the chapters to come.

I.1 Background geometry and dynamical equation

We start this thesis by addressing aspects of the background spacetime geometry. We
have no intention to extend this part any further than the proper establishment of the
notation and conventions employed in this thesis. Subsequently, we shall discuss the
structure of a field over a given spacetime and the form of its equation of motion. The
latter will then be considered within the algebraic structure of observables, or upon
physical states.

I.1.1 Lorentzian Geometry: conventions and basic notions.

LetM be a smooth, connected, Hausdorff manifold with dimension n <∞. A Rieman-
nian metric on M is a positive-definite, symmetric and continuous bilinear form over
the tangent bundle TM . We define a pseudo-Riemannian metric by excluding the re-
quirement of positive-definiteness. A pseudo-Riemannian metric g is then said to have
signature (p, q) if its associated quadractic form at each point of M has signature (p, q).
In particular, if p = +1 then g is called a Lorentzian metric. A manifold M as above,
endowed with a Lorentzian metric, is called a Lorentzian manifold. We shall denote
the pair (M, g) ≡ M whenever the choice of g is unambiguous. In addition, we shall
always considerM orientable, i.e. we suppose it is endowed with a nowhere vanishing
volume form. The Lorentzian manifold of our particular interest in this thesis will be
the Minkowski space M, i.e. R4 endowed with a metric with signature (+,−,−,−).

The Lorentzian structure overM allows for a classification of separation between its
points which mimics that of Minkowski space. Consider some x ∈ M and let v ∈ TxM
be a tangent vector. We say v is spacelike, if g(v, v) < 0; timelike, if g(v, v) > 0; lightlike,
if g(v, v) = 0. In addition, v is called causal if it is either timelike or lightlike – i.e., if
g(v, v) ≥ 0.

We say a Lorentzian manifold is time-oriented if it admits a smooth, non-vanishing
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I.1. Background geometry and dynamical equation

time-like vector field. Let e0 denote the time-orientation over M . We say v is past-
directed (resp. future-directed), and denote v / 0 if g(e0, v) < 0 (resp. v . 0, g(e0, v) >
0). Let now γ : I ⊂ [0, 1] → M a regular curve on M whose tangent vector has its
character (past/future-pointing form) preserved throughout the image of γ, γ(I) ≡
Imγ. We say that γ is timelike, spacelike, lightlike or causal if so is its tangent vector,
respectively. We may say, then, that two-points x, y ∈ M are causally separated if
there exist a causal curve γ connecting x to y. We may also define timelike, spacelike
and lightlike separation in the analogous manner. Besides that, a regular curve γ1 :
I1 ⊂ [0, 1] → M is called extendable if there exists γ0 : I0 ⊂ [0, 1] → M such that
Imγ1 ⊂ Imγ0; a curve which is not extendable will be called unextendable.

Let now x ∈ M , and let J(x) the set of points of M which are causally separated
from x,

J(x) := {y ∈M |∃ γ : I ⊂ [0, 1]→M causal and s.t. x, y ∈ Imγ}.

This set has two connected components, formed by points of M connected to x by
causal, past/future oriented curves. I.e., J(x) = J−(x) ∪ J+(x) with

J+(x) := {y ∈ J(x)|∃ γ :⊂ [0, 1]→M causal, future oriented s.t. x = γ(0), y = γ(1)};
J−(x) := {y ∈ J(x)|∃ γ :⊂ [0, 1]→M causal, past oriented s.t. x = γ(0), y = γ(1)};

These are called the causal past and the causal future of x, respectively, whereas J(x) is
called causal lightcone of x. The subset I±(x) ⊂ J±(x) obtained by requiring the causal
curve γ in the latter definitions to be also timelike is called chronological future/past
of x. The chronological light-cone of x is defined in a similar way.

For a non empty subset O ⊂M , we define its causal future/past as the union of the
causal futures/pasts of its points, i.e. J±(O) := ∪x∈OJ±(x). The notions of chronolog-
ical future and past for the region O are then defined in an analogous way, and so are
the causal/chronological light-cones J(O), I(O). In addition, a hypersurface S ⊂ M
is called acausal if every unextendable causal curve in M crosses S at most once. Fi-
nally, let D(O) denote the Cauchy development of O: it is the set of points x ∈M such
that every unextendable causal curve passing through x intersects O. Heuristically, the
Cauchy development of a region O ⊂ M represents the subset of M of points which
are completely causally related to events in O. A related concept of particular interest
of ours is the following.

Definition 1. A connected hypersurface Σ ⊂M is called a Cauchy surface if every unextend-
able causal curve onM intersects Σ at most once and if its Cauchy developmentD(Σ) coincides
with M .

That is, Σ is a Cauchy surface if every unextendable causal curve in M intersects Σ
at one point and at one point only.

Let M be a Lorentzian manifold, let x ∈ M , and, for every open neighbourhood
Nx of x, suppose there exists Ux ⊂ Nx an open neighbourhood of x such that every
causal curve γ on M starting and ending within Ux is entirely contained within Nx. If
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I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

this condition is satisfied for all x ∈ M , M is then said to satisfy the strong causality
condition.

Finally, we define the basic structure for the construction of physical models to
come.

Definition 2. A four-dimensional, oriented and time-oriented Lorentzian manifold M which
satisfies the strong causality condition is called a spacetime.

We shall be particularly interested in a special class of spacetimes, characterized
after the following proposition.

Proposition 1. Let M denote a oriented, time-oriented Lorentzian manifold. Then, the follow-
ing three statements are equivalent:

(i). For all x, y ∈M , J+(x) ∩ J−(y) is compact;

(ii). there exists a Cauchy surface Σ ⊂M ;

(iii). M admits a differentiable foliation by Cauchy surfaces. I.e., M is isometric to R × Σ0

with metric βdt⊗ dt− ht, where β is a positive, smooth function and h is a Riemannian
metric on Σ0 depending smoothly on t ∈ R, in such a way that Σt := {t} × Σ0 is a
smooth spacelike Cauchy surface of M for every t ∈ R.

The proof of this proposition may be found in [BS05]. This allows us to define the
following structure.

Definition 3. A spacetime M such that one, and hence all the above conditions (i)-(iii) in
proposition 1 hold is called a globally hyperbolic spacetime.

Our particular interest in globally hyperbolic spacetimes is justified, first, by the
well-posedness of the Cauchy problem, and the existence of unique solutions. We shall
address this topic shortly after the introduction of other important objects.

Definition 4. Let M,E be smooth manifolds, dimM = n, dimE = n + k for n, k ∈ N.
Let π : E → M be a smooth, surjective map and let V be a k-dimensional K-vector space,
K = R,C. Suppose that

(i). for each x ∈M , π−1(x) ≡ Ex is a K-vector space isomorphic to V ;

(ii). for each x ∈M , there exist an open neighbourhood Nx ⊂M of x and a diffeomorphism

φ : π−1(Nx)→ Nx × V

such that each restriction to some Ey → {y}×V , y ∈ Nx, is a vector space isomorphism,
for each y ∈ Nx.

Then, the quadruple (E,M, π, V ) is called a vector bundle of rank k. The space E is called
total space, whereasM is called base space and V is the typical fiber. In addition, the setNx

in point (ii) is called a trivializing open neighbourhood, and the pair (Nx, φ) is called a local
trivialization for E. Finally, each vector space Ex is called a fiber.
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I.1. Background geometry and dynamical equation

We denote a vector bundle (E,M, π, V ) as E → M, keeping the surjective map π
and the typical fiber implicit. A continuous map s : M → E such that π ◦ s = idM
is called a section of the vector bundle E → M . It may be seen as an inverse of π at
each fiber. The support of a section makes sense when considering the null vector of a
certain fiber. That is, supp s is the closure of the set {x ∈ M : s(x) 6= 0 ∈ Ex}, with the
closure with respect to the topology of M . The space of smooth sections of E will be
denoted by Γ(E) ≡ C∞(M,E), and we shall denote as Γ0(E) the subspace of smooth,
compactly supported sections.

In this way, we shall later regard a field configuration as a smooth section of an
abstract vector bundle over M . The structure of quantum field theories, built upon the
smooth section of a vector bundle over M , will be the subject of the next sections of this
chapter. First, the dynamical law of propagation of the field lies at the geometrical level
as follows.

I.1.2 Differential operator and the Cauchy problem.

Definition 5. Let E →M and F →M be two K-vector bundles over the same base space M ,
with M a globally hyperbolic Lorentzian manifold with dimension dimM = n, and K = R,C.
A K-linear map P : Γ(E)→ Γ(F ) is a differential operator if for each x ∈M there exists an
open neighbourhood Nx 3 x and local trivializations (Nx, ψE), (Nx, ψF ), and if there exists a
family of maps Aα : Nx → Hom(VE , VF ), with respect to which P may be written as

P =
∑
|α|≤k

Aα
∂|α|

∂xα
(I.1)

on Nx, for some k ∈ N. The summation in taken over all multiindices α = (α1, . . . , αn) ∈ Nn
such that |α| := α1 + · · · + αn ≤ k . In this case P is said to be of order at most k. If P is of
order at most k but not of order at most (k − 1), then it is called a differential operator of order
k.

The dynamical equations of our interest in this thesis are obtained from a particular
class of differential operators. Let P be a differential operator of order k from Γ(E) →
Γ(F ). Let the map

σP : T ∗M → Hom(VE , VF )

be locally defined as follows. For some x ∈M , let P be written such as in equation (I.1)
for some coordinate system in a neighbourhood of x. For every k ∈ T ∗xM , we consider
k =

∑n
j=1 kjdx

j and define

σP (ξ) :=
∑
|α|=k

kαAα(x), kα := kα1
1 . . . kαnn .

We call σP the principal symbol of P . Heuristically it corresponds to the highest degree
term in P . Restricting to the case of a unique bundle E → M and considering a differ-
ential operator P : Γ(E)→ Γ(E) of order at most two acting on its smooth sections, we
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I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

may consider the case of the homomorphisms Aα given in terms of components of the
metric g on M , in such a way that P is given by

P =

3∑
µ,ν=0

1Eg
µν(x)

∂2

∂xµ∂xν
+

3∑
µ=0

aµ(x)
∂

∂xµ
+ b(x), (I.2)

where aµ(x), b(x),∈ Hom(VE), µ = 0, . . . , 3, and 1E ∈ Hom(VE) is the identity. This
defines a particular class of differential operators.

Definition 6. A differential operator of order at most two which may be locally written as in
equation (I.2) for some aµ(x), b(x) ∈ Hom(VE), µ = 0, . . . , 3, is called normally hyperbolic.

From now on we shall omit the symbol 1E ∈ Hom(VE) when considering a nor-
mally hyperbolic operator. In addition, these have the following important character-
istic. Let ∇ be any connection on the bundle E → M . This is a map ∇ : Γ(E) →
Γ(E)⊗ T ∗M such that

∇(sf) = (∇s)f + s⊗ df, ∀s ∈ Γ(E), ∀f ∈ C∞(M,R). (I.3)

Together with the Levi-Civita connection on T ∗M , we then obtain a connection on
Γ(E) ⊗ T ∗M⊗k via multiple composition ∇ ◦ · · · ◦ ∇ (k times) for arbitrary k ∈ N.
We recall that a Levi-Civita connection is an affine connection which preserves the met-
ric and which is torsion-free; we refer to [BGP07] for details. This permits us to define
of the normally hyperbolic operator �∇ over Γ(E).

Definition 7. Let E → M be a vector bundle over the globally hyperbolic spacetime M . Let
E → M be endowed with a connection ∇. Together with the Levi-Civita connection on T ∗M ,
we obtain a connection on Γ(E) ⊗ T ∗M⊗k for all k ∈ N, as above, again denoted as ∇. This
induces a map �∇ := −∇2 ◦ (Tr ⊗ 1E) as the composition

Γ(E)
∇−→ Γ(E)⊗ T ∗M ∇−→ Γ(E)⊗ T ∗M⊗2 Tr⊗1E−−−−→ Γ(E), (I.4)

where Tr : T ∗M⊗2 → R is given in terms of the metric as k ⊗ ξ 7→ g(k, ξ). The operator �∇

is usually called d’Alembertian operator induced by∇.

The fact that �∇ is a normally hyperbolic operator may be seen from the explicit
computation of its principal symbol: according to the above definitions, we have that

σ�(ξ) = −Tr ⊗ 1E ◦ σ∇(ξ) ◦ σ∇(ξ) = −g(ξ, ξ)⊗ 1E , (I.5)

which justifies our previous statement. The important characteristic of normally hyper-
bolic operator we mentioned is then presented in the proposition below.

Proposition 2. Let M be a Lorentzian manifold and let P : Γ(E) → Γ(E) be a normally
hyperbolic operator. Then, there exist a unique connection ∇ on Γ(E), and a unique B ∈
C∞(M,Hom(E)) such that P = �∇ + B, where �∇ is induced by the connection ∇ cf.
equation (I.4).
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For the proof of this proposition, see [BGP07, prop. 1.5.5]. In view of this statement,
a differential operator P is therefore said to be compatible with a connection∇ on E if
there exist B ∈ C∞(M,Hom(E)) and∇ such that P = �∇+B, with �∇ induced by∇.
In addition, from now on we shall omit the subscript∇when denoting the d’Alembert
operator, and the connection shall be held implicit.

Let the map 〈·, ·〉E : Γ(E) × Γ(E) → C∞(M,R) such that, for each pair φ, ψ ∈
Γ(E), 〈φ, ψ〉E is an inner product at each fiber. I.e., M 3 x 7→ 〈φ, ψ〉(x) ≡ 〈φ(x), ψ(x)〉,
φ(x), ψ(x) ∈ Ex, is a bilinear, positive-definite map which is null if and only if φ(x) or
ψ(x) is the null vector in Ex, for all x ∈ M . Let then P : Γ(E) → Γ(F ) a differential
operator between the fibers of bundles E and F , and let the differential operator P ∗ :
Γ(F )→ Γ(E) such that

〈ψ, Pφ〉F =: 〈P ∗ψ, φ〉E ∀ψ ∈ Γ(F ),∀φ ∈ Γ(E).

Then P ∗ is called the formal adjoint of P , and the operator P is called formally self-
adjoint if P, P ∗ : Γ(E)→ Γ(E) and P = P ∗.

Let then P : Γ(E) → Γ(E) a normally hyperbolic operator acting on the smooth
sections of the bundle E →M over the spacetime M . A differential equation

Pφ = f, φ, f ∈ Γ(E). (I.6)

is called a dynamical equation for φ ∈ Γ(E). Concerning the Cauchy problem regard-
ing equation (I.6), we set the following. Let Σ ⊂M a Cauchy surface of M and let n be
a future-directed normal vector-field over Σ. As∇ denotes a connection on Γ(E) as per
(I.3), we denote ∇n : Γ(E) → Γ(E) the induced linear differential operator, obtained
by the restriction to n ∈ T ∗M . Solving the Cauchy problem with initial data φ0, φ1

means obtaining φ ∈ Γ(E) fulfilling (I.6), for fixed f ∈ Γ(E), and such that φ|Σ = φ0,
∇nφ|Σ = φ1, with P compatible with ∇. One may find in [BGP07] the proof of the
following proposition.

Proposition 3. (Existence and uniqueness of solutions of the Cauchy problem). Let
E →M a vector bundle over the globally hyperbolic spacetimeM . Given a normally hyperbolic
operator P : Γ(E) → Γ(E), for each f ∈ Γ(E) and for each pair of initial conditions φ0, φ1 ∈
Γ(Σ), there is a unique φ ∈ Γ(E) such that Pφ = f , φ|Σ = φ0, ∇nφ|Σ = φ1, with P
compatible with∇. Furthermore, supp φ ⊂ J(K), where K := supp φ0 ∪ supp φ1 ∪ supp f ⊂
M .

At this point we should then address the characterization of solutions to the Cauchy
problem in proposition 3 above. Such characterization, however, will not be made in
terms of sections only. The dynamical equation for the field theory will be regarded in
the sense of distributions or functionals over the space Γ(E), and at that level we shall
obtain a complete description of such solutions. Considering the scope of this thesis,
limited to the analysis of real scalar field theories over Minkowski spacetime, we shall
focus on aspects of the theory of distributions over R4, and then in the next section we
shall extend the results below to functionals over the space of field configurations. We
refer to [Hör90; FJ99; BGP07] for details.
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Definition 8. Considering the space of smooth sections of the complex bundle R4 × C → M
with typical fiber R,

(i). we denote by E(M) the space of smooth, complex-valued functions over M, endowed with
a locally convex topology as follows: a sequence (φn)n∈N is said to converge to φ ∈ E(M)
if for any K ⊂M compact, ∂kφn → ∂kφ uniformly on K, for all k ∈ N0. The topological
dual of E(M) is the space of compactly supported distributions, denoted E ′(M);

(ii). we denote by D(M) ⊂ E(M) the space of compactly supported functions in E(M), also
called test functions. This space is endowed with the following locally convex topology:
we say fn → f for fn, f ∈ C∞0 (M) for all n ∈ N if there existsK ⊂M compact such that
supp fn, supp f ⊂ K and ∂kfn → ∂kf for all k ∈ N0. The topological dual of C∞0 (M) is
the space of distributions, i.e. the space of continuous linear functionals C∞0 (M)→ C,
which we denote by D ′(M).

The above spaces fulfill the inclusion relations D(M) ⊂ E(M), E ′(M) ⊂ D ′(M).

In the future, as we shall restrict our analysis to real scalar fields, we shall be par-
ticularly interested in the subspaces of real-valued functions om M. We shall hence
denote

C∞(M,R) ≡ C∞(M) := {f ∈ E(M) : f : M→ R},

and analogously

C∞0 (M,R) ≡ C∞0 (M) := {f ∈ D(M) : f : M→ R}.

Due to the duality relations between the spaces of functions and distributions or
compactly supported distributions, we may denote the action of u ∈ D ′(M) in the
two manners f 7→ u(f) ≡ 〈f, u〉 for all f ∈ D(M), with the analogous for compactly
supported distributions. We recall that if u ∈ D ′(M) is a distribution and if ψ ∈ D(M),
then the product between u and ψ is defined as ψu(φ) := u(ψφ) for all φ ∈ D(M). Let
u ∈ D ′(M) and x ∈ M. A localization of u in a neighbourhood Nx ⊂ M of x is a
distribution fu ∈ D ′(M) with f ∈ C∞0 (M), such that for some larger neighbourhood
U ⊃ Nx of x, supp f ⊂ U and f |Nx ≡ 1. For x ∈ M, we denote Nx the collection
of neighbourhoods N ⊂ M of x. We then recall that the support of a distribution
u ∈ D ′(M), denoted suppu, is defined as the closure of the complement of

{x ∈M : ∀N ∈ Nx,∀f ∈ D(M) s.t. supp f ⊂ N, fu = 0}.

It consists of the points of M which have no neighbourhood over which the restriction
of u is identically zero.

We define the derivative of u ∈ D ′(M) as the distribution u′ given by

u′(φ) := −u(φ′) ∀φ ∈ D(M).

This definition may be extended to φ ∈ E(M), if suppu ∩ suppφ is compact.
In view of the above definition, we may lift the action of a normally hyperbolic

operator to distributions in the following manner.
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I.1. Background geometry and dynamical equation

Definition 9. Let P : E(M)→ E(M) a differential operator. We define the differential operator
P : D ′(M)→ D ′(M) on distributions, denoted with the same symbol, in the sense of the pairing(

Pu
)
(φ) = 〈φ, Pu〉 := 〈P ∗φ, u〉 = u(P ∗φ),

where P ∗ is the formal adjoint of P : E(M)→ E(M).

In this thesis, the latter notation f 7→ 〈f, u〉 via the dual pairing will be frequently
written as a formal integral

u(f) ≡
∫
M
dx f(x)u(x) (I.7)

where dx denotes the volume form over M. In fact, we shall denote the action of a
distribution or of a functional over a space of functions as in above, even if the formal
kernel u(x) is to be understood only in the sense of generalized functions.

In view of the definition 9, we address the dynamical equation (I.6) in the sense of
distributions,

Pu = f, u, f ∈ D ′(M). (I.8)

Let first δx ∈ D ′(M) denote the Dirac delta function at x ∈M, D(M) 3 f 7→ f(x) ∈ C.

Definition 10. A distribution F ∈ D ′(M) is called a fundamental solution, or Green oper-
ator of (I.8) at x ∈M if PF = FP ∗ = δx, in the sense of distributions.

We then obtain two fundamental solutions to the Cauchy problem, completely char-
acterized by their supports, by lifting the previous result in proposition 3 to distribu-
tions [cf. in BGP07]. For the rest of this section we shall restrict to the case f ≡ 0 in
equation (I.8).

Proposition 4. Consider the Cauchy problem for a given normally hyperbolic operator P :
E(M) → E(M). There exist maps ∆R/A : D(M) → E(M), unique fundamental solutions for
P such that supp∆R/A(f) ⊂ J+/−(supp f) for all f ∈ D(M). In addition, ∆∗R = ∆A.

The maps ∆R/A are called retarded and advanced propagator, respectively. Each
of these maps defines a bidistribution ∆R/A : D(M) × D(M) → C, (f, g) 7→ 〈f,∆R/Ag〉
which we denote by the same symbol. The difference ∆ := ∆R − ∆A, named causal
propagator, completely characterizes any solution of the Cauchy problem regarding a
normally hyperbolic operator, in the following sense.

Proposition 5. If φ ∈ E(M) is a solution of the Cauchy problem Pφ = 0 for a normally
hyperbolic P with initial conditions φ0, φ1 ∈ D(Σ) for some Cauchy surface Σ ⊂ M, then
φ = ∆(f) for some f ∈ D(M). Furthermore, if f ∈ D(M) is such that ∆(f) = 0, then
f = Pg for some g ∈ E(M).
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I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

The causal propagator, seen as a map D(M)→ E(M), induces a bidistribution ∆ on
D(M) × D(M) as (f, g) 7→ ∆(f, g) := 〈f,∆g〉, due to the inclusion E(M) ⊂ D ′(M). Let
f, g ∈ D(M). in view of the above proposition, we define f ∼P g if f −g = Ph for some
h ∈ C∞0 (M). In other words, we shall consider smooth, compactly supported sections
equivalent if their difference has the form Ph, for some h ∈ C∞0 (M), where P is the
normally hyperbolic operator from equation (I.8). Considering the quotient of C∞0 (M)
with respect to this equivalence relation, we obtain a characterization of the space of
solutions of (I.8) with compact spacial support.

Definition 11. Let IP be the closed ideal generated by elements Pf ∈ E(M), f ∈ D(M). The
space Sol(P ) := {φ ∈ D(M)|Pφ = 0, φ|Σ⊂M, ∇nφ|Σ⊂M ∈ D(Σ)} of solutions of the Cauchy
problem with smooth compactly supported initial data over some Cauchy surface Σ ⊂M, cf. in
proposition 3, forms the symplectic space of solutions of equation Pφ = 0, endowed with the
symplectic form

ζ : Sol(P )× Sol(P )→ C, (f, g) 7→ ∆(f, g).

In addition, the quotient E(M)/ ∼P = E(M)/Ker∆ with the symplectic form ζ̃
(
[f ], [g]

)
:=

∆(f, g) is isomorphic to (Sol(P ), ζ).

The proof of the above proposition may be found in [BGP07]. Moreover, the sym-
plectic structure obtained as the space of solutions provides a Poisson bracket dynami-
cal structure to the field theory via the causal propagators. That, in resume, highlights
the cornerstone role played by ∆ in the construction of both the classical and the quan-
tum algebra of free observables, as will be presented later.

In the context of scalar fields propagating over Minkowski space, as the normally
hyperbolic operator is the Klein-Gordon operator, and equation (I.6) assumes the par-
ticular form (

� +m2
)
φ ≡

(
∂2

0 − ∂2
x +m2

)
φ = j, φ ∈ E(M) (I.9)

for m ≥ 0 a mass term and j ∈ D(M) a source term. As per proposition 4, in the sense
of distributions, equation (I.9) with j ≡ 0 has two fundamental solutions given in terms
of the integral kernels

∆R/A(x, y) = lim
ε→0+

1

(2π)4

∫
R4

dp
eip(x−y)

(p0 ± iε)2 − w2
p

, (I.10)

with wp :=
√
p2 +m2. The choice of sign p0 + iε defines the retarded propagator for

the Klein-Gordon operator �+m2, whereas the difference p0− iε defines the advanced
one. The integral kernel of the causal propagator may be written as

∆(x, y) = θ(x0 − y0)∆R(x, y)− θ(x0 − y0)∆A(x, y), (I.11)
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I.1. Background geometry and dynamical equation

or also in terms of the sign function ε(p0) := θ(p0)− θ(−p0) as

i∆(x, y) =
1

(2π)3

∫
R4

dp ε(p0)δ(p2
0 − w2

p)eip(x−y)

=− 1

(2π)3

∫
R3

dp
sin
(
wp(x0 − y0)

)
e−ip·(x−y)

wp
(I.12)

if (x0 − y0)2 ≥ 0, it being 0 otherwise. This latter property of ∆, which is equivalent
to ∆(f, g) = 0 for supp f, supp g spacelike-separated, also justifies the use of the causal
propagator in the implementation of the canonical commutation relations, as will be
described in the next section.

I.1.3 The wave front set of a distribution and the propagation of singulari-
ties

The Fourier transform of a distribution u ∈ E ′(Rn) is given by the analytic function

Cn 3 k 7→ û(k) := 〈u, x 7→ e−ikx〉. (I.13)

It is also polynomially bounded, in the sense that for some N ∈ N there exists CN ∈ R
such that

|û(k)| ≤ CN (1 + |k|)N , ∀k ∈ Rn (I.14)

In addition, if u ∈ E ′(Rn), then u /∈ D(Rn) if and only if there exist a direction in
frequency space along which the Fourier transform of u is not fast decreasing, in the
following sense.

Definition 12. Let u ∈ E ′(Rn). A vector k0 ∈ Rn is called a direction of fast (or rapid) decrease
for u if there exists a conic1 neighbourhood V ⊂ Rn of k0 such that, for all N ∈ N, there exists
CN ∈ R satisfying

|û(k)| ≤ CN (1 + |k|)−N ∀k ∈ V. (I.15)

We refer to [Hör90] for details. This motivates an analysis on the regular behaviour
of a distribution, based on the properties of its Fourier transform, a topic to which we
dedicate the next few paragraphs.

The set of points of Rn where u is not given by a smooth function is called its sin-
gular support. It is the set of points of Rn, denoted singsuppu, which have no neigh-
bourhood where u reduces to a smooth function, and so it is defined as the complement
of

{x ∈M : ∃N ∈ Nx,∃f ∈ D(M) s.t. supp f ⊂ N, fu ∈ D(M)}.
1Let V be a K-vector space. A cone is a subset C ⊂ V such that for any v ∈ C and for any λ ∈ K\{0},

λv ∈ C. If O ⊂ Rn is open, Γ ⊂ T ∗O\{0} is called a cone if (x, k) ∈ Γ implies (x, λk) ∈ Γ for all λ > 0
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I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

In addition to the set singsupp u of points where the distribution u ∈ D ′(M) is not given
in terms of a regular function, we might consider the set of directions along which it
is singular, i.e. the directions along which the Fourier transform of u does not rapidly
decreases , as per definition 12. This brings us to the concept of wave front set of distri-
bution.

Definition 13. Let u ∈ D ′(Rn) be a distribution in Rn. A point p = (x0, k0) ∈ Rn×(Rn\{0})
is called a regular directed point of u if there exists a localization of u around x0 such that (I.15)
holds for all k in some conic neighbourhood of k0.

The wave front set of a distribution u ∈ D ′(Rn), WF (u), is the complement in Rn ×
(Rn\{0}) of the set of regular directed points of u. Due to the covector action of k ∈ R
in (I.13), we properly define the wave front set in the following manner.

Definition 14. The wave front set of u ∈ D ′(M), denoted asWF (u), is defined as the closure
of the complement in T ∗M\{0} of the set of regular directed points of u. The subset {0} ⊂ T ∗M
is called zero section of T ∗M.

The following properties of the wave front set of a distribution are true, see [Hör90].

Proposition 6. Let u ∈ D ′(M), its wave front set is such that

(i). if (x, k) ∈WF (u), then x ∈ singsuppu;

(ii). if u ∈ C∞(Rn), then WF (u) = ∅;

(iii). for any localization f of u, WF (fu) ⊂WF (u);

(iv). let P : D(M) → D(M) be any liner partial differential operator, then WF (Pu) ⊂
WF (u).

For details concerning distributions and their wave front sets over smooth mani-
folds, see also [BFK96]. In the context of this thesis, however, much of this discussion
will not be required as we, as stated before, shall work only on fields propagating over
Minkowski space.

In chapter IV we shall make explicit use of the so called propagation of singularities
theorem. Though a more general formulation may be found in [Hör94], and in partic-
ular in [Rad96b] and references there mentioned, we shall restrict our discussion to a
particular version of this theorem, which suffices for the scope of our future discussion.
We star by introducing some basic concepts.

As before, let E → M a K-vector bundle over M. If P is a normally hyperbolic
differential operator as in equation (I.2), consider the set

N := {(x, k) ∈ T ∗M\{0} : gµν(x)kµkν = 0},

called bicharacteristic strip of P . In addition, let

C :=
{(

(x1, k1), (x2, k2)
)
∈ N ×N : (x1, k1) ∼ (x2, k2)

}
,
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I.1. Background geometry and dynamical equation

where (x1, k1) ∼ (x2, k2) means there exists a null geodesics γ in M connecting x1 to
x2, with ki coparallel to γ at xi, i = 1, 2, and such that k1 is parallel-transported to k2

along the γ. Denoting the diagonal of N ×N as diag(N ×N) := {
(
(x1, k1), (x2, k2)

)
∈

N ×N : x1 = x2, k1 = k2, }, we notice that the set C\diag(N ×N) decomposes into the
two connected components C±, the first given as

C+ :=
{(

(x1, k1), (x2, k2)
)
∈ N ×N : x1 ∈ J+(x2), k1 . 0 or x1 ∈ J−(x2), k1 / 0

}
.

Again, with respect to the time orientation onM , k.0 (resp. k/0) denotes k future (resp.
past) directed. The componentC− is defined analogously, interchanging the orientation
of k in each condition above. Let be the splitting C\diag(N ×N) as C\diag(N ×N) =
C1 ∪ C2 with C1, C2 open subsets of C\diag(N ×N) such that

(
(x1, k1), (x2, k2)

)
∈ C1

if and only if
(
(x2, k2), (x1, k1)

)
∈ C2. We call C1, C2 orientations on C, and so C±

are two orientations on C. In [Rad96b; Rad92] the author shows that an orientation for
C\diag(N × N) always exists, also in more general contexts, and that both C1 and C2

cannot be neither empty nor the whole of C\diag(N ×N).
The set N for a four-dimensional spacetime has the two connected components

N+ := {(x, k) ∈ N : k0 . 0}, N− := {(x, k) ∈ N : k0 / 0}.

Let Ñ denote the set of all connected components ofN , and let ν ⊂ Ñ denote a partition
ofN . Specifically, in the present case we have four options, ν = {N+, N−}, N+, N−, and
ν = ∅. Set now

N+
ν :=

⋃
N ′∈ν

N ′, N−ν :=
⋃

N ′∈Ñ\ν

N ′.

We then obtainN+
ν = N,N±, ∅, andN−ν the corresponding complement. Finally, let C±ν

be the orientation ofC corresponding toN±ν , respectively. See the mentioned references
for the details. We may now state the following.

Proposition 7. LetP a real normally hyperbolic operator. For every orientation ν ofC\diag(N×
N) = C+

ν ∪ C−ν , there exist fundamental solutions of P such that

WF ′(u±ν ) = D∗ ∪ C±ν ,

where D∗ denotes the diagonal of T ∗M× T ∗M, and

WF ′(u) :=
{(

(x1, k1), (x2, k2)
)
∈ T ∗M :

(
(x1, k1), (x2,−k2)

)
∈WF (u)

}
.

In addition, any fundamental solution u of P equals u±ν up to smooth terms.

The important point in the above proposition, whose proof may be found in [DH72]
(see [Rad92] for a detailed discussion), is that the wavefront set of fundamental solu-
tions for real normally hyperbolic operators over globally hyperbolic spacetimes, such
as the Klein-Gordon operator, depends only on the principle symbol of P . In conclu-
sion, we observe that a transformation of P , altering its terms of order at most one only,

31



I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

preserves its wave front set, although it might change its fundamental solutions. This
will be of particular importance in chapter IV. In addition, we affirm that the above
result generalizes to all globally hyperbolic spacetimes.

The concept of wave front set provides a sufficient condition for the existence of the
product between two distributions. Given two distributions u, v ∈ D ′(M), we define
the Whitney sum of their wave front sets as

WF (u)⊕WF (v) := {(x, k + k′) ∈ T ∗M : (x, k) ∈WF (u), (x, k′)WF (v)} (I.16)

We then have the following theorem, see [Hör90], theorem 8.2.10.

Proposition 8. (Hörmander criterium for the product of distributions.)If u, v ∈ D ′(M),
then the product uv is well defined if the Whitney sum of their wave front sets does not intersect
the zero section. I.e., if for any (x, k) ∈WF (u), (x,−k) /∈WF (v).

I.2 Functionals over field configurations

In the functional formalism of algebraic quantum field theory, observables are described
as functionals over the space of field configurations. In general, one considers the space
of field configurations as the space of smooth sections of some abstract vector bundle
E → M . However, as in the present case we shall focus on a real, scalar field prop-
agating over Minkowski space, this abstract structure reduces to the space C∞(M) of
smooth, real valued functions over M. We shall then consider observables among func-
tionals over C∞(M), in particular those which satisfy certain properties, as will be de-
scribed in this section. This perspective towards the description of observables of a
physical system may be introduced with the following example2.

Consider a field describing the Universe’s temperature: in a certain configuration,
this should be given by a smooth function φ : M → R, which assigns to each point
x ∈ M a certain value, corresponding to the temperature of that point. If we are in-
terested in the weighted average of the field in a finite region of spacetime, this cor-
responds to the smearing φ 7→ 〈f, φ〉 ∈ R, performed in the region of M determined
by supp f , for some weight f ∈ C∞0 (M). Therefore, the compactly supported function
describing the region of spacetime considered in the measuring process, it will always
be regarded as an intrinsic part of the observable. Subsequently, the dynamical equa-
tion for observables is obtained from the lifting of the differential operator over field
configurations to distributions, as presented in definition 9.

This example presents the field as a linear functional over E(M), which we represent
as

E(M) 3 φ 7→ Φf (φ) :=

∫
M
dx f(x)φ(x), f ∈ D(M). (I.17)

In practical situations, we are also interested in more complex observables, which cor-
relate different regions of spacetime or which simply are not contemplated within this

2Adapted from Thomas-Paul Hack’s PhD thesis, see [Hac10, pg. 56]
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example, such as already the observable C∞(M) 3 φ 7→ 〈f, φ2〉 is not. Pondering
upon these rather simplistic cases, we think of observable as functionals over the space
C∞(M) of smooth field configurations.

The functionals described in the last few paragraphs correspond to particular ob-
servables. As mentioned above, one is usually interested in more complex and singular
objects, than simply linear or local functionals. The general aspects of the observables
we shall be interested in will be described further below in the present section.

We now intend to provide a brief introduction to functional calculus and describe
the particular classes of functionals which will be employed later. For a a deeper and
more detailed survey on functional calculus, we refer to [Rej16; FR15b] which contains
a briefer, quantum field-oriented introduction to the argument, and to [Nee05; Bro+18]
for a detailed discussion on the topic. Further, more specific references will be pointed
throughout the text. We start with a proper characterization of what we shall call the
space of field configurations, after some recollection of other fundamental aspects of
distributions. For details on the following topics, we refer to [Hör90; FJ99].

I.2.1 Functionals over C∞(M)

In the present subsection we examine general aspects of functionals over the space
C∞(M) of field configurations, and present a basic discussion on functional calculus.
As in the previous section, we shall maintain the formal notation of pairing as an inte-
gration. I.e., for some functionals we may write

〈f, F (φ)〉 '
∫
dx f(x)F(φ)(x), f ∈ D(M),

even if the above integral kernel F(φ)(x) is to be understood as a generalized function.
We now address functionals over the space of field configurations.

Definition 15. Let the continuous functional F : C∞(M)→ C, and let φ ∈ C∞(M) arbitrary
but fixed. Then, F is said to be C1-differentiable at φ if the map

ψ ∈ C∞(M) 7→ F ′(φ)(ψ) :=
d

dλ
F (φ+ λψ)

∣∣∣
λ=0
∈ C (I.18)

with λ ∈ R exists and is continuous for all ψ ∈ C∞(M). If F is C1-differentiable at every
φ ∈ C∞(M), then we say F is C1- differentiable, and the map F ′ : C∞(M) × C∞(M) → C
defined as in (I.18) is called its (first) functional derivative.

Higher order derivatives may then be defined recursively, and thus the n-th func-
tional derivative of F , whenever it exists, is the map

δnF

δφn
≡ F (n) : C∞(M)× C∞(M)⊗n → C,

(φ, ψ1 ⊗s · · · ⊗s ψn) 7→ ∂n

∂λ1 · · · ∂λn
F

(
φ+

n∑
j=1

λjψj

)∣∣∣∣
λ=0

, (I.19)
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where we have denoted λ := (λ1, . . . , λn) ∈ Rn and ⊗s is the symmetrized tensor
product. Whenever the n-th functional derivative of F : C∞(M) → C exists, we shall
use both notations presented in the last equation to denote it.

