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Abstract. In this work we define log-linear models to compare several square contingency tables
under the quasi-independence or the quasi-symmetry model, and the relevant Markov bases are
theoretically characterized. Through Markov bases, an exact test to evaluate if two or more tables
fit a common model is introduced. Two real-data examples illustrate the use of these models in
different fields of applications.
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1. Introduction

Complex models for contingency tables have received an increasing interest in the last
decades from researchers and practitioners in different fields, from Biology to Medicine,
from Economics to Social Science. For a general introduction to the statistical models
for contingency tables see for instance [1], [4] and [11]. Quasi-symmetry and quasi-
independence models are well known log-linear models for square contingency tables.
Starting from Caussinus in [6], several authors have considered such models from the point
of view of both theory and applications, and it is impossible to give a complete account
on all the papers where quasi-independence and quasi-symmetry are studied or used in
data analysis. In the next section we will recall the basic facts on the quasi-independence
and quasi-symmetry models, while for a full presentation and an historical overview the
reader can refer to [4] and [9]. Quasi-symmetry is also the topic of a special issue of the
Annales de la Faculté des Sciences de Toulouse, edited in 2002 by S. Fienberg and P. G.
M. van der Heijden [8].
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Within Algebraic Statistics, quasi-independence and quasi-symmetry are very impor-
tant models for contingency tables, for several reasons. We briefly review why the synergy
between Algebraic Statistics and quasi-independence has been fruitful. Firstly, Algebraic
Statistics provides an exact goodness-of-fit test based on the Diaconis-Sturmfels algorithm.
Such a test is very flexible when applied to complex models, and it allows us to make ex-
act inference also outside the basic independence model, where the classical Fisher’s exact
test is available. When the sample size is small, the use of the asymptotic tests based
on the chi-square approximation of the test statistics may lead to wrong conclusions, and
this fact is even more relevant in this kind of models, where the asymptotics fail also with
moderately large sample sizes, see an example in [13]. Secondly, under quasi-independence
it is possible to fix the diagonal counts, or even to analyze incomplete tables where the
diagonal counts (or an arbitrary subset of cells) are undefined or unavailable. To include
structural zeros in the analysis, the notion of toric statistical model is a generalization of
log-linear model that allows us to study also the boundary. Toric models are described
by non-linear polynomials, but in several cases it is possible to describe the geometry of
such models, or at least it is possible to write their invariants through Computer Algebra
systems. Quasi-independence and quasi-symmetry from the point of view of Algebraic
Statistics can be found in [13], [3], [7], and [2]. Applications of quasi-symmetry to the
problem of rater agreement in biomedical experiments are presented in [14].

In this paper, we use classical techniques from Algebraic Statistics in order to com-
pare several contingency tables under the quasi-independence and quasi-symmetry mod-
els. This is accomplished by the construction of a three-way table and by the definition
of suitable log-linear models in order to determine if two or more tables fit a common
quasi-independence (resp., quasi-symmetry) model, versus the alternative hypothesis that
each table follows a specific quasi-independence (resp., quasi-symmetry) model with its
own parameters. A third model is also introduced, as its matrix representation is a well
known object in Combinatorics, namely the Lawrence lifting of a matrix. For the first two
models, the relevant Markov bases are computed theoretically using a distance-reducing
argument, while for the third model the Markov bases are characterized only in the case of
two tables, and some advices are presented to efficiently run the exact test in the general
case. We show two applications of these models on datasets coming from different areas:
the first example comes from a rater agreement problem in a biomedical experiments,
while the second one concerns the analysis of social mobility tables.

This research suggests several future directions. Since one of the models described
here can be written in the form of a toric fiber product, it would be interesting to study
other forms of toric fiber products with interesting statistical meaning. From the point
of view of Applied Statistics, it would be interesting to study the use of this technique to
make inference on other measures of mobility based on log-linear models, also including
one-sided tests and their semi-algebraic characterization. For an introductory overview of
these measures, with several examples from surveys in European countries, refer to [22]
and [5].

The paper is organized as follows. In Sect. 2 we recall some definitions and basic results
about log-linear models and toric models, with special attention to quasi-independence
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and quasi-symmetry. In particular, we collect here several scattered results on the Markov
bases for these models. In Sect. 3 we show how to define suitable log-linear models to
compare two or more square tables. Given a base log-linear model, we define new log-linear
models through the specification of their model matrices. For quasi-independence and
quasi-symmetry on several tables, the Markov bases are theoretically computed. Sect. 4
is devoted to the illustration of two real-data examples.

