
Delineation of the movement disorders
associated with FOXG1 mutations

ABSTRACT

Objective: The primary objective of this research was to characterize the movement disorders
associated with FOXG1 mutations.

Methods: We identified patients with FOXG1 mutations who were referred to either a tertiary
movement disorder clinic or tertiary epilepsy service and retrospectively reviewed medical re-
cords, clinical investigations, neuroimaging, and available video footage. We administered a
telephone-based questionnaire regarding the functional impact of the movement disorders and
perceived efficacy of treatment to the caregivers of one cohort of participants.

Results: We identified 28 patients with FOXG1 mutations, of whom 6 had previously unreported
mutations. A wide variety of movement disorders were identified, with dystonia, choreoathetosis,
and orolingual/facial dyskinesias most commonly present. Ninety-three percent of patients had a
mixed movement disorder phenotype. In contrast to the phenotype classically described with
FOXG1mutations, 4 patients with missense mutations had a milder phenotype, with independent
ambulation, spoken language, and normocephaly. Hyperkinetic involuntary movements were a
major clinical feature in these patients. Of the symptomatic treatments targeted to control abnor-
mal involuntary movements, most did not emerge as clearly beneficial, although 4 patients had a
caregiver-reported response to levodopa.

Conclusions: Abnormal involuntary movements are a major feature of FOXG1 mutations. Our
study delineates the spectrum of movement disorders and confirms an expanding clinical pheno-
type. Symptomatic treatment may be considered for severe or disabling cases, although further
research regarding potential treatment strategies is necessary. Neurology® 2016;86:1794–1800

GLOSSARY
HVA 5 homovanillic acid; MDS 5 myoclonus-dystonia syndrome.

FOXG1 (located on chromosome 14q12)1 has a crucial role in the development of the fetal
telencephalon and is primarily involved in promoting neural precursor proliferation and cerebral
cortical expansion.2 FOXG1 continues to be expressed in neurons postnatally and through
adulthood and has been linked with promoting survival of postmitotic neurons.3 Mutations
in FOXG1 produce a distinct phenotype4–6 typically manifesting in infancy and early childhood
with acquired microcephaly, epilepsy, motor and cognitive delay, severe intellectual disability
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and absent language.7 Neurodevelopmental
delay is a presenting feature,1 often accompa-
nied by poor feeding, irritability, hypotonia,
and visual inattention. Epilepsy of varying
severity presents in infancy (often as early-
onset epileptic encephalopathy) or childhood.
Multiple seizure types (including generalized
tonic-clonic, myoclonic, and complex partial
seizures with or without generalization) have
been associated with FOXG1 mutations.8

Delayed myelination, frontotemporal abnor-
malities, and corpus callosum abnormalities
are often identified on brain imaging.6,8,9

Abnormal involuntary movements have been
reported in FOXG1 syndrome,10 but they have
not been characterized in detail. The objective of
this study was to define the FOXG1-associated
movement disorder phenotype, examine func-
tional impact, and describe the caregiver-
reported value of available treatments.

METHODS Standard protocol approvals, registrations,
and patient consents. This study was approved by the Univer-
sity of Rochester Research Subjects Review Board (RSRB43415),

the National Research Ethics Service in the United Kingdom

(National Research Ethics Service Committee: London–Blooms-

bury, REC reference: 13/LO/0168, IRAS project ID: 95005),

and Great Ormond Street Hospital Research and Development

Audit Department (reference: 15NM32). Written informed con-

sent was obtained from all guardians of participants. Consent to

disclose was obtained from the guardians of all participants iden-

tifiable on video footage.

Patient ascertainment. Twenty-eight patients with mutations

in FOXG1 were identified as part of ongoing studies of develop-

mental brain disorders. Sixteen were ascertained through the

Genetic Studies of Developmental Brain Disorders research pro-

gram (Rochester, NY) and 12 either through the Study of Inher-

ited Metabolic Diseases program (London, UK) or through UK

clinical services. Details of the epilepsy and neurodevelopmental

outcome of 18 of 28 patients have been previously published.7,8

Genetic analysis. All patients were diagnosed with FOXG1
mutations as part of their routine clinical care using clinically

available testing, through (1) chromosomal microarray studies

identifying gene deletions/duplications, (2) targeted FOXG1 gene
sequencing, or (3) a diagnostic multiple gene panel for early

infantile epileptic encephalopathy and severe neurodevelopmen-

tal delay.11 Although FOXG1 cis-regulatory elements have been

hypothesized to be present in the region distal to the gene,7,12,13

patients with 14q12 microdeletions that did not encompass

FOXG1 were not included in this study.