As an example, consider again the linear functional Φ ≡ Φf : C∞(M)→ C given by
equation (I.17). Its functional derivative at φ in the direction ψ is

Φ′(φ)(ψ) =
d

dλ

∫
dx f(x)

(
φ+ λψ

)
(x)
∣∣∣
λ=0

=

∫
dx f(x)ψ(x) ∈ C, ∀ψ ∈ C∞(M)

It is then evident that Φ(2) = 0. In the same manner, the functional

φ 7→
∫
dx f(x)φ2(x), f ∈ C∞0 (M)

is such that

δ

δφ

[∫
dx f(x)φ2(x)

]
(ψ) =

d

dλ

∫
dx f(x)

(
φ+ λψ

)2
(x)
∣∣∣
λ=0

= 2

∫
dx f(x)φ(x)ψ(x).

As the nth functional derivative of a differentiable functional defines a map over C∞(M)⊗n

for each φ ∈ C∞(M), we conclude that, for the generic non linear functional

φ 7→
∫
dx f(x)φp(x),

it equals

δn

δφn

[∫
dx f(x)φp(x)

]
(ψ1 ⊗ · · · ⊗ ψn) =

=
p!

(p− n)!

∫
dx1 . . . dxnf(x1)φp−n(x1)δ(x1, . . . , xn)

n∏
j=1

ψj(xj),

for n ≤ p, and it is null otherwise.
If the C1-functional derivative of F ′ exists and is continuous, then F is said to be

of class C2. If the same is true for all the subsequent derivatives of F , we obtain a
particular class of functionals.

Definition 16. A functional F : C∞(M) → C is called differentiable or smooth if its
nth functional derivative, defined as per equation (I.19), exists and is a continuous map from
C∞(M)n → C for all φ ∈ C∞(M) and for all n ∈ N0.

We now define the support of a functional.

Definition 17. Let F : C∞(M) → C. Then, the support of F , denoted suppF , is defined as
the closure of the set

{x ∈M : ∀N ∈ Nx, ∃φ, ψ ∈ C∞(M), suppψ ⊂ N, s.t. F (φ+ ψ) 6= F (φ)}.

If suppF is compact, then F is called a compactly supported functional.
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The support of a functional may be completely characterized by the support of its
first functional derivative.

Proposition 9. Let F : C∞(M)→ C a C1-differentiable functional over C∞(M). Then

suppF =
⋃

φ∈C∞(M)

suppF ′(φ).

Proof. See [BFR19] or [Bro+18].

Before moving to the next section, where we intend to present how the above func-
tionals enter the context of quantum field theory, we provide a few examples of partic-
ularly interesting functionals.

Definition 18. Let F (M) the space of smooth functionals C∞(M) → C. A functional F ∈
F (M) is called

(i). regular, if it is everywhere given by a smooth, compactly supported function. I.e., if
WF (F (n)(φ)) = ∅ for all n ∈ N0 and for all φ ∈ C∞(M). The subset of regular elements
of F (M) will be denoted Freg(M);

(ii). additive, if for all φ, ψ, ξ ∈ C∞(M) such that suppφ ∩ suppψ = ∅ and regardless of
further assumptions upon the form of the support of ξ, F (φ+ψ+ξ) = F (φ+ξ)+F (ψ+
ξ)− F (ξ).

In addition,

(iii). let V±(x) denote the future/past lightcone at x ∈ M in the cotangent space T ∗M, and let
V± := ∪x∈MV±(x) ⊂ T ∗M; F is called microcausal, if WF (F (n)(φ))∩

(
V
n
+ ∪ V

n
−
)

=
∅ for all n ∈ N, for all φ ∈ C∞(M). The set of microcausal functionals in F (M) will be
denoted FµC(M);

(iv). a microcausal functional F ∈ FµC(M) is called local if it is additive and, moreover,
if its wave front set is normal to the tangent space of the thin diagonal on M. I.e., if
WF (F (n)(φ)) ⊥ T ∗diag(Mn), where diag(Mn) := {(x1, . . . , xn) ∈ Mn : x1 = · · · =
xn}, ∀n ∈ N. The subset of local elements of F (M) is denoted Floc(M);

Notice that the definition of the support of a functional is motivated by the form of
locality condition. The first example of a local functional is the Dirac δ-distribution, in
the following sense. Let

F (φ) :=

∫
dxdy φ(x)φ(y)δ(x− y)f(y), f ∈ D(M).

Then, the wave front set of its second functional derivative is given by

WF
(
F (2)

)
= WF (fδ) = {(x, x, k,−k) ∈ T ∗M2 : x ∈ supp f, k 6= 0}.
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See [BDH14], for instance. In [Bro+18], on the other hand, the authors provide what
they call a “local definition of locality”. For φ ∈ C∞(M), the k-jet of φ at x ∈ M is the
polynomial y 7→ jkxφ(y) :=

∑
n≥0 φ

(n)(x)yn/n!. Let then JkM denote the k-jet bundle
over M, let U ⊂ M be an open subset, and let F : U → C a smooth functional. We may
alternatively call it a local functional if for every φ ∈ C∞(M) there exists N ⊂ C∞(M) a
neighbourhood of φ, a k ∈ N0 and a smooth function f : O ⊂ JkM → C such that, for
all ψ ∈ C∞(M) satisfying φ+ ψ ∈ N , the map x ∈ M 7→ (f ◦ jkx)(ψ), where jkxψ denotes
the k-jet of ψ at x, is compactly supported and

F (φ+ ψ) = F (φ) +

∫
dx f ◦ jkx(ψ).

Though at this level the above classification of smooth functional sounds like noth-
ing but a few examples, in the sections to follow these will be used in the construction
of the algebra of observables.

I.3 The algebraic description of the free quantum scalar field
theory

In this section we discuss the basic aspects of Algebraic Quantum Field Theory (AQFT),
focusing on the analysis of a real, free scalar quantum field theory. The construction of
the algebra of observables will be presented in two steps. First we address the fun-
damental observable Φf , the field itself described by a linear functional as in equation
(I.17). Subsequently, we shall discuss more delicate observables involving non-linear
functionals. The latter step involves the use of microlocal techniques applied to quan-
tum field theory, which will be addressed in the last part of this section, after discussing
states in AQFT.

Throughout this section we shall be interested in field theories described by a La-
grangian functional of the form

L0(φ) =
1

2
∂µφ∂

µφ− 1

2
m2φ2, φ ∈ C∞(M), (I.20)

for some m > 0. From the free Lagrangian L0, one obtains the Klein-Gordon equation
of motion (

� +m2
)
φ = 0, (I.21)

where � is the d’Alembertian operator described in section I.1. Effects of non null
source term j 6= 0 in the right hand side of (I.21), as per equation (I.6), will be discussed
in the next section.

Considering the field as the fundamental object of the theory corresponds, in a first
approach, to considering the algebra of observables A as being generated by linear
functionals Φf in (I.17), for different smearing functions f ∈ D(M) and a unity 1. In
addition, at the algebraic level the physical characteristics of φ are manifested in the
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I.3. The algebraic description of the free quantum scalar field theory

following properties of the elements of this algebra. First, the functional character of
the field, which translates the physical requirement of considering smeared fields as
meaningful objects instead of pointwise observables, is already incorporated within
the algebra of observables A in the functional formalism. Second, in order to construct
an algebra for the quantum theory, the canonical commutation relations (CCR) must
also be implemented within A . Moreover, as in the long run we might be interested
in considering a representation of A over some Hilbert space, the algebra A must
be endowed with an involution. Finally, Φ should satisfy the dynamical equation for
the field, i.e. the Klein-Gordon equation (I.21). However, since we shall be interested
in perturbative interacting theories, we shall not implement this condition over the
algebras of observables. This will be placed upon states instead, as we shall see further
below.

We start this section with the gradual construction of an algebra structure over the
space of field configurations, which shall incorporate the physical requirements upon
the field of above.

The algebra of observables of the classical theory, or simply the classical algebra of
observables, is conceived as the algebra constructed upon the subset Freg(M), with the
pointwise product and unity 1 : φ 7→ 1 ∈ C, for all φ ∈ C∞(M). The set F (M) is
endowed with a vector space structure by pointwise operations. We define

(F +G)(φ) := F (φ) +G(φ), (αF )(φ) := αF (φ) ∀F,G ∈ F (M), ∀φ ∈ C∞(M), ∀α ∈ C.

Next,the algebra structure over Freg(M) is implemented via

(F ·G)(φ) := F (φ)G(φ) ∀F,G ∈ Freg(M), ∀φ ∈ C∞(M),

as in Freg(M) the pointwise product of functionals is well defined. At the level of
classical theories, the above algebraic structure will suffice for us, and thus we define
the following.

Definition 19. Consider the algebra (Freg(M), ·), endowed with an involution ∗ defined as
F ∗(φ) := F (φ) for all φ ∈ C∞(M), for all F ∈ Freg(M). In addition, consider over this
algebra a topology such that for all sequence (Fj)j∈N ⊂ Freg(M), Fj → F ∈ Freg(M) if
and only if F (k)

j → F (k) for all k ∈ N, where F (k) denotes the k-th functional derivative of
F , and the pointwise product is continuous. Then, the unital, topological ∗-algebra A CLS :=
(Freg(M), ·, ∗) is called the off-shell algebra of classical observables.

One may notice that the above algebraic structure A CLS encompasses, at the level
of observables, all but one essential aspect of the the field discussed above, since there is
no requirement for the elements of A CLS to be solutions of the equation of motion. The
algebra of on-shell observables may be obtained as the quotient of off-shell observables
with solutions to the equation of motion as follows.

Definition 20. We define the on-shell algebra of classical observables as the algebra ob-
tained from A CLS by replacing Freg(M) with Freg(M)/IP with the induced product, where
IP is the closed ideal generated by the differential operator P , as discussed section I.1.
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I.3.1 Quantum Algebra of Regular Observables

As a matter of fact, we shall not be as interested in the on-shell as in the off-shell alge-
bra of observables. This will be the case since we shall later on be interested in inter-
acting quantum field theories, and as interaction changes the dynamics, the quotient
presented in the above definition will no longer be preserved. Therefore, in order to
discuss the perturbative construction of an algebra of interacting observables in the
next section, we shall consider only off-shell functionals. The dynamical information
will then be transferred upon state, as we shall see further ahead.

Moving now to the algebra of observables of the quantum theory, it will be con-
structed via deformation of the algebraic product of A CLS , in order to produce a non
commutative product which implements the canonical commutation relations. This
procedure, called deformation quantization, involves the formal construction of a prod-
uct in terms of the deformation parameter ~. We hence would like to construct a prod-
uct over Freg(M), denoted by ?, as

(F ? G)(φ) :=
∑
n≥0

~nan(F,G)(φ), ∀φ ∈ C∞(M), ∀F,G ∈ Freg(M),

where the symbols an(F,G) should be such that (i) a0(F,G) = F · G; (ii) if F,G ∈
Freg(M) are linear functionals respectively induced by f, g ∈ C∞0 (M), then a1(F,G) −
a1(G,F ) = i~∆(f, g)1 is proportional to the causal propagator ∆ associated to the
Klein-Gordon equation of motion (I.21), given in equation (I.12). This construction
will therefore make sense as a formal power series of ~, with finitely-many terms for
F,G ∈ Freg(M). These requirements are fulfilled by constructing the ?-product as fol-
lows.

Definition 21. Let FregJ~K denote the space of formal power series in ~ with coefficients in
Freg(M). We define the product ?i∆/2 : FregJ~K×FregJ~K→ FregJ~K as

(F ?i∆/2 G)(φ) :=
∑
n≥0

~n

n!

〈
F (n)(φ),

( i
2

∆
)⊗n

G(n)(φ)
〉

= M ◦ e~Γi∆/2(F ⊗G)(φ) (I.22)

for all φ ∈ C∞(M), where M : (A ⊗ B) 7→ AB is the pointwise multiplication operator,
∆ = ∆R −∆A is the causal propagator of Klein-Gordon equation (I.21), and

Γi∆/2 : FregJ~K⊗FregJ~K→ D(M), Γi∆/2 :=
i

2

∫
dxdy∆(x− y)

δ

δφ(x)
⊗ δ

δφ(y)
.

(I.23)

The above definition produces an associative product over the space FregJ~K which
fulfills the requirements described in the previous paragraph. In fact, we are con-
strained to define ?i∆/2 in terms of an infinite series of powers of ~ in order for as-
sociativity to hold. Nevertheles, by restricting to polynomial functionals, the product
of observables will reduce to finitely-many terms. We are then in position to present
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I.3. The algebraic description of the free quantum scalar field theory

a first step toward the general algebra of observables of the quantum theory, which is
analogous to the Borchers-Uhlmann algebra of test functions for Wightman fields – see
[Bor62].

Definition 22. The topological unital ∗-algebra A 0
reg := (FregJ~K, ?i∆/2, ∗), where ?i∆/2 is

the product defined in (I.22) and ∗ and 1 are as in definition 19, is called the off-shell quan-
tum algebra of regular observables. Its topology is the one induced by smooth, compactly
supported functions.

We refer to [KM15] for details. Again, in the above definition there is no require-
ment for the observables to fulfill the dynamical equation for the fields. For complete-
ness, however, we define the on-shell regular algebra of observables by considering the
quotient of the off-shell algebra with respect to the ideal generated by the differential
operator P , as in definition 20.

Selecting observables only among regular functionals would exclude others of phys-
ical interest, such as φ2 of φ4, for instance. However, while for elements of Freg(M)
the product is easily defined, extending the quantum product to more general ob-
servables is a delicate task. It will be at this point that the microcausal observables
FµC(M) will become particularly important in our discussion. In addition, we notice
that Freg(M),Floc(M) ⊂ FµC(M). Moreover, though we have considered the topology
on A CLS as the topology induced by the pointwise product, as discussed in [Hör90,
chapter 8], we see that such a topology supplies no information about the wave front
sets of the derivatives of elements of FµC(M). Since we would like to be able to define
the multiplication of functionals via the continuous extension of the product in smooth
cases, we first consider in the algebra of obervables the Hörmander pseudotopology.

Let Γ ⊂ Rn × (Rn\{0}) a closed cone. We define the subset D ′Γ(M) ⊂ D ′(M) of
elements of D ′(M) whose wave front set are contained in Γ,

D ′Γ(M) := {u ∈ D(M) : WF (u) ⊂ Γ}.

The elements of D ′Γ(M) are the distributions u such that, for any cone V ⊂ Rn×(Rn\{0})
of directions around an arbitrary localization f ∈ C∞0 (M) of u such that V ∩ Γ = ∅, the
distribution is such that supk∈V |k|N |f̂u(k)| < +∞ for all N ∈ N – see [Hör90, lemma
8.2.1]. We say (uj)j∈N ∈ D ′Γ(M) converges to u ∈ D ′Γ(M) if and only if both

(i). uj → u weakly in D ′(M); and

(ii). supk∈V |k|N |f̂u(k)− f̂uj(k)| → 0 as j → +∞ for all f ∈ C∞0 (M), for all N ∈ N and
for all closed cone V ⊂ Rn\{0} satisfying V ∩ Γ = ∅.

This defines the Hörmander pseudo topology. We now consider a sequence

(Γj)j∈N ∈ T ∗Mj , Γj :=
(
V+

j ∪ V−
j
)c

and define

FΓj := {F ∈ FµC(M) : WF (F (j)(φ)) ⊂ Γj , ∀φ ∈ C∞(M), ∀j ∈ N},
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I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

We now set the Hörmander pseudo topology for functional in the following manner.
We refer to [BF00] for details.

Definition 23. We say (Fn)n∈N ∈ FµC(M) converges to F ∈ FµC(M) if and only if
F

(j)
n (φ) → F (j)(φ) in D ′Γj (M) for all φ ∈ C∞(M), for all j, n ∈ N, with respect to the

Hörmander pseudo topology for distributions. This defines the Hörmander pseudo topology in
FµC(M).

The above will suffice for the topological description of the algebra of observables
yet to be presented. As for its algebraic aspects, since the above definition of algebra
of observables A 0

reg is restrictive, it is necessary to extend its product, introduced in
definition 22, in order to include more singular objects. First, we notice that the wave
front set of the causal propagator has the form

WF (∆) = {(x, y, kx, ky) ∈ T ∗M2\{0} : (x, kx) ∼ (y,−ky)},

where again (x, kx) ∼ (y, ky) means there exists a null geodesics in M connecting x to
y, to which the covector kx is cotangent at x, and with kx parallel-transported to ky
along this geodesics, as in section I.2. See [Bro+18] for details. Then, on the one hand,
as the ?i∆/2-product above encompasses the product between distributions F (n) and
∆, it is not always well defined for F ∈ FµC(M). In the particular case of regular
observables, this is not a problem, since, for F ∈ Freg(M), each F (n) has empty wave
front set. In contrast, the pointwise powers of ∆, which appear if we consider the
?i∆/2-product of polynomial local fields, are themselves ill-defined. On the other hand,
the presence of the causal propagator is necessary in order for ?i∆/2 to produce the
canonical commutation relations. We then see that a procedure of extension of A 0

reg

requires the substitution of ∆ in (I.22) by another bidistribution, which at the same
time respects such commutation rules and the Hörmander criterion for the product
of distributions. Formally, the extension product may me presented as below, at the
level of expectation values. We shall first present an heuristic discussion on this topic,
in order to connect the product deformation and algebra extension procedure to the
common approach to regularization in physics literature [as per PS95, for instance]. We
shall then move to a precise formulation of deformation quantization so to discuss the
extension of A 0

reg.

I.3.2 States, product deformation the algebra extension

It is possible to notice that the desired extension of the algebra of observables onto
more singular, polynomial observables is the algebraic equivalent to the construction
of Wick polynomials, which hence requires an algebraic implementation of normal or-
dering. For instance, one may attempt to construct the squared-field functional from
linear functionals, by setting its integral kernel as

“ φ2(x) = lim
y→x

φ(x)φ(y)”
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I.3. The algebraic description of the free quantum scalar field theory

in some sense for this limit. This however results in divergent expectation values, due
to the singular behaviour of states in the coinciding points limit. The subtraction of
singular terms from the above limit corresponds to the algebraic normal ordering. Con-
sidering the vacuum state two-point function ∆+

0 (all this will become clearer later in
this section), this translates into the subtraction

“ : φ2(x) :∆+
0

= lim
y→x

φ(x) ? φ(y) + φ(y) ? φ(x)

2
−∆+

0,S(x, y)”, (I.24)

again in some sense. We denote ? ≡ ?i∆/2, and ∆+
0,S is the vacuum state two-point

function symmetric part, such that

∆+
0,S = ∆+

0 −
i

2
∆.

By evaluating : φ2(x) :∆+
0

on states close to the vacuum (Hadamard states), we obtain
meaningful expectation values. This will be made precise later in this section. I.e., only
when the above limit is taken after subtracting the symmetric part of a state close to the
vacuum, we would obtain finite expectation values, heuristically speaking, although
the observable within the limit above is itself divergent

The implementation of the formal limit above depends hence upon explicitly re-
moving such divergence. As presented in the orthodox literature of quantum field the-
ory (e.g. [PS95]), in Minkowski spacetime this procedure corresponds to the subtraction
of vacuum expectation values, or normal ordering. We then construct the regularized
expectation value of the squared field, with respect to some state ω, as

ω
(

: φ2(x) :∆+
0

)
:= lim

y→x

[
ω

(
φ(x) ? φ(y) + φ(y) ? φ(x)

2

)
−∆+

0,S(x, y)

]
, (I.25)

where the product of fields in the right hand side corresponds to the quantum product,
and ∆+

0 is the two-point function of Minkowski vacuum, provided the above limit is
meaningful.

Equation (I.24) is a formal representation of the squared-field. Although the above
expectation value (I.25) is well defined since we consider the subtraction of ∆+

0,S prior
to the limit of coinciding points, : φ2 :∆+

0
itself is not an observable in A 0

reg. In order to
include this kind of object into the algebra, it is necessary to deform the product ?i∆/2,
in order to regularize pointwise products of fields. This corresponds to the algebraic
version of normal ordering. As we shall see below, this algebra extension is isomorphic
to the algebra A 0

reg in definition 21.
The above procedure contains two limitations, though. First, in the spirit of AQFT,

we would like to be able to introduce normal ordering in a state-independent manner.
I.e., we would like to obtain an algebra of observables which does not depend on the
choice of the state, whereas the extension described in the last paragraph is state de-
pendent. Second, although the subtraction above may be meaningful in Minkowski
spacetime, it may not be the case in a more general situation with curved background,
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I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

which lacks for a preferred vacuum state. We see that the divergent behaviour of the
expectation values of field polynomials are caused by the high frequency part of the
state3, which corresponds to measurements performed in small regions of spacetime,
isomorphic to M. Therefore, we may expect a more general subtraction of singularities
mechanism to involve a state with the same divergent behaviour of the Minkowski vac-
uum, which motivates the definition of Hadamard state below. The algebraic extension
might thus be seen as the algebraic equivalent of Wick polynomials construction, and
requires a discussion about states on the algebra of quantum observables.

Definition 24. Let A be a topological, unital ∗-algebra. A state ω : A → C is a positive,
normalized and continuous linear functional over A . This means that ω(A∗A) ≥ 0 for all
A ∈ A (positivity), and ω(1) = 1 (normalization), where 1 is the unity in A (normalization).

Though we first discuss states over A 0
reg, since this is the unique quantum algebraic

structure we have constructed up to the present moment, much of the discussion below
may be naturally extended to the algebras we shall obtain at the end of this section.

A state over the regular algebra A 0
reg is completely defined by its n-point functions.

Namely, if Φf ∈ A 0
reg represents the linear operator introduced in equation (I.17), then

ω is completely characterized by the set of (generalized) n-point functions

ωn(f1, . . . , fn) := ω
(
Φf1 ?i∆/2 · · · ?i∆/2 Φfn

)
,

which are distributions over C∞0 (M)n. A Gaussian, or quasi-free state, in particular, is
such that for all n ∈ 2N its n-point function is characterized by its two-point function as

ωn(f1, . . . , fn) =
∑
σn∈Sn

n/2∏
j=1

ω2

(
fσn(2j−1), fσn(2j)

)
,

and it is zero if n ∈ N is odd. Here, Sn denotes the set of all ordered permutations of n
elements: if σn ∈ Sn, then

σn(2j − 1) <

{
σn(2j), 1 ≤ j ≤ n/2
σn(2j + 1), 1 ≤ j < n/2.

The definition of the ?i∆/2-product over A 0
reg then implies that the anti-symmetric part

of the two-point function of a state is

ω2(f, g)− ω2(g, f) = i~∆(f, g).

This corresponds to the canonical commutation relations at the level of states. Finally,
the equation of motion is implemented over the states ω : A 0

reg → C by requiring them
to be bisolutions to the dynamical equation, in the sense of

ω2(Pf, g) = ω2(f, Pg) = 0,

3This is analogous to normal ordering as introduced in the physics literature, reinterpreted as the re-
moval of high frequencies, instead of merely the “placement of creation operator at left”.
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thus justifying our previous excuses for effectively ignoring the on-shell algebras of
observables. In addition, we shall use the term two-point function to refer to both the
bidistribution and its formal integral kernel.

Definition 25. A state ω : A 0
reg → C is called a Hadamard state if its truncated functions

at all orders n with n 6= 2 are smooth, and, in addition, if one, and hence both the equivalent
conditions below regarding its two-point function are satisfied:

(i). its wave front set has the form

WF (ω2) = {(x, y, kx, ky) ∈ T ∗M2\{0} : (x, kx) ∼ (y,−ky), kx . 0},

where (x, kx) ∼ (y, ky) means there exists a null geodesics in M connecting x to y, to
which the covector kx is cotangent at x, and with kx parallel-transported to ky along this
geodesics; in addition, kx . 0 means kx future directed.

(ii). if for every x0 ∈ M there exists a geodesically convex neighbourhood N ⊂ M of x0 such
that the formal integral kernel of ω2 on N × N , which we denote with the same symbol,
has the form

ω2(x, y) = H(x, y) +W (x, y),

where

H(x, y) := lim
ε→0+

[
U(x, y)

σε(x, y)
+ V (x, y) log

σε(x, y)

l2

]
, (I.26)

with σε(x, y) := σ(x, y) + i2(x0 − y0)ε − ε2, σ half the square of the geodesic distance
between x and y, and l is an arbitrary length scale which assures the logarithm’s argu-
ment to be dimensionless. In addition, U, V : N × N → R are known, fixed smooth
functions, called Hadamard coefficients, and W : M × M → C is a smooth function
which characterizes the state.

We hence notice that, in order to classify a quasi-free Hadamrd state, it suffices to consider its
two-point function.

We recall that a subset O ⊂ M of a Lorentzian manifold M is geodesically convex
if, for each pair of points x, y ∈ O, there exists a unique geodescis γ : I ⊂ [0, 1] → O
connecting x to y. The coefficients U and V are entirely determined by the dynami-
cal equation and the geometry of spacetime, and are both such that PV = 0 at each
argument, whereas U satisfies

∂µU∂
µσ − 1

2

(
�xσ − 4

)
U = 0.

Moreover, the coefficient V may be written as a series

V (x, y) =

+∞∑
n=0

vnσ
n(x, y)
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with smooth coefficients vn. In Minkowski spacetime, this series converges for all
x, y ∈ M and gives a suitable Bessel function K1(m

√
σ), see [BDF09], appendix A for

details. The local expression for the two-point function of a particular Hadamard state
in (ii) may be generalized to globally hyperbolic spacetimes. We refer to [KM15] for
the details and a discussion on the existence of Hadamard states in globally hyperbolic
spacetimes. The smooth function W , however, is characteristic of the state itself. For a
given state ω, the difference H = ω2 −W is called Hadamard parametrix.

The equivalence between conditions (i) and (ii) in the above definition 25 was es-
tablished and explored in [Rad96b; Rad96a], a series of works which allowed the intro-
duction of microlocal analysis into algebraic quantum field theory.

We now return to the problem of extending the algebra A 0
reg in order that we might

consider more singular observables. Our main problem is the fact that definition 22 is
too restrictive to contain physically interesting observables in the context of interacting
theories, which would be found in Floc(M) rather than Freg(M). This extension proce-
dure is preceded by a deformation of ?i∆/2 which applies to microcausal observables in
FµC(M).

Looking back at the wave front set of ∆, we notice that, with the removal of {0} from
T ∗M2, it is formed by two connected components. We hence decompose the causal
propagator as the difference between two bidistributions,

i

2
∆ = ∆+ −∆−, (I.27)

with the requirements

WF (∆±) = {(x, y, kx, ky) ∈WF (∆) : ±k0
x . 0}.

We observe that this is nothing but an asymptotic version of frequency decomposi-
tion for the causal propagator. I.e., this corresponds to decomposing the propagator
into components which, asymptotically, present the same spectral decomposition as the
Minkowski vacuum ∆+

0 , which is supported within the positive cone k0 . 0. Such a de-
composition always exists for globally hyperbolic spacetimes, though it is not unique.
In fact, comparing the present situation with the definition 25 of Hadamard states, we
realize that such decomposition may be obtained by means of a Hadamard state ω, us-
ing ω2 instead of ∆+. Given ω : A 0

reg → C a Hadamard state, we define the alternative
product ?ω as, for all φ ∈ C∞(M) and for all F,G ∈ Freg(M),

(F ?ω G)(φ) :=
∑
n≥0

~n

n!

〈
F (n)(φ), ω⊗n2 G(n)(φ)

〉
= M ◦ e~Γω(F ⊗G)(φ) (I.28)

where M is the multiplication operator as before and Γω : Freg(M)⊗Freg(M)→ D(M)
is given as in equation (I.23), with the replacement of i∆/2 by the two-point function of
ω,

Γω :=

∫
dxdy ω2(x, y)

δ

δφ(x)
⊗ δ

δφ(y)
. (I.29)
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Considering instead the operator ΓH constructed in a similar manner with the parametrix
H instead of the two-point function ω2, we define the map

αH := e
~
2

〈
H, δ

2

δφ2

〉
: Freg(M)→ Freg(M) (I.30)

such that for F,G ∈ Freg(M), we obtain

F ?ω G = αH
(
α−1
H F ?i∆/2 α

−1
H G

)
.

This substantially concludes the algebraic implementation of normal ordering, as
the ?ω-product in (I.28) has been constructed by removing the singular part from the
propagator. In addition, the maps αH in equation (I.30) allow for a precise represen-
tation of the formal expression (I.25), such that the regularized square field : φ2 :∆+

0

above is associated to φ2 itself via α∆+
0

(: φ2 :∆+
0

) = φ2. That is, the maps α reduce to the
identity when applied to regularized polynomials with respect to the same parametrix.
This analogy between the formal limit and exact objects may be concretely seen from
the following example.

As presented in [FR15a], consider the sequence of functionals (Fn)n∈N, with

Fn(φ) :=

∫
dxdy f(x)gn(x− y)φ(x)φ(y), gn, f ∈ C∞0 (M),

such that the sequence (gn)n∈N is an approximation to the δ-function. Denoting by HS

the symmetric part of the function H from equation (I.26), we then have for each n ∈ N

α−1
H Fn =

∫
dxdy

[
f(x)gn(x− y)φ(x)φ(y)−HS(x, y)f(x)gn(x− y)

]
=

∫
dxdy

[
φ(x)φ(y)−HS(x, y)

]
f(x)gn(x− y).

We hence denote : φ2(x) :H
.
= limy→x φ(x)φ(y)−HS(x, y), in the sense of α−1

H (φ2), where
the limit corresponds to the limit n→∞ in the previous expression, in the sense of dis-
tributions. At the level of expectation values, the procedure of explicitly subtraction
of a Hadamard parametrix is called point splitting regularization, which, in light of
what has just been discussed, may be understood in the sense of algebraic regulariza-
tion. This will be of particular importance in chapter IV of this thesis. Last, we may
also notice that α−1

H contains Wick’s theorem by computing, in terms of formal integral
kernels,

: φ2(x) :H : φ2(y) :H =: α−1
H

(
φ2(x) ?ω φ

2(y)
)

= (α−1
H φ2) ?i∆/2 (α−1

H φ2)

=: φ2(x)φ2(y) :H +i2 : φ(x)φ(y) :H H(x, y)− 1

2
H2(x, y),

which agrees with the calculation in [PS95], for instance, regarding Wick’s theorem. An
explicit calculation may be found in [FR15a].
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I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

As a result, not only the map αH allows for a deformation of ?i∆/2 over regular
functionals into ?ω, but it also may be employed in order to extend the algebra of ob-
servables. With this product we may extend definition 21 to FµC(M) as follows, cf.
[FR15a; FR15b].

Definition 26. For any given Hadamard state ω : Freg(M) → C, the topological unital ∗-
algebra A 0

µC := (FµCJ~K, ?ω, ∗), A 0
µC ≡ A 0, endowed with the Hörmander pseudo topology,

where ?ω is the product defined in (I.28) and ∗ is as in definition 19, is called the off-shell
quantum free algebra of observables, or algebra of free observable, for shortness.

Considering the set of microcausal functionals supported in a relatively compact
region O ⊂ M, denoted as FµC(O), we obtain the algebra of local observables of O,
denoted A 0(O), cf. discussed in the introduction of this thesis in the context of Haag-
Kastler axioms. Therefore, with the family of maps α in (I.30), labeled by the choice of
parametrix H , we obtain an algebra structure which is independent of the state ω. In
fact, at this point we have an abstract structure U, given as the family {(Freg(M), ?ω)}ω,
labeled by different choices of ω2 in definition (I.28). Then, to each possible choice of
state corresponds a concrete algebra. The state independence to which we refer here
corresponds to the fact that all these concrete algebras are ∗-isomorphic. In order to
present this algebra isomorphism, let A 0

1 and A 0
2 be as in definition 26, with the product

?ωi of A 0
i being given in terms of a Hadamard state ωi, i = 1, 2 and ω1 6= ω2. Then

ω1 − ω2 is a smooth function and µ : A 0
1 → A 0

2 ,

µ := αω2−ω1 , (I.31)

is a ∗-isomorphism, as may be seen by composing the map µ with the right hand side
of equation (I.28).

When calculating expectation values of observables, a convenient choice of the ?-
product will be the one constructed upon the state with respect to which the expectation
values are calculated, since this choice produces

ω(F ?ω G) = F ?ω G
∣∣∣
φ=0

. (I.32)

This follows from the fact that for linear observables Φf ,Φg,

ω (Φf ?ω Φg) = ω (Φf · Φg) + ~ω2(f, g),

and as the left hand side equals the two-point function of ω, the expectation value of
the pointwise product Φf · Φg is zero. This may be iterated to arbitrary polynomial
functionals in FµCJ~K to justify (I.32). The gaussian state ω : Freg(M) → C may then
be extended to microcausal observables via its n-point function as

ω(F1 ?ω · · · ?ω Fn) = F1(φ) ?ω · · · ?ω Fn(φ)|φ=0, ∀Fj ∈ A 0 = (FµCJ~K, ?ω), j = 1, . . . , n,

for all n ∈ N. A general expression may be obtained by means of the ∗-isomorphism
(I.31). From now on, we shall denote the non commutative product simply as ?, omit-
ting the state or the propagator in the subscript whenever its choice is implicit.
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I.3. The algebraic description of the free quantum scalar field theory

One should not understand the ∗-isomorphism between two algebras (FµC, ?ωi),
which differ by the choice of Hadamard state in the construction of the product, with
invariance of expectation values under this algebra isomorphism. The change ?i∆/2 →
?ω, in the sense of the extension from definition 21 to definition 26, corresponds to the
algebraic version of the Wick theorem, thus differences are to be expected in expectation
values computations ω(F ?1 G), ω(F ?2 G), with respect to different regularizations.
This difference is illustrated, for instance, when considering the expectation values of
the squared-field with respect to a thermal equilibrium state, when normal ordering is
implemented by means of the vacuum state. This example consists of the emergence of
a thermal mass, a phenomenon which will be presented in the next chapter, when we
shall introduce thermal aspects of quantum field theory.

At this point we close the circle which we started at the end of previous section. We
presented microcausal functionals in definition 18 as a particular, abstract generaliza-
tion of regular and local functionals, which contains physically meaningful observables
not in Freg(M). Among regular functionals, we then defined a non-commutative prod-
uct ?i∆/2, which produces the quantum algebra of regular observables A 0

reg. However,
as we have argued that this algebra is far too restrictive, we presented an extension
of ?i∆/2 to observables in FµC(M). This has been performed in two steps: first we
considered the deformation of ?i∆/2 into ?ω via the map αH . Then, we argued that
the ?-product may be extended to microcausal observables, and used such extension
to define the algebra A 0. As such extension is performed by using Hadamard states,
we observe, first, that it may be both locally and globally characterized in equivalent
manners; second, when comparing WF (ω) for a Hadamard state with WF (F ) for any
F ∈ FµC(M), the product is a well-defined extension of the product between regular
observables. This whole procedure may be depicted in the diagram below,

A CLS
reg = (Freg(M), ·) A 0

reg = (FregJ~K, ?i∆/2, ∗)

A0 3 A 0 = (FµCJ~K, ?ω, ∗) (FregJ~K, ?ω, ∗) ∈ Areg

Quantization

αω ? deformation

Extension

where each A denotes the abstract algebra of formal power series of ~ with coefficients
in the respective space of functional, labeled by different choices of ?-product.

We have generally defined states as continuous, positive and normalized complex-
valued linear functionals over a ∗-algebra, and used gaussian states in the extension
procedure for the algebra of formal power series of ~ with coefficients in FµC(M).
Therefore, although the conditions of normalization and continuity remain unchanged
in the context of algebras of formal power series, the positivity of ω will be consid-
ered in the following sense: if A denotes a formal power series in ~, then we require
ω(A ? A∗) ≥ 0.

Finally, dynamics is introduced into the algebra of free observables A 0 by means of
a particular one-parameter group of automorphism (αt)t∈R.
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I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

Definition 27. The pair
(
A , (αt)t∈R

)
where A is some unital ∗-algebra and (αt)t∈R is a one-

parameter group of ∗-automorphism is called a dynamical system.

In the particular case of the algebra A 0, we consider the free dynamics given by the
maps αt : A 0 → A 0 as

αtF (φ) := F (φt), φt(x0,x) := φ(x0 + t,x) ∀x ∈M, ∀t ∈ R, (I.33)

for all F ∈ A 0 and for all φ ∈ C∞(M). More generally, the action of Poincaré group P
over the algebra A 0 is given by the group of automorphisms

P 3 (Λ, τ) 7→ α(Λ,τ) : A 0 → A 0, α(Λ,τ)F (φ) := F (φ(Λ,τ)).

I.4 Algebraic structure of interacting theories

So far we have considered only observables of the free theory. These have been built
upon field configurations which satisfy the linear equation of motion (I.21), with the
two fundamental solutions ∆R and ∆A as in equation (I.10), completely characterized
by their supports. Though the dynamical equation has not been explicitly implemented
at the algebraic level, in the sense that we have focused on the off-shell algebra of ob-
servables, the construction of A 0

reg depends on the existence and uniqueness of the
causal propagator ∆ = ∆R −∆A, as in equation (I.22) the algebraic product was built
upon ∆. In addition, when extending the algebra of observables, any ?ω-product is
built from the two-point function of a bisolution of (I.21), whose antisymmetric part is
again proportional to ∆. Therefore, even when considering only the off-shell algebra
of observables, each construction is based on the dynamical equation (I.21), through its
fundamental solutions ∆R/A.