2. Markov bases for quasi-independence and quasi-symmetry

In this section we recall some basic definitions and properties of log-linear models, with
special attention to quasi-independence and quasi-symmetry for square two-way tables. A
probability distribution on a finite sample space X with K elements is a normalized vector
of K non-negative real numbers. Thus, the most general probability model is the simplex

∆ =

{
(p1, . . . , pK) : pk ≥ 0 ,

K∑
k=1

pk = 1

}
.

A statistical model is therefore a subset of ∆.
A classical example of finite sample space is the case of a multi-way contingency table

where the cells are the joint counts of two or more random variables with a finite number
of levels each. In the case of square two-way contingency tables, where the sample space
is usually written as a cartesian product of the form X = {1, . . . , I} × {1, . . . , I}, we will
use the notation pi,j to ease the readability. In such a case, the two categorical variables
are denoted with X and Y .

In the classical theory of log-linear models, under the Poisson sampling scheme the cell
counts are independent and identically distributed Poisson random variables with expected
values Np1, . . . , NpK , where N is the sample size, and the statistical model is defined by
constraints on the raw parameters p1, . . . , pK . A model is log-linear if the log-probabilities
lie in an affine subspace of the vector space RK . Given d real parameters α1, . . . , αd, a
log-linear model is described, apart from normalization, through the equations:

log(pk) =

d∑
r=1

Ak,rαr (1)

for k = 1, . . . ,K, where A is the model matrix (or design matrix, [12]). Exponentiating
Eq. (1), we obtain the expression of the corresponding toric model

pk =

d∏
r=1

ζ
Ak,r
r (2)

for k = 1, . . . ,K, where ζr = exp(αr), r = 1, . . . , d, are new non-negative parameters.
Allowing the ζr’s to be non-negative (instead of strictly positive) leads us to consider also
the boundary of the models, with points having some entries equal to zero. It follows that
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the model matrix A is also the matrix representation of the minimal sufficient statistic of
the model. The matrix representation of the toric models as in Eq. (2) is widely discussed
in, e.g., [15] and [7]. It is easy to see from Eq. (1) that different model matrices with the
same image as vector space generate the same log-linear model.

In the two-way case, the simplest (and widely studied) log-linear model is the inde-
pendence model, which models the stochastic independence between the two categorical
variables X and Y . Its log-linear form is

log(pi,j) = µ+ α
(X)
i + β

(Y )
j (3)

with the constraints
I∑
i=1

α
(X)
i = 0 ,

I∑
j=1

β
(Y )
j = 0 . (4)

Quasi-independence and quasi-symmetry are both derived from the independence mod-
el adding constraints on given subsets of cells (typically, the cells on the main diagonal) and
constraints on the symmetry of the table. Although quasi-independence can be defined for
general rectangular tables with fixed counts on an arbitrary subset of X , see [2], here we
restrict our attention to the case of square tables with fixed counts on the main diagonal.
The log-linear form of the quasi-independence model is

log(pi,j) = µ+ α
(X)
i + β

(Y )
j + γiδi,j (5)

where δi,j is the Kronecker delta. Also in the quasi-independence model the constraints
in Eq. (4) hold.

The log-linear form of the quasi-symmetry model is

log(pi,j) = µ+ α
(X)
i + β

(Y )
j + γi,j (6)

with the constraints

I∑
i=1

α
(X)
i = 0 ,

I∑
j=1

β
(Y )
j = 0 , γi,j = γj,i , i, j = 1, . . . , I .

In Eq. (6), the α
(X)
i are the parameters of the row effect, the β

(Y )
j are the parameters of

the column effect, while the parameters γi,j force the quasi-symmetry. Comparing Eqs. (1)
and (6) it is easy to explicitly write the model matrix Aqs for the quasi-symmetry model.
The first non-trivial example of quasi-independence and quasi-symmetry models is the
3× 3 case, and in this first case the two models coincide as log-linear models. A possible
choice is reported in Fig. 1.