Movement disorders. Characterization of the movement disor-

ders, through direct clinical examination and/or evaluation of

video footage, was possible for 25 of 28 patients. In 13 of 25

cases, movements were assessed in person by investigators. Videos

of sufficient quality were obtained from 17 patients. These were

independently rated by 3 different teams of movement disorder

specialists and consensus agreement was reached. Information

from both sources was utilized for the characterization of

movement disorders. Observed movements were classified ac-

cording to established criteria.14 For all 25 patients, a detailed

retrospective review of medical records and clinical investigations

was performed. Sixteen caregivers completed a telephone-

administered questionnaire regarding abnormal involuntary

movements and perceived response to medication.

RESULTS Genetics. Most FOXG1 mutations occurred
de novo, with the exception of those found in siblings
(table 1, table e-1 on the Neurology® Web site at
Neurology.org), inherited from clinically unaffected
parents with presumed somatic mosaicism. A wide
variety of mutations were reported, 6 of which
(c.572T.G, p.Met191Arg; c.695A.G, p.Asn232Ser;
c.946del, p.Leu316Cysfs*10; c.981C.A, p.Tyr327*;
c.1186C.A, p.Cys396*; c.263_278del16) have not
been previously reported in the literature (table 1 and
table e-1).

General clinical, radiologic, and biochemical features.

Within the cohort, patient age ranged from 18
months to 25 years (median 6 years, 7 months; mean
8 years, 4 months). The sexes were equally repre-
sented, with 14 male and 14 female patients. Micro-
cephaly, defined as greater than 2 SDs below the
mean for age, was present in 85% (23/27) and
acquired postnatally in most cases (table e-2).
Seventy-nine percent of patients (22/28) were
diagnosed with epilepsy, and of the remaining 6
patients, 2 had a history of febrile convulsions
(table e-2). Neurodevelopmental delay was present
in all cases. Notably, 4 of 5 patients with missense
mutations had a relatively mild phenotype,
manifesting normal head growth, independent
ambulation, spoken language, and purposeful hand
function. The fifth patient (patient ID DB12-016)
with a missense mutation (c.577G.A; p.Ala193Thr)
had a phenotype more similar to classic FOXG1
disorder, although he did have a relatively mild
movement disorder consisting only of stereotypies. In
contrast to those with missense mutations, patients
harboring large-scale deletions, frameshift variants or
nonsense mutations tended to be more severely
affected, with a phenotype more consistent with the
classically described FOXG1 disorder (table e-2).1,7

MRI brain scans were available for review in 21 of
28 patients (figure e-1, table e-2). Common findings
included corpus callosum abnormalities (86%, 18/21
patients), frontal or frontotemporal underdevelopment
(71%, 15/21 patients) and mild cerebellar hypoplasia
(43%, 9/21 patients). Myelin maturation was assessed
in 12 patients, 9 of whom showed delayed myelination.
No obvious radiologic basal ganglia abnormalities were
seen. CSF neurotransmitter analysis was undertaken in
12 patients. Abnormalities, namely, low homovanillic
acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA),
were seen in 17% of patients (2/12) (table e-2).
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Table 1 Movement disorder phenotypes and response to therapeutic interventions in the FOXG1 cohort

Patient ID Sex Age
Mutation
type Dystonia Myoclonus

Chorea/
athetosis

Orofacial
dyskinesia Stereotypies

Other movement
phenotype Drugs trialed Drug response

DBL01-01 M 7 y Frameshift Y N Y Y Y N Levodopa More purposeful movements, increased
dexterity

DBL01-02 M 4 y Deletion Y Y Y Y N Levetiracetam Stable

DBL01-03 M 2 y Nonsense Y Y Y N Y N N NA

DBL01-04 M 2 y Nonsense Y N Y Y N N N NA

DBL01-05 F 1 y, 6 mo Frameshift Y N Y Y N N Levodopa Worse (plus agitation)

DBL01-06 F 8 y Deletion Y N Y Y Y N Levetiracetam, trihexyphenidyl,
levodopa

Levodopa: Increased concentration, more
purposeful movements, increased dexterity

DBL01-07 F 17 y Frameshift Y N Y Y Y N Trihexyphenidyl, gabapentin,
diazepam, levodopa

Levodopa: Movement severity/frequency
improvement, more focused

DBL01-08 M 2 y, 1 mo Frameshift N N Y Y Y N Levodopa, clobazam Stable

DBL01-09 M 17 y Missense Y Y N Y N Distal hand tremor Clonidine, levodopa Levodopa: Improved speech and movement