Nevertheless, in practical situations we are usually interested in considering a sys-
tem described by the lagrangian funcional

L(φ) =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − LI(φ), (I.34)

corresponding to a real scalar field propagating over Minkowski space according to the
dynamical equation

(
� +m2

)
φ = V ′(φ), V ∈ FlocJ~K, V (φ) =

∫
dx f(x)LI(x), f ∈ D(M) (I.35)

and where LI is a local interaction term, which contains pointwise products of the field.
Therefore, for non-linear polynomial interactions, the potential V requires normal or-
dering, resulting in the functional : V :H such as discussed previously. In these sit-
uations, we are usually left with perturbation theory for the algebraic description of
the physical system. In the above expression, the smooth and compactly supported
function f is a cutoff for the interaction term, which prevents the appearance of in-
frared interactions in the theory. In the long run, we are often interest in the so called

48



I.4. Algebraic structure of interacting theories

adiabatic or thermodynamic limit. Heuristically, this consists of an extension in the
support of f , f → 1, onto the whole space, and which we shall precisely consider in the
following sense. Suppose the cutoff function is given in terms of separate functions as

M 3 x 7→ f(x) = χ(x0)h(x), χ ∈ C∞0 (R), h ∈ C∞0 (R3), (I.36)

where χ is such that, for some arbitrary but fixed ε > 0,

suppχ ⊂ [−2ε,+2ε], χ|[−ε,+ε] ≡ 1. (I.37)

This choice may be interpreted as corresponding to the interaction term being turned on
at x0 = −2ε, smoothly increasing until x0 = −ε, when it stabilizes and remains on until
it is smoothly turned off. In order to be absolutely precise, we should consider both χ
and h as functions on Minkowski space, but throughout this text we shall regard both
as functions on the given coordinates. Thus, the adiabatic limit consists of an inductive
limit h → 1, the so-called van Hove limit that we shall discuss in this section, while χ
is held fixed. The resulting functional hence describes an interaction term supported
everywhere in space, but with a time cutoff given by χ. The particular form of the func-
tion χ will be further addressed at the end of this section, in view of the Fredenhagen
and Lindner’s description of a thermal equilibrium state for the perturbative theory
[FL14], to be discussed in the next chapter. Finally, we should clarify that, although in
the physics literature it is often the limit χ→ 1 that is called adiabatic limit, whereas the
previously considered limit h → 1 is frequently referred to as thermodynamical limit,
we shall use both the terminologies “adiabatic” or “thermodynamic” always to refer to
the inductive limit h→ 1, for fixed χ.

Our approach towards perturbative theories mimics the Bogoliubov’s analysis pre-
sented in [BS80], which is based on representing interacting observables as the func-
tional derivative of a formal S-matrix, the exponential of the interacting lagrangian
with respect to the time-order product. Therefore, in this section we first briefly in-
troduce time-ordered products of local observables, which will allow us to define the
formal S-matrix and the Bogoliubov map. In this way we end up with a formal repre-
sentation of interacting observables within the free algebra A 0. Finally, we shall briefly
discuss the principle of perturbative agreement presented in [HW05; DHP17], which
concerns the equivalence between the perturbative and the exact approach to ressum-
able theories. We also briefly discuss regularization methods for the time-ordered prod-
uct, but we shall focus on the regularization of diagrams appearing in the estimations
in the chapters III and IV.

I.4.1 The time-ordered product for regular observables

Once a ?-product has been fixed for the algebra A 0, we may construct the time-ordered
product of functionals. This is defined for local observables, and should satisfy the
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I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

causal factorization property

T (F,G) =

{
F ? G, if F � G;

G ? F, if G � F,
(I.38)

where the notion of succession is established as F � G if and only if there exists a
Cauchy surface Σ ⊂ M such that suppF ⊂ J+(Σ), suppG ⊂ J−(Σ). In the particu-
lar case of regular functional F,G ∈ Freg(M), equation (I.38), along with bilinearity,
completely characterizes the map T . It is then possible to notice that the obtained map
T : FregJ~K⊗FregJ~K→ FregJ~K is unambiguously defined over regular functionals as

T (F,G) :=
∑
n≥0

~n

n!

〈
F (n)(φ),∆⊗nF G(n)(φ)

〉
= M ◦ e~ΓF (F ⊗G)(φ) ∀φ ∈ C∞(M),

(I.39)

where ΓF : FregJ~K⊗FregJ~K→ D(M) is given as in equation (I.29). In addition, if ∆+

denotes the two-point function of a quasi-free Hadamard state, which is employed in
the ?-product, then ∆F is the Feynman propagator associated to ∆+, which is given by

∆F := ∆+ + i∆A, (I.40)

with ∆A the advanced propagator of the free Klein-Gordon equation (I.21), as in equa-
tion (I.10). In the particular case ∆+ = ∆+

0 , the vacuum state two-point function, ∆F is
the usual Feynman propagator. The properties of ∆F stated below follow directly from
its definition and the properties of the propagators presented so far.

Proposition 10. The Feynman propagator (I.40) is a bidistribution which may be written in
the equivalent ways

∆F (x) = ∆+(x) + i∆A(x) = ∆−(x) + i∆R(x)

=
1

2

{
∆+(x) + ∆−(x) + i

[
∆R(x) + ∆A(x)

]}
In addition, if ∆+ is translation invariant, then so is the Feynman propagator. Its formal inte-
gral kernel then ∆F (x, y) reduces to ∆F (x), denoted with the same symbol.

Equation (I.39) above may be constructed for regular functionals by writing the
time-ordered product of arbitrary regular observables as

T (F,G)(φ) =
∑
n≥0

~nbn(F,G)(φ),

and comparing this expansion with condition (I.38). From the first order term, by using
the properties of the retarded and advanced propagators and the given conditions on
the supports of the functionals, we obtain

b1(Φf ,Φg) =

{
∆+(f, g), if supp f � supp g;

∆−(f, g), if supp g � supp f.
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The two conditions above are combined in b1(F,G) = ∆F (f, g) by using the Feynman
propagator, whose wave front set is

WF (∆F ) = WF (δ) ∪ CF , (I.41)

with CF := {(x, y, k,−k) ∈ T ∗M2\{0} : (x0 − y0)2 − |x − y|2 = 0, x0 − y0 6= 0, k0 =
λ(x0 − y0), ki = −λ(xi − yi), λ > 0} – see [BDH14] and references there mentioned.
We thus conclude that the map T may be defined at all orders as in (I.39), provided
supp f∩supp g 6= {0}. In fact, considering the translation invariance of the propagators,
for regular functionals the causal factorization property (I.38) defines the time-ordered
product up to the origin 0 ∈ M, or, equivalently, up to the thin diagonal diag(M2). The
map T then may be uniquely extended by continuity to the whole of M, and therefore
we may affirm that equation (I.38) or (I.39) both completely and equivalently define
T for regular functionals. In conclusion, we obtain over A 0

reg an additional product,
which satisfies the following properties.

Proposition 11. The map T : FregJ~K ×FregJ~K → FregJ~K as defined in (I.39) is an asso-
ciative, commutative product between regular functionals, which, in addition, is ∗-isomorphism
to the pointwise product.

Proof. Associativity is explicitly verified as for the ?-product in (I.22). Commutativity
follows from the symmetry of the Feynman propagator ∆F . The map

T = e~ΓF : FregJ~K→ FregJ~K, G 7→
∑
n≥1

~n

n!

〈
G(2n),

1

2
∆⊗nF

〉
is invertible and may be seen as an extension, or completion of the map defined in (I.39),
equivalent to taking the time-ordered product of some observable with 1. It produces
the algebra ∗-isomorphism in the sense of T (F,G) = T (T−1F · T−1G).

Throughout the text, we shall intertwine two equivalent notations for the time-
ordered product, T (F,G) ≡ F ·T G. The time-ordered product T may be extended
from regular to local functionals, but in this case the construction is not unique. Besides,
along the thin diagonal of M2, where the product with local functional could be not well
defined, an extension for powers of the Feynman propagator would be required. The
extension of T onto Floc is a fundamental part in the treatment of interacting theories,
which we briefly discuss next.

In order to extend the T -product to local functionals of a real scalar theory, we con-
sider for each n ∈ N0 maps

Tn : FlocJ~Kn → A 0, Tn(F1, . . . , Fn) := F1 ·T · · · ·T Fn.

Each map Tn is required to fulfill the following conditions.

I. T0 ≡ 1 ∈ A 0
loc, T1 = id : FlocJ~K ↪→ A 0

loc;
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II. (Causal factorization property) if (∪n−kj=1 suppFj) ∩ (∪nl=n−k+1J−suppFl), then
Tn(F1, . . . , Fn) = Tn−k(F1, . . . , Fn−k)?ωTk(Fn−k+1, . . . , Fn) – an extension of prop-
erty (I.38);

III. The map Tn(F1, . . . , Fn) : C∞(M) → C depends on φ ∈ C∞(M) only via the func-
tional derivatives the functionals Fj at φ, j = 1, . . . , n, for all n ∈ N0, thus extend-
ing the form of expression (I.39);

IV. for all n ∈ N0, Tn is symmetric;

V. (Unitarity) T ∗(F1, . . . Fn) = T (F ∗1 , . . . , F
∗
n), where T is the anti-time ordering

Tn(F1, . . . , Fn) := n!
∑
σ∈Pn

(−1)n+|σ|
∏
I∈σ

1

#I!
T#I

(
F1, . . . , F#I

)
,

where Pn is the set of pairwise disjoint partitions of the set {1, . . . , n}, #I denotes
the cardinality of the partition, and

∏
refers to the ?-product.

VI. (Covariance) Let α(Λ,τ) denote the action of Poincaré group P on Floc(M), then
α(Λ,τ) ◦ Tn = Tn ◦ α(Λ,τ)

In [EG73], Epstein and Glaser proved that such maps Tn, satisfying conditions I-
IV, may be recursively constructed for quantum field theories in Minkowski space. In
order to construct time-ordered products of local observables and extend this product
to the whole space M, the authors proceed by induction. In this way, the map Tn in
the above is obtained from all the precedent maps Tl, l ≤ n − 1. This procedure is
not unique, however, as there is a freedom in the extension of each Tn onto the thin
diagonal diag(Mn). At each recursive step, the causal factorization property II above
fixes the map Tn up to the thin diagonal diag(Mn), and Tn may be extended onto the
diagonal by means of some scaling limit. In particular, we shall later briefly describe an
extension procedure which mimics the extension of homogeneous distributions, based
on the Steinmann scaling degree.

The time-ordered product of local-functionals is then understood in the sense of
a properly constructed family {Tn}n∈N0 . This recursive construction, however, is not
unique, and two time-ordered products T, T ′, constructed as families {Tn}n∈N0 and
{T ′n}n∈N0 , may differ by a family {Zn}n∈N0 of multilocal maps Zn : F⊗nloc J~K→ FlocJ~K,
each one supported in a thin diagonal diag(Mn). At each recursive step, the map Zn
depends only on a finite number of constants, the so-called renormalization constats.
The freedom in fixing these constants is known in physics as renormalization freedom.
From the family {Zn}n∈N0 we obtain the so-called Stückelberg-Peterman renormaliza-
tion group, which we shall not discuss in this thesis. Moreover, though we have re-
stricted our discussion to he construction of the time-ordered product on Minkowski
spacetime, on curved background a similar construction was presented in [HW02].

We shall not enter formal aspects of the renormalization group. As a matter of fact,
for the purpose of this thesis it will suffice to to say that the T -product of local function-
als satisfying conditions I-VI exists, and that the ambiguities in its definition manifests
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via the presence of finitely many terms at each recursive step, which depend on arbi-
trary renormalization constants. For further details, we refer to [EG73; Rej16; FR15b;
HW01; HW02; BDF09; BF00; Kel10]. However, a brief discussion about the Epstein-
Glaser analysis and the extension of distributions is appropriate. We first illustrate the
problem from a computational oriented perspective.

Consider for instance the squared-field functionals

Φ2
f (φ) =

∫
dx f(x)φ2(x), f ∈ C∞0 (M),

and Φ2
g, g ∈ C∞0 (M) constructed in the analogous way. If supp f ∩ supp g = ∅, then,

according to equation (I.39)we would have

Φ2
f ·T Φ2

g(φ) = Φ2
f · Φ2

g(φ) + 4~
∫
dxdy f(x)g(y)φ(x)φ(y)∆F (x, y)+

+ 2~2

∫
dxdy f(x)g(y)∆2

F (x, y).

The last term contains the pointwise product of ∆F with itself, which, given the form
of its wave front set in equation (I.41) and the Hörmander criterion for the product of
distributions in proposition 8, is well defined only within M2\diag(M2). The task of
defining the time-ordered product at second order T2 therefore heuristically assumes
the form of extending powers ∆2

F to a everywhere well-defined distribution. As we
work on Minkowski space and due to the translation invariance of the Feynman propa-
gator, this is equivalent to extending these powers to the origin. In addition, due to the
recursive construction of the time-orderes product, this task generalizes, in the sense
that at order n one is left with extending the map Tn−1, well defined over the subdiag-
onals of Mn−1, onto the subdiagonals of Mn, which correspond to the subset

D(Mn) := {(x1, . . . , xn) ∈Mn : xi = xj for some i, j = 1, . . . , n}.

The construction of Tn is then performed in two steps. First, the causal factorization
property allows for the construction of a map T̃n over Mn\diag(Mn), which is subse-
quently extended in order produce Tn itself.

In fact, the above example only partially illustrates the problem, since in practical
computations we often have to consider coinciding point limits of higher order prod-
ucts of distributions. I.e., though in the previous example we encountered the problem
of meaningfully treating the square ∆2

F (x − y) in the limit x − y → 0, important ex-
pectation values involve similar coinciding points limiting procedures with far more
points involved. This may be seen, for instance, from extending the previous example
and considering Φ2

f ·T Φ2
f ·T Φ2

g. We shall return to this problem at the end of the next
section.

I.4.2 Extension of ·T and aspects of renormalization.

The above discussion, in the context of quantum field theories over Minkowski space,
may be properly stated based on the following.
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Definition 28. Let u ∈ D ′(M\{0}) be a distribution over test functions supported in M\{0}.
A distribution ũ ∈ D ′(M) is called an extension of u if, for all φ ∈ D(M\{0}), ũ(φ) = u(φ).

If there exists an extension of u ∈ D ′(M\{0}), u is called extendable. Notice that
not all distributions may be extended, and that if u is extendable, its extension may not
be unique4. However, cf. [Hör90, see thms. 2.3.3 and 2.3.4],

Proposition 12. A distribution u′ ∈ D ′(M) with support equal to supp u′ = {y} ⊂ M is a
polynomial in the derivatives of the Dirac δ-function δy.

Consequently, two different extensions to some distribution differ by a distribution
supported in the origin. The freedom which arises from proposition 12 above is called
renormalization freedom.

There are a few important methods employed in the extension of Feynman propa-
gator and the explicit construction of renormalized time-ordered product. For instance,
we may allude to the dimensional regularization method by C. G. Bollini and J. J. Gi-
ambiagi, presented in [BG72], which is beyond the scope of this thesis. An alterna-
tive method consists of the regularization scheme used in [EG73], which, for a broader
class of distributions, mimics the methods of homogeneous distributions extension de-
scribed in [Hör90]. In this analysis, which we briefly introduce, the homogeneous de-
gree is replaced by the Steinmann scaling degree. We refer to [Ste71; BF00; Kel10] for
the details.

Consider the action of the positive real numbers over D(M) as

R+ ×D(M)→ D(M), (a, f) 7→ fa, fa(x) :=
1

an
f
(x
a

)
,

the composition of a translation and a dilatation on the support of f . This induces a
similar action of R+ over D ′(M) via pullback,

R+ ×D ′(M)→ D ′(M), (a, F ) 7→ Fa, Fa(f) := F (fa).

The scaling degree of a distribution F ∈ D ′(M) provides a measure of the divergent
behaviour of F around the origin. It is defined as

sd F := inf
{
t ∈ R : lim

a→0+
atFa = 0 ∈ D ′(M)

}
∈ R ∪ {±∞},

the limit within the definition meant in the sense of distributions. Hence, as in the
limit a → 0+ the region over which the distribution is estimated is shrunk, the scaling
degree provides a comparison of the localized behaviour of F around 0 with respect to
a polynomial decrease. It will be appropriate to introduce a complementary quantity:
in M, the divergence degree of F ∈ D ′ is the number

div F := sd F − 4.

4An example of a non-extendable distribution is, for instance, C∞0 (M) 3 f 7→
∫
dx f(x)e1/x, see [Kel10].
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where 4 corresponds to the dimension of Minkowski spacetime. In particular, if F is a
homogeneous distribution of degree a ∈ R+, sd F = a. More generally, a homogeneous
distribution of degree z ∈ C has scaling degree <z. In addition, in arbitrary dimension
n the δ-distribution is such that its scalling degree equals n, since

lim
a→0+

atδa(f) = lim
a→0+

ata−nδ
(
f
( ·
a

))
= lim

a→0+
at−nf(0).

For our discussions, it will be particularly important to notice that sd∆F = 2, and hence
sd∆2

F = 4, where ∆F is the Feynman propagator in Minkowski spacetime in equation
(I.40).

The scalling degree of a distribution has the following properties, see [Kel10] and
references there mentioned.

Proposition 13. Let F,G ∈ D ′(Rn), and let α ∈ Nn be a multiindex. Then

(i). the scaling degree cannot decrease buy differentiation: sd (∂αF ) ≤ sd F + |α|;

(ii). sd (xαF ) ≤ sd F − |α|;

(iii). sd fF ≤ sdF , ∀f ∈ C∞(Rn);

(iv). sdF ⊗G = sdF + sdG;

(v). F ·G = sd F + sd G, whenever the left hand side is well defined.

The Steinmann scalling degree permits a classification of extension procedures of
distributions as follows.

Proposition 14. Let u ∈ D ′(Rn\{0}). If sd u < n, then there exists a unique extension
ũ ∈ D ′(Rd) of u such that sd ũ = sd u. If n ≤ sd u < +∞, then there are several extensions
of u with the same scaling degree, equals to sd u. Finally, if sd u = ∞, the disctribution is not
extensible.

For a proof of this theorem, see [BF00; Kel10]. Although we are mainly interested
in theories on Minkowski spacetime, in the present we keep the dimension of the Rn
space implicit, in order to highlight the role of n in this analysis. For the case sd u < n,
let f : R → R be a smooth function such that f ||x|<1 ≡ 0 and f ||x|≥2 ≡ 1 and set
now f∗p(x) := f(px) for arbitrary p ∈ R. In [BF00], the authors show that the limit
ũ := limp→+∞ f∗pu produces a distribution on Rn given by

ũ(g) := lim
p→0

u(f∗pg) ∈ R

with the same scaling degree of u. The uniqueness of such extension then follows from
the fact that two extensions ũ, ũ′ would differ by a polynomial in the derivative of
Dirac’s delta function, which however has scaling degree grater or equal n.

55



I. Basic Aspects of Perturbative Algebraic Quantum Field Theory

In order to examine the case n ≤ sd u < +∞, we consider the space Dλ(Rn) of
smooth, compactly supported functions which, together with its derivatives, vanish up
to order λ > 0 at the origin. I.e.

Dλ(Rn) := {f ∈ D(Rn) : ∀α ∈ Nn0 , |α| < λ, (∂αf)(0) = 0}.

Let W denote the projector C∞0 (Rn) ↪→ Dλ(Rn), given by

C∞0 (Rn) 3 f 7→W (f) := f −
∑
|α|≤λ

mαf
(α)(0)

with smooth, compactly supported functions mα such that ∂βmα(0) = δαβ equals a
suitable product of Kronecker deltas. In theorem 5.3 of [BF00], the authors construct
the extension of u from the projectors W , and also show that the above projection com-
pletely characterize the extension of u, in the sense that each ũ is given from the values
of ũ(mα). The existing freedom underneath the possible choices of family mα corre-
sponds to the renormalization freedom, and the difference between two choices (mα)α,
(m′α) is supported in the origin. We then end up with several extensions with the same
scaling degree, all which coincide up to terms localized in the origin 0 ∈ Rn.

A different renormalization method which we shall employ in future sections of
this thesis is the Källén-Lehmann procedure, which consists of writing the squared
Feynman propagator as an integral over the mass term of ∆F . From the definition
∆F := ∆+

0 + i∆A, it is possible to see the Feynman propagator is a distribution with
scaling degree sd∆F = 2, and hence its extension to the origin is straightforward, as de-
scribed above. On the other hand, its square is such that sd∆2

F = 4, and hence though
it may be extended to the origin, such extension is not unique. See [Fre], for instance.
Due to the Lorentz invariance of the propagator on Minkowski space, we may write

∆2
F (x) = (−� + a2)

∫ +∞

(2m)2

dM2 ρ2(M2)

M2 + a2
i∆F (x;M), ρ2(M2) :=

1

16π2

√
1− 4m2

M2
,

(I.42)

where ∆F (x,M) is the Feynman propagator for the scalar theory with mass M . The
above construction may be iterated in order to obtain higher order powers of ∆F . In
the above expression, the real parameter a accounts for the renormalization freedom,
and two different choices of parameters, say a and b, imply a difference(

−� + a2
)

∆F (x)

M2 + a2
−
(
−� + b2

)
∆F (x)

M2 + b2
=

(a2 − b2)

(M2 + a2)(M2 + b2)

(
� +M2

)
∆F (x)

=
(a2 − b2)

(M2 + a2)(M2 + b2)
δ(x),

as stated in proposition 12 above.
This concludes our discussion about renormalization and the extension if the time-

ordered product. We once again affirm that, for the scope of this thesis, it will be enough
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to say that a time-ordered product of local observables always exists, and, although it
is not unique, it may be constructed recursively, in such a way that at each step the
ambiguity in its definition is represented in finitely many constants to be fixed from
additional requirements.

I.4.3 The S-matrix and the Bogoliubov map

We examine now how the time-ordered map explicitly enters the analysis of interacting
field theories. Consider an interaction term λV ∈ Floc(M), with λ a perturbation pa-
rameter which we eventually consider equal to one. We shall first consider a compactly
supported, smooth interaction term such as in equation (I.35), and later address the so
called adiabatic limit, briefly discussed at the begining of this section. We then define
the abstract S-matrix as the time-ordered exponential of the interaction term,

S(f) = 1 +
∑
n≥1

in

~n

∫
dx1 . . . dxn f(x1) . . . f(xn)T (LI(x1), . . .LI(xn)), (I.43)

with f ∈ C∞0 (M) the interaction cutoff as in equation (I.35). The S-matrix is then a
unitary operator, in the sense of formal power series in the parameters λ and ~. In the
spirit of eventually setting λ = 1, we shall from now on frequently omit this interaction
parameter from the notation. Next, we also consider the relative S-matrix

Sg(f) := S(g)−1 ? S(g + f), (I.44)

where S−1 corresponds to the inverse S-matrix with respect to the ?-product. The fol-
lowing is directly obtained.

Proposition 15. Let f, g, h ∈ C∞0 (M) such that supp f ∩ J−supph = ∅. Let S−1 denote
the inverse of the S-matrix with respect to the ?-product in A 0 = (FµC(M), ?), with ? con-
structed with the two-point function of some Hadamard state ω as in the previous section. Then,
regardless of further assumptions on supp g,

(i). Sg(f + h) = Sg(f) ? Sg(h);

(ii). Sg+f (h) = Sg(h);

(iii). if, in addition the interacting lagrangianLI in equation (I.43) is a local field, then Sg+h(f) =
Sg(h)−1 ? Sg(f) ? Sg(h).

In addition, under the same hypothesis of item (iii) we have

S(f + g + h) = S(f + g) ? S(g)−1 ? S(g + h) (I.45)

It is often convenient to represent the S-matrix or the relative S-matrix in a different,
but equivalent manner. Considering the maps {Tn}n∈N0 , Tn : F⊗nloc J~K→ A 0

µC discussed
in the previous subsection, we may represent the formal S-matrix as

S : FlocJ~K→ A 0, S(V ) :=
∑
n≥0

in

~n
Tn(V ⊗n) = e

iV/~
T . (I.46)
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In the above equation, V is given cf. in equation (I.35) as

V (φ) =

∫
dx f(x)LI(x), f ∈ D(M),

such that the formal integral kernel LI is the one present in (I.43). We hence employed
the same terminology as employed in equation (I.43). In fact, throughout this thesis we
shall refer to both the maps in equations (I.43) and (I.46) as the S-matrix, and denote
them both with the same symbol S, since the two are equivalent, in a certain sense.
While in equation (I.43) we define the map acting on the cutoff of the interaction term
V , in equation (I.46) the S-matrix is represented in terms of the local functional V itself.

Following the ideas of Bogoliubov [BS80], we then define the Bogoliubov mapRV

RV : TFlocJ~K→ A 0 = (FµCJ~K, ?ω, ·T ),

as

RV (F ) := −i d
dλ
S(V )−1 ? S(V + λF )

∣∣
λ=0

= S−1(V ) ?ω

[
S(V ) ·T F

]
, (I.47)

where we included the time-ordered product in A 0, ·T to be understood among local
functionals only. The Bogoliubov map provides a representation of local interacting
observables into the algebra the free theory, in the sense of formal perturbation series.
The interacting observables fulfill the interacting equation of motion, in a formal sense.
Let Φf be an linear observable in Freg(M), with f ∈ C∞0 (M), and let, in addition, f = Pg
for some g ∈ C∞0 (M), where P denotes the Klein-Gordon operator. Then, with a local
interaction term V ∈ Floc(M), we obtain

ΦPg = RV
(
ΦPg + V ′(g)

)
,

which is a particular form of the Schwinger-Dyson equation, see [IZ80] for details. In
conclusion, we shall consider the interacting observables in the following sense.

Definition 29. Let V ∈ Floc(M) and let λ ∈ R a perturbation parameter. The ∗-subalgebra
A I :=

(
RV (FlocJ~K), ?, ·T

)
given by the image ofRV : Floc ↪→ A 0 = (FµCJ~, λK, ∗, ?ω, ·T )

is called algebra of interacting observables.

For future use, we write the up to second order expansion ofRVA as

RVA = A+ iV ·T A− iV ? A+
1

2
(V ·T V ) ? A− V ? V ? A− 1

2
V ·T V ·T A+

+ V ? (V ·T A) +O(λ3) (I.48)

I.4.4 The adiabatic limit.

Throughout this section, we have considered interacting theories for compactly sup-
ported local interaction terms, as in equation (I.35). In the present subsection, we dis-
cuss the adiabatic limit mentioned at the beginning of this chapter, which consists of an
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indutive limit for the cutoff of V . The result of this limit should formally correspond
to a local functional supported on the whole space R3, obtained as an inductive limit
f → 1. In [BF00], the adiabatic limit is presented as f → 1 in the S-matrix (I.43). In
this thesis, we shall consider a cutoff function of the form f(x) = χ(x0)h(x) as in (I.36),
and examine the limit h → 1, for fixed χ ∈ C∞0 (M), and from the discussion below we
shall see that this choice is not excecively restrictive. As we shall se below, by restrict-
ing to the algebra of observables of some connected, relatively compact region O ⊂ M,
it suffices to have χ = 1 in a neighbourhood I × R3 of O, for some I ⊂ R compact.
This hence justifies keeping the time cutoff χ fixed. The analysis of this adiabatic limit
plays a substantial part in the construction of the interacting KMS state in [FL14], to be
discussed in the next chapter.

Often, mostly in the physical literature, we encounter a description of an interacting
system which was initially free, until an interaction term was turned on and so left
henceforth. This would correspond to a time cutoff of the form

χ̃ ∈ C∞(R), χ̃|t<ti ≡ 0, χ̃|t>ti+δ ≡ 1, (I.49)

for some ti, δ ∈ R. Moreover, it is also possible to find descriptions of interaction terms
abruptly turned on. In this case, the cutoff χ̃ would not be a smooth function, but
rather it would be given as the Heaviside step function shifted according to ti. In the
present section we shall also discuss the behaviour of the time cutoff, in particular the
equivalence between a compactly supported χ ∈ C∞0 (R) and an everlasting χ̃ as in
(I.49). The way the interaction is turned on will be also considered in chapter three,
where we shall present examples of expectation values which diverge if the interaction
is abruptly turned on.

Let then O ⊂ M be a relatively compact subregion, and let Floc(O) denote the sub-
set of local functionals F ∈ Floc(M) with suppF ⊂ O. We thus consider a compactly
supported interaction term V ∈ Floc(M), in the sense of equation (I.35), with f ∈ D(M)
a compactly supported cutoff, and the formal kernel LI polynomial in the field φ(x).
Moreover, let f be such that O ⊂ supp f , and f |O ≡ 1. In this way, we consider observ-
ables supported in a compact region O of M, and an interaction term supported only in
a compact neighbourhood of O. We hence construct the algebra A I(O) of interacting
observables supported in O by means of the relative S-matrices SVf (F ), given in equa-
tion (I.44) and whose functional derivatives produce the Bogolubov map RV in (I.47),
since

RVf (F ) = −i d
dλ
SVf (λF )

∣∣
λ=0

.

We introduced the subindex f in order to highlight the interaction term cutoff. This is
roughly what we have presented up to this subsection.

In this situation, the time-slice property, which we briefly discussed in the introduc-
tion when discussing the Haag-Kastler axioms, implies that the algebra of observables
supported in certain larger regions O′ ⊃ O coincide with A I(O), up to terms which
vanish on-shell. The validity of the time-slice property for perturbative interacting the-
ories was proved in [CF09].
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Proposition 16. (Time-slice property) Let O,O′ ⊂ M be relatively compact and globally
hyperbolic regions of a globally hyperbolic manifold M . Let Vf ∈ FµC as in (I.35), with
supp f ⊃ O, and let A I(O), A I(O′) be the algebras of interacting observables supported in
the respective region . Let in addition ΣO ⊂ O be a Cauchy surface of O. Then, if O′ ⊂
O is a neighbourhood of ΣO, there exists an algebra isomorphism between A I

on−shell(O) →
A I
on−shell(O

′), where for each region, A I
on−shell denotes the on-shell algebra constructed as the

quotient of A I with the ideal obtained from the Klein-Gordon equation (I.21).

The time-slice condition is a particular specification of the isotony condition, dis-
cussed in the introduction of this thesis, and it may be regarded as a weak, algebraic
version of determinism by initial conditions. By using this property, we may hence ex-
tend the algebra of observables A I(O). Consider O ⊂ M as before, and let ε > 0 and
the strip

Σε := [−ε,+ε]× R3, (I.50)

such that O ⊂ Σε. Suppose also that V is supported within Σε, with cutoff f(x) =
χ(x0)h(x) as in (I.36), h ∈ D(R3), χ ∈ C∞0 (R), such that O ⊂ supp f . In this way,
due to the time-slice property 16 above, the interacting algebra of local observables
relative to each bounded region O coincides, up to terms vanishing on-shell, to that
of region O ∩ Σε. Hence, with the strip Σε a neighbourhood of the Cauchy surface
Σ0 = {0} × R3, the analysis of A I(Σε) = (RV Floc(Σε), ?) completely describes the
algebra A I(M) up to terms which vanish on-shell. We shall see below that, in addition,
due to the causal factorization property the local algebra A I(Σε) is independent of
cutoff function particular form in the outside of Σε.

Notice also that we first considered V compactly supported in a neighbourhood
supp f ⊃ O, and then discussed the implications of the time-slice property, supposing
V may be extended to the some neighbourhood of Σε, in order to obtain the algebra
of interacting observables A I(M). I.e., we assumed an extension of V and used the
time-slice property to construct an algebra of observables supported on M. In fact, this
extension of the interaction term V is well defined at the algebraic level, and it employs
the causal factorization property (I.45) for the S-matrix. As may be seen from [IS78],
given the time-ordered product and the S-matrix properties, the effect of V over the
observables in A I(O) supported in O depends only on the form of V in the past of O,
in the sense of the next proposition.

Proposition 17. Let O ⊂M be a relatively compact region, and let Vf , Vg be two local interac-
tion functional as in (I.35), differing only by the choice of cutoffs f, g ∈ D(M). Moreover,

(i). if supp (f − g) ∩ J−(O) = ∅, then SVg(F ) = SVf (F ) for all F ∈ Floc(O);

(ii). if supp (f − g) ⊂ J−(O)\O, then there exists a unitary map Z : A I(O)→ A I(O) such
that

SVf (F ) = Z ? SVg(F ) ? Z−1, ∀F ∈ Floc(O).
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The map Z is given as Z = SVg(Vg − Vf ).

See also comments in [BF00]. Hence, due to the above result and the form of the
Bogoliubov map (I.47), the algebra of interacting observables A I(O) is, up to isomor-
phisms, completely determined by interaction terms within the past ofO for fixed V . In
the next chapter we will use this result and the time-slice property in the construction
of KMS states for the interacting theory. The result in proposition 17 is shown explicitly
in [FL14], in the context of perturbative AQFT. Consider now the strip

Σ2ε := [−2ε,+2ε]× R3, (I.51)

and a cutoff χ ∈ C∞0 (R) such that suppχ ∈ Σ2ε, χ|[−ε,+ε] ≡ 1, as in equation (I.37). Set a
smooth partition of unity formed by χ and χ+, χ− ∈ C∞(R) defined as

χ+(t) :=

{
1− χ(t), t ≥ 0

0, otherwise,
χ−(t) :=

{
1− χ(t), t ≤ 0

0, otherwise.

Then, due to proposition 15 and the causal factorization property (I.45), the relative
S-matrix SV (A) is such that, for all A ∈ Floc(O) and for arbitrary potential V ,

SV (A) = S(V )−1 ? S(V +A) = SχV+χ+V+χ−V (A) = SχV+χ−V (A)

= SχV (χ−V )−1SχV (A)SχV (χ−V ).

We conclude that SV (A) is independent of the choice of the support of V , but within
the past of O, as in above. We may hence regard the algebra A I(O) not as depending
on V itself, but rather on an equivalence class [f ] of cutoffs, with g ∼ f if and only if
g|J(O) = f |J(O), for fixed LI .

Therefore, the thermodynamic limit corresponding to a everywhere defined inter-
action term V is finally performed in the sense of an inductive limit in the space support
h as h→ 1. In fact, the content of this subsection results in the following statement.

Proposition 18. Let O ⊂ M be a relatively compact region, and let ε > 0 be such that O ⊂
Σε := [−ε,+ε] × R3. In addition, let f ∈ C∞(M) be given as f(x) = χ(x0)h(x) for some χ
as in (I.37), and for some h ∈ C∞0 (R3) such that h|Osp ≡ 1, where

Osp := {x ∈ R3 : ∃t ∈ R s.t. (t,x) ∈ O}.

Consider a sequence (hn)n∈N0 ∈ C∞0 (R3), h0 = h, such that supphn ⊂ supphn+1 for all
n ∈ N, and with {supphn}n∈N ⊂ R3 a covering of R3. Suppose also that hn+1|supphn ≡ hn,
and so that hn → 1 converges to unity. For each n ∈ N, consider also Vn ∈ Floc(M) given by

Vn(φ) =

∫
dxχ(x0)hn(x)LI(x),

with LI as in (I.35). Finally, consider A I(O) the algebra of formal power series in λ, ~ with co-
efficients in Floc(O), as per definition 29. Then, the algebra of interacting observables obtained
in the the inductive limit h → 1, as limn→∞A I(Σ2ε × supphn), is well defined, in the sense
of formal power series of the parameters λ, ~ with coefficients in Floc(M).
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The above proposition considers the inductive limit at the algebraic level, which
up to the isomorphism Z in proposition 17 is the algebraic adiabatic limit f → 1 of
[BF00]. It thus addresses the extension of an algebra A I(O) of observables supported
inO,O within the support of V , to the algebra A I(Σ2ε) of microcausal observables with
support in the strip Σ2ε, where V is supported. By means of the time-slice condition in
proposition 16, it is possible then to obtain the algebra A I(M) up to the unitary mapsZ.
However, the latter proposition does not encompass the particular behaviour of states
over A I . Given the way the adiabatic limit is implemented, via an inductive limit
for compactly supported cutoffs, infrared divergences are not present in the algebra of
interacting observables. However, when considering expectation values of interacting
observables, one has to consider possible divergences due to the particular state, and
thus a complete analysis regarding the infrared divergences of the expectation value
has to be discussed case by case. In the next chapter, we shall examine a particular case,
regarding the thermal equilibrium state for the perturbative theory, by Fredenhagen
and Lindner [FL14].

Therefore, although the sequence of cutoffs (hn)n∈N in proposition 18 suffices for
the adiabatic limit, in the chapters to follow we shall be particularly interested in the
adiabatic limit in the sense of van Hove, which we shall define below. When discussing
the adiabatic limit for expectation values, one has to consider also the behaviour of
particular states in this limit. Considering a van Hove sequence will permit to restrict
the analysis of this limit to a region whose contribution tends to zero as h→ 1.

Definition 30. A sequence (hn)n∈N ∈ C∞0 (R3) is called a van Hove sequence if and only if ,
for all n ∈ N and for all x ∈ R3,

0 ≤ hn(x) ≤ 1, hn(x) =

{
1, |x| ≤ n
0, |x| ≥ n+ 1.

The inductive limit limn→∞ hn is called van Hove limit and will be denoted h→ 1 for any
sequence (hn)n∈N 3 h.

Finally, we observe that this treatment towards the adiabatic limit has firm physi-
cal motivations. Consider an experimentalist performing a measurement, or collecting
data from a quantum real scalar field, arranged in a certain state. If the physical system
has a self-interacting component, one is often interested in considering this interaction
homogeneously distributed throughout space. In addition, any change in the field self-
interaction term occurring in the future of the measurement may not be detected by the
experimentalist, in accordance with the causality principle. Therefore, considering an
interaction time cutoff χ̃ ∈ C∞(R) as in (I.49), at the level of observables algebras, has
no actual physical meaning, and should be seen as a formal representation of a cutoff
(I.37), in the light of propositions 17 and 18. Since states present non local behaviour,
on the other hand, the adiabatic limit for expectation values has to be discussed case by
case.
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I.4.5 The Principle of Perturbative Agreement (PPA).

at the beginning of this section, we argued that perturbation theory is the usual ap-
proach towards interacting scalar theories. In some particular cases, though, the dy-
namical equation may be exactly solved. This is the case of a field-quadratic interaction
term,. In this case the interaction may be treated as a mass correction. Hence, this
naturally raises the question about the relation between the exact and the perturbative
description of a quantum system, if both of them are possible.