Notice that in Atqs each column represents a cell of the table (the cells are ordered
lexicographically for convenience), and each row represents a parameter. Analyzing the
structure of Atqs, the first 7 rows of Atqs form the model matrix of the independence model
Atind, while the last three rows of Atqs define one real parameter for each diagonal cell, and
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Atqs =



1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1


Figure 1: The model matrix of the quasi-symmetry model for I = 3.

hence force the diagonal cells to be fitted exactly. This parametrization is redundant, since
the model has 1 degree of freedom, and therefore 8 parameters are sufficient to describe
the model. The ideal of the independence model with model matrix Aind is the set of all
2× 2 minors of the table of probabilities, i.e.,

IAind
= Ideal(p1,1p2,2 − p1,2p2,1, p1,1p2,3 − p1,3p2,1, p1,1p3,2 − p1,2p3,1,

p1,1p3,3 − p1,3p3,1, p1,2p2,3 − p1,3p2,2, p1,2p3,3 − p3,2p2,3,
p2,1p3,2 − p3,1p2,2, p2,1p3,3 − p3,1p2,3, p2,2p3,3 − p3,2p2,3) , (7)

while for the quasi-independence model and for the quasi-symmetry model from the matrix
Aqs we have only one binomial:

IAqind
= IAqs = Ideal(p1,2p2,3p3,1 − p1,3p3,2p2,1) .

From the ideals above one can easily derive the corresponding Markov bases. Given a
model matrix A, recall that a move is a table m with integer entries such that Am = 0,
and that a set of moves MA is a Markov basis if all fibers

FA,b = {f ∈ Nk : Atf = b}

are connected. Following [7], from the point of view of computations, the easiest way to
build a Markov basis is to compute the binomials in a system of generators of the toric
ideal IA of A and to transform such binomials through the logs: xm

+ − xm− 7→ ±m =
±(m+ −m−). For instance, the ideal IAqs yields a Markov basis with only two moves:

m = ±

 0 +1 −1
−1 0 +1
+1 −1 0

 .
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To conclude this section, we collect some results on Markov bases for quasi-indepen-
dence and quasi-symmetry models to be found in [3], [2], [7], and [17].

A loop of degree r on X is an I × I a move m = ±mr(i1, . . . , ir; j1, ..., jr) for 1 ≤
i1, . . . , ir ≤ I, 1 ≤ j1, . . . , jr ≤ I, where mr(i1, . . . , ir; j1, . . . , jr) has entries

mi1,j1 = mi2,j2 = . . . = mir−1,jr−1 = mir,jr = 1,
mi1,j2 = mi2,j3 = . . . = mir−1,jr = mir,j1 = −1,

and all other elements are zero. The indices i1, i2, . . ., are all distinct, as well as the indices
j1, j2, . . ., i.e.

im 6= in and jm 6= jn for all m 6= n ,

A loop of degree 2, m2(i1, i2; j1, j2), is called a basic move, and a loop mr is called
df 1 if its support does not contain the support of any other loop. A loop mr is called a
symmetric loop if {i1, . . . , ir} = {j1, . . . , jr}.

The first result concerns quasi-independence with possible structural zeros. Let S be
the set of structural zeros.

Proposition 2.1. The set of df 1 loops of degree 2, . . . , I with support on X \ S forms a
unique minimal Markov basis for I × I contingency tables under the quasi-independence
model with possible structural zeros. When the fixed cells of the table are located only on
the main diagonal, the minimal Markov basis is formed by the df 1 loops of degree 2 and
3.

For the quasi-symmetry model we have the following

Proposition 2.2. The set of symmetric loops of degree 3, . . . , I with support outside the
main diagonal form a unique minimal Markov basis for I × I contingency tables with
structural zeros under the quasi-symmetry model. This set of moves is also a Graver
basis.

3. Comparison of several tables under quasi-independence and
quasi-symmetry

As outlined in the Introduction, in this section we define three log-linear models to
compare two or more square tables under quasi-independence and quasi-symmetry, and
we study the corresponding Markov bases. Let us consider H tables (H ≥ 2) and define
a three-way contingency table T by stacking the H tables. Conversely, each original table
is a layer of the table T . Let K ′ = HI2 be the number of cells of T . Since the definition
of the new models can be done starting from a generic log-linear model on the two-way
table, we present the models in a general context, and then we write the explicit log-linear
representation in the case of quasi-independence and quasi-symmetry in order to highlight
the meaning of such new models in our cases.

Definition 3.1. Let A be the model matrix of a log-linear model. We define three log-
linear models for T :
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• Under the model M0 we assume that all the layers follow a common model with
model matrix A;

• Under the model M1 we assume that each layer of the table T follows a model with
model matrix A with its own parameters, without further constraints;

• Under the model M2 we assume that each layer of the table T follows a model with
model matrix A with its own parameters, and with the additional constraint of fixed
marginal sums over the layers.