DBL01-010a1 M 10 y Missense Y Y Y N N N N NA

DBL01-010a2 F 13 y Missense N N Y N N N N NA

DBL01-010a3 F 17 y Missense N Y Y Y N N N NA

DB12-001 M 4 y, 8 mo Nonsense N N Y Y N N N NA

DB12-002 F 4 y, 11 mo Nonsense N N Y Y N N N NA

DB12-003 F 2 y, 6 mo Deletion No info No info No info No info No info No info Clonazepam Worse

DB12-004 F 3 y, 7 mo Deletion Y N Y Y Y N N NA

DB12-006 M 6 y, 4 mo Frameshift Y Y Y Y N N Levodopa Stable

DB12-008 F 1 y, 7 mo Deletion No info No info No info No info No info No info N NA

DB12-016 M 13 y, 9 mo Missense N N N N Y N Baclofen Stable

DB12-017a1 F 9 y, 8 mo Deletion No info No info No info No info No info No info Trihexyphenidyl Stable

DB12-017a2 F 6 y, 10 mo Deletion Y N Y Y Y Tics Guanfacine, sertraline Stable

DB13-007 M 3 y, 7 mo Nonsense Y N Y Y Y N Risperidone, clonidine, tetrabenazine Improvement with tetrabenazine

DB13-029a1 F 25 y, 10 mo Frameshift Y N N N Y N N NA

DB13-029a2 M 22 y Frameshift Y N Y Y N N Clonazepam Stable

DB13-041 M 8 y, 1 mo Frameshift Y Y Y Y N N Diazepam, chlorazepate, tetrabenazine,
levodopa, aripiprazole, risperidone,
gabapentin, topiramate

Worse or stable

DB13-052a1 F 5 y Frameshift Y N Y Y Y N Baclofen Worse

DB13-052a2 F 5 y Frameshift Y N Y Y Y N Baclofen Worse

DB14-031 M 9 y Frameshift Y N Y Y Y N Levodopa, Artane, clobazam,
tetrabenazine

Improvement with clobazam, tetrabenazine

Abbreviations: info 5 information; N 5 no; NA 5 not applicable; Y 5 yes.
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Movement disorder phenotypes. Abnormal involuntary
movements were present in all patients with available
data on involuntary movements (n 5 25) (table 1,
videos 1–8). Chorea/athetosis (88%, 22/25 patients)
(video 1), orolingual/facial dyskinesias (80%, 20/25),
and dystonia (76%, 19/25) (video 2) were most fre-
quently present. Orolingual/facial dyskinesias were
often prominent and included forehead wrinkling,
grimacing, lip pursing, jaw opening, and tongue pro-
trusion (video 3). Facial dystonia was also featured in
2 cases (DB13-029a1 and DB13-029a2) (video 4).
Stereotypies (video 5) were present in 52% of patients
(13/25) and more commonly involved the upper
limbs with mouthing of toys, grasping clothes or
objects, nail biting and, rarely, midline wringing.
Stereotypies in the lower limbs (pulling, pedaling),
trunk (body rocking) and mouth (bruxism) were
seen less frequently. Myoclonus was observed in
28% of patients (7/25). Myoclonus and dystonia
were both present in 24% (6/25) (video 6). Tremor
(video 7) and tics were each identified in one patient.
Pyramidal features were also commonly reported, and
many patients were noted to have axial/peripheral
hypotonia, brisk deep tendon reflexes, upgoing
plantar responses, and ankle clonus.

Sixteen families completed a parent-proxy ques-
tionnaire about involuntary movements (table e-3).
The presence of abnormal involuntary movements
was recognized by family members in 100% of pa-
tients (16/16), developing by 12 months of age in
all but one case, in which the age at onset was
unknown (table e-3). While the abnormal move-
ments remained relatively stable in 50% of patients
(8/16), for approximately half (44%, 7/16), the
movement disorder became progressively worse over
the disease course. Movements were described as gen-
eralized in 75% of patients (12/16) and were univer-
sally functionally impairing, interfering with toileting,
dressing, sleeping, eating, playing, learning and non-
verbal communication. Overall in our cohort, only
1 of 28 patients was hospitalized specifically for man-
agement of their movement disorder, although none
presented with status dystonicus.