Consider the free Klein-Gordon Lagrangian

L0 =
1

2
∂µφ∂

µφ− 1

2
m2φ2.

At this point one is left with two choices to approach the free system at the algebraic
level. The first, as we have seen, consists of exactly solving the equation of motion,
obtaining the causal propagator in terms of its fundamental solutions and construct-
ing the free algebra A 0 as described in section I.3. An alternative approach, however,
would be to consider L0 as the Lagrangian of an interacting theory, thus considering
the kinematic term 1/2∂µφ∂

µφ itself as the free Lagragian of a massless Klein-Gordon
theory, and the mass term proportional to m2φ2 as an interaction term, to be treated
perturbatively. One would then expect the two approaches to coincide, in the sense of
being algebraic equivalent. This example illustrates one of the axioms discussed in the
latter of a series of works on quantum field theory on curved spacetimes by Hollands
and Wald [HW05], a requisite described and proved to hold in [HW05; DHP17] as the
principle of perturbative agreement.

Let then L1 and L2 be two real scalar fields Lagrangians such that L1 − L2 ≡ LI
is a local functional proportional to the square field, i.e. a mass-like term, with the
respective equations of motion for individuals L1 and L2 exactly solvable. So far we
have considered compactly supported interaction terms when addressing the interact-
ing theory, and we may suppose LI to be smooth and compactly supported. Let then
A 0
i be the free quantum algebra of observables of the i-theory, i = 1, 2, and let Ã1 be

the abstract algebra of interacting observables of the theory 2 seen as L1 − LI , which is
represented into A 0

1 via the Bogoliubov map RV , with V given in terms of the formal
kernel LI . The equivalence between the algebraic descriptions may be described as the
existence of a ∗-isomorphism ξ : Ã1 → A2 between the algebras A I

1 = RV (Ã1) and the
exact theory A 0

2 , such that the following diagram commutes:

A1 Ã1

A2

R12

RV

ξ (I.52)

In this diagram, R12 represents the classical Møller map, which may be regarded as the
limit ~→ 0 ofRV . In addition, ξ corresponds to ξ = R12 ◦ RV .

More precisely, we state the following condition on the algebraic description and
renormalization procedure for quantum field theories
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Definition 31. Let L1, L2 and LI be as in the previous paragraph, and let A 0
i be the free

quantum algebra of observables with product ?i, induced by the respective Lagrangian, i = 1, 2.
The time-ordered maps defined for the local functionals of each algebra are said to fulfill the
Principle of Perturbative Agreement (PPA) if there exists ξ : Ã1 → A2 a ∗-isomorphism
such that, for all n ∈ N0 and for all F0, . . . , Fn ∈ Floc(M),

T2F0 = (ξ ◦ T1)(F0), F1 ·T2 . . . , ·T2Fn = ξ
(
ξ−1F1 ·T1 · · · ·T1 ξ

−1Fn
)

where Ti denotes the time-ordered product in A 0
i , and if, in addition, the map ξ preserves the

interacting Lagrangian LI up to renormalization terms.

Since general local observables are described as Wick products of local fields, as dis-
cussed earlier in this thesis, the PPA implies that T2 acts as the identity on local observ-
ables, thus mapping Wick powers into Wick powers. In addition, the map ξ is supposed
to preserve the interacting Lagrangian, up to the introduction of terms which may be
compensated with a proper choice of renormalization constants. In other words, ξ is
such that one may not distinguish its effect from possible choices of renormalization.
We again refer to [DHP17] for details. This simpler version of the PPA will suffice for
the scope of this thesis. A more general statement of this property, as well as a more
detailed discussion upon it, is presented in the already quoted references [HW05] and
[DHP17].

I.5 Graphic representation of products

In the past few sections we have discussed how products ? or the ·T are obtained from a
particular set of propagators, bidistributions which we often formally realized as func-
tions. Now, when considering e.g. the product

Φf ? Φg =

∫
dx f(x)φ(x) ?

∫
dy g(y)φ(y) = ΦfΦg +

∫
dxdy f(x)g(y)∆](x, y),

where ∆] corresponds to the two-point function of some Hadamard state, we may pic-
ture the integral kernel f(x)g(y)∆](x, y) as the function f at x ∈ M, connected to the
function g at y ∈M via a line representing the propagator ∆]. In fact, in some situations
the object ∆](x, y) may be interpreted as the correlation between the two points via a
particle created at y propagating to x – see [PS95; Haa96]. The above expression may
then be pictorially represented as∫

dxdy f(x)g(y)∆](x, y) = f g∆]
.

The time-ordered product could also be represented in a similar way, with the Feynman
propagator instead of ∆]. In addition, when considering higher order products, ∆]

could as well be replaced by ∆R, ∆A or ∆, or products of propagators whenever such
are well-defined
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This diagrammatic representations of expectation values is an important representa-
tion in quantum field theory, and even when such expansion is not explicitly presented,
it is useful to conceive products of field in terms of graphs. Moreover, the formulation
of a set of Feynman rules associated to a given theory is an important technology when-
ever it exists, and, as we shall briefly see further below, it may guide the formalization
of a quantum theory. To this end, in this section we briefly discuss graphs. Later, we
shall understand a Feynman diagram as a set of graphs to which are assigned a set of
Feynman rules, a set of rules which allow for a computational estimation of a given
graph.

Definition 32. A graph G is a set V (G) 6= ∅ of vertices and a set E(G) of edges, both of
them countable, with maps s, t : E(G) → V (G). The map s assigns a source to each edge,
whereas t assigns a target. An orientation over a graph G with E(G) 6= ∅ is an association
O : E(G)× V (G)→ {0,±1} defined as

O(e, v) :=


+1, if t(e) = v;

−1, if s(e) = v;

0 otherwise.

A graph endowed with an orientation is called an oriented graph.

If for given e ∈ E(G) and v ∈ V (G) we have s(e) = t(e) = v, the pair (e, v) is
called a tadpole. If G is a graph, a subgraph G′ is a pair of subsets E(G′) ⊂ E(G),
V (G′) ⊂ V (G), V (G′) 6= ∅, endowed with maps s′, t′ : E(G′) → V (G′) given by the
restrictions of the maps s, t of G. An orientation is given over the subgraph by the
restriction of O to E(G′)× V (G′) whenever E(G′), V (G′) 6= ∅. If G′ is an oriented graph
and if G′ is an oriented subgraph with an orientation given as the restriction of that of
G, we denote G′ ⊂ G.

In a graph G, a path from some v1 ∈ V (G) to some v2 ∈ V (G) with v1 6= v2 is
sequence (ej)j∈I ⊂ E(G) for some I ⊂ N0, which connects v1 and v2, in the sense that
there are ek, el ∈ (ej)j∈I such that t(el) = v1, s(ek) = v2 or vice-versa. A graph is called
connected if each pair of vertices is connected by a path. A connected subgraph is a
connected graph on its own. A graph with E(G) = ∅ is not connected by definition.

LetG be a finite oriented graph, i.e. such that #V (G),#E(G) < +∞5. If in addition
G is connected and such that V (G) 6= ∅, #V (G) = n < +∞ and #E(G) = n − 1, it is
called a tree. A disjoint union of trees defines what is usually called a forest. Let V (G)
as just stated and consider a indexing of the vertices. I.e., to each v ∈ V (G) we associate
a unique number k ∈ {1, . . . , n} ⊂ N, so that V (G) ' {1, . . . , n}. Consider then the
sequence of edges (ek)k∈{1,...,n} ∈ E(G), where the indexing of each edge corresponds
to the indexing of its source. Consider now the sequences of vertices u ≡ (uk)k∈{1,...,n}
and v ≡ (vk)k∈{1,...,n}, uk = s(ek) and vk = t(ek). If there exists a permutation of
the indexing set {1, . . . , n} such that either: (i). the only repeated elements in u or v
correspond to either vertex 1 or n; or (ii). the only common elements in u and v are

5For an arbitrary set A, we denote by #A its cardinality.
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vertices 1 or n; then G is called a cycle. If an indexed graph may be turned into a
connected cycle via the subtraction of a finite number of edges, then it is called a loop.
We refer to [Die05] to aspects of graph theory, though the nomenclature employed in
the mathematics literature often differs from the one adopted in physics, and which we
have been using.

We then associate a sum of graphs to the expectation value of a product of observ-
ables by writing ω(F ? G) = F ? G|φ=0 for some gaussian state ω as in equation (I.32),
and describing each term 〈F (n), ω⊗n2 G(n)〉 as a graph as follows. We assign vertices to
the integral kernels of each F (n) and G(n), and regard the propagators ω⊗n2 connecting
these kernels as n edges connecting the vertices, with sources F (n) and targets G(n). We
then see that in the computation of expectation values by means of equation (I.32), i.e.
with respect to the same state used to define the ?-product, there corresponds a sum of
loops only. In addition, in the diagrammatic representation of products of regular or
local functionals, we may establish a one to one correspondence between vertices and
points of the spacetime. The same is not true for microcausal observables, nor for ob-
servables given by formal power series with coefficients in FµC(M). In these cases, as
will become evident in chapter three, vertices may be given as more complex structures
as subdiagrams themselves.

In future sections, when representing products of observables with graphs we shall
represent time-ordered products as simple, non oriented lines, since these are symmet-
ric; two-point functions will be represented as arrows, with orientation established as
follows: when representing ω2(x, y) as an edge, it corresponds to an arrow from x to y.
In resume, we shall adopt the following representation for the formal integral kernels
of propagators.

ω2(x, y) ≡ x y (I.53)

∆(x, y) ≡ x y (I.54)

∆F (x, y) ≡ x y (I.55)

∆R(x, y) ≡ x y (I.56)

∆A(x, y) ≡ x y (I.57)

In addition, from the construction of ·T we see that graphs for time-ordered prod-
ucts contain no tadpoles. The conventions adopted in this thesis are such that we have
the following properties for the propagators for a real Klein-Gordon field. All these
follow from what has been discussed so far, and we recollect these expressions in order
to proper clarify conventions and transformations which will be particularly used in
chapter III. Hence,

∆−(x) = ∆+(x) = ∆+(−x) (I.58)

∆(x) = ∆R(x)−∆A(x) = −i
(

∆+(x)−∆−(x)
)

(I.59)

∆R/A(x) = ±θ(±x0)∆(x) (I.60)
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∆F (x) = ∆+(x) + i∆A(x) = ∆−(x) + i∆R(x)

=
1

2

{
∆+(x) + ∆−(x) + i

[
∆R(x) + ∆A(x)

]}
(I.61)

Before closing this chapter, we return to a topic discussed in the previous section.
In a diagrammatic representation, renormalization may be seen as a coincide points
limit in a graph. For instance, when considering the time-ordered product Φ2

f ·T Φ2
g,

represented as

Φ2
f Φ2

g

equation (I.42) corresponds to the limit of coinciding vertices. Regularization of higher
order diagrams are generaly seen as an interactive limit of this form. As an illustrative
example, consider the three points diagram below,

1

2

3
≡ ∆F (1, 2)2∆F (2, 3)2∆F (1, 3). (I.62)

The regularization procedure via extension to the origin, presented in equation (I.42), is
not enough to remove all the singularities contained in (I.62). For instance, by means of
extending the squared Feynman propagator ∆2

F to a distribution well defined at zero,
the singularity corresponding to the limit 1 → 3 may be removed, and similarly the
singularities in the propagators connecting vertices 1 to 2 and 2 to 3 separately may be
dealt with, once we have properly extended ∆2

F . However, the above diagram contains
also a singularity in the limit 1 = 2 = 3, which is not removed by the single extension
of ∆2

F . The removal of such singularity corresponds to the next iterative step in the
construction of maps Tn for the time-ordered product, as previously discussed.

Taking into consideration the analysis and estimations in the third chapter, we shall
strongly limit our discussion upon renormalization of higher order diagrams. As we
did for the construction of the time-ordered product, we affirm the singularities in such
diagrams may be recursively removed at all orders, by means of employing the so-
called forest formula. We refer to [Kel10] for details.
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II. Descriptions of thermal equilibrium in
Perturbative Quantum Field Theory

In the previous chapter we presented the algebraic description of quantum field
theory, and discussed the perturbative approach to interacting theories mainly at the
level of the algebra of observables. Little has been said about states, though. In partic-
ular, we have discussed the adiabatic limit within the algebra of observables by means
of an inductive limit, defined via a sequence of compactly supported, local interaction
terms, thus avoiding infrared divergences for the observables. On the other hand, we
have also argued that there is no reason why this construction should eliminate such
divergences from expectation values, since states may still present such divergent be-
haviour. Due to its rather non-local aspect, divergences at the level of states may have
to be discussed case by case. If we restrict our analysis to an interacting state given
as ωI := ω ◦ RV for some fixed state ω over the free algebra A 0, then the removal of
infrared divergences discussed in proposition 18 suffices for the regularization of ex-
pectation values. However, this may not be the case in more general situations, for
instance if the interacting state of our interest depends itself on the interaction cutoff.
In addition, from the physical perspective, states of the form ω ◦ RV may not suffices
for an appropriate description of a system.

In quantum field theory, the characterization of thermal equilibrium is performed
at the level of states. In the case of interacting scalar theories, as it has been recently
shown by Fredenhagen and Lindner in [FL14] (see also [Lin13]), this analysis is based
on a state which has both the characteristics described in the previous paragraph, in
the sense that it may not be written as the composition of a free state with the Bo-
goliubov map over observables. Notwithstanding, often in the physical literature we
encounter descriptions of thermal equilibrium states for the interacting theory as given
by a thermal equilibrium state of the free theory, composed with the Bogoliubov map
as before. Corroborating a series of papers addressing the properties and characteri-
zation of thermal equilibrium for perturbative algebraic quantum field theories ([FL14;
DFP18; Dra19] among others to be mentioned throughout the text), we shall present,
later in chapter III, further arguments which shall permit to conclude that a general and
precise characterization of thermal equilibrium may not be given in these terms.

The aim of this chapter is to properly introduce this discussion on perturbative
systems at finite temperature. We shall consider interacting states over A I , focusing
particularly on thermal equilibrium states, which prove to be of a different form than
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II. Descriptions of thermal equilibrium in Perturbative Quantum Field Theory

ω ◦ RV . In order to do so, we shall first properly define thermal equilibrium states
in the sense of the KMS condition. We shall not extensively discuss the motivation
behind this definition, nor shall we discuss any further aspects in quantum statistical
mechanics employed in our analysis. For the latter topic we refer to [Gal99; BR81].
In the next chapter we shall discuss exact relations between two different descriptions
of thermal equilibrium in quantum field theory. Namely, the one often called thermal
field theory (TFT), as described, for instance, in [LW87; Bel00]; and the recent analysis
by Fredenhagen and Lindner presented in [FL14; Lin13]. Therefore, in this chapter we
also briefly introduce these two descriptions, and later indicate the conflicts and con-
nections between them. In the next chapter, we shall see that the problem preventing
the exact equivalence between the two descriptions lies, to a great degree, on aiming at
a completely characterization of an interacting state through the composition of a free
state with the Bogoliubov map. We shall discuss also in which cases the interacting
thermal state reduces to such a form.

In addition, since the state constructed by Fredenhagen and Lindner dependends
on the interaction cutoff, as will be seen in section II.2, in this chapter we shall also
discuss aspects of the large time limit of expectation values in thermal equilibrium, for
perturbative theories. Much of this discussion was established in [DFP18] already. We
shall return to this topic later in chapter III.

Apart from particular details to be discussed in sections II.2 and II.3, the main struc-
ture of the physical system discussed in this chapter has been adapted from [Bel00]. We
shall initially consider a free, real scalar system, prepared in a unique thermal equilib-
rium state at a given inverse temperature β > 0. Then, at time t = ti, a self-interaction
term is switched on. We then suppose the system returns to thermal equilibrium af-
ter a long enough time has passed, and thus we modify the initial state accoringly. In
these conditions, we then analyze expectation values estimations. This thermalization
hypothesis, as showed in [DFP18], is fulfilled in certain conditions, which we shall later
discuss. Therefore, the kind of system we shall be considering is described by a partic-
ular form of (I.34), i.e. a time-dependent Lagrangian

L(t) = L0 − LI(t) =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − LI(t), LI(t) ≡ 0 if t < ti, (II.1)

where we highlight the explicit time-dependence of V ∈ Floc(M), whose formal inte-
gral kernel LI(x) is supposed polynomial in the field configurations. In other words,
we shall be mainly interested in terms V as per (I.35) of the form

V =

∫
dtdxχ(t)h(x)LI(t,x) = λ

∫
dtdxχ(t)h(x)

φn(t,x)

n
, n ∈ N, (II.2)

where from now on we shall often denote t ≡ x0. In the above expression, h ∈ C∞0 (R3)
correspond to the space cutoff functions of V , as in equations (I.35), whereas the time
cutoff χ ∈ C∞0 (R) is given as in (I.37). Considering the perturbative interaction acting
both upon the state and the dynamics, at a later time tf > ti we evaluate expectation
values of some observables. In particular, we shall be interested in the evaluation of
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the n-point functions at later times, and in their large time behaviours. Further details
concerning the description of the physical system and, in particular, the form of the
interaction term will be given in the forthcoming sections.

Finally, before properly starting this chapter we should strongly emphasize that our
discussion concerning aspects of thermal field theory in section II.3 will be absolutely
formal. Our purpose there will merely be to present the basic concepts of the so-called
real- and imaginary time formalisms involved in the later discussion of chapter III, in
order to establish a proper relation between thermal field theory and the Fredenhagen
and Lindner analysis. Therefore, section II.3 should be seen as an heuristic discussion
on thermal systems. The relation between this heuristic discussion and the Freden-
hagen and Lindner analysis will be completed in the next chapter.

II.1 KMS-states in non-interacting QFT.

In quantum statistical mechanics, the description of thermal equilibrium for an ideal
Bose gas in a finite volume is performed upon the so-called Gibbs states. In this con-
text, the algebra of observables A reduces to a C∗-algebra of bounded operators over a
Hilbert spaceH, and the Hamiltonian H0 consists of a selfadjoint operator overH. The
Gibbs state is then given in terms of the density matrix ρ = Z−1 exp(−βH0), supposing
exp(−βH0) is a trace-class operator and thus Z = Tr(ρ) ∈ C is a finite normalization
constant, as

ρ(A) =
1

Z
Tr
(
ρA
)
, A ∈ A

denoting both the state and the operator with the same symbol. Considering the one-
parameter group of automorphism (τt)t∈R given as

A 3 A 7→ τt(A) := eiH0tAe−iH0t, (II.3)

the pair (A, (τt)t∈R) forms a dynamical system as in definition 27. We notice that Gibbs
states are completely characterized by the following property. Consider the function

R 3 t 7→ ρ
(
AτtB

)
,

for arbitrary A,B ∈ A. It may be analytically extended to complex arguments z ∈ C
with =z ∈ (0, β), being continuous at the boundaries of such a region, and satisfies the
formal relation

ρ(AτtB)
∣∣
t=iβ

= ρ(BA), (II.4)

where the left hand side is understood as the analytic extension of a function onto
S := {z ∈ C : =z ∈ (0, β)}, which for real values reduces to ρ(AτtB). We refer to
[BR81] for further details.

In the analysis of a finite system in quantum statistichal mechanis, thus restricting to
a finite volume V ⊂ R3, Gibbs states are interpreted as describing a system in thermal
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equilibrium with a thermal reservoir at inverse temperature β > 0. Hence, due to
the above characterization of Gibbs states in terms of its analytic properties, following
[HHW67] thermal equilibrium states in more general situations are characterized by an
extension of property II.4. This is the so-called KMS condition, usually stated as below.
It requires the notion of dynamical invariance for states.

Definition 33. Let
(
A , (αt)t∈R

)
be a dynamical system as per definition 27 and let ω : A → C

be a state over the ∗-algebra A . The state is called αt-invariant if and only if ω ◦ αt = ω for all
t ∈ R.

The next definition provides a precise meaning to equation (II.4).

Definition 34. Let
(
A , (αt)t∈R

)
be a dynamical system, let ω be an αt-invariant state and let

0 < β < +∞. For arbitrary but fixed A,B ∈ A , set the functions F,G : R→ C as

R 3 t 7→ F (t) := ω(Aαt(B))

R 3 t 7→ G(t) := ω(αt(B)A).

If both F,G have analytic extensions into the domain S := {z ∈ C : =z ∈ (0, β)} which are
also continuous in ∂S, and if for all t ∈ R

G(t) = F (t+ iβ), (II.5)

then the state ω is called a KMS state at inverse temperature β > 0, with respect to the dynamics
(αt)t∈R.

Gibbs states are particular examples of KMS states, thus there are states which sat-
isfy the above definition, in the context of quantum statistical dynamics. In addition, we
shall see other examples further below. In the context of perturbative AQFT, following
[FL14], the definition of KMS state may be written in the following form.

Definition 35. Let A 0 be as in definition 26, let (A 0, (αt)t∈R) be a dynamical system, and
let ω a αt-invariant state as per definition 33. For any n ∈ N and for arbitrary but fixed
A1, . . . , An ∈ A , let the function

F : Rn → C, (t1, . . . , tn) 7→ F (t1, . . . , tn) := ω
(
αt1A1 ? · · · ? αtnAn

)
.

If F is analytically extendable onto the strip

S := {(z1, . . . , zn) ∈ Cn : 0 < =zj −=zi < β, ∀i, j = 1, . . . , n, i < j}. (II.6)

for some 0 < β < +∞ and if, in addition, F is continuous along ∂S and satisfies the condition

F (t1, . . . , tk−1, tk+iβ, . . . , tn+iβ) = F (tk, . . . , tn, t1, . . . , tk−1) ∀k = 1, . . . , n, (II.7)

then ω is called a KMS state at inverse temperature β with respect to the dynamics (αt)t∈R.For
shortness, we shall call it simply KMS-state or β-KMS state whenever we want to highlight
the particular value of β. A β-KMS will be denoted ωβ .
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We observe that definition 35 extends the previous definition 34 in the sense that,
for a Gaussian KMS-state as per def. 35, the content of definition 34 is automatically ful-
filled. In other words, the latter characterization of thermal equilibrium states extends
the former one to non Gaussian states.

We emphasize the importance of the dynamics for the above definitions: a state may
be a β-KMS state with respect to a one-parameter group of automorphisms (αt)t∈R, and
at the same time may not be β-KMS state with respect to a different dynamics (α′t)t∈R.
This comment concerns an important aspect of the analysis to be presented in the next
sections. This may be seen also in light of the fact that thermal equilibrium states are
defined among dynamical invariant states, and hence a change in the dynamics itself
is expected to affect the notion of thermal equilibrium. As definition 35 reduces to
definition 34 if we set n = 2, in this case we shall frequently use the notation

ωβ(A ? αt+iβB) ≡ F (t+ iβ).

This should be understood only in the formal sense of equation (II.7), since the action of
the dynamics αt is defined only for real parameters t ∈ R, whereas the KMS condition
provides a meaningful continuation to the expectation value F (t) at time t.

We now consider the form of a KMS state for real, free scalar field theory, as repre-
sented by the Lagrangian I.20. By combining the KMS condition with the requirement
that any state over the algebra of observables should be a solution of the Klein-Gordon
equation of motion, we conclude the following characterization of a quasifree KMS-
state for a massive free scalar field.

Proposition 19. The two-point function of a β-KMS state for the dynamical system (A 0, αt)t∈R,
with A 0 as in definition 26 and (αt)t∈R as per equation (I.33), has the form

∆+
β (x) =

1

(2π)3

∫
d3p

2wp

(
b+(p)e−iwpx0

+ b−(p)eiwpx0
)
eip·x, x ∈M, (II.8)

where wp :=
√
p2 +m2, m > 0 is the mass term from the Klein-Gordon equation and

b+(p) :=
1

1− e−βwp
, b−(p) :=

1

eβwp − 1
. (II.9)

Proof. As the antisymmetric part of any state is proportional to the causal propagator,

∆+
β (x, y)−∆+

β (y, x) = i∆(x, y),

using the translation invariance of ωβ and ∆ and the KMS condition we have

∆+
β (x0,x)−∆+

β (−x0,x) = ∆+
β (x0,x)−∆+

β (x0 + iβ,x) = i∆(x0,x),

where we denoted ∆+
β (x) ≡ ∆+

β (x0,x). In frequency space, the above expression as-
sumes the form

∆̂+
β (p0,p)−F

(
T 0
−iβ∆+

β

)
(p0,p) = i∆̂(p0,p)
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where T 0
a denotes the translation operator acting on the zeroth coordinate by a ∈ C. We

use both F and ·̂ to denote the Fourier transform in all four coordinates. We therefore
obtain, using the form of the causal propagator in frequency space presented in (I.12),

∆̂+
β (p) =

i∆̂(p)

1− e−βp0
⇒ ∆+

β (x) =
1

(2π)3

∫
dp
ε(p0)δ(p2

0 − w2
p)

1− e−βp0
eipx. (II.10)

The two point function of a KMS state with m = 0 is analogous, up to terms propor-
tional to δ(p0) which cannot appear in the massive case. Performing the integration
with respect to dp0 over R then results in (II.8).

A comparison between the two-point function of a β-KMS state and condition (i) in
definition 25 , which provides a global characterization of Hadamard states from the
wave front set of its two-point function, shows that ωβ is itself a Hadamard state, since
the wave front set of (II.8) coincides with that of the vacuum two-point function ∆+

0 .
Corroborating the interpretation of a β-KMS state as a thermal equilibrium state,

the evaluation of particular observables in the free algebra A 0 with respect to a β-KMS
state ωβ provides direct information about the thermal aspects of system. For instance,
if we consider the expectation value ωβ(: φ2 :∆+

0
), with regularization implemented via

the Minkowski vacuum two-point function ∆+
0 , it provides a thermometer for the field

theory, as, for massless theories,

ωβ

(
: φ2 :∆+

0

)
=

1

12β2
. (II.11)

A similar result may be obtained for massive theories. Therefore, the evaluation of par-
ticular observables in the β-KMS state ωβ permits also the characterization of macro-
scopical thermal properties of the system. We therefore see the effect of the interac-
tion between the field and a thermal reservoir at temperature β > 0 manifested via
the observable : φ2 :, where regularization is understood with respect to the vacuum
two-point function ∆+

0 . A further discussion and examples may be found in [BOR02;
Buc03].

As a matter of fact, denoting as ?0 the product constructed with respect to the
Minkowski vacuum, the result of equation (II.11) corresponds exactly to the coinciding
point limit of ωβ(ΦfΦg). This contribution appears when we consider expectation val-
ues of some field polynomials such as φ2 and φ4 in the algebra (FµC , ?0), with respect
to the β-KMS state. The emergence of this contribution may be seen as the acquisition
of a mass-like term in the dynamical equation for the field propagation. It is this effect,
mentioned already in the previous chapter, named thermal mass. We refer to [DHP17;
Dra19] for details.

The following property concerning the decay along time directions of a β-KMS state
are extracted from [BB02] and [DFP18]. It will be important also in the analysis pre-
sented in both chapters III and IV. From now on, we shall refer to a β-KMS state for
the dynamical system described in proposition 19 as a free KMS state, or a KMS state
for the free theory, recalling that we restrict our analysis to real, massive scalar field
theories.
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Proposition 20. Let ωβ be a free KMS state. Then, denoting its two-point function as in (II.8)
by ∆+

β , there exists a constants C ∈ R such that, for all x, y ∈ M with y − x a timelike, future
pointing vector and |x0 − y0| > 1,

|∆+
β (x, y)| ≤ C

|x0 − y0|3/2
. (II.12)

Proof. We present a sketch of the proof presented in [BB02], similar to the schematic
discussion presented in [DFP18].1 As ωβ is a Hadamard state, then ωβ −ω0, with ω0 the
Minkowski vacuum state of the free theory, is a smooth function. In addition, consid-
ering the same hypothesis, if y and x are such that y − x is a timelike, future-directed
vector, then (x, y) /∈ singsupp ∆+

β , singsupp ∆+
0 , and thus both two-point functions

are given by smooth functions in a neighbourhood of (x, y). In particular, the vacuum
two-point function assumes the form

∆+
0 (σ) =

4πmK1(im
√
σ2)

i
√
σ2

,

with σ2 ≡ (x0− y0)2− (x−y)2, and K1 the first modified Bessel function of the second
kind, which present the same decayind property as the one presented in (II.12) – see
[GR07, sec. 8.432, 8.451]. Therefore, by considering

|∆+
a (x, y)| = |∆+

β (x, y)−∆+
0 (x, y)|+ |∆+

0 (x, y)|,

we are left with the decaying behaviour of |∆+
β (x, y)−∆+

0 (x, y)|. From the latter differ-
ence, consider the function

x 7→
∫
dp

[
ε(p0)

1− e−βp0
− θ(p0)

]
δ(p2 −m2)eipx =

∑
s=±1

∫
dp

2wp

eisw|p|x0e−ip·x

eβwp − 1
,

with x in a compact domain and for positive x0. In spherical coordinates, the latter
integration becomes

∑
s=±1

∫ +∞

0
dr

∫
S2

dΩ
r2

2wr

eiswrx0e−ire·x

eβwr − 1
,

with dΩ ≡ dΩ(e) the solid angle measure relative to the sphere of radius |e| = 1. We
now perform a change of variables v := (w −m)x0 and obtain

∑
s=±1

eismx0x
−3/2
0

∫ +∞

0
dv v1/2eisvks

(
vx−1

0

)
,

1There is a small mistake in the proof presented in [BB02] regarding a substitution of variables, which
is absent in [DFP18], though.
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with

ks(z) :=

√
z + 2m

2

∫
S2

dΩ
e−i
√
z(z+2m)e·x

eβ(z+m) − 1
.

Noticing the decaying factor x−3/2
0 in the previous equation, in order to conclude we

prove that the integration in dv is uniformly bounded in x0. The functions ks are rapidly
decaying functions and we may conclude that, for some δ ∈ R, there are constants CN
such that

sup
0<z,x∈K

|z−δ∂zks(z)| ≤ CN (1 +m)−N

for any N ∈ N and for K ⊂ R3 compact. The above inequality implies |ks(z)− ks(0)| ≤
cN (1 +m)−N , see [BB02]. We now write∫ +∞

0
dv v1/2eisvks

(
vx−1

0

)
= lim

ε→0+

{
ks(0)

∫ +∞

0
dv v1/2eisv−εv+

+

∫ +∞

0
dv v1/2eisv−εv

[
ks
(
vx−1

0

)
− ks(0)

]}
.

By using the above inequality and twice integrating by parts the second integral in
the limit above, thus writing eisv−εv = (is − ε)−2∂2

v(eivs−εv − 1), we may observe that
the integration in dv converges and is bounded in x0. Hence, |∆+

β (x, y) − ∆+
0 (x, y)| ≤

C|x0 − y0|−3/2.

In the next section we shall address a result by Fredenhagen and Lindner which
concerns the behaviour of KMS states two-point functions along spacelike direction. A
result similar to the above holds also for derivatives of the field. We shall only state the
proposition, whose proof may again be found in [DFP18].

Proposition 21. Let F,G ∈ A 0. Then, under the hypothesis of proposition 20, there exist
constants C, d ∈ R which may depend on F,G and such that∣∣∣∣〈 δ

δφ
αtF, ∆+

β

δ

δφ′
αt′G

〉∣∣∣∣ ≤ C

(|t− t′|+ d)3/2
.

II.2 The Fredenhagen and Lindner construction.

In the last few paragraphs we have presented the characterization of thermal equilib-
rium for free, scalar field systems, made possible with the KMS condition introduced in
definition 35, and we have also discussed some properties satisfied by the KMS state.
The question of how to describe thermal equilibrium for interacting theories is how-
ever much more complex. In this context, a common approach in the physics literature
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frequently starts with a “change to interaction picture”. Heuristically, one starts with
a free, real scalar field system, described by a Klein-Gordon Lagrangian L0, or equiv-
alently by the free Hamiltonian H0 obtained from L0 via a Legendre transform. As of
instant ti = 0, for instance, an interaction term is turned on, and so at later times the to-
tal Hamiltonian becomes H0 +HI . We then consider the dynamics given by the adjoin
action of exp(itH0), as in equation (II.3), to be deformed accordingly into the calculation
of expectation values. I.e., let

R 3 t 7→ U(t) = ei(H0+HI)te−iH0t,

and consider the interacting dynamics introduced via the adjoint action of U as

A I 3 A 7→ Ad
(
U(t)

)
(A) := U(t)AU∗(t).

More precisely, we consider the free part eiH0t (·) eiH0t acting upon observables, whereas
the composition ω ◦Ad

(
U(t)

)
in the above sense, where ω corresponds to the initial free

state of the system, would define the interacting state. This is what one finds in tradi-
tional physics literature for quantum field theory at zero temperature, see [PS95], for
instance.

There are, however, problems concerning this approach in a generic framework. For
instance, the very definition of a interacting Hamiltonian over each time surface as

HI(t) =

∫
d3xHI(t,x) (II.13)

is generally not well posed, and one is left with Haag’s theorem stating the impossibil-
ity of a interaction picture representation – see [Haa96; EF06]. In addition to the fact
that the integration over M in (II.13) in general does not converge, even with the in-
troduction of a cutoff h ∈ C∞0 (R3) in its integral kernel, the interacting Hamiltonian is
problematic. At first, the formal kernel HI usually involves poitwise products of field
configurations – as mentioned in the previous chapter, physically relevant systems con-
tain quadractic, cubic or quartic iteraction terms, for instance (see [CM05] for intersting
recent applications and a list of further references). These products are implemented
in the algebraic level via normal ordering, as presented in the previous chapter. How-
ever, still the restriction of the Hamiltonian interaction to a constant time surface of
M is ill defined, as mentioned in [FL14]. Besides that, for what concerns in particular
the characterization of thermal equilibrium states, the perturbative formulation of the
KMS-condition represents a difficulty on its own. Even if ω ◦Ad

(
U(t)

)
is a well-defined

state, one must assure it satisfies the KMS condition with respect to the perturbed dy-
namics in order to interpret it as a thermal equilibrium state at some finite temperature.
This particular situation was examined in [FL14], as we shall discuss next.

These difficulties in a perturbative approach to quantum field theory at finite tem-
perature have been overcome in the context of algebraic quantum field theory, follow-
ing the work of H. Araki in the early 1970s in [Ara73], in the context of quantum statis-
tical mechanics.
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Araki considered a C∗-dynamical system (A, (τt)t∈R), with A an algebra of bounded
operators acting over some Hilbert spaceH, and the one-parameter group of ∗ automor-
phisms (τt)t∈R generated by some self-adjoint operatorH0 onH, as τt = Ad(exp(itH0)).
Considering then a self-adjoint, bounded perturbationHI to the generatorH0, such that
H0 → H0 + HI and τt → τ It = Ad(exp(it(H0 + HI)), according to [Ara73] a KMS state
ΩI , with respect to the perturbed dynamics, may be obtained from the free KMS state
Ω0 through the limit

lim
t→∞

Ω0 ◦ τ It (A) = ΩI(A).

The above property, describing the achievement of a thermal equilibrium after a long
time since the perturbed dynamics has been turned on, is called return to equilibrium,
and holds provided a certain clustering condition for ΩI is satisfied. We shall return
to this topic at the end of this section, in the context of AQFT. In addition, considering
a C∗-dynamical system, Araki also constructed a family of operators R 3 t 7→ U(t)
intertwining the free and the perturbed dynamics as

u(t) =
∑
n≥0

(−i)n
∫ t

0
dt1· · ·

∫ tn−1

0
dtnτtn(HI) . . . τt1(HI),

where HI is as in above. The operators U(t) are hence such that

τ It (A) = u(t)τt(A)u−1(t), ∀A ∈ A, ∀t ∈ R.

The use of such operators permits to construct the function, for arbitrary but fixed A ∈
A,

R 3 t 7→
Ω0
(
Au(t)

)
Ω0
(
u(t)

) .
In addition, Araki showed that this function may be extended to an analytic function on
S as in (II.6), and continuous along ∂S. Taking advantage of this result, it was possible
to define the interacting KMS state ΩI as

ΩI(A) :=
Ω0
(
Au(iβ)

)
Ω0
(
u(iβ)

) , (II.14)

which agrees with the return to equilibrium property but does not require a large time
limit.

Due to the problems regarding a Hamiltonian interaction functional of the form
(II.13) and the interaction picture evolution discussed in the first paragraphs of this
section, the starting point of the Fredenhagen and Lindner analysis in [FL14; Lin13],
which extends the Araki’s construction (II.14) to the realm of AQFT, is the time-slice
property of A I in proposition 16. After the algebraic introduction of normal ordering
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and the recursive renormalization procedure implemented at each step in the construc-
tion of the time-ordered map, the main problems concerning the interacting Hamilto-
nian regard the support of the formal inetarcting Hamiltonian density HI in (II.13). As
mentioned before, the integration over the whole space results in infrared divergences
if one does not introduce a cutoff for the interaction term, whereas the restriction HI(t)
is not well defined. In order to construct a KMS state for the perturbative theory, adapt-
ing the Araki state (II.14) to AQFT, it is necessary to construct first a family of operators
t 7→ U(t) which intertwine the interacting and the free dynamics.