The model matrices of M0, M1 and M2 have a simple block structure. In fact:

AtM0
=


At · · · At

1K
. . .

1K

 AtM1
=

 At

. . .

At

 AtM2
=


At

. . .

At

IK · · · IK


where 1K is a row vector of 1’s with length K, IK is a the identity matrix with dimensions
K ×K and each empty block means a block filled with 0’s. The matrix AtM2

is the H-th
order Lawrence lifting of At and its properties in terms of Markov and Graver bases have
been studied in [19] and [18].

As noticed in the Introduction, it is easy to see from the matrix representations above
that the model M0 is built up from a base model (with model matrix A) taking the same
model with the same parameters on all the layers. On the other hand, the model M1

takes the same base model on all the layers, but it allows different model parameters
on each layer. Writing explicitly the log-linear form of the three models in the case of
quasi-independence we have the equations below. For M0:

(M0) log(pi,j,h) = µ+ µh + α
(X)
i + β

(Y )
j + γiδi,j (8)

with the constraint
∑H

h=1 µh = 0 in addition to the constraints on α
(X)
i and β

(Y )
j naturally

derived from the basic quasi-independence model in Eq. (5). The second model M1 is
defined by

(M1) log(pi,j,h) = µ+ µh + α
(X)
i,h + β

(Y )
j,h + γi,hδi,j (9)

with the constraint
∑H

h=1 µh = 0 in addition to the constraints on α
(X)
i,h and β

(Y )
j,h derived

from the basic quasi-independence model in Eq. (5) and valid on each layer of the table
T . The third model M2 is defined by

(M2) log(pi,j,h) = µ+ µh + µi,j + α
(X)
i,h + β

(Y )
j,h + γi,hδi,j (10)

with the same constraints as in M1 plus the additional constraints
∑I

i=1 µi,j = 0, j =

1, . . . , I and
∑I

j=1 µi,j = 0, i = 1, . . . , I.
In the case of quasi-symmetry we obtain the expressions below. For M0:

(M0) log(pi,j,h) = µ+ µh + α
(X)
i + β

(Y )
j + γi,j (11)
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with the constraint
∑H

h=1 µh = 0 in addition to the constraints on α
(X)
i , β

(Y )
j and γi,j

naturally derived from the basic quasi-symmetry model in Eq. (6). The second model M1

is defined by

(M1) log(pi,j,h) = µ+ µh + α
(X)
i,h + β

(Y )
j,h + γi,j,h (12)

with the constraint
∑H

h=1 µh = 0 in addition to the constraints on α
(X)
i,h , β

(Y )
j,h and γi,j,h

derived from the basic quasi-symmetry model in Eq. (6) and valid on each layer of the
table T . The third model M2 is defined by

(M2) log(pi,j,h) = µ+ µh + µi,j + α
(X)
i,h + β

(Y )
j,h + γi,j,h (13)

with the same constraints as in M1 plus the additional constraints
∑I

i=1 µi,j = 0, j =

1, . . . , I and
∑I

j=1 µi,j = 0, i = 1, . . . , I.
With a simple linear algebra argument, it easy to see that M0 ⊂ M1 ⊂ M2. As a

consequence, these models can be used in two ways. They can be applied separately, to
define goodness-of-fit test to contrast the observed table with a given model, or they can be
used to define a test for nested models, see e.g. [1] where several examples are introduced
and discussed. In the next section we will focus on tests for nested models.

Now, we compute the Markov bases for the models M0, M1 and M2 defined above. Let
M be a Markov basis for quasi-independence (or quasi-symmetry). In the proofs below
we will make use of a distance-reducing argument, introduced in [21].

For the model M0, define the following two types of moves b:

type 1: fix a move m ∈ M and split it on the different layers with the condition that each
row of m belongs to one layer.

type 2: choose integers 1 ≤ i1 < i2 ≤ I and 1 ≤ j1 < j2 ≤ I and define the moves ±b where
b has zero coordinate except for

bi1,j1,h1 = 1
bi2,j2,h1 = −1
bi1,j1,h2 = −1
bi2,j2,h2 = 1

for 1 ≤ h1 < h2 ≤ H.

Consider as a set of moves
M0 = B1 ∪ B2

where Bi is the set of moves of type i.

Proposition 3.2. The set M0 above is a Markov basis for the model M0.

Proof. Let v ∈ ZI×I×H . Then v ∈ KerZ(AtM0
) if and only if

i) At
(∑H

h=1 v•,•,h

)
= 0 that is

∑H
h=1 v•,•,h ∈ KerZ(At);
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ii)
∑I

i,j=1 vi,j,h = 0 for all 1 ≤ h ≤ H

where ii) follows directly looking at the vectors of ones 1K in the definition of AtM0
.

Let u, v be vectors with same value of the sufficient statistic, i.e. AtM0
u = AtM0

v. We
want to prove that there exists b ∈ B such that

u+ b ≥ 0

and
||u+ b− v||1 < ||u− v||1.

Since u and v are distinct with AtM0
u = AtM0

v then there exists a positive entry in
u− v, say ui1,j1,h1 − vi1,j1,h1 > 0. Suppose that such entry belongs to the main diagonal,
i.e., i1 = j1. Then there exists another layer h2 such that ui1,j1,h2−vi1,j1,h2 < 0. Moreover,
by the condition ii), there exists a positive entry of u − v in the layer h2 and a negative
entry in the layer h1: ui2,j2,h1 − vi2,j2,h1 < 0 and ui3,j3,h2 − vi3,j3,h2 > 0 for some indices
i2, i3, j2, j3. Now consider the move b ∈ B2 defined by

bi1,j1,h1 = −1
bi1,j1,h2 = +1
bi3,j3,h2 = −1
bi3,j3,h1 = +1

that satisfies ||u− v||1 > ||u+ b− v||1.
Thus, we can consider only the case where u − v is zero on the main diagonal of all

layers. Let U and V be the sum over the H layers of u and v, respectively. By condition
i), U − V ∈ KerZ(At). By Props. 2.1 and 2.2, there exists a distance reducing move m
which is a df 1 loop (in the case of quasi-independence) or a symmetric loop (in the case
of quasi-symmetry):

||U +m− V ||1 < ||U − V ||1
Let I = {(i1, j1), (i1, j2), . . . , (it, jt), (it, j1)} be the set of the indices where m has nonzero
entries. Without loss of generality we can suppose that mi1,j1 = −1. The move m is
defined such that

mα,β = +1 if and only if Uα,β − Vα,β < 0
mα,β = −1 if and only if Uα,β − Vα,β > 0

for all (α, β) ∈ I, except at most for the last index (it, j1), where mit,j1 = +1.
Now, we split m in the H layers. For this aim, notice that Uα,β−Vα,β < 0 implies that

there exists a layer h such that uα,β,h − vα,β,h < 0, and similarly Uα,β − Vα,β > 0 implies
that there exists a layer h such that uα,β,h − vα,β,h > 0. We then split m by putting the
+1 in the layer with a negative entry of u − v and −1 in the layer with a positive entry
of u− v. This can be done for all (α, β) ∈ I \ (it, j1). The last +1 can be assigned to an
arbitrary layer. Thus we have a matrix b defined by a sequence of indices

I ′ = {(i1, j1, h11), (i1, j2, h12), . . . , (it, jt, htt), (it, j1, ht1)}
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Now, we arrange the entries in such a way that the entries in each row belong to the same
layer. This ensures that the split move b satisfies the condition ii) above.

Let us consider the first row and the corresponding indices (i1, j1, h11), (i1, j2, h12)
where b is nonzero. By construction, ui1,j1,h11 − vi1,j1,h11 > 0 and ui1,j2,h12 − vi1,j2,h12 < 0.
If h11 = h22 we have concluded, otherwise there is an entry (α, β, h12) in the layer h12
such that uα,β,h12 − vα,β,h12 > 0. Now, consider the preliminary move b(p) ∈ B2 defined by

b
(p)
α,β,h12

= −1

b
(p)
i1,j1,h12

= +1

b
(p)
i1,j1,h11

= −1

b
(p)
α,β,h11

= +1.

If ui1,j1,h12 − vi1,j1,h12 < 0, then the move b(p) is distance-reducing and we have concluded.

Otherwise, ||u+b(p)−v||1 = ||u−v||1 and ui1,j1,h12 +b
(p)
i1,j1,h12

−vi1,j1,h12 > 0, and therefore
we can move the −1 into the layer h12. Now, the remaining +1’s in b can be simply moved,
row by row, in the same layer of the corresponding −1 and this is enough to conclude:
there is a move b ∈ B1 such that ||u+ b(p) + b− v||1 < ||u− v||1.