The construction of the interacting KMS state is performed first prior to the adi-
abatic limit, in the context presented in section I.4.4, based in the construction of the
operators U on a finite volume. I.e., we consider the algebra of interacting observables
supported in a relatively compact region O ⊂ M, with the interaction supported in a
finite neighbourhood ofO. The adiabatic limit for the state is then obtained via the limit
h → 1 in the sense of van Hove, for fixed χ supported in a neighbourhood Σ2ε of the
Cauchy surface Σ0 − {0} × R3. The result of this limit represents a KMS state over the
whole spacetime M, which does not depend on the particular form of the time cutoff χ.

Therefore, in [FL14], from the causal factorization property the authors presented
formal operators t 7→ UV (t), in the sense of formal power series in ~, interchanging
the interacting and the free dynamics. Considering the free dynamics as defined in
equation (I.33), the interacting equivalent is defined via pullback as

αVt RV (A) := RV (αtA), ∀A ∈ Floc(Σ2ε). (II.15)

For positive values of t, the operators U are such that

U(t) := SV (Wt), Wt := αtV − V =

∫ t

dt′αt′ V̇ , ∀t > 0, (II.16)

where

V̇ :=

∫
dxχ̇(x0)h(x)LI(x), χ̇ :=

{
dχ
dt , t < 0;

0 otherwise.
(II.17)

They permit a correlation between the two dynamics as

αVt RVA = U(t) ? αtRVA ? U(t)−1. (II.18)

Moreover, the following holds.

Definition 36. The one-parameter family of formal operators (U(t))t>0 in (II.16) fulfill the
so-called cocycle condition

U(t+ s) = U(t) ? αtU(s). (II.19)

In addition, it is a solution to the formal differential equation

d

dt
U(t) = iU(t) ? αtK, K := −i d

dt
U(t)

∣∣∣∣
t=0

= RV V̇ , (II.20)

with V̇ as in (II.17).

79



II. Descriptions of thermal equilibrium in Perturbative Quantum Field Theory

The equalities above may be found in [FL14; Lin13], and permit to write the cocycle
U for arbitrary t ∈ R as a solution of (II.20) as the formal power series operator

U(t) = 1 +
∑
n≥1

in
∫
tSn

dt1 . . . dtn αt1K ? · · · ? αtnK, (II.21)

where the above integration is then performed in the n-dimensional, real symplex

tSn := {(t1, . . . , tn) ∈ Rn : 0 < tn < · · · < t1 < t}.

In addition, we state that fhe above equation permits to represent the interacting dy-
namics αVt perturbatively as

αVt (A) = αt(A) +
∑
n≥1

in
∫
tSn

dt1 . . . dtn

[
αt1K,

[
. . . [αtnK,αtA]

]]
, A ∈ FµC(M).

(II.22)

In [FL14; Lin13], the cocycle U(t) explicitly enters the construction of a KMS-state
for the interacting theory in the following result.

Proposition 22. Let O ⊂ M be a relatively compact region of M, and let ε > 0 such that
O ⊂ Σε, the time strip as in proposition 18. Let V ∈ FlocJ~K be a local, compactly supported
interaction term as in (I.35), for fixed h ∈ C∞0 (R3) and χ ∈ C∞0 (R) and χ as in (I.37). Suppose
also h|Osp ≡ 1. Last, let R 3 t 7→ U(t) be as in (II.16). Then, for any arbitrary but fixed
RVA ∈ A I(O), the map

R 3 t 7→
ωβ
(
RVA ? U(t)

)
ωβ
(
U(t)

) ,

where ωβ is a β-KMS state with respect to the free dynamics (αt)t∈R, has an analytic extension
onto the strip (II.6). In addition,

ωβ,V (RVA) :=
ωβ
(
RVA ? U(iβ)

)
ωβ
(
U(iβ)

) , RVA ∈ AI(O), (II.23)

defines a β-KMS state for the interacting dynamics (αVt )t∈R.

The analysis by Fredenhagen and Lindner presents another important result. Let
χ, χ′ ∈ C∞0 (R) represent two possible choices of time cutoff, hence both supported
within Σ2ε and identically equal to 1 within Σε. Then, according to [FL14, proposition
2], the cocycles Uχ and Uχ′ , constructed respectively from χ, χ′, coincide up to unitary
equivalence. In addition, in proposition 4 of the same reference, the authors show that,
prior to the adiabatic limit, the difference in the cocycles does not manifest in the inter-
acting KMS state ωβ,V . I.e., the associated KMS states ωβ,Vχ and ωβ,Vχ′ coincide, and for
this reason we have omitted the cutoff from the notation ωβ,V .
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We shall often refer to the KMS state in (II.23) as FL-state, for simplicity. We observe
that the interacting KMS state ωβ,V may also be written in an alternative form. For any
state ω over A 0 and for each n ∈ N, consider the map ωcn : (A 0)⊗nJ~K→ C, recursively
defined as

ωc1(1) = 0, ωc(A1 ⊗ · · · ⊗An) =
∑
σ∈Pn

∏
I∈σ

ωc#I

(⊗
i∈I

Ai

)
,

again where Pn is the set of pairwise disjoint, non-empty partitions of the set {1, . . . , n},
#I denotes the cardinality of the partition, and with ω#I the (#I)-point function of
ω. The maps ωcn are called nth connected component of ω and permits to write the
interacting KMS state ωβ,V as

ωβ,V (A) := 1 +
∑
n≥1

(−1)n
∫
βSn

dUnω
β,c
n+1

(
A⊗

n⊗
j=1

αiujK
)
, (II.24)

where

βSn := {(u1, . . . , un) ∈ Rn : 0 < u1 < · · · < un < β} (II.25)

is an n-dimensional symplex, and ωβ,c is the connected component of the free KMS
state ωβ , cf. again [FL14; Lin13].

In addition to the result described in proposition 22, in section 4.2 of [FL14] the au-
thors show that equation (II.23) may be extended to define a KMS state in the adiabatic
limit. Fredenhagen and Lindner showed that the van Hove limit in definition 30 is well
defined in this context, provided that the n connected functions of the free KMS state
are L1(βSn × R3n) for all n ∈ N. In resume, since it has been shown that we may re-
strict to an interaction term supported within the strip Σ2ε, the adiabatic limit has to be
considered only in the sense of a van Hove sequence for the spacial cutoff h → 1. The
result showing that this limit is well defined, due to the fast decaying behaviour of the
KMS state connected functions along spacelike directions, is presented below, cf. [FL14,
prop. 5, see also appendix B].

Proposition 23. Let ωβ be a β-KMS state of the free, real scalar theory with mass m > 0 and
inverse temperature 0 < β < +∞, whose translation invariant two-point function is given as
in proposition 19. Let O ⊂ M as before and let R > 0 finite, such that O ⊂ BR, the ball of
radius R in R4. For arbitrary n ∈ N, consider also the symplex βSn as in (II.25). Then, for all
A0, . . . , An ∈ A I(O), the connected n-point functions

Fn(u1, x1 . . . , un, xn) := ωβ,c
(
A⊗

n⊗
k=1

αiukAk(xk)
)

(II.26)

are such that, for some C ∈ R,

|Fn(u1, x1 . . . , un, xn)| ≤ C exp

− m√
n

√√√√ n∑
j=1

|xj |2

 . (II.27)

81



II. Descriptions of thermal equilibrium in Perturbative Quantum Field Theory

This permits to state the well-posedness of ωβ,V in the adiabatic limit h → 1 as
previously mentioned. It will also be used in chapter IV. In the end, considering the
adiabatic limit in the sense of van Hove, due to proposition 23one is left with consider-
ing correlation functions in regions of R3 whose contribution to the total limit tends to
zero, given the exponential decay of the connected components.

After the analysis by Fredenhagen and Lindner and following the ideas establishe
in [Ara73], in [DFP18] the authors addressed the return to equilibrium property of ωβ,V .
Two of their important results may be recalled as follows. See propositions 3.4 and 4.1
in [DFP18] for details.

Proposition 24. Let A I(O) be the algebra of interacting observables supported within a rela-
tively compact region O ⊂ M and let V ∈ A I be as in (II.2) with h ∈ C∞0 (R3). Let also αVt
and ωβ,V be as in the above (II.15) and (II.23), respectively. Then, for any A ∈ A I(O), return
to equilibrium holds, i.e.

lim
t→∞

ωβ ◦ αVt (A) = ωβ,V (A). (II.28)

The above result, however, is valid only prior to the adiabatic limit h→ 1. Namely,
considering a non space-compactly supported interaction term, the limit

lim
t→∞

lim
h→1

ωβ ◦ αVt (A)

does not produce a thermal equilibrium state, as discussed in [DFP18]. At the core of
return to equilibrium property (II.28) lies the decaying property of the free KMS state
two-point function in proposition 20. In order to prove (II.28) holds, we observe the
free KMS state satisfies the clustering property

lim
t→∞

ωβ
(
A ? αVt (B)

)
− ωβ

(
A
)
ωβ
(
αVt B

)
= 0, (II.29)

for all A,B ∈ A 0(O). Equality (II.29) follows from the fact that only connected compo-
nents ωβ,c are present within the limit. If the adiabatic limit h → 1 is considered prior
to the large time t→ +∞, property (II.12) does not provide the fast decaying necessary
for result (II.29), and, therefore, (II.28) to hold. In resume, the return to equilibrium
property (II.28) depends on the clustering condition (II.29), which is a consequence of
the decaying behaviour of ∆+

0 along timelike directions. This fact will be of especial
importance in the discussion in chapter III.

II.3 Aspects of Thermal Field Theory.

In this section we intend to introduce the basic aspects of what is generally known in the
physics literature as Thermal Field Theory (TFT). In particular, we shall describe the so-
called real- and immaginary-time formalisms; the latter is often refered to as Matsubara
formalism as well. Later in chapter III we shall describe the precise relations between
TFT and the description of thermal equilibrium in perturbative AQFT, established by
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Fredenhagen and Lindner and further explored in [DHP17; DFP18; Dra19]. We should
again emphasize, however, that our discussion on the present topic will be, besides
introductory, completely formal, and our only goal will be to lay down the basis for the
comparison between different approaches. We refer to [LW87; Bel00] for the details on
thermal field theory.

The physical system we shall consider is similar to the one presented in the previous
sections, described by equation (II.1). Again, it is supposed to be initially free and in
thermal equilibrium, characterized by a free β-KMS state. We shall eventually address
systems initially prepared in the vacuum state, for comparison. At a certain instant, an
interaction term is smoothly turned on and then becomes stable as of a certain latter
instant. In order to obtain a thermal equilibrium state for the interacting theory at later
stages, the free state is then modified accordingly. Following the physics literature,
the interaction time cutoff is first supposed as in (I.49). We shall then be interested in
expectation values of observables measured after the interaction has stabilized, and in
particular in the large time limit of such expectation values.

II.3.1 Formal Thermal Field Theory (TFT).

Bearing in mind the system described in the previous paragraph, we consider the Fock
space representation induced by the Minkowski vacuum state over a Hilbert space H.
The system description is based on the Hamiltonian operator overH, given by

H = H0 +HI(t), HI |t<ti ≡ 0

where H0 is a free Klein-Gordon Hamiltonian and HI(t) is a time dependent, local
interaction term which does not contain derivatives of the fields. Supposing the ex-
ponentials exp(−βH0), exp(−βH) are traceclass, with this Hamiltonian we define an
evolution operator

UH(t, ti) = UH0(t, ti)UI(t, ti),

where UI is often called evolution operator in the interacting picture. It satisfies the
differential equation

i
d

dt
UI(t, ti) = HI(t)UI(t, ti)⇒ UI(t, ti) = T

(
exp

[
− i
∫ t

ti

HI(t
′)dt′

])
, (II.30)

where T is the time ordering map. Moreover, for any t1, t2 > ti, it also fulfills the
splitting property

UI(t2, t1) = UI(t2, ti)UI(ti, t1) = UI(t2, ti)U
∗
I (t1, ti). (II.31)

The family of operators UI is a formal equivalent it the Fredenhagen and Lindner’s
cocycle U in equation (II.21).

We now define the thermal propagator via the generalized n-point functions

G(x1, . . . , xn) := 〈Tφ(x1) · · ·φ(xn)〉, (II.32)
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where T is the time-ordering operator. In order to highlight the different, formal spirit
of the present discussion, we generally adopt in this section a notation usually em-
ployed in the physics literature. Therefore, the quantum product between observables
A,B will be substituted by the common notation AB, and, in addition , we denote
as 〈A〉 the expectation value of the observable A in some initial state of the free the-
ory. This will correspond to either a β-KMS state, or the Minkowski vacuum. In the
limit case of zero temperature, the thermal propagator reduces to the Feynman prop-
agator related to the vacuum state. Let now Ψ be the state vector in H, such that
G(x, y) = 〈Ψ, Tφ(x)φ(y)Ψ〉, and suppose also that Tφ(x)φ(y) = φ(x)φ(y). If we now
redefine the field φ according to

φ(x)→ φI(x) := UI(x0, ti)φ(x)U∗I (x0, ti),

what in the physics literature is called interaction picture representation, then the thermal
two-point function G becomes, for ti < y0 < x0 < tf ,

G(x, y) = 〈Ψ, U−1(x0, ti)φI(x)U(x0, y0)φI(y)U(y0, ti)Ψ〉.

We now obtain

G(x0, y0) = 〈Ψ, U(ti, tf )U(tf , x0)φI(x0)U(x0, y0)φI(y)U(y0, ti)Ψ〉

=

〈
Ψ, TC

(
φI(x)φI(y)e−i

∫
C HI(t)dt

)
Ψ

〉
.

In the above integral we introduced a time contour C from ti to tf and then back from
tf to ti. The time-ordering operator TC is therefore regarded as a time-ordering along
such a contour, i.e., it consists of the time ordering operator in the first part of C, going
from the initial to the final time, and of the anti-time ordering in the line from tf to ti.
If C is parametrized by a τ ∈ (0, 1), TC then corresponds to time-ordering with respect
to the parameter τ .

The analysis of n-point functions is often addressed after the introduction of the
so-called generating functioals. The thermal Green function G may be obtained from

ZI(j) :=

〈
T exp i

∫
C
dx
[
LI(x) + j(x)φ(x)

]
int

〉
, (II.33)

where all terms in the right hand side are written in the interaction picture. Besides that,
j ∈ C∞(M,C) is a complex-valued source term, and L is as in (II.1), thus containing no
derivatives of the field. This produces

GI(x, y) =
1

Z(0)

δn

δj(x)δj(y)
ZI(j)

∣∣∣∣
j=0

(II.34)

Eventually we consider the limits ti → −∞, tf → +∞. In this context, if |ΨI〉 →
|0〉free tends to the vacuum of the free theory, where we suppress any further discussion
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concerning in which sense this limit is performed, we end up with the Gell’Mann-Low
formula

G(x, y) =

〈0in|T
(
φI(x)φI(y)e−i

∫ +∞
−∞ HI(t)dt

)
|0in〉

〈0in|T
(
e−i

∫ +∞
−∞ HI(t)dt

)
|0in〉

. (II.35)

which permits to obtain expectation values for the interacting theory without modify-
ing the initial state.

This result does not hold at finite temperature β > 0, however. As discussed in
[Ste95], Gell’Mann-Low theorem depends on the spectral condition of the vacuum
state. In the case of thermal equilibrium states, the free and the interacting situations
present different assimptotic behaviours. In [FL14], the authors considered the time-
slice condition and restricted to a time-finite region. In this situation, only the behaviour
of the state along spacelike directions enters the analysis.

Returning now to the case in which the initial state in (II.32) correspond to a β-
KMS state, the two point function is written as in the context of Quantum Statistical
Mechanics in terms of the interacting density matrix instead. This formally corresponds
to

G(x, y) =
1

Z(H)
Tr
(
e−βHTC

(
φI(x)φI(y)e−i

∫
C HI(t)dt

))
. (II.36)

The exponential e−βH , combined with the operator U in the previous analysis, may be
seen as an “imaginary time evolution”. We may combine the Hamiltonian exponentials
in G(x, y) in order to obtain the formal representation

G(x1, x2) =

Tr
(
e−βH0T

(
φI(x1)φI(x2)e−i

∫
C∪Cv HI(t)dt))

Tr
(
e−βH0T

(
e−i

∫
C∪Cv HI(t)dt)) , (II.37)

which involves only the initial free state. Due to the KMS condition for Gibbs states as
per 34, in the above expression the time contour C from−∞ to +∞ gained another part
Cv, which corresponds to a vertical component in the complex plain. The complete con-
tour C ∪Cv then corresponds to a path in the complex plane covering the real line back
and forth, and an imaginary component down to −iβ, which formally corresponds to
the contribution U(iβ) in the FL-state (II.23). This is the so-called Keldysh-Schwinger
contour represented in figure II.1. Notice that the density matrix became the free den-
sity matrix e−βH0 . The point here is precisely that the information about thermal aspects
of the state, which previously was contained in e−βH , drifted to the contour, which is
telling us where (or when) to calculate fields expectation values. In this sense thermal
field theory should perturbatively describe interacting thermal systems by means of
the free thermal equilibrium state.

The analysis of expectation values by means of an integration along C, thus neglect-
ing the Cv-contribution, is usually called real-time formalism.
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Figure II.1: Representation of the Keldysh-Schwinger contour. It consists of a path
starting at ti + iσ and going up to +∞ along the real line, and then returning to ti − iσ.
In addition, it contains a vertical component from ti − iσ to −iβ. We consider the
limit σ → 0+ in the imaginary parts ±iσ of the horizontal lines. In addition, one often
considers the limit ti → −∞.

II.3.2 Formal analogy with the Fredenhagen and Lindner construction.

At this point we have presented two different descriptions of thermal equilibrium sys-
tems in quantum field theory. On the one hand, we have formally discussed what has
been presented under the general name of thermal field theory. On the other, we have
considered the construction of a KMS state for the interacting theory in the context of
perturbative AQFT, as performed in [FL14; Lin13]. We may then notice structural simi-
larities between the two formalisms, which we intend to point out in this subsection. It
should be emphasized, however, that the purpose of the present discussion is to show
heuristic relations between the Fredenhagen and Lindner analysis and elements of TFT,
while presenting obstacles for a proper equivalence between the formalisms. The exact
relation between TFT and the FL construction will be the content of next chapter.

Hence, if we first translate the content of the above subsection into the language of
AQFT, we first consider the equivalent generating functional in the form

Z(J) := ωβ
(
SV (J)

)
, J(φ) :=

∫
dx j(x)φ(x),

with j ∈ D(M) as before. We notice this is analogous to (II.33), and performing the
second functional derivatives with respect to the source j we obtain what would be the
analog of G in (II.34). In addition, by comparing the above discussion about TFT with
the content of section II.2, in particular equations (II.20) and (II.30), we notice that the
two objects denoted by U are formally analogous.

Considering the physical system described at the beginning of this chapter, we ad-
dress the expectation value of some suitable observable A ∈ A 0, performed at some
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instant later than t0 > −ε, with the interaction term smoothly turned on at t = −2ε.
Also considering the analogies described in the previous paragraph, the integration
along the real time contour, from time t = 0 to +∞ and back again, is then described by

ςβ(t0) :=
(ωβ ◦ RV )

(
A ·T S(Wt0)

)
(ωβ ◦ RV )

(
S(Wt0)

) (II.38)

with Wt, as per equation (II.16), given by

Wt =

∫ t

dt′αt′ V̇ , ∀t > 0.

The above expression has its origin justified in the theorem 1 above. We may anticipate
that it may be obtained considering equation (II.23) prior to the analytic extension onto
the strip {z ∈ C : =z ∈ (0, β)}, and its interpretation as a description of the real-time
formalism is justified according to the proof of theorem 1. In addition, we anticipate
that the exact equivalent to the real-time formalism, in the language of AQFT, is not
given by equation (II.38) nor by theorem 1 below, but rather by theorem 2 on page 98,
chapter III. Both equation (II.38) and the following theorem 1 serve only to illustrate the
problems that emerge when one tries to interpret the state ωβ ◦ RV , in the real of TFT,
as a thermal equilibrium state.

Although the above expression has been constructed neglecting the imaginary con-
tribution Cv to the time contour in equation (II.37), we may consider whether it de-
scribes a state which may be analytically extended onto the strip {z ∈ C : =z ∈ (0, β)}.
If this were the case, not only we might be able to re-obtain the contribution of Cv to
the above expectation value, as we might perhaps interpret ςβ as the β-KMS state of the
interacting theory. In this way, we would be able to establish an equivalence between
TFT and the Fredenhagen-Lindner construction. Prior to any analytic continuation, for
real times we have the result below. Expression (II.38) will then formally correspond to
an expectation value estimated in the real-time formalism. As mentioned above, this is
obtained supposing the imaginary time contribution to the Keldysh-Schwinger factor-
izes. In the proposition below, we see that this expectation value is equivalent to the
FL-state prior to the required analytic continuation in the cocycle in (II.23).

Theorem 1. Let O ⊂ M, O ⊂ Σ2ε as in proposition 22. Let ωβ be a KMS state at inverse
temperature β > 0 for the free theory, and let V ∈ Floc(M) a compactly supported interaction
term also as in proposition 22. Let in addition S be the S-matrix cf. (I.46),RV be the Bogoliubov
map as in (I.47), and U be the cocycle in (II.16). Finally, let Wt as in (II.16), for t > −ε. Then,

ωβ
(
RV (A) ? U(t)

)
ωβ
(
U(t)

) =
(ωβ ◦ RV )

(
A ·T S(Wt)

)
(ωβ ◦ RV )

(
S(Wt)

) , (II.39)

for allRVA ∈ A I(O).
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Proof. The argument within the expression in the left hand side may be rewritten as

RV (A) ? U(t) =

[
d

dλ
S−1(V ) ? S(V + λA)

]
? S−1(V ) ? S(Vt)

∣∣∣∣
λ=0

=
d

dλ
S−1(V ) ? S(V + λA) ? S−1(V ) ? S(V +Wt)

∣∣∣∣
λ=0

=
d

dλ
S−1(V ) ? S(V + λA+Wt)

∣∣∣∣
λ=0

= S−1(V ) ? {S(V +Wt) ·T A} = S−1(V ) ?
[
S(V ) ·T A ·T S(Wt)

]
= RV

(
A ·T S(Wt)

)
.

The step from the first to the second line above follows from the causal factorization
property fulfilled by the S-matrix, whereas the factorization S(V +Wt) = S(V )·T S(Wt)
is due to the time-ordered product commutativity and associativity. Equation (II.39)
then follows after we consider the expectation value of the two terms in the equality
above, together with the normalization factors.

The formal interpretation of the above equation (II.38) as the translation of real-time
formalism into the language of AQFT may be finally justified from the equalities above.
In particular, as we consider the expectation value of some observable A supported in
a finite region in the future of t = −ε, the product

S−1(V ) ? {S(V +Wt) ·T A}

contains the same information presented in the description of real-time formalism. It
is possible to notice in the above the first real line forming the Keldysh-Schwinger con-
tour, represented by the S-matrix S(V + Wt) and causally related to the observable A
via a time-ordered product. As for the anti-time ordered line, this is then described by
the inverse matrix S−1(V ), the last term to act in the products of fields within the expec-
tation value estimation. We then observe that the Bogoliubov map implicitly contains
the same doubling of the field as the real-time formalism.

It is possible to recognize that the analytic continuation of the left hand side of (II.39)
results in the FL-state. In addition, the same analytic continuation for the right hand
side would be the continued formal thermal propagator. This latter analytic extension
involves also the problem of constructing an holomorphic continuation of the Feynman
propagator ∆β

F in the time-ordered products. It happens that, as discussed in [FR87],
such continuation for ∆β

F is not well defined. In Minkowski spacetime, an extension
of Feynman propagators corresponds to an extension of Heaviside functions which do
not present a fast decreasing in Fourier space (see also [Hör90, th. 7.3.1]). Therefore, an
analytic extension of (II.39) has to be understood in the sense of the FL-state. Further-
more, neglecting the Cv-contribution to the thermal propagator in S(Wt) is formally
equivalent to forgetting the factor U(iβ) in ωβ,V .

An additional sign of incompleteness in the real-time formalism of perturbative
thermal field theory is found in the case of a λφ2 interacting theory. As discussed in the
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last chapter, the Principle of Perturbative Agreement states the equivalence between
the perturbative and the exact approach to interacting theories, whenever the dynam-
ical equation may be exactly solved, or whenever a ressumation of the perturbative
series is possible. In this spirit, consider the particular Lagrangian

L(φ) =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

2
δm2(x)χ(x0)φ2

with m > 0 and LI(x) = λδm2(x)χ(x0)φ2(x), where δm2(x) is a compactly supported,
positive mass contribution term. Consider the large time limit addressed in [DHP17],
regarded as a “thermalization limit”,

lim
t→∞

ωβ
(
αVt RV φ(x) ?RV φ(y)

)
=

=
1

(2π)3

∫
d3p

2w̃

[
b+(wp)eiw̃(x0−y0) + b−(wp)e−iw̃(x0−y0)

]
e−ip·(x−y),

where wp is as before, and w̃ :=
√
p2 +m2 + δm2. We then see that the “interacting

two-point function” ressembles that of a KMS state, ∆+
β in (II.8), except for the Boltz-

mann factors. I.e., the mapRV is capable of changing the modes in the above decompo-
sition for the state, but not the terms b±(p) from equation (II.9). In other words, even in
the large time limit ωβ ◦RV does not characterize a thermal equilibrium state. We shall
return to this topic in chapters III and IV, and we refer to [DHP17; Dra19] for further
discussion.

In addition, if ωβ ◦RV is to be a KMS state with respect to the interacting dynamics,
considering the formal notation αiβ within the expectation value of ωβ discussed after
definition 35, then we should have that

ωβ ◦ RV
(
A ? B

)
= ωβ

(
RVB ? αViβRVA

)
.

This is nothing but the KMS condition with respect to the interacting dynamics αVt .
There are two problems regarding the equation above. First, in order to employ the
KMS condition fulfilled by the free state ωβ with respect to the free dynamics, so to
prove that the KMS condition for the interacting case holds as in the previous equation,
we should use (II.18) to introduce the free dynamics into the right hand side. At this
point, for generic t ∈ R we would obtain an expression in the form

ωβ
(
αVt RVA ?RVB

)
= ωβ

(
RVB ? U(t+ iβ) ? αtRVA ? U(t+ iβ)−1

)
.

Due to the form of U in (II.21), we notice that already the analytic domain of ωβ is sur-
passed by the composition of dynamical operators αt involved. This may be precisely
observed by considering the analytic domain required in the KMS condition, alongside
with the cocycle condition (II.19) in definition 36 and the form ofU depicted in equation
(II.21).
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In addition, also the cyclic property in the KMS condition is not fulfilled. We notice
the second statement by introducing the cocycle U of section II.2. We hence obtain

ωβ
(
RVB ? αViβRVA

)
= ωβ

(
RVB ? U(iβ) ? αiβRVA ? U∗(iβ)

)
= ωβ

(
U(iβ) ? αiβRVA ? U∗(iβ) ? αiβRVB

)
= ωβ

(
αViβRVA ? αiβRVB

)
.

Comparing the left hand side of the previous equation with the right hand side of the
latter, we conclude that

ωβ
(
α−iβ ◦ αViβRVA ?RVB

)
= ωβ ◦ RV

(
A ? B

)
,

which fails to fulfill the KMS condition.

II.3.3 Real-time and Matsubara formalisms.

In the physics literature of TFT, we often find arguments attesting the factorization of
the imaginary contribution. I.e., the integration Cv, in the large time limit tf → ∞,
should factorize, and thus only the integration along the real component of C would
affect the expectation value, or the Green function. This is the so-called real-time for-
malism. We refer to [LW87] for a particularly detailed discussion about this topic. As
we shall see in more details in the next chapter, however, this factorization may happen
only in particular cases.

In thermal field theory one may adopt a different choice of the contour. If one con-
siders expectation values of observables which are time independent, then the real com-
ponent of the integration along C ∪ Cv does factorize, and we are left with the a path
from ti = 0 to −iβ in the complex plane only. This case, introduced in [Mat55b], origi-
nates the so called Matsubara, or imaginary-time formalism.

In this situation, it is convenient to work with the thermal propagator for imaginary
times. In the next chapter, the Matsubara propagator will be treated in a precise way.
For now, the idea, and roughly what we usually find in the physics literature, is the
following. We obtain a Euclidean propagator by means of a Wick rotation of the Klein-
Gordon dynamical operator by t→ −iτ . Then, for τ ∈ (0, β) we seek for a fundamental
solution ∆(τ,x) of the Euclidean dynamical problem

(−∂2
τ −∇2 +m2)∆(τ,x) = δ(τ)δ(x). (II.40)

The function τ 7→ ∆(τ) may be expanded in a Fourier series, and it results in the ex-
pression

∆(τ) =
∑
n

∆̂(wn)eiωnτ , ∆̂(wn) =
1

2β

∫ β

−β
dτ∆̂(τ)e−iωnτ .

Combining the above with equation (II.40) we then obtain

∆̂(wn,p) =
1

w2
n + w2

p

, wn :=
2πn

β
, n ∈ Z, (II.41)
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again with w2
p = p2 + m2. These are respectively called the Matsubara propagator in

momentum space, ∆̂(wn,p), and wn are the Matsubara frequencies. By the Fourier
inversion theorem we obtain

∆(τ,x) =
1

2β

∑
n∈Z

∫
d3p

(2π)3

e−ip·xeiwnτ

w2
n + w2

p

, (II.42)

which solves equation (II.40). From (II.41) we see that, due to the form of the differential
operator, the Matsubara frequencies represent both the modes of the series expansion
of ∆(τ) and the singularities of the propagator in momentum space.

The Matsubara formalism is particularly employed for computations of time inde-
pendent partition functions, and the thermodynamical quantities from it derived. We
again refer to [LW87]. More details about the imaginary-time formalism and the Mat-
subara propagator will be given in the next chapter. Arguably, the great advantage of
the Matsubara formalism lies in the fact that the Feynman rules for expectation values
computations in this context are quite similar to those for the vacuum state. As briefly
mentioned in the last section of chapter I, Feynman rules provide a straightforward
method for the computations of expectation values. Therefore, it is convenient to work
within Matsubara formalism, whenever possible. In addition, since the Matsubara fre-
quencies correspond to singularities of the propagator in (II.41), expectation values may
be obtained via residues theorem, in the sense of distributions. In this case, integration
over configuration space is replaced by a summation over the Matsubara frequencies.
Often one of the hardest tasks in this formalism is to prove the convergence of such
summation, which is not a trivial task.

The Matsubara formalism has a particular disadvantage. Since the propagator is
defined for imaginary times, its extension to real values require a continuation over
the real line. For this reason, this formalism is particularly convenient for the analysis
of time-independent expectation values. If, however, this is not the situation of one’s
interest, one frequently considers the real-time formalism. Whereas the former is ob-
tained from (II.37) by neglecting the contribution C in the integration along C ∪Cv, the
latter formalism comes from the factorization of the imaginary part, which corresponds
to neglecting the imaginary line Cv in (II.37) instead.

One of the most important result presented in [BDP19], and reproduced in this the-
sis, corresponds to the fact that both the Matsubara and the real-time formalisms are
obtained from the Fredenhagen and Lindner’s construction in particular situations.
Hence, as a matter of fact, a precise and general interpretation of physical system in
thermal equilibrium should be based on the latter formalism, discussed in section II.2.
For this reason, we limit our discussion about further aspects of TFT.
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III. Graphic representation of thermal equi-
librium interacting systems

In the previous chapter we briefly discussed the construction of a thermal equilib-
rium state ωβ,V for the perturbative theory given by Fredenhagen and Lindner in [FL14;
Lin13]. In addition, we have also presented some properties of both the cocycle U , used
in the construction of the state ωβ,V , and the state itself, in relation to the return to equi-
librium property (II.28). From now on, U will always denote the cocycle described in
section II.2. Finally, in a rather formal way, in the last section we presented the general
structure of both Matsubara and the real-time formalism, grouped in what has been
called thermal field theory (TFT), and we also presented arguments stating incomplete-
ness in this canonical treatment of thermal systems. Moreover, we have particularly
indicated that both the real-time and the Matsubara formalism cannot separately pro-
vide general characterizations of thermal equilibrium, when one considers a system
such as the one described at the beginning of the previous chapter and characterized
by the Lagrangian (II.1). We have seen that establishing the equivalence between the
FL-state and TFT would require an analytic extension process which, as a matter of
fact, lacks mathematical precision. In addition, the real-time formalism of thermal field
theory does not consider an important contribution to the interacting KMS state, and
hence neglects aspects in the description of thermal equilibrium for perturbative theo-
ries which have been discussed in the context of AQFT framework – as seen in the ref-
erences mentioned in the previous chapter. I.e., since the real-time formalism is based
on considering the interacting state of the form ωβ ◦ RV , we have seen that this char-
acterization does not contain important physical information, and it is not enough to
characterize thermal equilibrium in general.

In this chapter we intend to analyze the relation between the two approaches to
thermal theories. In particular, we shall show that the interacting KMS state ωβ,V given
in [FL14; Lin13] reduces to either the Matsubara or to the real-time formalism in partic-
ular cases. At the same time, a complete and general description of thermal systems is
obtained only when the two are altogether considered. That is, a complete and accurate
description of thermal equilibrium for the interacting theory is obtained only by con-
sidering FL-state ωβ,V , which reduces to the Matsubara or to the real-time formalism in
particular situations. In this manner, we show also that Matsubara and real-time for-
malism are not only two particular (but partially incomplete) choices for describing the
physical system, as described in the TFT literature, but are also part of a larger analysis
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corresponding to ωβ,V . In establishing a proper correspondence between formalisms,
we shall introduce a graphic representation scheme for the perturbation series of expec-
tation values ωβ,V ◦ RV (A). We shall conclude this chapter presenting two important
examples of expectation value computations showing the importance of considering
the cocycle U in (II.23).

The results presented in this chapter have been published in [BDP19].

III.1 Exact relations between the FL state and TFT

According to what we have discussed up to now, in particular to section I.5, a diagra-
matic representation of some expectation value of the form ωβ,V ◦RV (A) would involve
a particular set of propagator representing different edges. Such propagators would be
the fundamental solutions of the dynamical equation ∆A and ∆R and their difference
∆, the causal propagator; the two-point function of the free-KMS state ∆+

β ; the Feyn-

man propagator related to ∆+
β , denoted ∆β

F . Therefore, in aiming at a description of
thermal systems which connects with the content of section II.3, we first of all present
the expansion of ∆β

+ in terms of the Matsubara frequencies, thus obtaining a thermal
propagator formally equivalent to the one discussed in the previous chapter. We shall
later see how this representation of the thermal Wightman function introduces the Mat-
subara formalism into the FL-analysis. Therefore, we recall the form of the translation
invariant two-point function from equation (II.8),

∆+
β (x) =

1

(2π)3

∫
dp
ε(p0)δ(p2

0 − w2
p)

1− e−βp0
eipx

=
1

(2π)3

∫
d3p

2wp

1

1− e−βwp

(
e−iwpx0 + e−βwpeiwpx0

)
eip·x, (III.1)

with wp :=
√

p2 +m2. In this manner, the Feynman propagator associated to ∆β
F may

be written, according to (I.61), as

∆β
F (x) = θ(x0)∆+

β (x) + θ(−x0)∆−β (x0), (III.2)

where θ is the Heaviside step function and ∆−β (x) = ∆+
β (−x).

As discussed in [FR87], ∆+
β being the two-point function of a KMS state, it may be

extended to a holomorphic function into S− := {z ∈ C : =z ∈ (−β, 0)}. Due to the form
of the kernel

x0 7→ e−iwpx0 + eiwp(x0+iβ),

it may be continued to complex values z = x0 + iu for u ∈ (−β, 0), which results
in an exponential decay for the extended kernel of ∆+

β . We shall denote this analytic
continuation by the same symbol ∆+

β . Similarly, ∆−β may be seen to be extendable over
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the strip S+ := {z ∈ C : =z ∈ (0, β)} in the same manner. In addition, we may conclude
that

∆+
β (z + iβ,x) = ∆−β (z,x), z ∈ S−.

We hence conclude that the function ∆+
β defined over the lower strip S− equals ∆−β

defined over S+, and therefore we may extend the thermal propagator ∆β to almost
the whole of the complex plane by means of this “copy and paste” process in both
directions. These observations may be justified considering the following.

The KMS state two-point function (III.1) defines an holomorphic function over the
strip S+ above, and for complex arguments x0 + iu we have

∆+
β (x0 + iu,x) =

1

(2π)3

∫
d3p

2ωp

1

1− e−βwp

(
euwpe−iwpx0 + e−βwp−uwpeiwpx0

)
eip·x,

for u ∈ (0, β). Therefore, we may consider the Fourier series representation of ∆+
β

within this strip. Along the imaginary axis, omitting the dependence on x ∈ R3 this
corresponds to

∆(τ) =
∑
n∈Z

∆̂

(
2πn

β

)
e
i 2πn
β
τ
, ∆̂

(
2πn

β

)
=

1

2β

∫ +β

−β
dτ ∆̂(τ)e

−i 2πn
β
τ
.

The above expression is what one obtains in the context of the Matsubara formalism
of TFT, cf. [LW87]. Considering also the dependences on the real part of the time
component and on the spacial component x ∈ R3, this representation becomes instead

∆(x0 + iu,x) =

=
1

(2π)3

∫
dp eipx

∑
n∈Z

e
i 2πn
β
u

w2
p + (2πn)2β−2

[
δ(p0 − wp) + δ(p0 + wp)

]1

2

(
1 +

i2πn

p0β

)
.