Remark 3.3. The Markov basis for the model M0 can be computed also within the frame-
work of toric fiber products, see [20], by passing to consider the ideal I ⊂ K[x1,1, . . . xI,I ]
of the common model for all the layers and the empty ideal J = (0) ⊂ K[y1, . . . , yH ]. The
ideal of the model M0 is given by the kernel I × J of the map

K[p1,1,1, . . . pI,I,H ] → K[x1,1, . . . xI,I ]/I ⊗K K[y1, . . . , yH ]/J
pi,j,h 7→ xi,j ⊗ yh

The procedure defined in [20] to write the generators of such an ideal through the lift of
the binomials of the base model plus suitable quadratic moves yields more generators than
required. Thus we prefer to prove Prop. 3.2 by a more constructive proof, based the on
the distance reduction method.

However, our proof strongly depends on the form of the base model and on the corre-
sponding Markov basis. Thus, Prop. 3.2 is valid only when the base model is the quasi-
independence or the quasi-symmetry model. Of course a similar proof can be carried out
for some other special base models, but a proof for a generic model matrix A would require
the toric fiber product, and this is beyond the scopes of this paper.

Example 3.4. If I = 3 and H = 2 an example of move of type 1, for both the quasi-
independence and the quasi-symmetry models, is drawn in Fig. 2.

We remark that, while in the quasi-independence model the diagonal cells are fixed,
this is no longer true when two or more tables are compared under the model M0. In fact,
the moves in B2 act also on the diagonal cells.
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1 �1 0

0 0 0

0 0 0

�1 0 1

0 1 �1

0 0 0

±

2

Figure 2: An example of split move of type 1 for the model M0.

Remark 3.5. Let H = 2. In this case the minimal Markov basis for M0 has I2(I2− 1)/2
moves of type 2 and I + 1 moves of type 1 for any move of degree d in the base model.
These last ones are obtained by putting in the first layer the first t rows, with 0 ≤ t ≤ I,
of the move in the base model, and the remaining rows in the second layer.

In general, it is possible to move a row of a move of type 1 in a different layer using
two moves of type 2. For example, if we consider the move of Fig. 2, which is not in the
minimal Markov basis for the model M0, this can be written as in Fig. 3. Notice that
in such decomposition the −1’s appear, for the first time, where they are in the move to
decompose, or where previously there was a +1. Thus, if the original move can be applied
then also the three successive moves in Fig. 3 can be applied; these are, in order, a move
of type 2, a move of type 1 in the minimal Markov basis and another move of type 2. In

0 �1 0

0 1 0

1 0 0

�1 0 0

0 0 0

0 0 0

0 0 0

1 �1 0

�1 0 1

0 0 0

0 1 �1

0 0 0

1 0 0

�1 0 0

0 0 �1

0 0 1

0 0 0

0 0 0

+ +

1

Figure 3: The decomposition of the move for the model M0 in Fig. 2 using moves in the minimal Markov basis.

the proof of Prop. 3.2, we did not restrict to use only minimal moves to make the proof
more readable.

By the previous remark we get that the degrees of moves in the model M0 are not
greater than the degrees of moves in the base model.

The model M1 is easy to analyze, and the moves are given by the following proposition.
Although other proofs of this result are possible, we provide a proof using again a distance-
reducing argument.
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Proposition 3.6. The set of moves

M1 = {(m, 0, . . . , 0), (0,m, 0, . . . , 0), . . . , (0, . . . , 0,m) : m ∈M}

is a Markov basis for M1.

Proof. Let v ∈ ZI×I×H and denote by v|h the h−th layer of v, for 1 ≤ h ≤ H. Then
v ∈ kerZ(AtM1

) if and only if v|h ∈ kerZ(At) for all h = 1, . . . ,H.
Let u, v be two vectors with same value of the sufficient statistic, i.e. AtM1

u = AtM1
v.

We want to prove that there exists b ∈M1 such that

u+ b ≥ 0 and ||u+ b− v||1 < ||u− v||1 . (14)

Since u and v are distinct with AtM1
u = AtM1

v then there exists a positive entry in u−v, say
ui,j,h− vi,j,h > 0. Let us fix our attention on layer h. By hypothesis (u− v)|h ∈ KerZ(At),
hence one has Atu|h = Atv|h. For the base model we know there exists a move m such
that

u|h +m ≥ 0 and ||u|h +m− v|h||1 < ||u|h − v|h||1 .
Define the move b by putting m on the h−th layer and 0 on all other layers. It is immediate
to see that such a move satisfies the conditions in Eq. (14), and this is enough to conclude.

Example 3.7. If I = 3 and H = 2 the moves for the model M1 for quasi-independence
and quasi-symmetry are drawn in Fig. 4.

1 �1 0

0 0 0

�1 0 1

0 0 0

0 1 �1

0 0 0

±

0 0 0

�1 1 0

0 0 0

1 0 �1

0 0 0

0 �1 1

±

2

1 �1 0

0 0 0

�1 0 1

0 0 0

0 1 �1

0 0 0

±

0 0 0

�1 1 0

0 0 0

1 0 �1

0 0 0

0 �1 1

±

2

Figure 4: The moves for the model M1.

For the model M2, we restrict to the case of two layers. Let us consider a Graver basis
G for the model matrix At, and consider the set of moves

L = {(m,−m) : m ∈ G} .

Remark 3.8. For quasi-symmetry, the Markov basis from Prop. 2.2 is also a Graver basis,
while in the case of quasi-independence we need to consider the set of all df 1 loops of
degree 2, . . . , I.
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Proposition 3.9. The set L is a Graver basis (and thus also a Markov basis) for the
model M2.

Proof. This follows from Theorem 7.1 in [19].

Example 3.10. For example, if I = 3 the are only two moves for the model M2 for both
the quasi-independence and the quasi-symmetry models. They are drawn in Fig. 5.

1 �1 0

�1 1 0

�1 0 1

1 0 �1

0 1 �1

0 �1 1

±

1

Figure 5: The moves for the model M2.

For more than 2 layers (i.e., for higher Lawrence configurations), the Markov basis for
M2 may be computed through 4ti2 [10], but the number of moves increases rapidly with I
and H. A valid alternative in this case is to run the Markov chain of the Diaconis-Sturmfels
algorithm without a Markov basis, as described in Chapter 16 of [2].

We point out that the model M2, based on the Lawrence lifting of the model matrix
A, has mainly a theoretical interest. Nevertheless, in several applications of Algebraic
Statistics the Lawrence lifting has been used, see e.g. [17], and therefore we have reported
here some relevant results for the sake of completeness.

4. Examples

In this section we present two numerical examples where the comparison of two quasi-
symmetry tables may be used. Before introducing the two numerical examples, we briefly
recall the Diaconis-Sturmfels algorithm, by adapting the notation to the case of a test for
nested models to contrast model M0 inside the model M1. For details on the Diaconis-
Sturmfels algorithm, see [7].

Let f be the observed table of counts, and write f as a vector of length K ′ according
to the row labels of AM0 . Moreover, let p be the vector of probabilities associated to f .
The test for nested models with null hypothesis H0 : p ∈ M0 ⊂ M1 versus H1 : p ∈ M1

can be done using the log-likelihood ratio statistic

G2 = 2

K′∑
k=1

fk log

(
f̂0k

f̂1k

)
,
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where f̂0k and f̂1k are the maximum likelihood estimates of the expected cell counts under
the models M0 and M1 respectively. In the asymptotic theory, the value of G2 must be
compared with the quantiles of the chi-square distribution with the appropriate number
of degrees of freedom, depending on the dimensions of the table.

We use here the Diaconis-Sturmfels algorithm based on a Markov basis M0 of the
model M0. Given the observed table f , its reference set under M0 is

F(f) =
{
f ′ ∈ NK′ : AtM0

f ′ = AtM0
f
}

and it is connected using the algorithm below. At each step:

1. let f be the current table;

2. choose with uniform probability a move m ∈M0;

3. define the candidate table as f+ = f +m;

4. generate a random number u with uniform distribution over [0, 1]. If f+ ≥ 0 and

min

{
1,
H(f+)

H(f)

}
> u

then move the chain in f+; otherwise stay at f . Here H denotes the hypergeometric
distribution on F(t).

After an appropriate burn-in-period and taking only tables at fixed times to reduce cor-
relation between the sampled tables, the proportion of sampled tables with test statistics
greater than or equal to the test statistic of the observed one is the Monte Carlo approx-
imation of p-value of the log-likelihood ratio test. The results in this section are based
on Monte Carlo samples of size 10, 000, and the corresponding asymptotic p-values are
displayed for comparison.