(III.3)

Furthermore, considering the Fourier transform of the above expression with respect to
x0,x produces the thermal propagator in momentum space

∆̂(u, p) =
1

(2π)3

∑
n∈Z

e
i 2πn
β
u

w2
p + (2πn)2β−2

[
δ(p0 − wp) + δ(p0 + wp)

]1

2

(
1 +

i2πn

p0β

)
.

As the above expressions for the propagators in configuration and in momentum space
reveal, these are symmetric under parity transformations u→ −u. Furthermore, intro-
ducing the Matsubara frequencies wn := 2πnβ−1, n ∈ Z, the Matsubara propagator
(as in (II.42)) is then obtained as

∆̂β
M =

∫
dp0 ∆̂(u, p) =

1

(2π)3

∑
n∈Z

1

w2
p + w2

n

eiwnu
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By extending the Fourier series representation of an holomorphic function defined
on the strip 0 < =z < β to a periodic function over C, considering the symmetry
property of the thermal propagator, we end up with the holomorphic function

∆β : {(z,x) ∈ C× R3 : =z 6= nβ, n ∈ Z, or |<z| ≤ |x|} → C (III.4)

such that

∆β(z,x) =

{
∆+
β (z,x), =z ∈ S−;

∆−β (z,x), =z ∈ S+;
∆β(z + inβ,x) = ∆β(z,x), n ∈ Z, z 6= 0,

(III.5)

and

∆β(z,x) = ∆β(−z,x). (III.6)

In the graphic expansion of thermal expectation values, the thermal propagator
above will provide a direct relation between the FL-state and the Matsubara formal-
ism.

In the present section we are interested in the graphic representation of the pertur-
bation series associated to expectation values such as ωβ,V ◦ RV (A), and we consider
first the contributions from the Bogoliubov map RV to the perturbative expansion of
ωβ,V ◦ RV (A). Our analysis will follow a graphic oriented line, as may be seen below.
We recollect the form ofRV as, according to equation (I.47),

RV (A) = S−1(V ) ?
[
S(V ) ·T A

]
,

where A is a finite time-ordered product of local functionals. We may notice within
RV the presence of three different propagators: besides ∆+

β employed in the ?-product
construction, there is the Feynman propagator associated to ∆+

β cf. (III.2), and the

anti Feynman (i.e. anti-time-ordered) propagator ∆β
F , which appears in the inverse

S-matrix S−1(V ) = S(−V ).
We emphasize that now and henceforth we shall always denote ? ≡ ?∆+

β
and con-

sider the algebraic product as given in terms of the two-point function of the free β-KMS
state ∆+

β . Hence, as in (I.28) and (I.29), we consider

F ? G = M ◦ exp
(
~Γ12

∆+
β

)(
F ⊗G

)
, Γ12

∆+
β

=

∫
dxdy∆+

β (x− y)
δ

δφ1(x)
⊗ δ

δφ2(y)

for F,G ∈ FµC(M), withM the multiplication operatorA⊗B 7→ AB as in 21. Arbitrary
products of microcausal observables may be written by means of the extension of Γ over
tensor products A1 ⊗ · · · ⊗An as

Γij
∆+
β

=

∫
dxdy∆+

β (x− y)
δ

δφi(x)
⊗ δ

δφj(y)
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where δ/δφi denotes the first functional derivative of the ith element on the tensor
product of n functionals, with respect to the field φ. Therefore, we may write arbitrary
?-products as

A1 ? · · · ? An = M

[(∏
i<j

eΓij

)
A1 ⊗ · · · ⊗An

]
= M

(
(e

∑
i<j Γij )A1 ⊗ · · · ⊗An

)
= M ◦ Pn (A1 ⊗ · · · ⊗An)

with the introduction of the operator

Pn : F⊗nµC (M)→ F⊗nµC (M), Pn := e
∑
i<j Γij =

∏
i<j

∞∑
k=0

1

k!

(
Γij

∆+
β

)k
.

For a graphic interpretation of the Bogoliubov map, we consider, as in section I.5, for
arbitrary n ∈ N the set Gn of all graphs G with n vertices indexed as V (G) = {1, . . . , n}
and an arbitrary but finite number of edges, the number of edges fixed by the number
of functionals in the tensor product. The labeling of G is then in one-to-one correspon-
dence with A1⊗ · · · ⊗An, and for each pair i, j ∈ V (G), the edges e connecting i = s(e)
to j = t(e) must consider the non-symmetry of ∆+

β under change of orientation. In
this way, the summation in the definition of Pn above becomes a summation over the
number of edges connecting vertices i, j, for all i, j = 1, . . . , n, i < j. We may then write
this same operator in the rather graphic-oriented form. Denoting s(e) ≡ xe, t(e) ≡ ye,

Pn =
∑
G∈Gn

1

sym(G)

∫
dxdy

∏
e∈E(G)

∆+
β (xe − ye), δG.

The symbol sym(G), called symmetry factor of the graph G, corresponds to

sym(G) =
∏

i,j∈V (G)
i<j

(
#{e ∈ E(G) : s(e) = i, t(e) = j}

)
!,

whereas δG correspond to the differential operator over the graph G,

δG = δ2|E(G)|

/ ∏
i∈V (G)

 ∏
e∈E(G):s(e)=i

δφi(xe)
∏

e′∈E(G):t(e′)=i

δφi(ye′)

 .
In addition, arbitrary time-ordered products of local functionals may be treated in the
analogous way, via the replacement of ∆+

β by ∆β
F in the above equations. The only

particular difference concerning time-ordered products of local functionals is the fact
that renormalization freedom has to be taken in consideration at each order.

The representation of both ? and ·T presented in the lines above allow for a diagram-
matic representation of the Bogoliubov map closely related to the Keldysh-Schwinger
formalism. One notice the presence of the anti-S-matrix introducing the same anti-time
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III. Graphic representation of thermal equilibrium interacting systems

ordered fields as in the second branch of Keldysh-Schwinger’s contours, and thus in-
troducing the equivalent doubling in the degrees of freedom of the field. In effect, the
four propagators withinRV may be all combined in the matrix of propagators

D(x) :=

(
∆β
F (x) ∆+

β (x)

∆+
β (x) ∆β

F (x)

)
, (III.7)

which is analogous to the Keldysh matrix in the real-time formalism of TFT – see [LW87;
Bel00]. In addition, D(x) also contains this doubling of the degrees of freedom. The
previous, graphic-oriented description of both ? and ·T , along with the introduction of
the matrix D(x) in (III.7) implies the establishment of a relation between the real-time
formalism and the expansion ofRV , in the form of the following proposition.

Theorem 2. Let φ = (φ1, φ2) ∈ E(M) × E(M) and let A, Vi ∈ Floc(M) with Vi depending
only on φi, i = 1, 2 and V = V1 + V2. The Bogoliubov map may then be written in terms if the
matrix of propagators D(x) in (III.7) in a completely analogous way to the Keldysh-Schwinger
formalism.

Proof. Writing the Bogoliubov map with respect to D requires using this propagator in
a unique product; this is achieved first by extending Γ12

∆+
β

as

F ·D G = M̃eΓ̃12
D (F ⊗G), Γ̃12

D :=
∑

a,b=1,2

~
〈
Dab,

δ

δφa1
⊗ δ

δφb2

〉

with F,G regular functionals over the doubled space of field configurations E(M) ×
E(M). We shall denote the space of such functionals as F̃reg(M), and by M̃ the extension
of M , the multiplication operator A ⊗ B 7→ AB as in definition 21, onto F̃reg(M). In
adittion, Dab are the matrix elements of (III.7) and δ/δφai denotes the ath component of
the first functional derivative acting upon the i-th element of the tensor product F ⊗G.
The components a and b correspond to the two real brunches of the Keldysh-Schwinger
contour. The operator Γ̃12

D generalizes then to

Γ̃ijD :=
∑

a,b=1,2

~

〈
Dab,

δ

δφai
⊗ δ

δφbj

〉
,

where δ/δφai denotes the ath component first functional derivative acting upon the i-th
element of the tensor product A1 ⊗ · · · ⊗ An ∈ F̃⊗nreg (M). We then obtain the graphic
extension of the above product as

A1 ·D · · · ·D An =M̃
[(
e
∑
i<j Γ̃ijD

)
A1 ⊗ · · · ⊗An

]
=M̃ ◦ P̃n(A1 ⊗ · · · ⊗An), Ai ∈ F̃reg(M),
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with

P̃n :=
∑
G∈Gn

1

sym(G)

〈 ∏
e∈E(G)

D
(
xe − ye

)
, δ̃G

〉

and

δ̃G :=
δ2|E(G)|∏

i∈V (G)

(∏
e∈E(G):s(e)=i δφi(xe)

∏
e′∈E(G):t(e′)=i δφi(ye′)

) .
The product ·D may be extended to local functionals which separate components of the
doubled field φ = (φ1, φ2), in the sense of tensor productsA⊗B ∈ F⊗kloc (M)1⊗F⊗lloc(M)2,
where F⊗kloc (M)i denotes the set of k tensor products of local functional over the space of
field configurations with respect to the field φi ∈ E(M). In other words, the extension of
·D is performed upon tensor products of local functionals which depend exclusively on
one of the φi components. The set of such restrictively local functionals will be denoted
F̃1,2−loc(M). In order to justify the strictness of the above extension, notice that the
product of local functionals mixing components φ1 and φ2 result in products ∆+

β ∆β
F

with non-local singularities, which, according to the discussion in chapter I, is not a
well defined distribution. For instance, we may see such a problematic term appearing
in φ1φ1 ·D φ1φ2 ·D φ1φ1.

After the extension of ·D to the above particular class of local functionals we may
define the S-matrix

S̃ := eiV·D , V ∈ F̃1,2−loc(M).

Considering then V ∈ F1,2−loc(M) with components V1, V2 depending only on φ1, φ2

respectively, we finally obtain that the Bogoliubov map may be written as

RV (A)(φ) = M̃
(
S̃(V2) ·D S̃(V1) ·D A1

)
(φ1, φ2)

∣∣
φ1=φ2≡φ , (III.8)

where A1 means the observable A ∈ Floc(M) depends only on the 1-component of the
doubled field, such as in the real-time formalism. This expression corresponds to the
claim of the proposition above. In addition, since the expectation values of products of
observables correspond to the evaluation of the product at φ = 0, we obtain

ωβ ◦ RV (A) =
∑
n1,n2

in1(−i)n2

n1!n2!
V2 ·D · · · ·D V2︸ ︷︷ ︸

n2

·D V1 ·D · · · ·D V1︸ ︷︷ ︸
n1

·DA1

∣∣∣∣∣
(φ1,φ2)=(0,0)

=
∑
n1,n2

in1(−i)n2

n1!n2!
M̃
∑
G∈Gn

1

Sym(G)
×

×

〈 ∏
e∈E(G)

D
(
xe − ye

)
, δ̃G

〉
V2 ⊗ · · · ⊗ V2︸ ︷︷ ︸

n2

⊗V1 ⊗ · · · ⊗ V1︸ ︷︷ ︸
n1

⊗A1

∣∣∣∣∣
φ1,φ2=0

, (III.9)

with n1 + n2 + 1 = n.
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Expressions (III.8) and (III.9) represent the Bogoliubov map contribution to expec-
tation values ωβ ◦RV (A), as in the above the cocycle contibution U(iβ) has been inten-
tionally left aside. As previously mentioned (cf. chapter II), due to [DFP18] we know
that in some particular cases the state ωβ◦RV is enough to describe thermal equilibrium
for the interacting theory in the large time limit, as the authors show that the clustering
property (II.29) implies the return to equilibrium (II.28) holds if the interaction term is
space-compactly supported. Therefore, in the particular case of V such as in (II.2) with
h ∈ C∞0 (R3), we see that in the large time limit t → ∞, which is also considered in
the real-time formalism of TFT, ωβ ◦ RV completely characterizes thermal equilibrium.
Moreover, comparing expressions (III.8) with (II.28) and (II.23), in light of the discus-
sion present in section II.3, it is possible to notice that, in this particular situation, the
imaginary branch in the Keldysh-Schwinger contour indeed factorizes, and one is left
with the real contributions depicted above only. The same, however, does not hold in
the limit h → 1, and there the cocycle contribution has to be considered also. In the
following, we shall consider the role of U in the graphic representation of expectation
values and establish its relation with the Matsubara formalism. The analysis of the state
contribution to the expectation value ωβ,V ◦RV (A) will be first presented in the context
of a compactly supported interaction term as before, and we shall later consider the
adiabatic limit. In addition, in considering the role of U to thermal equilibrium charac-
terization, one of our main result corresponds to theorem 3 below, which characterizes
the state ωβ,V as in integration of connected components depending on imaginary time
variables with values within Sn+.

We shall start by recollecting expression (II.24) describing the state ωβ,V in terms of
connected components of ωβ , and noticing we may write such connected components
in the graphic oriented form

ωβ,c(A0 ⊗ · · · ⊗An) =
∑

G∈Gcn+1

Pn(A0 ⊗ · · · ⊗An)
∣∣
φk=0∀k=1,...,n

(III.10)

with

Pn :=
∏
i<j

1

nij !

∫
dxdy∆+

β (x− y)
δ

δφi(x)
⊗ δ

δφj(y)
=

1

sym(G)

∏
e∈E(G)

Ps(e)t(e). (III.11)

From this point we obtain the following result. We first explicitly introduce the n-
dimensional symplex

βSn := {(u1, . . . , un) ∈ Rn : 0 < u1 < · · · < un < β < +∞},

which had already been implicitly employed in the representation of ωβ,V in terms of
connected components ωβ,c in equation (II.24).

Theorem 3. Let Σ2ε as in section II.2 and let h ∈ C∞0 (Σε). Then, for any A ∈ A I(Σε) and
with V such that K = RV V̇ , the function

βSn 3 (u1, . . . , un) 7→ F (u1, . . . , un) := ωβ,c
(
A⊗

n⊗
k=1

αiukK

)
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has a symmetric extension onto the set

Cn = {(z1, . . . , zn) ∈ Cn : <zj = 0, =zj ∈ (0, β), zj 6= zk∀j, k = 1, . . . , n},

where Cn = βBn\diag(Rn) and βBn := {(z1, . . . , zn) ∈ Cn : <zj = 0, =zj ∈ (0, β)} and
diag(Rn) := {(z1, . . . , zn) ∈ Rn : zj = zk for some j, k = 1, . . . , n, j 6= k} is the thick
diagonal of Bn. In addition, representing u ≡ (u1, . . . , un) in either βBn\diag(Rn) or βSn,
the integration of the nth term in perturbation theory F may be written as∫

βSn

duF (u) =
∑

G∈Gcn+1

1

sym(G)n!

∫
βBn

duFG(u). (III.12)

Proof. Let F : Rn → C, F (t1, . . . , tn) := ωβ,c(A ⊗ αt1K ⊗ · · · ⊗ αtnK), then since F has
an analytic extension

F (u1, . . . , un) := ωβ,c
(
A⊗

n⊗
k=1

αiukK
)
, (III.13)

into the symplex βSn, this theorem refers to enlarging the analytic domain to the above
set Cn. The map F may be written in terms of separate contributions to each connected
graph with n+ 1 vertices as

F (u1, . . . , un) =
∑

G∈Gcn+1

1

sym(G)
FG(u1, . . . , un)

with a finite summation at each fixed perturbation order, since in the present we do not
consider the individual expansions of each K. Hence, according to equations (III.10)
and (III.11), due to the translation invariance of ∆+

β we have, by moving the effect of
each αiu into the propagators (edges),

FG(u1, . . . , un) =

∫
dXdY

[ ∏
e∈E(G)

∆+
β (xe − ye + i(us(e) − ut(e))e0)

]
×

×

[ ∏
e∈E(G)

δ2

δφs(e)(xe)δφt(e)(ye)

](
A⊗

n⊗
k=1

K

)∣∣∣∣
φ≡0

(III.14)

where dXdY ≡ dx1 . . . dx#E(G)dy1 . . . dy#E(G). We simplify the above equation by writ-
ting it as

FG(u) =

∫
dXdY

[ ∏
e∈E(G)

∆+
β

(
xe − ye + i(us(e) − ut(e))e0

)]
ΨG(X,Y )

with u ∈ βSn and ΨG(X,Y ) the differential operator applied to the tensor product as
above. The above expression allows for two important observations. First, due to the
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form of V , and hence of K, ΨG(X,Y ) defines a compactly supported distribution for
each considered A. In addition, due to the form of βSn we see that uj − uk ∈ S− for
each pair of arguments of u. Therefore, FG(u) equals

FG(u) =

∫
dXdY

[ ∏
e∈E(G)

∆β
(
xe − ye + i(us(e) − ut(e))e0

)]
ΨG(X,Y ),

which differs from the former equation by the substitution of ∆+
β by the thermal prop-

agator obtained from (III.4). In conclusion, comparing the above expression with the
analytic domain of the thermal propagator, we obtain the analytic extension of F . It
still remain to prove F is symmetric, and this in effect is a consequence of symmetry of
∆β .

Let σ : u 7→ σ(u) ∈ βSn a permutation of the arguments of u ∈ Bn. This is well
defined as the thick n-diagonal diagn(Bn) is excluded from the extended domain of F .
Let the same symbol σ denote also the induced permutation over the graph G ∈ Gcn+1

acting over V (G) = {0, . . . , n}. Over E(G) the permutation σ has the effect of possibly
interchanging targets and sources. I.e., if G is ordered in such a way that s(e) < t(e)
then

σ(e) =
(
σ(s(e)), σ(t(e))

)
if σ(s(e)) < σ(t(e)), and the converse if otherwise. In fact, for the action of σ over the
graph G there are only two possibilities: either σ(s(e)) = s(σ(e)), or σ(s(e)) = t(σ(e)),
the analogous holding also for the target of e. With σ(G) the (unique) connected graph
with vertices V (σ(G)) = σ(V (G)) and edges E(σ(G)) = σ(E(G)) (maybe equal to G),
then Fσ(G)(σ(u)) is such that the propagators there within may be either

∆β
(
xσ(e) − yσ(e) + i(σ(u)s(σ(e))−σ(u)t(σ(e)))e0

)
=

=

{
either ∆β

(
xe − ye + i(us(e) − ut(e))e0

)
or ∆β

(
ye − xe − i(us(e) − ut(e))e0

)
.

However, due to the parity symmetry of the thermal propagator depicted in equations
(III.5) and (III.6), within the symplex βSn the two latter result are actually the same.
This proofs that the invariance of FG under the action of σ for each edge of G, and thus
we conclude FG(U) = Fσ(G)(σ(u)), and finally the invariance of F under any arbitrary
permutation of its arguments.

Additionally, this theorem says that each integration of FG may be extended from
βSn to βBn\diag(Rn), which differs from βBn by a set with null measure. So far we
have seen that each function F originally defined on the symplex, may be extended
to the box βBn up to the set of diagonals. The result is then a symmetric function de-
fined over the set βBn\diag(Rn), which is formed by n! disjoint connected components.
Therefore, the integrations over the box βBn and over the symplex βSn coincide up to
a permutation term n! contained within (III.12). This concludes the proof.
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The above result allows for a change in the expression of ωβ,V in terms of connected
components of the free β-KMS state. We shall use the latter result to rewrite ωβ,V in a
Dyson series-like form which takes in consideration the Matsubara formalism.

Theorem 4. The integration of (III.12) over the box is such that∫
βBn

duFG(u) =
1

β#E(G)

∫
dP

∑
N∈Z#E(G)

∏
e∈E(G)

ΞG(P )×

×
∏

1≤j≤n
δK

 ∑
e∈E(G),t(e)=j

wne −
∑

e′∈E(G),s(e′)=j

wne′


where the symbol ΞG represents an integral kernel depending on momentum P and δK is the
Kronecker delta function.

Proof. We start by writing the function FG relative toG ∈ Gc\+∞ in Fourier space. Due to
the thermal propagator translation invariance, each integral FG(u) in equation (III.14)
may be also written as

FG(u) =

∫
dP

[ ∏
e∈E(G)

∆̂β
(
us(e) − us(e), pe

)]
Ψ̂G(−P, P ),

since ∫ n∏
i=1

dx0idy0idxidyi Ψ(x1, . . . , xn, y1, . . . , yn)eip0ix0ie−ipixie−ip0iy0ieipiyi

= Ψ̂(−p01,p1, . . . ,−p0n,pn, p01,−p1, . . . , . . . , p0n,−pn) ≡ Ψ̂G(−P, P ),

with ∆̂β(u, p) as in equation (III.4). Assume for a moment that we may change the order
of integrations, so that integration in du may be performed prior to the integral with
respect to dP . Then we consider

IG ≡
∫
βBn

duFG(u) =

∫
dP

∫
βBn

du

[ ∏
e∈E(G)

∆̂β
(
us(e) − us(e), pe

)]
Ψ̂G(−P, P ),

(III.15)

and use the Fourier series expression for the thermal propagator, which produces

IG =

∫
dP

∫
βBn

du

[ ∏
e∈E(G)

∑
ne∈Z

∆̃β
(
ne, pe

)
eiωne [us(e)−us(e)]

]
Ψ̂G(−P, P ).

We notice we may reorder the product and the summation above as follows. For each
edge e ∈ E(G) the above kernel contains a Fourier series labeled by some ne; consider-
ing the product of one particular term of the series for some edge e with another term
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belonging to the series relative to some other edge e′ we obtain

exp

(
i
2π

β

[
ne(us(e) − ut(e))− n′e′(us(e′) − ut(e,))

])
,

and hence in the integration IG we obtain a summation of the exponents over the edges.
Namely, when considering all vertices we obtain

exp

i2πβ
n∑
j=1

 ∑
e′∈E(G)
s(e)=j

ne −
∑

e′∈E(G)
t(e′)=j

ne′

uj

,
i.e. one such a term for each value of the label in the Fourer series. In conclusion, the
integration IG becomes

IG =

∫
dP

∫
βBn

du
∑

N∈Z#E(G)

exp

i2πβ
n∑
j=1

 ∑
e′∈E(G)
s(e)=j

ne −
∑

e′∈E(G)
t(e′)=j

ne′

uj

×

×

 ∏
l∈E(G)

∆̃β(nl, pl)

 Ψ̂G(−P, P ),

where the summation in N = (n1, . . . , n#E(G)) corresponds to the #E(G) summations
over Z. Changing the order of the summation over N with the integration with respect
to du and using the decomposition of the Kronecker delta as a finite sum of exponentials
(see [GR07], for instance) we hence obtain

IG =
1

β#E(G)

∫
dP

∑
N∈Z#E(G)

∏
e∈E(G)

1

w2
pe + w2

ne

[
δ(p0 − wpe) + δ(p0 + wpe)

](1

2
+ i

wne
2p0

)
×

×
∏

1≤j≤n
δK

 ∑
e∈E(G),t(e)=j

wne −
∑

e′∈E(G),s(e′)=j

wne′

 Ψ̂G(−P, P ), (III.16)

where we take advantage of the invariance of the Kronecker delta δK under multiplica-
tion by a constant in order to obtain an expression in terms of the Matsubara frequen-
cies, wn = 2πnβ−1. The above expression proves the claim up to equation (III.15). In
addition, the summation of Matsubara frequencies in the Kronecker delta corresponds
to a conservation of such frequencies.

In order to prove equation (III.15), we first of all have to consider the δ distributions
within the thermal propagator. In order to use the Lebesgue’s dominated convergence
theorem, we replace each δ in the propagators by a smooth approximation δϑ and con-
sider the limit δϑ → δ in the end. The presence of smooth functions in the integral kernel
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will not affect the decaying properties of certain integrations to be explicitly discussed
below.

The integration domain Bn\diag(Bn) corresponds to the disjoint union of n! sub-
sets, each one describing the subtraction of one line of the thick diagonal diag(Bn). In
addition, as discussed in the proof of theorem 3 we see that each one of these connected
components may be interpreted as a symplex βSn, via some permutation σ. Therefore,
for any connected component of Bn\diag(Bn), let ϑ ∈ (0, β/(n + 1)) and consider the
splitting of this component of Bn\diag(Bn) in two components: one whose nth argu-
ment’s distance to β is less than ϑ, i.e.

βSn = βS↓n t βSϑn , βSϑn := {u ∈ βSn : β − un < ϑ},

and βS↓n, the complementary of Sϑn with respect to βSn. The heuristic idea is that the
last condition implies a reduction in the distance between elements uk, uk+1 of βS↓n in
order to accommodate a distance ϑ from un to β. Consider then

gG(u, P ) :=
∏

e∈E(G)

∆̂β(us(e) − ut(e))

depending on P via the frequencies wpe , and let

I↓G :=

∫
βS↓n

du

∫
dP gG(u, P )Ψ̂G(−P, P ).

As Ψ̂G is the Fourier transform of a compactly supported distribution, it is an analytic
function, which grows at most polynomially on |P |. In addition, due to the presence of
the mollifi

ed δ-functions in the propagators, the only directions along which the integral ker-
nel gGΨ̂G may present a non-fast decrease would be P ≡ 0 – which means pj = 0 ∀j.
As for the directions on the lightcone, in [FL14], proposition 9 the authors show that,
along directions on the future lightcone, Ψ̂G(−P, P ) is also fast decresing. Finally, for
u ∈ βS↓ the absolute value

|gG(u, P )| ≤ C exp

(
−
(
β − sup |ui − uj |

)
wpk

)
,

with sup |ui − uj | < β − ϑ, is exponentially bounded for some past directed pk.
The βSϑn-contribution may be treated similarly. Due to the KMS property, the ther-

mal propagator is such that, given the permutation π {1, . . . , n} → {n, 1, . . . , n−1} over
G, with π(u) ≡ (un, u1, . . . , un−1), then

gG(u1, . . . , un, P ) = gπ(G)(un − β, u1, . . . , un−1, π(P )),

where π(P ) := (π(p1), . . . π(p#E(G))), π(pk) = −pk if k = n and equal pk otherwise.
Using the translation invariance of the thermal propagator – and thus of gG, we set

(v1, . . . , vn) := (0, u1 + β − un, . . . , un−1 + β − un)
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and notice that u ∈ βSϑn ⇔ v ∈ βS(1)
n , where βS(1)

n := {(v1, . . . , vn) ∈ βSn : v1 < ϑ}.This
therefore means that the integration IϑG may be written as

IϑG =

∫
βS(1)

n

dv

∫
dπ(P ) gπ(G)(v, π(P ))Ψ̂G(−π(P ), π(P )).

We then iterate the above process and split the latter integration domain as βS(1)
n =

βS(1)↓
n t βS(1)ϑ

n as before. Focusing on the second connected component, we repeat
the previous procedure and now end up with the new region βS(2)

n := {v ∈ βS(1)
n :

v2 − v1 < 2ϑ}. Therefore, by repeating this procedure n times, we will end up with an
integration region such that the largest distance between vi, vj does not exceeds n × ϑ.
Since ϑ is arbitrary, we may now consider the limit ϑ→ 0, and so we conclude that only
the βS↓n-contribution is relevant. We then explicitly obtain

I↓G :=

∫
βS↓n

du

∫
dP

[ ∏
e∈E(G)

∆̂β
(
us(e) − us(e), pe

)]
Ψ̂G(−P, P )

=

∫
S↓n
du

∫
dP

∏
e∈E(G)

[
1

(2π)3

∑
n∈Z

1

w2
pe + ω2

n

1

2

(
1 +

iωn
p0

) ∑
σ=±1

δ(p0 + σw)×

× eiωn(us(e)−us(e))

]
Ψ̂G(−P, P ).

We may highlight some important parts of this proof as follows. For P 6≡ 0, which
means for not every pj null, the above kernel is rapidly decreasing as a function of
P for all u ∈ βS↓β . Notice this would not true for u ∈ βSϑβ . We know already from
chapter I and the construction of ∆β that this is truth for non zero momenta, and, in
addition, proposition 8 of [FL14] assures that these are directions of rapid decrease of
Ψ̂. This implies the change of integration order within βS↓n once we have mollified the
Dirac delta functions, as by considering an approximation of δ by a sequence of smooth
functions, we may apply Fubini’s theorem (the presence of smooth functional also does
not affect the directions of rapid decrease of the kernel).

From the proof of theorem 4 above, we have hence obtained the conservation of
Matsubara frequencies, as previously stated. This will become an important elemnet in
the set of Feynman rules for thermal perturbative computations, to be discussed in the
next section.

Looking back at theorems 2 and 4, in light of the discussion presented in the pre-
vious chapter, we see that the expansion of the interacting observable RV (A) due to
the Bogoliubov map involves a doubling in the degrees of freedom with the introduc-
tion of a two-component field and leads to a description equivalent to the real part of
Keldysh-Schwinger contour. This however is not enough to describe thermal equilib-
rium for interacting theories unless the clustering condition (II.29) holds, which leads
to return to equilibrium (II.28). This is not the case when considering the adiabatic
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III.2. The adiabatic limit and Feynman rules for interacting thermal systems

limit, yet to be further discussed. When we consider the rigorous approach to thermal
equilibrium by Fredenhagen and Lindner in [FL14], considering the KMS state ωβ,V ,
the effect of U(iβ) corresponding to the imaginary part integration is equivalent to con-
servation of Matsubara frequencies, as shown in the latter theorem. We hence conclude
that a full description of the thermal equilibrium requires both real-time and Matsub-
ara formalism at each term in the perturbation series, which corresponds to a sum of
connected graphs. A graphic representation for the perturbation series, such as

. . .
K1A K2 Kn

(III.17)

then consists of connected diagrams (bubbles), with inner structure equivalent to the
real-time formalism, all of them connected to each other via the thermal propagator
and producing itself a connected diagram. In the particular case the bubble-diagrams
have their inner structure neglected, we return to the Matsubara formalism, except for
the fact that at each vertex we consider a imaginary time extension with a non null real
part. This may be seen in the arguments of the thermal propagators in the previous re-
sults. On the other hand, if the total diagram is just the union of the connected bubbles,
we obtain only Keldysh-Schwinger formalism with the factorization of imaginary con-
tributions. The next step, therefore, is to analyze the adiabatic limit and then conclude
with the set of Feynman rules for the graphic expansion obtained.

III.2 The adiabatic limit and Feynman rules for interacting ther-
mal systems

We consider the limit h→ 1 in the sense of definition 30 over each term F (u). In order
to highlight the dependence of F on h viaK we shall now denote it as F h. The adiabatic
limit, however, is considered in a two-steps procedure. First we consider the limit h→ 1
of each K, and later on we take the adiabatic limit over F h. The next proposition will
render clear this procedure.

Proposition 25. With K = RV V̇ , consider

K =

∫
R3

dxh(x)HIh(x) :=

∫
R3

dxh(x)

∫
dt χ̇(t)RV

(
V (t,x)

)
.

The von Hove limitHI(x) := limh→1HIh(x) is a well-defined compactly supported kernel.

Proof. As h→ 1 we obtain

lim
h→1
HIh(x) = lim

h→1

∫
dt χ̇(t)RV

(
V (t,x)

)
=

∫
dt χ̇(t)αV(t,x)RV

(
V (0, 0)

)
=

∫
dt χ̇(t)RV ◦ α(t,x)

(
V (0, 0)

)
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III. Graphic representation of thermal equilibrium interacting systems

The causal factorization property as per proposition 15 implies the Bogoliubov map
does not affect the support of its argument. Therefore, due to the support of χ̇ we
conclude the claim.

Let then

F h(u) =

∫
dx

∫
du

n∏
j=1

h(xj)ω
β,c
(
A⊗

n⊗
j=1

αiuj ◦ αV(0,xj)H
I(0)

)
, dx ≡ dx1 . . . dxn.

(III.18)

We see the adiabatic limit procedure we are considering has been performed up to the
interaction term V inRV . This is covered in the theorem above.

Theorem 5. The adiabatic limit at each order in perturbation series

F (u) := lim
h→1

F h(u) = lim
h→1

∑
G∈Gcn+1

1

sym(G)n!
F hG(u)

is well defined. In addition, it implies momentum conservation at each vertex of each graph
G ∈ Gcn+1.

Proof. The proof of this theorem follows to a large degree the proof of theorem 4. Writ-
ing the component of F h to each graph as in (III.15) with the translations terms in (III.18)
results in

F hG =

∫
dX

n∏
j=1

h(xj)

∫
βBn

∫
dP

n∏
k=1

exp

ixk
 ∑
e∈E(G)
s(e)=k

pe −
∑

e′∈E(G)
t(e′)=k

pe′


×

×

 ∏
e∈E(G)

∆̂β
(
us(e) − ut(e), pl

) Φ̂G(−P, P )

with

ΦG(X,Y ) :=
∏

e∈E(G)

δ2

δφs(e)(xe)δφt(e)(ye)

(
A⊗

n⊗
l=1

H(0)
)∣∣∣∣
φ≡0

and Φ̂G its Fourier transform. Now we may interchange the order of integrations in
du and dP provided both A and H(0) are compactly supported – the latter condition
following from proposition 25 above. We hence consider the integration with respect
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III.2. The adiabatic limit and Feynman rules for interacting thermal systems

to dP of

n∏
k=1

exp

ixk
 ∑
e∈E(G)
s(e)=k

pe −
∑

e′∈E(G)
t(e′)=k

pe′


×

×
∫
βBn

du

 ∏
e∈E(G)

∆̂β
(
us(e) − ut(e), pl

) Φ̂G(−P, P )

︸ ︷︷ ︸
=:L(P )

.

The function L(P ), cf. the argumentation employed in the proof of theorem 4, is rapidly
decreasing and thus we can also consider the adiabatic limit h → 1 in the sense of
functions, i.e. we may interchange the limit and the integral with respect to each dxj .
This produces

lim
h→1

F hG =

∫
R3n

dx

∫
dP L(P )×

n∏
k=1

exp

ixk
 ∑
e∈E(G)
s(e)=k

pe −
∑

e′∈E(G)
t(e′)=k

pe′




=(2π)3n

∫
dP L(P )

n∏
k=1

δ

 ∑
e∈E(G)
s(e)=k

pe −
∑

e′∈E(G)
t(e′)=k

pe′



=(2π)3n 1

β#E(G)

∫
dP

∑
N∈Z#E(G)

n∏
k=1

δ

 ∑
e∈E(G)
s(e)=k

pe −
∑

e′∈E(G)
t(e′)=k

pe′

×

×
∏

1≤j≤n
δK

 ∑
e∈E(G),t(e)=j

ωne −
∑

e′∈E(G),s(e′)=j

ωne′

 Φ̂G(−P, P )

as the rapid decrase of L allows for the interchange between integrations in dX and
dP from the first to the second line, and third line corresponds to writing L(P ) as in
equation (III.16). The last term establishes the momentum conservation.

In conclusion, we see that, in the adiabatic limit, there is not only Matsubara fre-
quencies conservation at each bubble vertex of (III.17), but also momentum conserva-
tion at each bubble. We may now recollect the previous results in the following. By
φ(x), we denote the kernel of the linear functional Φf and consider the graphic repre-
sentation of

G(x1, . . . , xN ) := ωβ,V ◦ RV
(
T (φ(x1), . . . , φ(xN )

)
. (III.19)
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III. Graphic representation of thermal equilibrium interacting systems

Due to the results presented in this section, such diagramatic representation is guided
by the set of Feynman rules below.

Feynman rules for thermal interacting systems:

1. The nth order contribution to the perturbative expansion of (III.19) corresponds
to a finite sum of connected graphs only.

2. In 3n-dimensional momentum space, toRV
(
T (φ̂(t1,p1), . . . , φ̂(tN ,pN ))

)
≡ A and

to each H(0) = RV
∫
dt′χ̇(t′)V (t 0) corresponds a connected diagram; each one

of these diagrams is regarded as a bubble, or vertex to the larger diagram; the
number of factorsH(0) plus the number of internal vertices for A must sum up to
the order in perturbation theory n.

3. Edges in the internal vertices are connected via the propagator D̂ in (III.7); bubbles
are connected with thermal propagators (III.4).

4. Impose momentum and Matsubara frequency conservation over each bubble.

5. Multiply each graph by the appropriate numeric factor as in (III.12)

6. Perform anti-Fourier transform and integration over the time variables, consider-
ing cutoffs χ̇ and χ; if x1, . . . xn ∈ Σε, then χ = 1 and its may be neglected.

Up to now we have presented arguments justifying the use of the real-time for-
malism in some cases, and pointed the failure of this formalism to describe thermal
equilibrium for perturbative systems in general. This analysis drove us to the above set
of Feynman rules. We now would like to present some examples of expectation values
computation in which the effect of U(iβ) is not neglectable. This will be the topic of
next section.

III.3 Practical computations in perturbative systems

In the following we shall consider the corrections to the self-energy due to U(iβ) in the
presence of two different interaction terms.

III.3.1 λφ2-theory.

We estimate the expectation value ωβ,V ◦ RV (φ2) with the quadratic interaction

V (φ) =
λ

2

∫
M
dz χ(z0)h(z)φ2(z), (III.20)

where both χ ∈ C∞0 (R) and h ∈ C∞0 (R3) are as before. This computation will be per-
formed up to first order in perturbation theory, as already at this order we shall notice
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III.3. Practical computations in perturbative systems

differences between ωβ ◦ RV and ωβ,V . Considering expansion (I.48), it starts as

ωβ,V ◦ RV
(
φ2
)

=
ωβ
(
RV (φ2) ? U(iβ)

)
ωβ (U(iβ))

= ωβ
(
φ2
)

+ ωβ
(
iV ·T φ2 − iV ? φ2

)
−
∫ β

0
duωβ

(
φ2 ⊗ αiuV̇

)
+O(λ2),

We are therefore mainly interested in the first order difference

Σ1
U (φ2) := ωβ,V ◦ RV (φ2)− ωβ ◦ RV (φ2).

According to the notation established in section I.5 this may be represented as

Σ1
U (φ2) = −

∫ β

0
du

(
φ2(x) αiu′ V̇ (z)

)
= −

∫ β

0
duωβ,c

(
φ2 ⊗ αiuV̇

)
= −

∫ β

0
du

∫
dz χ̇(z0)h(z)αiu(∆+

β )2(x− z)

=

∫ β

0
du

∫
dz χ̇(z0)h(z)

∫
dp (∆̂+

β )2(p)eip(x−z)e−pu

The square of the KMS state two-point function in momentum space ∆̂+
β becomes

F(∆̂+
β )2(p) =∆̂+

β ∗ ∆̂+
β (p) =

∫
dq ∆̂+

β (q)∆̂+
β (p− q)

=
1

(2π)6

∫
dq

{
1

2wq

δ(q0 − wq)
1− e−βwq

+
1

2wq

e−βwqδ(q0 + wq)

1− e−βwq

}
×

×
{

1

2wp−q

δ(p0 − q0 − wp−q)
1− e−βwp−q

+
1

2wp−q

e−βwp−qδ(p0 − q0 + wp−q)

1− e−βwp−q

}
.

In addition, in the adiabatic limit we obtain

h→ 1⇒
∫
dzh(z)eip(z) → (2π)3δ(p).

As each frequency term wk depends only on |k|, the integration with respect to dp in
the adiabatic limit then result in equal frequencies wp and wp−q, and thus

(∆̂+
β )2(p) =

1

(2π)3

∫
dq

{
1

2w

δ(q0 − w)

1− e−βw
+

1

2w

e−βwδ(q0 + w)

1− e−βw

}
×

×
{

1

2w

δ(p0 − q0 − w)

1− e−βw
+

1

2w

e−βwδ(p0 − q0 + w)

1− e−βw

}
=

1

(2π)3

∫
dq

4w2(1− e−βw)2

{
δ(q0 − w)

[
δ(p0 − q0 − w) + e−βwδ(p0 − q0 + w)

]
+e−βwδ(q0 + w)

[
δ(p0 − q0 − w) + e−βwδ(p0 − q0 + w)

]}
=

1

(2π)3

∫
dq

4w2(1− e−βw)2

{
δ(p0 − 2w) + 2e−βwδ(p0) + e−2βwδ(p0 + 2w)

}
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Hence

−Σ1
U (φ2) =

2

(2π)3

∫ β

0
du

∫
dz0dqdp0

1

4w2
q(1− e−βwq)2

χ(z0)
{
δ(p0 − 2wq)+

+ 2e−βwqδ(p0) + e−2βwqδ(p0 + 2wq)
}
eip0(x0−z0)e−p0u

=
2

(2π)3

∫ β

0
du

∫
dz0dqdp0

1

4w2
q(1− e−βwq)2

χ(z0)
{
δ(p0 − 2wq)+

+ 2e−βwqδ(p0) + e−2βwqδ(p0 + 2wq)
}
eip0(x0−z0)e−p0u

=
2

(2π)3

∫ β

0
du

∫
dz0

∫
dq

4w2
q(1− e−βwq)2

χ(z0)

{
e−2wquei2wq(x0−z0)+

+ βe−βwq + e−2βwqe2wque−i2wq(x0−z0)

}
The integration with respect to dz0 then produces the Fourier transform of the cutoff
functions χ̇,

Σ1
U (φ2) =− 2

(2π)3

∫ β

0
du

∫
dq

4w2(1− e−βw)2

{
e2wuei2wx0 ̂̇χ(−2w) + βe−βw+

+ e−2βwe−2wue−i2wx0 ̂̇χ(2w)

}
The integrations throughout the symplex becomes∫ β

0
due±2ωu =

e±2βω − 1

±2ω
,

and hence

Σ1
U (φ2) =

=− 2

(2π)3

∫
dq

4w2(1− e−βw)2

{
e2βω − 1

2ω
ei2wx0 ˆ̇χ(−2w) + βe−βw+

+
e−2βω − 1

−2ω
e−2βwe−i2wx0 ˆ̇χ(2w)

}
=

2

(2π)3

∫
dq

4w2(1− e−βw)2

{
1− e2βω

2ω

[
ei2wx0 ˆ̇χ(−2w) + e−i2wx0 ˆ̇χ(2w)

]
− βe−βw

}
=

2

(2π)3

∫
dq

1

4w2
q

{
b+(wp) + b−(wp)

2ω

[
ei2wx0 ˆ̇χ(−2w) + e−i2wx0 ˆ̇χ(2w)

]
+

− βb+(wp)b−(wp)

}
(III.21)

The oscilatory part of the integral is such that

lim
x0→∞

∫
dq

4w2(1− e−βw)2

1− e2βω

2ω

[
ei2wx0 ˆ̇χ(−2w) + e−i2wx0 ˆ̇χ(2w)

]
= 0
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due to Riemann-Lebesgue lemma. Therefore, in the large time limit we are interested
in, the only contribution due to the cocycle U(iβ), i.e., due to the effect of perturbation
upon the state, becomes

Σ1
U (φ2) = − 1

(2π)3

∫
dq

βe−βw

2w2(1− e−βw)2
= − 1

(2π)3

∫
dq

β

2w2
q

b+(wq)b−(wq). (III.22)

Consequently, the expectation value ωβ,V ◦ RV (φ2) becomes

ωβ,V ◦ RV (φ2) = ω ◦ RV (φ2) + Σ1
U (φ2) +O(λ2),

with the contribution from the Bogoliubov map, according to I.48, given by

ω ◦ RV (φ2) = iωβ
(
V ·T φ2 − V ? φ2

)
+O(λ2).

Up to first order, this term equals

Σ1
RV (φ2) :=ωβ

(
V ·T φ2 − V ? φ2

)
=

∫
dz

 V (z) φ2(x) − V (z) φ2(x)


=

∫
dzχ(z0)h(z)

{
(∆β

F )2(z − x)− (∆+
β )2(z − x)

}
.

As ∆0
F = ∆+

0 + i∆A and setting Wβ := ∆+
β −∆+

0 , where ∆+
0 is the two-point function

of the vacuum state, we have, up to renormalization terms,

(∆β
F )2 − (∆+

0 )2 =
(
∆0
F +Wβ

)2 − (∆+
0 +Wβ

)2
= ∆0

F
2 − ∆+

0
2

+ i2∆AWβ.

Therefore,

Σ1
RV (φ2) =

∫
dzh(z)χ(z0)

(
(∆0

F )2 − (∆+
0 )2 + i2∆AWβ

)
(z, x)

=

∫
dzh(z)χ(z0)

∫
dp0dpF

(
(∆0

F )2 − (∆+
0 )2 + i2∆AWβ

)
(p)eip0(z0−x0)e−ip(z−x).

We now consider each integral above separately, the first part being

(1) ≡
∫
dzh(z)χ(z0)

∫
dp0dpF

(
(∆0

F )2 − (∆+
0 )2
)

(p)eip
0(z0−x0)e−ip(z−x).

The difference between the square of the Feynman propagator and the two-point func-
tion related to the vacuum state of a mass m theory may be obtained by means of the
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general Kählén-Lehmann formula described in chapter I, cf. equation (I.42). Contribu-
tion (1) then becomes

(1) =
i

((2π)3
(−�)

∫
dz0dp0dpχ(z0)δ(p)

∫ ∞
(2m)2

dM2 ρm(M2)
1

M2
∆̂A(p,M)eip0x0e−ip(x−z)

=
i

((2π)3
lim
ε→0+

∫
dz0dp0 �

[
χ(z0)eip0x0

] ∫ ∞
(2m)2

dM2 ρm(M2)
1

(p0 − iε)2 −M2

= − 1

(2π)4
lim
ε→0+

∫
dz0dp0

[
ip0 − i2p0 + ip0

]
χ̇(z0)eip0t

∫ ∞
(2m)2

dM2 ρm(M2)

2M3
×

The remaining contribution to Σ1
RV (φ2) is

(2) ≡ i2

(2π)3

∫
dz′, χ(z0)h(z)

∫
dp0dpF

(
∆AWβ

)
(p)eip

0(z0−x0)e−ip(z−x)

=
i2

(2π)3

∫
dz χ(z0)h(z)

∫
dp0dp ∆̂A ∗ Ŵβ(p)eip0(z0−x0)e−ip(z−x)

The difference between the two-point functions is

Wβ(z − x) =
1

(2π)3

∫
dp

1

1− e−βp0
ε(p0)δ(p2

0 − w2
p)− θ(p0)δ(p2

0 − w2
p)

=
1

(2π)3

∫
dp

1

2wp

{
1

1− e−βp0
δ(p0 − wp) +

e−βp0

1− e−βp0
δ(p0 + wp)− δ(p0 − wp)

}
=

1

(2π)3

∫
dp

1

2wp

{
e−βwp

1− e−βwp
+

1

1− e−βwp

}
=

1

(2π)3

∫
dp

1

2wp

[
1 + 2b−(wp)

]
Combining this expression with

∆(z − x) =
−i

(2π)3

∫
dp

(
e−iwp(z0−x0)

2wp
− eiwp(z0−x0)

2wp

)
e−ip(z−x)

we obtain, in the adiabatic limit — which again force the frequencies to be equal,

(2) =
i2

(2π)3

∫
dz0 θ(z0 − x0)χ(z0)

∫
dp

(
e−iwp(z0−x0)

2wp
− eiwp(z0−x0)

2wp

)
1

2wp

[
1 + 2b−(wp)

]
The integration in dz0 now produces∫

dz0θ(x0 − z0)χ(z0)e±i2ωz
0

= χ(z0)
e±i2wpz0

±i2wp

∣∣∣∣∣
+∞

x0

−
∫ +∞

x0

dz0χ̇(z0)
e±i2wpz0

±i2wp
.

and the above expression becomes

(2) =
1

(2π)3

∫
dp

{
χ(x0)

ei2wpx0 − e−i2wpx0

i2wp
−
∫ +∞

x0

dz0χ̇(z0)
1

i2wp
×

×
(
e−iwp(z0−x0)

2wp
− eiwp(z0−x0)

2wp

)}
1

2wp

[
1 + 2b−(wp)

]
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In the large time limit x0 → 0, the right hand side in the above expression reduces to

(2) = − 1

(2π)3

∫
dq

1

4ω3

[
1 + 2b−(wp)

] [̂̇χ(2w)e−i2wx0 − ̂̇χ(−2w)ei2ωx
0
]

In conclusion, the first order contribution involving solely the correction produced by
the Bogoliubov map on the observable is, in the limit x0 → −∞,

Σ1
RV (φ2) = (1) + (2)

= − 1

(2π)4

∫
dq

1

4w3
p

[
1 + 2b−(wp)

] [̂̇χ(2wp)e−i2wpx0 − ̂̇χ(−2wp)ei2wpx0
]
.

(III.23)

Up to first order in perturbation theory we obtain, according to equations (III.21) and
(III.23), even prior to the large time limit

ωβ,V ◦ RV (φ2) = ωβ(φ2) + Σ1
RV (φ2) + Σ1

U (φ2)

= ωβ(φ2) +− 1

(2π)3

∫
dq

1

4ω3

[
1 + 2b−(wp)

] [̂̇χ(2w)e−i2wx0 − ̂̇χ(−2w)ei2ωx
0
]

+

− 2

(2π)3

∫
dq

4w2
q

βb+(wp)b−(wp)− b+(wp) + b−(wp)

2wp

[
ei2wx0 ˆ̇χ(−2wp) + e−i2wx0 ˆ̇χ(2wp)

]
= − 1

(2π)3

∫
dp

1

4wp

[
b+(wp)b−(wp) +

b+(wp) + b−(wp)

2wp

]
. (III.24)

Looking at the above results, we notice the expectation value computation of φ2

at the state ωβ,V ◦ RV contains a contribution from the cocycle U , corresponding to
Σ1
U (φ2), and another contribution, Σ1

RV (φ2), exclusively from the Bogoliubov map and
which is the result one would obtain by employing the real-time formalism in her/his
computations. We shall return to this discussion in this chapter’s last section.

III.3.2 λφ3 theory.

We now consider the same expectation value computation as above except that now we
are interested in the interaction term

V (φ) =
λ

3

∫
M
dz χ(z0)h(z)φ3(z). (III.25)

Up to second order in perturbation theory, we obtain the expansion

ωβ,V ◦RV
(
φφ
)

= ωβ(φφ) + iωβ
([
V ·T φφ− V ? φφ

])
+ ωβ

([
RV φφ

]
2

)
+

−
∫ β

0
duωβ, c

([
φφ
]
⊗ αiuV̇

)
− i
∫ β

0
duωβ, c

({[
V ·T φφ− V ? φφ

]}
⊗ αiuV̇

)
+

− i
∫ β

0
duωβ, c

([
φφ
]
⊗ αiu

[
V ·T V̇ − V ? V̇

])
+

+

∫ β

0
du2

∫ u2

0
du1 ω

β, c
([
φφ
]
⊗ αiuV̇ ⊗ αiu′ V̇

)
+O(λ3).
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We denoted by [RVA]2 the second order terms within RVA, for simplicity. For the
particular case of interaction term V = λφ3, the above expression simplifies, as

V = λφn, n > 2⇒ ωβ
([
V ? φφ− V ·T φφ

])
= ωβ, c

([
φφ
]
⊗ αiuV̇

)
= 0.

Therefore, in this case the cocycle contribution at second order in perturbation theory
to the self-energy Σ2

U becomes

Σ2
U = −i

∫ β

0
duωβ, c

({[
V ·T φφ− V ? φφ

]}
⊗ αiuV̇

)
+

− i
∫ β

0
duωβ, c

([
φφ
]
⊗ αiu

[
V ·T V̇ − V ? V̇

])
+

∫ β

0
du2

∫ u2

0
du1 ω

β, c
([
φφ
]
⊗ αiu1 V̇ ⊗ αiu2 V̇

)
We shall first consider contribution

(3) ≡
∫ β

0
du2

∫ u1

0
du1 ω

β, c
([
φ(x)φ(y)

]
⊗ αiu1 V̇ ⊗ αiu2 V̇

)
=

∫ β

0
du2

∫ u1

0
du1

φ φ

αiu1 V̇ αiu2 V̇

pin

k

pout

=

∫ β

0
du2

∫ u1

0
du1

∫
dz1dz2 ∆+

β (x, z1)(∆+
β )2(z1, z2)∆+

β (y, z2)αiu1χ̇(z0
1)αiu2χ̇(z0

2)h(z1)h(z2),

where we represented as pin/out the momenta of the incoming/outcoming field in the
diagramatic expression. In Fourier space the above contribution becomes

(3) =

∫ β

0
du2

∫ u2

0
du1

∫
dz1dz2dpindkdpout αiu1∆̂+

β (pin)(∆̂+
β )2(k)αiu2∆̂+

β (pout)×

× χ̇(z0
1)χ̇(z0

2)h(z1)h(z2)eip
0
inx

0
eiz

0
1(k0−p0

in)e−iz
0
2(k0+p0

out)eip
0
outy

0
e−ipinxe−ipouty).

Both the symplex and the time components of the external legs integrations may be
performed independently. Having passed to Fourier space, the cocycle contribution
becomes∫ β

0
du2

∫ u2

0
du1 χ̇(z0

1)χ̇(z0
2)αiu2

(
e−iz

0
2(k0+p0

out)
)
αiu1

(
eiz

0
1(k0−p0

in)
)

=

∫ β

0
du2

∫ u2

0
du1 χ̇(z0

1)χ̇(z0
2)ei(z

0
1−iu1)(k0−p0

in)e−i(z
0
2−iu2)(k0+p0

out)

=

∫ β

0
du2

∫ u2

0
du1 χ̇(z0

1)χ̇(z0
2)eu1(k0−p0

in)e−u2(k0+p0
out)eiz

0
1(k0−p0

in)e−iz
0
2(k0+p0

out),

and therefore the integrations in du1 and du2 result in

S
(3)
2 (β) ≡

∫ β

0
du2

∫ u2

0
du1e

u1(k0−p0
in)e−u2(p0

out+k
0)

=
1

(k0 − p0
in)

{
1− e−β(p0

in+p0
out)

(p0
in + p0

out)
− 1− e−β(p0

out+k
0)

(p0
out + k0)

}
.
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As for the integrations with respect to dz0, we obtain∫
dz0

1dz
0
2 χ̇(z0

1)χ̇(z0
2)eiz

0
1(k0−p0

in)e−iz
0
2(k0+p0

out) = ̂̇χ(p0
in − k0)̂̇χ(p0

out + k0).

In addition, in the adiabatic limit we obtain, for the space integrations dz,∫
dz1

∫
dz2 h(z1)h(z2)e−iz1(k−pin)eiz2(k+pout) → (2π)6δ(k− pin)δ(k + pout).

Contribution (3) may now be written as

(3) =
Z

(2π)6

∫
dpindkdpout Ĝ(pin, pout, k)̂̇χ(p0

in − k0)̂̇χ(p0
out + k0)eip

0
inx

0
eip

0
outy

0
e−ipinxe−ipouty,

where Z is a symmetrization factor and

Ĝ(pin, pout, k) := ∆̂+
β (pin)(∆̂+

β )2(k)∆̂+
β (pout)S

(3)
2 (β)δ(k− pin)δ(k + pout).

The in and out contributions in Ĝ are given, according to (II.8), by

∆̂+
β (p) =

1

2ωp

{
b+
(
ωp
)
δ
(
p0 − ωp

)
+ b−

(
ωp
)
δ
(
p0 + ωp

)}
,

and thus ∆̂+
β (pin)∆̂+

β (pout) contains a combination of terms with equal modes b+(w)2,
b−(w)2, plus terms with different modes b+(w)b−(w), with withwp ≡ wp(pin) = wp(pout)
in the adiabatic limit. The contribution with b2+, for instance, results in∫
dp0

indp
0
out (∆̂+

β )2(k)S
(3)
2 (β)δ(p0

in − wp)δ(p0
out − wp)̂̇χ(p0

in − k0)̂̇χ(p0
out + k0)eip

0
inx

0
eip

0
outy

0

Considering then the large time limit t ≡ x0 +y0 → +∞, the Riemann-Lebesque lemma
then implies that the above contribution vanishes. Since the term with b2− differs from
the former one by a change w → −w, also this contribution vanishes, and we are left
only with terms with opposite modes b+(w)b−(w) from Ĝ. Heuristically, this corre-
sponds to considering only on-shell momenta in the adiabatic limit, but selecting in-
coming and outgoing momentum with opposite orientations. Therefore, we obtain

(3) =
1

(2π)6

∫
dk (∆̂+

β )2(k)

{∣∣̂̇χ(wk − k0)
∣∣2e−iwp(x0+y0)

[
β

k0 − wp
− 1− e−βk0+wp

(k0 − wp)2

]
+

+
∣∣̂̇χ(wk + k0)

∣∣2eiwp(x0+y0)

[
β

k0 + wp
− 1− e−βk0+wp

(k0 + wp)2

]}
b+(wp)b−(wp)

4w2
p

. (III.26)
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Now addressing contribution (1), we have

(1) = −i
∫ β

0
duωβ, c

({[
V ·T φφ− V ? φφ

]}
⊗ αiuV̇

)

= −i
∫ β

0
du

φ φ

V αiuV̇

pin

k

pout

−

φ φ

V αiuV̇

pin

k

pout

= −i
∫ β

0
du

∫
dz1dz2

[
∆β
F (x, z1)−∆+

β (z1, x)
]
(∆+

β )2(z1, z2)αiu∆+
β (y, z2)χ(z0

1)χ̇(z0
2)

× h(z1)h(z2)

=
i2

(2π)6

∫ β

0
du

∫
dz1dz2dpindkdpout ∆̂A(pin)∆̂2

β(k)∆̂β(pout)θ(z
0
1 − x0)χ(z0

1)χ̇(z0
2)×

× h(z1)h(z2)eipin(z1−x)eik(z1−z2)eipout(y−z2)e−p
0
outu

Considering the decompositions ∆ = ∆R−∆R and ∆F = ∆+ + i∆A, the propagator in
the incoming momenta may be written as above. For this contribution also the symplex
integral may be computed directly and results

S
(i)
2 (β) ≡

∫ β

0
du e−u(k0+p0

out) =
1− e−β(k0+p0

out)

(k0 + p0
out)

.

Furthermore, the integration in dz0
2 results in its Fourier transform evaluated at k0+p0

out,
while for dz0

1 we integrate by parts and obtain∫
dz0

1 θ(z
0
1 − x0)χ(z0

1)eiz
0
1(k0−p0

in) =

∫ +∞

x0

dz0
1 χ(z0

1)eiz
0
1(p0

in+k0)

= χ(z0
1)
eiz

0
1(k0−p0

in)

i(k0 − p0
in)

∣∣∣∣∣
+∞

x0

−
∫ +∞

x0

dz0
1 χ̇(z0

1)
eiz

0
1(k0−p0

in)

i(k0 − p0
in)

=
���

���
���

��:0

χ(z0
1)
eiz

0
1(k0−p0

in)

i(k0 − p0
in)

∣∣∣∣∣
+∞

x0

−
∫ +∞

−∞
dz0

1 χ̇(z0
1)
eiz

0
1(k0−p0

in)

i(k0 − p0
in)

.

The first term in the right hand side above becomes zero in the large time limit to be
considered at the end. The causal propagator related to the external leg with momen-
tum pin is transformed into the Wightman function of the β-KMS state by means of the
relation

∆̂β(p) =
i∆̂(p)

1− e−βp0 .
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Analogously to the case of contribution (3), considering the inner form of ∆̂+
β the terms

with b2+ or b2− depending on t0 = 2(x0 + y0) vanish in the large time limit t0 → 0. We
hence obtain

(1) =
1

(2π)6
Z

∫
dk (∆̂+

β )2(k)

{∣∣̂̇χ(k0 − wp)
∣∣2ei2wkt

[
1− eβ(k0−wk)

(k0 − wp)2

]
b−(wk)

4w2
k

+

−
∣∣̂̇χ(k0 + wp)

∣∣2e−i2wkt

[
1− e−β(k0+wk)

(k0 + wp)2

]
b+(wk)

4w2
k

}
.

Finally, contribution (2) corresponds to

(2) = −i
∫ β

0
duωβ, c

([
φφ
]
⊗ αiu

[
V ·T V̇ − V ? V̇

])

− i
∫ β

0
du


φ φ

αiuV αiuV̇

pin

k

pout

−

φ φ

αiuV αiuV̇

pin

k

pout


= −i

∫ β

0
du

∫
dz1dz2αiu∆β(x, z1)

(
∆2
β − ∆F

β
2
)

(z1, z2)αiu∆β(y, z2)χ(z0
1)χ̇(z0

2)h(z1)h(z2)

= −i
∫ β

0
du

∫
dz1dz2αiu∆̂+

β (pin)
[
(∆̂+

β )2 − (∆̂β
F )2
]
(k)∆̂+

β (pout)χ(z0
1)χ̇(z0

2)

× h(z1)h(z2)eipin(x−z1)eik(z1−z2)eip3(y−z2)

The difference between squared propagators may be treated by means of the Kählén-
Lehmann regularization procedure discussed in chapter I, as employed before. We
hence obtain for the in leg, for a suitable choice of renormalization term,

Q(x, z1) :=
[
(∆β

F )2 − (∆+
β )2
]
(x− z1)

=− iθ(−x0)

{∫ +∞

4m2

dM2 ρ2(M)∆(x− z1;M) + 2∆(x− z1)Wβ(x− z1)

}

The symplex integration for (2) is

S
(2)
2 (β) ≡

∫ β

0
du e−u(p0

out+p
0
in) =

1− e−β(p0
in+p0

out)

(p0
in + p0

out)
,

and, besides for the internal lines which have already been treated, the computation of
this contribution follows the same lines as the previous ones: the integrations in z0

1 and
z0

2 may be computed directly, and considering the adiabatic and the large time limit we
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obtain

(2)c=0 =
1

(2π)3
βZ

∫
dk Q̂(k)

{
e−i2wpt

[
1

(p2
0 − wp)

− |
ˆ̇χ(p2

0 − wp)|2

(p2
0 − wp)

]
+ (III.27)

+ ei2wpt

[
1

(p2
0 + wp)

− |
ˆ̇χ(p2

0 + wp)|2

(p2
0 + wp)

]}
b+(wp)b−(wp)

4w2
p

. (III.28)

To this expression we add the contribution coming from the renormalization term,

1

(2π)3
cZ

∫ β

0
du

∫
dz0dp0

indp
0
outdk χ̇(z0)χ(z0)∆̂+

β (p0
in,k)∆̂+

β (p0
out,k)e−u(p0

out+p
0
in)×

× eip0
in(z0−t1)eip

0
out(z

0−t2),

In the large time limit we have

(2)c =
1

(2π)3
cβ
b+(wp)b−(wp)

4w2
p

(III.29)

We should perhaps emphasize that c cannot depend on β, as the renormalization term
in state independent.

Before concluding this chapter, we estimate the total second order contribution to
ωβ,V ◦RV (φφ) for τ = 0 = p in the large time limit t→ +∞. Term Q̂ in (2) is composed
of

F(∆+
βWβ)(k) =

1

(2π)6

∫
dq1dq2

b+(w2)

4w1w2
δ(k− q1 − q2)e−βw2

[
δ(k0 − w1 − w2)+

− δ(k0 + w1 − w2) + δ(k0 − w1 + w2)− δ(k0 + w1 + w2)
]

and

F
(∫ +∞

4m2

dM2 ρ2(M)i∆(x;M)

)
(k) =

∫ +∞

4m2

dM2 ρ2(M)ε(k0)δ
(
(k0)2 − wMk

)
=− ε(k0)θ

(
(k0)2 − w4m2

k

)
ρ2

(√
(k0)2 − |k|2

)
,

where wi ≡ wqi and wµk corresponds to the frequency wk, with mass term µ. We notice
that both the above expressions are odd functions of k0, the first due to the signs in
front of each δ and the second due to ε(k0). Considering then the contribution (2)c=0 in
(III.27) in light of this fact, we see that the whole integrand in (III.27) is an odd function,
since its part which is not described in the two expressions above is an even function.
Consequently, the integration with respect to dk0 returns zero, and the contribution of
(2) reduces to the renormalization term (III.29).

As for contributions (1) and (3), the square of ∆̂+
β may computed as before by means

of the convolution theorem, which results.

(∆̂+
β )2(k) =

1

(2π)6

∫
dq1dq2

b+(w1)b+(w2)

4w1w2
δ(k− q1 − q2)

[
δ(k0 − w1 − w2)+

+ δ(k0 + w1 − w2)e−βw1 + δ(k0 − w1 + w2)e−βw2 + δ(k0 + w1 + w2)e−β(w1+w2)
]
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By selecting the case k = 0, the above integration is restricted to q1 = −q2, which forces
the frequencies to be equal as w1 = w2 ≡ w. Since the integrand then depends only on
|q|2, the integration may be performed in spherical coordinates. We end up with the
total result

Σ2
U =

1

(2π)6
cβ
b+(m)2

4m2
e−βm +

1

(2π)6

π

8

e−βm

m2
b+(m)

∫ ∞
2m

dM

√
1− 4m2

M2
b+

(
M

2

)2

×

×
[
βb+(m)(1− e−βM )

(
| ˆ̇χ(M −m)|2

M −m
+
| ˆ̇χ(M +m)|2

M +m

)
+

+ (e−βm − e−βM )

(
| ˆ̇χ(M −m)|2

(M −m)2

)
(e−β(M+m) − 1)

(
| ˆ̇χ(M +m)|2

(M +m)2

)
+

− 2e−β
M
2 | ˆ̇χ(m)|2 1

m2b+(m)

]
. (III.30)

III.4 Conclusions and remarks.

We based our analysis on a system composed of a real, massive scalar field propagating
over Minkowski space. We supposed the system to be initially both free and prepared
at thermal equilibrium at inverse temperature β > 0. In particular, the condition of ini-
tial thermal equilibrium for the free theory translated into considering a unique KMS
state ωβ . At an arbitrary instant t = −2ε, ε > 0, we then introduced a local, polynomial
interaction term of the general form (II.2), with time cutoff as in (I.37). The form of the
cutoff χ represented also the interaction term smoothly turned on and stable as of a
subsequent instant t = −ε. At a later time, supposing the system had reached again
thermal equilibrium, we considered the expectation value of certain observables, with
the initail KMS state modified into ωβ,V . Following [FL14], we see that thermal equi-
librium property for the perturbatiove theory is then characterized by the state ωβ,V .
For the particular case of compactly supported interaction, the thermalization hypoth-
esis has been legitimated by the return to equilibrium property, described in [DFP18],
which holds provided the interaction term has compact spacial support, as discussed
in proposition 24. However, we again emphasize that the construction of a thermal
equilibrium state ωβ,V in [FL14; Lin13] discussed in the previous chapters does not re-
quire the restriction to compactly supported interaction terms. In order to concretely
illustrate our arguments and conclusions, we particularly considered quadratic and cu-
bic interactions and the self-energy estimations above. The discussion in the previous
section allows for the present conclusions.

Equation (III.30) corresponds to the difference Σ2
U between the FL-analysis and the

real-time formalism, estimated at second order in perturbation theory for the case of a
λφ3-interacting theory, and which tends to zero as β → +∞. In the Σ2

U contribution to
the self-energy, there is a dependence on the cutoff function χ, via the Fourier transform
of χ̇. While in [FL14] the authors proved that ωβ,V does not depend on χ, the fact
that Σ2

U is χ-dependent indicates that the real-time formalism, reobtained by ignoring
the cocycle U(iβ) contribution, presents a sensibility to how the interaction is turned
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on. In addition, we observe that, in the limit χ → θ, the integration with respect to
dM in (III.30) diverges, as in this case F χ̇ = cte. Therefore, the steeper is the curve
χ in the interval (−2ε,−ε), (and, consequently, the more χ̇ tends to a δ-function) the
larger is the factor Σ2

U . This discussion is in agreement with the so-called Bogoliubov
prescription, described for instance in [LW87], which states the requirement that the
interaction term considered ought to be smoothly turned on. In Thermal Field Theory,
the Bogoliubov prescription is considered within the so-called Thermal Wick theorem.
Rather than a theorem, this is an assumption over the system, which should allow for
neglecting initial correlation functions (thus prior to the introduction of the interaction
term) in perturbative computations. In [LS50; Bog62; LW87] this prescription is shown
to hold if the interaction is adiabatically, i.e smoothly turned on. Our aim here is not to
discuss this prescription itself, but merely to stress a connection between the real-time
formalism and the Fredenhagen-Lindner analysis.

In order to consider the adiabatic limit χ → 1, we consider a smooth cutoff χ as in
(I.49), but now with χ|t≥1 ≡ 0 and χ|t<1 ≡ 0. Let now (χn)n∈N be a sequence defined as
χn(t) := χ(t/n). In this way, in the limit n → ∞ we obtain χn → 1, and, as a result, an
interaction term supported in the whole space M. The adiabatic limit is then equivalent
to the time limit often considered in the physics literature tin → −∞, mentioned in the
previous chapter, which corresponds to the interaction being turned on at an arbitrarily
distant instant tin. In addition, performing the limit χ → 1 in this way produces also
χ̇n → 0, which does not follow if we had considered χ → 1 via αtχ for t → +∞.
The suppression of χ̇ as the limit χ̇ implies an always-defined interaction term, with no
contribution from its turning on on expectation values. Moreover, for n→∞,F χ̇(p0) =
F χ̇(np0) vanishes for p0 6= 0, since the Fourier transform of χ̇ is a rapidly decreasing
function. Consequently, in the adiabatic limit χ → 1, the difference Σ2

U reduces to the
first term in the right hand side of (III.30), which does not depend on χ.

As for this contribution to the total difference Σ2
U , the renormalization constant c ∈

C may be picked in such a way that it is null. Since the renormalization constant is state
independent, due to the principle of general covariance described in [HW01; BFV03],
it may not depend on β. It is possible to consider c = 0 in particular, and then, in the
adiabatic limit χ → 1, we have that the real-time and the Fredenhagen and Lindner
formalism coincide for the case of a λφ3-theory in the analysis of ΣU , provided care
is taken in the order in which the limits χ → 1 and h → 1 are taken, as discussed in
chapter II (cf. discussed after equation (II.29), in particular).

The situation is substantially different for the case of a λφ2-theory, as we may see
from subsection III.3.1. In this context, the difference between the FL-analysis and
the results obtained from the real-time formalism is represented in equations (III.21)
and (III.22), the latter referring to the large time limit situation. Considering equation
(III.22), which does not depend on χ, χ̇ or its Fourier transform, we notice that, in the
presence of quadractic interaction terms, the real-time formalism is not equivalent to
the FL-state. In addition, in the case of a λφ4-theory, the interaction term contains a λφ2

contribution proportional to the thermal mass in the algebra (FµCJ~K, ?∆+
β

) due to the
action of the algebra ∗-isomorphism described in chapter I, and as discussed in chapter
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II. Again, we refer to [DHP17] for details. Therefore, we conclude the above results
represent contributions to be found also in the λφ4-theory.

In conclusion, a general description of thermal equilibrium for interacting, pertur-
bative theories is only provided via the FL-state, while the real-time formalism lacks
an intrinsic and independent analytic property for the physical interpretation of a ther-
mal equilibrium state, as discussed after theorem 1 in chapter II. Moreover, although
in particular situations the two descriptions may agree, as has been anticipated already
from chapter II when we discussed the return to equilibrium property, this is not the
case in general. In particular, we have seen one case of a computation in which the
cocycle contribution does factorizes, as suggested in the context of TFT, and another in
which this contribution may not be ignored. We hence conclude that the perturbation
series representation of expectation values for interesting interacting theories, such as
φ2 and φ4, may produce accurate results for thermal equilibrium systems only by con-
sidering the cocycle U(iβ) contribution. In addition, when considering estimates for
the self-energy for the λφ2-theory, we obtained, in equation (III.24), a final result given
by the sum of two contributions, Σ1

U + Σ1
RV , respectively detailed in equations (III.22)

and (III.23). While term Σ1
RV corresponds to the non-vanishing contribution coming

from the cocycle U(iβ), and hence it is the result we would have obtained considering
only the Matsubara formalism, Σ1

RV considers only the effect of the Bogoliubov map
over the observable φ2. Therefore, this latter contribution to the total estimation for the
self-energy in thermal equilibrium results from considering the real-time formalism in-
stead, and we finally see that a complete, perturbative description of this expectation
value requires the combination of both formalisms of TFT, in the sense that the cocycle
U(iβ) in the Fredenhagen and Lindner’s state ωβ,V cannot be neglected. This illustrates
our previous statement that a complete, perturbative characterization of thermal equi-
librium demands considering both formalisms of TFT together.

123



III. Graphic representation of thermal equilibrium interacting systems

124



IV. Secular Effects in perturbative Algebraic
Quantum Field Theory

The appearance of a polynomial dependence on time in the perturbative expansion
of expectation values in QFT, with polynomial degree proportional to the order of per-
turbation, is called a secular effect. That is, this effect is characterized by dependence
on time of the nth-order term in the perturbative expansion of some expectation value,
via a polynomial of degree proportional to n. The nth-order term refers to the contribu-
tion proportional to λn, being λ the perturbation parameter. Therefore, secular effects
are proper of perturbation theory.

Although it is well known that the perturbation series for interacting theories hardly
ever converges, its truncation at a certain order in the perturbation parameter provides
accurate results in many cases (see e.g. [PS95] for examples and discussions). The
situation is, however, substantially different in the presence of a secular growth in time.
In order to illustrate this statement, consider the perturbative expansion of the abstract
expectation value ω(A) of an interacting theory, for some observable A and some state
ω. In this heuristic discussion, we shall not explicitly address how interaction manifests
over the state or the observable. Rather, suppose ω(A) may be written as a formal power
series in terms of a perturbation parameter λ as

ω(A) = ω(A)0 + λω(A)1 + λ2ω(A)2 + . . . ,

where each ω(A)j ∈ C may depend on time. As a truncation of the perturbation series,
we consider an approximation of ω(A) by the first, finitely many terms of the above
series. Consider then a truncation at arbitrary order N . It may be a suitable approxi-
mation to ω(A), provided the parameter λ � 1 implies that the first N contributions
numerically prevail over the (N + 1)th. However, if each individual term in this ap-
proximation presents a polynomial dependence on time with degree proportional to
the power of the fix parameter λ, i.e. ω(A)n ∝ λntan for some a > 0, then, after a long
enough time has passed, the factor tan should prevail over the dependence on λ. This
has two consequence. First, for any truncation at arbitrary order of the perturbation se-
ries, after a long interval the higher order terms in λ should become numerically larger
in absolute value than terms of lower order, thus contradicting the basic assumption for
truncation of the perturbation series. Moreover, the perturbative representation of ω(A)
is evidently divergent in time, which may be in apparent contradiction with properties
of the state ω, in some particular situations.

125



IV. Secular Effects in perturbative Algebraic Quantum Field Theory

The second point mentioned above has to be understood noticing that secular ef-
fects are an artifact of perturbation theory. Therefore, whenever the expectation value
ω(A) may be also exactly calculated, such divergence should not be present in this re-
sult, an apparent contradiction of results and contrary to the Principle of Perturbative
Agreement discussed in subsection I.4.5. In the last few chapters, we have mentioned
an example of interacting theory which allows for both a perturbative and an exact
analysis, namely a real scalar theory with interaction term proportional to φ2. This case
will be further treated in the present chapter.