4.1. Rater agreement data

The data in Tab. 1 summarize the results of a medical experiment involving the eval-
uation of agreement among raters. Two independent raters are asked to assign a set of
medical images to 5 different stages of a disease (levels 1 to 5 in increasing order of severity
of the disease). To check the relevance of a thorough training of the raters, a first set of
images has been classified before the training session, while a second set has been classified
after the training session.

We use the quasi-symmetry model, and the Markov basisM0 for the model M0 consists
of 2 · 1004 moves (i.e., 1004 moves, each of them with the two signs). First, we run two
exact tests for the goodness-of-fit of the two tables separately under quasi-symmetry, and
we obtain exact p-values equal to 0.912 and 0.791 respectively (G2 = 1.578 and G2 = 4.303
respectively, with 7 df). Running the test for a unique quasi-symmetry model described in
the previous section, the exact test gives a p-value equal to 0.029 (G2 = 30.589 with 18 df,
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Table 1: Rater agreement data. Columns represent the grading assigned by the first rater, rows represent the
grading assigned by the second rater. The data in the left panel have been collected before the training session,
the data in the right panel have been collected after the training session.

1 2 3 4 5 1 2 3 4 5

1 10 2 1 4 0 1 16 5 1 0 0
2 4 8 4 1 1 2 0 15 2 1 0
3 0 0 10 3 1 3 1 3 14 1 1
4 1 1 4 11 0 4 0 2 0 14 3
5 0 1 3 3 10 5 0 2 0 3 14

corresponding to an asymptotic p-value equal to 0.014). While both the layers fit a quasi-
symmetry model very well, they do not fit a common quasi-symmetry model. This means
that there are significant differences in the classification of the medical images before and
after the training. In other words, there are counts in the same position but in different
layers which make not plausible the use of a common quasi-symmetry model. In order to
check where such counts are actually located, and therefore to detect which pairs of ratings
are to be considered the cause of the departure from a common quasi-symmetry, one could
consider the squared (standardized) residuals, assuming that the cells with the greatest
squared residuals correspond to the cells with strong departure from the null hypothesis.
Applying this analysis, one sees that several cells with high squared residual (namely, 5
out of 6 cells with squared residual higher than 2) pertain to the stage 3, meaning that
the training session has changed (hopefully, improved) the agreement on the classification
of this stage of the disease.

Further analyses can be performed within the Algebraic Statistics framework using the
tests for outliers and patterns of outliers, and therefore the theory of Markov bases for
incomplete tables, as introduced in [16], where several numerical examples are discussed.

4.2. Social mobility data

As a second numerical example we consider the data reported in Tab. 2 (adapted from
[5] and originally collected during the “Italian Household Longitudinal Survey”) where the
inter-generational social mobility has been recorded on a sample of 4, 343 Italian workers in
1997. The data take into account the gender, and thus we have separate tables for men and
women. There are 4 categories of workers. A: “High level professionals”; B: “Employees
and commerce”; C: “Skilled working class and artisans”; D: “Unskilled working class”. In
[5] these data are analyzed extensively with a thorough presentation of a lot of models to
describe special patterns of mobility. Here we merely use the simplified version displayed
in Tab. 2 to show the practical applicability of the methodology introduced in Sect. 3 also
in this context.

We use again the quasi-symmetry model, and the Markov basisM0 for the model M0

is formed by 2 · 200 moves. If we consider the two layers separately, we obtain exact p-
values are equal to 0.051 and 0.088 respectively (G2 = 6.703 and G2 = 8.279 respectively,
with 3 df). Although this fit may appear weak, nevertheless the situation dramatically
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Table 2: Table of social mobility in Italy (1997). Columns represent the father’s occupation, rows represent the
son’s (or daughter’s) occupation. Male respondents in the left panel, female respondents in the right panel.

A B C D A B C D

A 172 31 31 28 A 137 52 29 15
B 108 49 24 46 B 78 46 14 23
C 174 84 301 272 C 142 100 124 145
D 225 148 236 664 D 164 181 141 35

changes when considering the test for nested models. Running the test for a unique
quasi-symmetry model, the exact test produces a p-value equal to 0 (G2 = 112.687 with
12 df, corresponding to an asymptotic p-value less than 10−15), meaning that there is a
strong departure from the null hypothesis. Combining these results, one can conclude that
the two genders present strong differences in terms of patterns of mobility. To see what
cells contribute to that difference, one can use the techniques illustrated in the previous
example.
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