It has been pointed out in the physics literature how such divergences should ap-
pear in different interacting theories. For instance, in [AAP14] the authors analyze
the coupling of a charged scalar field with an external electrical field. In addittion,
in [AGP16] it is shown how in the collapse of a star and formation of a Schwarzschild
black hole such effect reveals, with an analysis on the relation between such divergences
and Hawking radiation. In the just mentioned papers, but also in other publications
(see also [AP15] and references there mentioned), it is argued that the secular growth
corresponds to the failure of perturbation theory in providing meaningful results for
expectation values. In [AAP14; AGP16] the authors use the Keldysh-Schwinger for-
malism to show how such polynomial divergences appear in the Keldysh propagator.
These divergences, however, would not depend on the particular form of the propaga-
tors employed, and may also be noticed in the computation of two-point functions of
free states.

However, we shall see in this chapter that secular divergences are not an intrinsic
effect of the perturbative expansion of expectation values. It fact, it is a consequence of
a choice of state, and it should disappear when we consider certain states. In the context
of this thesis, we shall be particularly interested in the analysis of thermal equilibrium
states. Therefore, considering for instance the perturbative expansion of an expecta-
tion value with respect to ωβ,V should present no such divergence, since the state is
translation invariant.

In this chapter we show how secular growth appears in the perturbative computa-
tion of two-point functions for the case of a real scalar field in the presence of a simple
self-interaction term of the form of a mass correction. This is similar to the analysis
presented in [AAP14] for the coupling between the quantum scalar field and an exter-
nal electric potential. Furthermore, as in this case it is possible to obtain exact results
for the interacting theory, since, in this particular situation, the perturbation series con-
verges, we use this example to illustrate the fact that secular divergences are a result of
how the perturbative approach to expectation values estimation is performed. In other
words, we show that the appearance of secular divergences does not mean the break of
perturbation theory for interacting theories, instead it comes from treating a stationary
state with respect to the free dynamics as a stationary state for the interacting dynamics.
Secular effects are, hence, shown to come from bad choice of state. Indeed, we show
that if the interacting system is in thermal equilibrium or vacuum, for instance, secular
divergences cannot be present in the expectation values results.

The present chapter is structured as follows. In the first section, we shall treat a
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IV.1. Secular effects in scalar field theories with mass-like interaction terms

particular interacting system in both a perturbative and in an exact manner. Whereas
the perturbative treatment will result in secular divergent terms, the result from the
exact analysis shall not. This illustrates the fact that secullar effects are characteristic
of perturbation theory, and may be found only in this context and in certain cases.
This will be presented in a different language of AQFT, and at the end of section 1
we discuss how secular effects may be observed in this context. In section 2 we then
present an illustrative example of a system in a steady-state, which presents no secular
divergence.

This chapter is based on a research project which, by the time this thesis was written,
had not been concluded yet. Therefore, in the following we present the first results
obtained and indicate a dynamical stability result for certain states. Unfortunately, we
shall not be able to present the proof for this latter conclusion.

IV.1 Secular effects in scalar field theories with mass-like in-
teraction terms

As before, we consider a real, massive scalar field with massm > 0 propagating over M.
We are interested in systems which are initially free, interacting nor with itself nor with
any external field or thermal reservoir at finite temperature, but which presents a self-
interaction term at later times. For the absence of interaction with an external thermal
reservoir at finite temperature, we understand a system which is initially either in the
vacuum state, or in a KMS state at finite temperature β > 0. In particular, the kind of
interaction term we shall be interested in at first is a mass-like correction term. I.e., we
restrict to systems which, at the algebraic level, are described by a Lagrangian as (II.1)
in the particular form

L = L0 +Q =
1

2
∂µφ∂

µφ− 1

2
m2φ2 +Q, Q := −1

2
δm2

∫
dtdxχ(t)h(x)φ2(t,x), (IV.1)

which implies the Klein-Gordon equation of motion of the form

(� +m2)φ = Q′ = −χhδm2φ, (IV.2)

with the presence of a self-interaction term Q, whose functional derivative w.r.t. the
field φ we denote as Q′. The term δm2 > 0 has the form of a mass correction, and the
cutoff function χ ∈ C∞(R), 0 ≤ χ ≤ 1, is in particular set as

χ(t) =

{
0 t ≤ −2ε

1 t ≥ −ε.
(IV.3)

for some arbitrary ε > 0.
The interacting theory may be treated via a perturbative approach to quantum field

theory. In particular, we shall be interested in perturbative methods within algebraic
quantum field theory. However, due to this specific mass-like interaction, considering
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IV. Secular Effects in perturbative Algebraic Quantum Field Theory

the adiabatic limit h→ 1, one might attempt to address the interacting theory as a free
one, but with a mass term µ2(t) := m2 + δm2χ(t) where χ is as in above. At the level of
states this means to consider states ωQ whose two-point function ∆Q

+ solve the equation
of motion [

� + µ2(t)
]

∆Q
+(x, y) = 0, µ2(t) := m2 + δm2χ(t). (IV.4)

Therefore, due to the Principle of Perturbative Agreement, briefly discussed in chapter
I, the above theory may be approached in two different, though equivalent ways. In this
section we intend to analyze the consequences of these two approaches in different cir-
cumstances. First, we consider the well-posedness of the Cauchy problem for equation
(IV.4) prior to the adiabatic limit, and later extend it to the limit case h→ 1. Similarly to
the discussion concerning the Fredenagen and Lindner analysis in chapter II, we shall
also consider a compactly supported cutoff χ at the first place, and later adapt our anal-
ysis to contain a cutoff such as in (IV.3). In the present context, the Cauchy problem 3
assumes the following particular form. Since the Cauchy problem for smooth function
is well posed as discussed in proposition 3, the dynamical equation (IV.4) will be con-
sidered later via modes decomposition. Throughout this chapter, we shall always be
working in the adiabatic limit h→ 1.

Proposition 26. Consider the differential operator P := �+µ2 acting on smooth functions in
E(M), with µ2 ∈ C∞(M) given by µ2(t,x) := m2 + δm2χ(t) > 0, with χ ∈ C∞(R) as above.
In addition, for arbitrary but fixed ε > 0, let Σ := {−2ε} × R3 a Cauchy surface of M. Then,
for given f0, f1 ∈ C∞0 (Σ), there exists f ∈ C∞(M) solution to the Cauchy problem Pf = 0
with initial condition {

f |Σ = f0,

∂0f |Σ = f1.
(IV.5)

We notice that, as the differential operator P differs from the Klein-Gordon oper-
ator � + m2 by a smooth term, their principal symbols coincide and so, according to
definition I.2, P is also normally hyperbolic.

A generic solution f to the Cauchy problem may be written via mode decomposi-
tion as

f(x) =
1

(2π)3

∫
d3p

{
Tp(x0)ψ̂1(p) + Tp(x0)ψ̂2(p)

}
eip(x−y)

for suitable smooth functions ψ̂1, ψ̂2, and modes Tp such that[
∂2
t + w2

p(t)
]
Tp = 0. (IV.6)

Solutions to the Cauchy problem for the two-point function ∆Q
+ in equation (IV.4) may

then be obtained from solutions to the dynamical problem for smooth functions, and
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IV.1. Secular effects in scalar field theories with mass-like interaction terms

we shall be particularly interested in the decomposition of vacuum and KMS states. In
general, however, the modes Tp must also satisfy

Ṫ p(tx)Tp(ty)− T p(tx)Ṫp(ty) = i. (IV.7)

Equation (IV.4) corresponds to the dynamical equation in Fourier space, whereas (IV.7)
is the Wronskian from Klein-Gordon equation in configuration space, which imple-
ments over the modes the requirement that the antysymmetric part of states correspond
to the causal propagator. Although exact expressions for the modes T may be obtained
only in certain conditions (see comments in [AAP14] for instance), these will not neces-
sary for our analysis.

The two-point function of vacuum and KMS states then respectively reduce to

∆+,Q
0 (x, y) =

1

(2π)3

∫
d3pTp(tx)Tp(ty)e

−ip(x−y), (IV.8)

∆β,Q
+ (x, y) =

1

(2π)3

∫
d3p

{
b+(p)Tp(tx)Tp(ty) + b−(p)Tp(tx)Tp(ty)

}
e−ip(x−y), (IV.9)

where, for v ∈M, we denote tv ≡ v0. From equation (II.8), we also recall that

b+(p) :=
1

1− e−βwp
, b−(p) :=

1

eβwp − 1
= e−βwpb+(p).

The above two-point functions are interpreted as respectively describing vacuum or
KMS states, in the sense that each of the functions Tp correspond to free state modes
with mass m for t < −2ε. In equation (IV.9), terms wp in the factors b±(p) could be
replaced with (p2 + m2 + δm2)1/2, in order to describe the two-point function of a
KMS state in the future of Σ. Hence, we consider the Cauchy problem discussed in
the latter two propositions in Fourier space, by writing the two-point functions in the
above forms. As for t < −2ε the modes reduce to

T 0
p(t) =

e−iwpt√
2wp

, (IV.10)

with w2(t) = p2 +m2, which correspond to the free modes in Minkowski space, the ini-
tial conditions discussed previously are then implemented in Fourier space via Tp|t≤−2ε =
T 0
p . This is nothing but the condition that each state ωQ should reduce to the corre-

sponding free state with mass m at earlier times than −2ε. I.e., prior to t = −2ε, ∆+,Q
0

corresponds to the Minkowski vacuum two-point function with mass m, whereas ∆β,Q
+

coincides with the free β-KMS state two-point function with massm in the same region.
Before further addressing the interacting theory as a free theory with a time-dependent

mass term, we consider the perturbative description of the same theory, considering
δm2χ(t) as a perturbation parameter over the free theory. From the modes decomposi-
tion and the general equation of motion in Fourier space, (IV.6) may be written as

(∂2
t + w2

p)Tp(t) = −δm2χ(t)Tp(t).
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IV. Secular Effects in perturbative Algebraic Quantum Field Theory

This treatment consists, in addition, of supposing Tp(t) a power series with parameter
δm2χ(t), as

Tp(t) =
∑
n≥0

τ
(n)
p (t), (IV.11)

This produces the following result, which precludes the described secular effects.

Proposition 27. Let Tp(t) be a solution to (∂2
t +w2

p)Tp(t) = −δm2χ(t)Tp(t), with Tp = T 0
p

cf. equation (IV.10) for t < −2ε. Then,

(i). there exist a sequence of C2(R) functions (τ
(n)
p )n∈N0 , such that Tp may be written as a

(convergent) power series in the parameter δm2 as in equation (IV.11);

(ii). the n-th term of the above power series of Tp(t) is such that

τ
(n)
p (t) = eiwptcn(p)tn +O(tn−1), ∀n ∈ N,

with constants cn(p) ∈ C given by

cn(p) := − i

(2wp)n+1/2
δm2, ∀n ∈ N. (IV.12)

Proof. We first consider item (i). Set Λ(t) := δm2χ(t). Solving the inhomogeneous
equation at each order in the perturbation parameter Λ(t) results in

(∂2
t + w2

p)τ
(0)
p (t) = 0,

(∂2
t + w2

p)τ
(1)
p (t) = −Λ(t)τ

(0)
p (t),

. . .

(∂2
t + w2

p)τ
(n)
p (t) = −Λ(t)τ

(n−1)
p (t).

The first equation above is the free Klein-Gordon equation in momentum space. Con-
sidering the mode which solves this equation T 0

p(t), we obtain

τ
(0)
p (t) = T 0

p(t);

τ
(1)
p (t) = −∆R

(
ΛT 0

p

)
(t);

. . .

τ
(n)
p (t) = ∆n

R

(
ΛT 0

p

)
(t).

with ∆R the retarded propagator of the mass m free scalar theory in 3-momentum
space, cf. (I.10), and with T 0

p(t) the free mode in equation (IV.10). Explicitly, the next
few terms of Tp(t) are

τ
(1)
p (t) = −

∫
R
dt′

θ(t− t′) sin(wp(t− t′))
w0

Λ(t′)
eiw0t′√

2wp
,

τ
(2)
p (t) =

∫
R2

dt′dt′′ θ(t− t′)θ(t′ − t′′)sin(wp(t− t′))
wp

sin(wp(t′ − t′′))
wp

Λ(t)Λ(t′′)
eiwpt′′√

2wp
,
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or, in general,

τ
(n)
p (t) = (−1)n

∫
Rn
dt1 . . . dtn

eiwptn√
2wp

n−1∏
j=0

[
θ(tj − tj+1)

sin
(
wp(tj − tj+1)

)
wp

Λ(tj+1)

]
,

with t0 ≡ t. The above expression consists of n integrations of bounded functions,
which, due to the presence of the θ-functions, may be performed within the region

Sn := {(t1, . . . , tn) ∈ Rn : −∞ < −2ε < tn < · · · < t1 < t}.

Given the support of χ in each Λ(tj), it hence corresponds to n integrations over the
finite interval (−2ε, tj+1), j = 0, . . . , n − 1. In addition, the integrand in each term is a
bounded, smooth function. Therefore, for arbitrary but fixed t each integral exists and
each τ (n)

p is a well-defined function of t.
Considering the general term for the series, we may estimate∣∣∣∣∣∑

n

τ
(n)
p (t)

∣∣∣∣∣ ≤∑
n

∣∣τ (n)
p (t)

∣∣
≤
∑
n

∫
dt1 . . . dtn√

2wp

n−1∏
j=0

∣∣∣∣∣θ(tj − tj+1)Λ(tj+1)

wp

∣∣∣∣∣
≤
∑
n

1√
2wp

(δm2)n

n!wnp
(2ε+ t)n =

1√
2wp

exp

(
δm2

wp
(2ε+ t)

)
.

Hence, for each fixed t the series converge. This concludes the proof of item (i).
Consider the first term τ

(1)
p which differs from the free one. It equals

τ
(1)
p (t) =

1
√

2w
3/2
p

∫ t

−∞
dt′ Λ(t′)

(
eiw0(t−t′) − e−iw0(t−t′)

i2

)
eiw0t′

=
−i

(2wp)3/2
δm2eiw0t

∫ t

−2ε
dt′ χ(t′) +

−i
(2wp)3/2

δm2

∫ t

−2ε
dt′ χ(t′)e−iw0(t−2t′)

=
−i

(2wp)3/2
δm2

{
eiw0t

[∫ −ε
−2ε

dt′ χ(t′) +

∫ t

−ε
dt′
]

+

∫ t

−∞
dt′ χ(t′)e−iw0(t−2t′)

}
where, for all ε > 0,

δm2

∫ −ε
−2ε

dt′ χ(t′) = −δm2

∫ −ε
−2ε

dt′ t′χ̇(t′) ∈ R.

The second term in the last line for τ (1)
p then is proportional to t and diverges as we

consider the limit t→∞. The third integration, on the other hand, after an integration
by parts may be written as∫ t

−∞
dt′ χ(t′)e−iw0(t−2t′) = −iχ(t′)

e−iw0(t−2t′)

2w0

∣∣∣∣∣
t

−∞

+ i

∫ t

−∞
dt′ χ̇(t′)

e−iw0(t−2t′)

2w0
.
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IV. Secular Effects in perturbative Algebraic Quantum Field Theory

Both terms in the right hand side above are bounded in absolute value. In addition, in
the limit t→ +∞ the second integral becomes proportional to the Fourier transform of
a compactly supported smooth function, supp χ̇ ⊂ [−2ε, 0], and hence remains finite.
We then see that the first order polynomial term t in τ (1)

p is not canceled by any other,
and it is the only non bounded contribution.

Having shown the first order term in perturbation series may be written as in the
statement of this present proposition and has a divergent term proportional to t, we
proceed by induction. Suppose the n-th term of the power series τ (n)

p (t) may be written
in terms of constants cn(p) in (IV.12) tn, then the (n + 1)-th term is, for some smooth
function f such that |f(t)| ≤ αtn−1 with α ∈ R,

∆R

(
(∆n

R)n (T 0
p)
)

(t) = ∆R

(
cn(p) t′

n
+ f

)
(t)

=

∫
dt′

θ(t− t′) sin(w0(t− t′))
w0

δm2χ(t′)
eiw0t′

√
2w0

(
cn(p) t′

n
+ f

)
(t′)

=
cδm2

i2w0

∫ t

−2ε

[
eiw0t − e−iw0(t−2t′)

]
[t′n + f(t′)]χ(t′)

= cn+1(p)

∫ t

−ε
dt′
[
eiw0t − e−iw0(t−2t′)

]
[t′n + f(t′)].

= cn+1(p)

∫ t

−ε
dt′ t′n +O(tn−1).

The second integration in the latter line above may be performed by parts to produce
a term proportional to t′n, plus another integration involving t′n−1, and so on. The
remaining terms in the integration produce contributions of order at most n.

The latter proposition asserts the existence of secular divergences in the modes from
equations (IV.8) and (IV.9). Considering the above result within the vacuum state two-
point fucntion (IV.8) , we consider the truncated series at order n for the modes within
the two-point function. This produces

∆+,Q
0 (x, y)

∣∣∣
n

=
1

(2π)3

n∑
k=0

∫
d3p

k∑
l=0

τ
(l)
p (tx)τ

(n−l)
p (ty),

where B(tx, ty,p) is some function of tx, ty and p bounded with respect to its first two
arguments. Considering only the term of order n, we set k = n and neglect the first
summation, thus considering

n∑
l=0

τ
(l)
p (tx)τ

(n−l)
p (ty) =

n∑
l=0

cl(p)tlxcn−l(p)tn−ly .

Introducing the result of the previous proposition into the integral kernel then implies
that the perturbation series representation of ∆+,Q

0 (x, y) described above has a polyno-
mial dependence on time, with polynomial degree equals to the perturbation degree.
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IV.1. Secular effects in scalar field theories with mass-like interaction terms

The same result may be obtained for ∆β,Q
+ in an analogous way. This proofs the pres-

ence of secular effect for the states in (IV.8), (IV.9) when the modes decomposition is
treated via perturbation theory as in proposition 27.

In proposition 27 and the above discussion we see that, treating the interaction term
Λ(t) = δm2χ(t) perturbatively, expectation values with respect to a β-KMS state of the
free theory are divergent in the limit tx + ty → ∞. The fact that the perturbative com-
putations consider only states of the free theory is indeed of fundamental importance
to obtain the secular divergences. Indeed, in the proof of proposition 27 we see that
secular divergences arise from writing the solution of the interacting dynamical equa-
tion with the retarded propagator of the free theory; the positive frequency terms cancel
an oscillating dependence in time which provokes the polynomial dependence in t. If,
however, we had not based our analysis upon an expansion with respect to a free state,
already the dynamical equation for each mode Tp would have been of a different form.
As a matter of fact, had we considered the interacting system at thermal equilibrium
as per the Fredenhagen and Lindner description, we would not have obtained secular
divergences. We shall return to this point in the next subsection below.

Instead of addressing equations (IV.8) or (IV.9) from the perspective of a free the-
ory with time-dependent squared mass m2 + δm2χ(t), we may perform an alternative
perturbation treatment which reveals the absence of secular divergence in expectation
values. Again, from the PPA we know that the perturbative description of this sys-
tem must not show such effect. The idea in comparing these two treatments for the
same dynamical equation is to show that secular effects are characteristic of perturba-
tion theory. I.e., although certain perturbative expansions of expactation values may
not produce secular divergences, these can only be obtained when we consider the per-
turbation series of expectation values. Therefore, if we are able to exactly compute the
given expectation value, the result must not contain such divergences.

In the paragraphs above we shall consider the exact treatment for equations (IV.8)
and (IV.9), and show that no secular effect emerges from the exact analysis. As a conclu-
sion, we shall see that secular divergences are an artifact of perturbation theory indeed.
In order to show that the modes Tp have no polynomial dependence on time, we shall
consider the so-called adiabatic modes

T ap (t) :=
1√

2w(t)
exp

(
−i
∫ t

−∞
dt′w(t′)

)
,

where w2(t) = p2 + µ2(t), as in above. As we shall see explicitly in the next theorem,
these are not a solution to equation (IV.6). For t < −2ε, these modes correspond to the
free modes with square mass m2, whereas in the (adiabatic) limit χ→ 1 they equal the
free modes with square massm2 +δm2. We shall then prove that the difference between
modes Tp and T ap is bounded in time, and as so is T ap , we shall conclude there may be
no secular divergences in modes Tp, such as we encountered in proposition 27.

With the adiabatic modes we construct the function

ωa(x, y) :=
1

(2π)3

∫
d3pT ap(tx)T ap(ty)e

ip(x−y), (IV.13)

133



IV. Secular Effects in perturbative Algebraic Quantum Field Theory

and consider the differences ωQ0 − ωa, ωQβ − ωa in order to prove the theorem below,
which is contrary to the appearance of secular divergences. The function ωa is not
a solution to the dynamical equation, and also should not be seen as the two-point
function of some state.

Theorem 6. The two-point functions of ωQvac and ωQβ are both bounded in time.

Proof. The adiabatic modes

T ap(t) =
1√

2w(t)
exp

(
−i
∫ t

dt′w(t′)

)
,

with w(t) as above, coincide with the free modes in the past and solve the differential
equation(

∂2
t + w2(t)

)
T ap(t) = −λ(t)T ap(t), with λ(t) :=

1

2w(t)

(
ẅ(t)− 3

2

ẇ2(t)

w(t)

)
.

I.e. they fail to solve equation (IV.4) for T ap by an error given by λ(t). We treat this error
as a perturbation parameter in the equation for the modes Tp, associated to ωQ. Hence,
consider [

∂2
t + w2(t) + λ(t)

]
Tp(t) = λ(t)Tp(t)

and, similarly to the previous analysis, we construct modes Tp(t) as a power series,

Tp(t) =
∑
n≥0

τ (n)
p (t) ⇒

[
∂2
t + w2(t) + λ(t)

]∑
n≥0

τ (n)
p (t) = λ(t)

∑
n≥0

τ (n)
p (t),

now with τ (0)
p = T ap . Order by order in the perturbation parameter λ, the last equation

becomes 

[
∂2
t + w2(t) + λ(t)

]
τ

(0)
p (t) = 0[

∂2
t + w2(t) + λ(t)

]
τ

(1)
p (t) = −λ(t)τ

(0)
p (t)

. . .[
∂2
t + w2(t) + λ(t)

]
τ

(n)
p (t) = −λ(t)τ

(n−1)
p (t)

Solving each differential equation we obtain

τ (0)
p (t) = T ap (t), λτ (1)

p (t) = ∆a
R(λT ap (t)), . . . τ (n)

p (t) = (∆a
R ◦Mλ)n (T ap )(t)

in the sense of pairing composition. We denote Mλ as the multiplication by λ(t) op-
erator, and ∆a

R is the retarded fundamental solution of the equation for the adiabatic
modes, which involves the differential operator ∂2

t +w2(t) + λ(t). Therefore, we obtain

∆a
R(λT ap )(t) =

∫
dt1 θ(t− t1)

1√
w(t)w(t1)

λ(t1) sin

(∫ t

t1

dτw(τ)

)
T ap (t1)

(∆a
R ◦Mλ)2 (T ap )(t) =

∫ t

−∞
dt1

∫ t1

−∞
dt2

λ(t1)√
w(t)w(t1)

λ(t2)√
w(t1)w(t2)

sin

(∫ t

t1

dτ1w(τ1)

)
×

× sin

(∫ t1

t2

dτ2w(τ2)

)
T ap (t2),
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and the general term is expressed by

(∆a
R ◦Mλ)n (T ap )(t) =

∫ t

−∞
dt1· · ·

∫ tn−1

−∞
dtn

λ(t1)

w(t)
. . .

λ(tn)

w(tn)
sin

(∫ t

t1

dτ1w(τ1)

)
× . . .

· · · × sin

(∫ t

tn

dτnw(τn)

)
T ap (tn).

The perturbative treatment to the dynamical equation for the modes Tp contrasts sig-
nificantly with the previous perturbative method, as the power series for Tp(t) is not
only convergent, but also bound in time. This might be seen from the estimations∣∣∣∣∣∣

∑
n≥0

(∆a
R ◦Mλ)n (T ap )(t)

∣∣∣∣∣∣ ≤
∑
n≥0

∣∣(∆a
R ◦Mλ)n (T ap )(t)

∣∣
≤
∑
n≥0

1

n!

∫ t

−∞
dt1· · ·

∫ t

−∞
dtn

∣∣∣∣∣ 1√
2w(t)

λ(t1)

w(t1)
. . .

λ(tn)

w(tn)

∣∣∣∣∣
≤ 1√

2w(t)
exp

(∫ ∞
−∞

dt′
∣∣∣∣ λ(t′)

w(t′)

∣∣∣∣) (IV.14)

where the form of λ(t) allows extending the integration to +∞. This is seen from

λ(t)

w(t)
=

1

2w2(t)

[
ẅ(t)− 3

2

ẇ2(t)

w(t)

]
=
δm2

4w3

{
χ̈(t)− χ̇(t)

[
δm2χ̇(t)

2w2
− 3

2w

]}
≤ C ∈ R.

(IV.15)

Since χ is a smooth, compactly supported function, and since the integrand λ/w is
decreases at least as ∼ 1/w3, the integral in the exponent converges. The last inequality
in the previous estimation then implies the perturbation series is absolutely convergent,
and bounded as a function of t. The same analysis shows also the difference between
Tp(t) and the adiabatic modes T ap are bounded, as

∣∣Tp − T ap ∣∣ ≤ 1√
2w(t)

∣∣∣∣exp

(∫ +∞

−∞
dt′
∣∣∣∣ λ(t′)

w(t′)

∣∣∣∣)− 1

∣∣∣∣
Suppose now ωQ is built from the vacuum state of the free theory ωvac. Its two point

function therefore is

ωQvac(x, y) =
1

(2π)3

∫
dpT p(tx)Tp(ty)e

ip(x−y),

and regularization is obtained by the subtraction of adiabatic modes. Work in the three-
dimensional momentum space for simplicity,

ω̂Qvac(tx, ty,p) =T p(tx)Tp(ty)− T
a
p(tx)T ap (ty)

=T p(tx)
[
Tp(ty)− T ap (ty)

]
+
[
T p(tx)− T ap(tx)

]
T ap (ty)
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Therefore the absolute value of the expectation value of the two-point function is

|ω̂Qvac(tx, ty,p)| ≤
∣∣T p(tx)

∣∣ ∣∣Tp(ty)− T ap (ty)
∣∣+
∣∣T p(tx)− T ap(tx)

∣∣ ∣∣T ap (ty)
∣∣

≤ C√
w(tx)w(ty)

∣∣∣∣exp

(∫ +∞

−∞
dt′
∣∣∣∣ λ(t′)

w(t′)

∣∣∣∣)− 1

∣∣∣∣
for some C ∈ R. The integration of the above term in 3-momentum space is well de-
fined, again due to the support of χ̇ and equation (IV.15). We emphasize the importance
of term−1 within the module above, in contrast to estimation (IV.14), which implies the
integral with respect to dp converges. In particular, this means not only that we may
extend the integration of λ/w up to +∞ as stated above; but also that |ω̂Qvac(tx, ty,p)|
behaves at least as ∼ 1/w4. Precisely, the term in the exponential may be estimated as

δm2

4w3

{
χ̈(t)−χ̇(t)

[
δm2χ̇(t)

2w2
− 3

2w

]}
≤

≤ δm2

4(|p2|+m2)3/2

{
χ̈(t)− χ̇(t)

[
δm2χ̇(t)

2(|p|2 +m2)
− 3

2(|p|2 +m2)1/2

]}
≤ C

(|p|2 +m2)3/2

(
1− 1

(|p|2 +m2)
− 1

(|p|2 +m2)1/2

)
for some constant C ∈ R. As a consequence we have

|ω̂Qvac(tx, ty,p)| ≤
∫
d|p| |p|2 2√

w(tx)w(ty)
×

×
∣∣∣∣exp

(∫ +∞

−∞
dt′

δm2

4w3(t′)

{
χ̈(t′)− χ̇(t′)

[
δm2χ̇(t′)

2w2(t′)
− 3

2w(t′)

]})
− 1

∣∣∣∣
≤C ′

∫
d|p| |p|2√
w(tx)w(ty)

∣∣∣∣exp

(
C

(|p|2 +m2)3/2

)
− 1

∣∣∣∣
≤C ′

∫
d|p| |p|2√
|p|2 +m2

1

(|p|2 +m2)3/2
.

The discussion is analogous if we consider the KMS state ωQβ instead. As presented
in proposition ??, its singular part is subtracted via the same procedure adopted for the
vacuum state ωQvac, and the integration in d3p is well defined. In addition, the bound-
ness of ω̂Qβ w.r.t. t is then analogous to the case with ωvac. In this case we write

ω̂Qβ (tx, ty,p) = b+(p)T p(tx)Tp(ty)− T
a
p(tx)T ap (ty) + b−(p)Tp(tx)T p(ty)

= b+
[
T p(tx)− T ap(tx)

]
T ap (ty) + b+T

a
p(tx)

[
Tp(ty)− T ap (ty)

]
+

+ (1− b+)T
a
p(tx)T ap (ty) + b−Tp(tx)T p(ty)

= (b+ + b−)
[
T p(tx)− T ap(tx)

]
T ap (ty) + b+T

a
p(tx)

[
Tp(ty)− T ap (ty)

]
+

+ b−Tp(tx)
[
T
a
p(ty)− T

a
p(ty)

]
.
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We then proceed with estimations analogous to the previous case with ωQvac, considering
that b± is a bounded function of p for the massive theory – in addition, b− being also a
fast decreasing function. We hence obtain

|ω̂Qβ (tx, ty,p)| ≤ C√
2w(tx)w(ty)

∣∣∣∣exp

(∫ +∞

−∞
dt′
∣∣∣∣ λ(t′)

w(t′)

∣∣∣∣)− 1

∣∣∣∣ ,
and we proceed as before.

IV.1.1 Secular Effects in perturbative AQFT.

In pAQFT the secular growth presents in a equivalent manner. We present a brief dis-
cussion and indicate how the divergences revealed in proposition 27 might be seen in
this framework.

In this context we ought to emphasize how perturbation theory is performed when
considering expectation values computations, since, as discussed already throughout
this thesis, it is necessary to consider the effect of interaction both upon observables and
states separately. Therefore, when addressing the perturbative estimation of an abstract
expectation value, it is necessary to explicitly consider the effect of interaction upon all
the objects involved. In order to illustrate this statement, consider the squared-field
observable, whose formal kernel we represent as φ2, and the interacting observable
represented by RQφ2. When considering the expectation value ωβ,V

(
RQφ2(x)

)
, we

may conclude in advance that its computation may not present any secular divergent
contribution, since ωβ,V is a thermal equilibrium state of the interacting theory and,
hence, αQt -invariant, where αQt is the dynamical operator defined in equation (II.15).
This may be recollected in the form of the following proposition.

Proposition 28. Expectation values of observables of the interacting theory in thermal equilib-
rium are time-independent. Hence, they may present no secular divergence.

Proof. After the interaction Q(t) was turned on and a long enough time has passed, in
such a manner that the system returned to thermal equilibrium, it is characterized by a
KMS state ωQβ which differs from the KMS state of the free theory. The time evolution

of the system is, besides, now given by the interacting time evolution αQt rather than
the free evolution operator; this might be seen as a “switch to the interacting picture”,
in the spirit of chapter II. Then, as ωQβ ◦ α

Q
t = ωQβ , we conclude the absence of secular

effects.

However, if we neglect the effect of the interaction term Q upon one of the elements
within ωβ,V ◦ αQt

(
RV φ2(x)

)
, the time invariance may be replaced by the secular ef-

fect. We shall further justify this with the estimations below. Nevertheless, we may see
that the difference in results obtained in expectation values computations, provoked by
implementing the action of interaction upon different elements in different manners,
reveals that secular effect is not an intrinsic failure of perturbation theory. Instead, it is
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a consequence of neglecting the effect of interaction upon the state and/or the dynam-
ics, and hence, in this present example, of misinterpreting a thermal equilibrium state
for the free theory as a thermal equilibrium state for the interacting one. In this subsec-
tion we shall illustrate this by considering the expectation value ωβ,V ◦ αQt

(
RV φ2(x)

)
,

but substituting ωβ,V by ωβ , and therefore choosing a state which is not invariant under
the given dynamics.

Without further introduction, in the presence of the polynomial interactionQ(t), we
first consider the up to first order expansion of ωβ ◦ RQ(φ2(x)),

ωβ ◦ RQ
(
φ2(x)

)
= ωβ(φ2(x)) + iωβ

(
Q ·T φ2 −Q ? φ2

)
+H.O.,

where ωβ is the β-KMS of the free theory with mass m. Whereas the zeroth order term
does not present secular divergent growth in time, since it is a free observable evaluated
with respect to the KMS state of the free theory, which is translation invariant, the first
order contribution equals

ωβ
(
Q ·T φ2−Q ? φ2

)
=

=2

∫
dz
[
∆2
F (z, x)−∆2

+(z, x)
]
χ(t)δm2 + 4

∫
dz∆A(z, x)Wβ(z, x)χ(t)δm2.

The first integral is treated as in chapter III, subsection III.3.1 as[
∆2
F (z, x)−∆2

+(z, x)
]

=−�
∫ +∞

4m2

dM2ρ2(M2)
1

M2
i∆A(z − x,M) + cδ(z − x)

where c is a renormalization constant. Due to the form of the advanced propagator, this
contribution to the first order term of ωβ ◦ RV (φ2) is bounded in time. The remaining
contribution to the first order term is proportional to∫
dz θ(x0 − z0)∆(z, x)Wβ(z, x)χ(z0)h(z) =

=

∫
dzθ(x0 − z0)χ(z0)h(z)

∫
dpF(∆Wβ)(p)eip(x−z)

=

∫ x0

−∞
dz χ(z0)h(z)

∫
dp

(2π)6
dq

b−(2)

4w1w2
[b+(1)δ(q0 − w1) + b−(1)δ(q0 + w1)]

× [δ(p0 − q0 − w2) + δ(p0 − q0 − w2)] eip(x−z)

In the adiabatic limit h → 1, with w1 = w2 ≡ w we obtain the integration with respect
to dq ∫

dq
b+(w)b−(w)

4w2

{
δ(p0 − 2w) + 2δ(p0) + e−βwδ(p0 + 2w)

}
.

In the δ(p0) contribution, the dependence with respect to z0 lies entirely within χ(z0),
and therefore the dz0 integration reduces to∫ x0

−ε
dz0χ(z0) =

∫ 0

−ε
dz0 χ(z0) + t′

∣∣x0

−ε
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which presents a secular growth when we consider the large time limit x0 →∞, which
corresponds to supposing an ever lasting mass perturbation δm2. By considering the
limit of zero temperature β → +∞, we may notice this divergence is also present when
the vacuum state of the free theory is considered.

The computation just performed correspond to the first terms appearing in the ex-
pansion of ωβ ◦ αQt (RQφ2) with respect to the Bogolubov map, with the interacting dy-
namics αQt from equation (II.15) constructed with the local interaction term Q. There-
fore, we conclude that expectation values of certain interacting observables, with re-
spect to the free theory KMS state ωβ , may present secular divergences when the ob-
servable evolves according to the interacting dynamics. In this situation, we notice an
interplay between elements of the interacting and the free theory: the expectation value
ωβ ◦ αQt (RQφ2) consists of an interacting observableRQφ2, which evolves according to
αQt , evaluated with respect to the free state ωβ . If, however, the expectation value had
been estimated with respect to the interacting state ωβ,V , since it is αQt -invariant the
secular divergence would not have been present, in the same manner as ωβ(φ2) may
not contain a secular effect.

In addition to this discussion about the relation between the free state ωβ and the
interacting dynamics αQt , the perturbative analysis of ωβ ◦ αQt has to be compared with
the return to equilibrium property discussed in chapter II, proposition 24. As previ-
ously, provided care is taken in considering the limits h→ 1 and t→ +∞ in the precise
order, ωβ ◦ αQt coincides with the KMS state for the interacting theory ωβ,V , which, as
argued above, cannot produce expectation values with secular effect. This again illus-
trates how such effects are characteristic of perturbative expansions.

Performing instead a perturbative analysis of ωβ ◦ αQt (RQφ2), focused now exclu-
sively on the time evolution of the interacting theory, up to first order we obtain, cf.
equation (II.24),

ωβ ◦ αQt
(
RQφ2

)
= ωβ

(
RQφ2

)
+ i

∫ t

−∞
dt1 ω

β
([
αt1RQ Q̇, αtRQφ2

])
+O(λ2).

It is possible to prove that the above integral in the right hand side results in a term
proportional to t. The interacting observable RQφ2, which is not to be expanded in a
perturbation series in the present, contains cutoffs χ(z0) throughout its terms, while
RQQ̇, on the other hand, has compact support χ̇. Expanding RQQ̇ to first order pro-
duces ∫ t

−∞
dt1

∫
dz χ̇(z0 − t1 + t)ωβ

(
φ2(z) ?RQφ2(x)−RQφ2(x) ? φ(z)

)
.

We observe that the dependence on t1 is entirely contained within the cutoff χ̇. Chang-
ing order of integrations we obtain∫ t

−∞
dt1 χ̇(z0 − t1 + t) = χ(z0 + t− t1)

∣∣t
−2ε

= χ(z0)− χ(z0 + t+ 2ε).
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Although a complete result from the perturbative series above requires considering
also the perturbative expansion of RQφ2, it is possible to notice that the integration of
the latter result, smeared with a smooth, non compactly supported function, produces
an infinite divergence of order one. This may thus be generalized to observables RQA
with A ∈ Floc(M), suppA ⊂ J+(suppχ), other than φ2.

In this subsection, we have then seen how, in the context of perturbative AQFT,
secular effects may emerge from expectation values computations when the state and
the dynamical evolution mix the free and the interacting theory, but that such effects
may not occur in certain cases, when the effect of interaction is considered upon both
these objects. We shall return to this discussion in the future.

In the next section we intend to deepen the analysis of secular effects in AQFT by
treating a simple model of a non equilibrium steady state.
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