Medications prescribed to manage the movement
disorder were often not effective per the report of
caregivers. A number of medications (table 1) were
trialed in 18 of 28 patients, with no obvious benefit in
many cases. Worsening of abnormal involuntary
movements or intolerable side effects were reported
in 28% of cases (5/18). Clobazam was reported as
helpful in 1 of 2 patients and tetrabenazine in 2 of
3 patients. Levodopa provided benefit in 4 of 9 pa-
tients. Two of the levodopa responders were noted to
have an improvement in abnormal involuntary move-
ments, whereas 2 had an improvement in overall dex-
terity and upper limb function but no obvious change

in abnormal involuntary movements. Response to
levodopa was particularly evident in patient
DBL01-09, who had low CSF levels of HVA and
5-HIAA indicating impaired dopamine and serotonin
turnover. This patient had a significant reduction in
drooling, dysarthria, dystonia and hand tremor
(video 7) and, also, improvement of speech and
language function. The remainder of the levodopa
responders (patients DBL01-01, DBL01-06, and
DBL01-07) had normal CSF neurotransmitter levels.
Patient DBL01-08, who had low CSF HVA and
biopterin levels, did not report any obvious benefit
after levodopa administration.

DISCUSSION Abnormal involuntary movements
were present in 100% of our cohort of patients with
FOXG1 mutations, which supports findings from
recent studies that movement disorders are a cardinal
feature of this disorder.13,15 Our study clearly demon-
strates that FOXG1 syndrome is associated with a wide
spectrum of predominantly hyperkinetic movement
disorders, most frequently generalized chorea, distal
athetosis, dystonia and orolingual/facial dyskinesias.

Stereotypies were reported in more than half the
cases. We observed a number of non-midline stereo-
typies mainly with hand separation, which were both
symmetrical and asymmetrical in nature (video 5).
Repetitive finger movements, pulling, grasping,
touching, and stroking, as well as lower limb pedal-
ing, were frequently seen.

Myoclonic jerks were also seen in some patients.
In 2 of 5 patients with missense FOXG1 mutations,
the combination of myoclonus and dystonia was a
prominent clinical feature (videos 6–8), and reminis-
cent of SGCEmutation–positive myoclonus-dystonia
syndrome (MDS) caused by DYT11 mutations.16–18

MDS is reported to show genetic heterogeneity,17 and
we propose that FOXG1 mutations should be
included in the differential diagnosis when investigat-
ing SGCE mutation–negative MDS, especially in the
context of neurodevelopmental delay.

Variability in movement disorder symptoms and
severity was observed in our patients with missense
mutations. Patient DBL12-016 exhibited only stereo-
typies (table 1). Four patients with missense muta-
tions (DBL01-09, DBL01-10a1, DBL01-10a2,
DBL01-10a3) had a strikingly milder general clinical
presentation, less typical MRI findings (table e-2),
and the hyperkinetic movement disorder was the
most prominent and disabling clinical feature. Intra-
familial differences were also evident in siblings
DBL01-10a1, DBL01-10a2, and DBL01-10a3
(video 8, table 1). The underlying basis for such var-
iability is currently unclear but FOXG1 genotype as
well as additional genetic, epigenetic or environmen-
tal factors may be contributory.
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The involuntary abnormal movements were uni-
versally described as functionally impairing in the
subset of families who completed the telephone-
based questionnaire. It is, therefore, not surprising
that many patients tried a number of different medi-
cations to suppress the involuntary movements. Little
has been reported about the efficacy of therapeutic
agents for FOXG1-related movement disorders.
Within our cohort, the majority of medications pre-
scribed to manage abnormal movements were re-
ported by caregivers to be nonbeneficial, worsen
overall function or cause intolerable side effects.
Two perhaps notable exceptions were tetrabenazine
and levodopa, which led to clinical improvement in
some patients. We found associations of FOXG1mu-
tations with secondary CSF neurotransmitter abnor-
malities, which have been described in several
neurometabolic disorders including MECP2 muta-
tions and early-onset epileptic encephalopathies.19,20

Our observations suggest that further studies are nec-
essary to determine the role of monoamines and
related drugs in this condition, in order to optimize
treatment regimens for patients with FOXG1 muta-
tions. Furthermore, while more clinical data are
needed to further evaluate drug efficacy in patients
with FOXG1 mutations, our data suggest that a trial
of levodopa or tetrabenazine could be considered for
the symptomatic treatment of patients with FOXG1
mutations who have prominent or disabling dystonia
or dyskinesia.

FOXG1 has an important role in fetal telenceph-
alon development but its function in postmitotic neu-
rons is less clear. Human adult brain transcriptional
atlas data21 indicate that FOXG1 is highly expressed
in the basal ganglia (especially in the putamen and
caudate) compared to many other brain areas (http://
human.brain-map.org).22 Many studies suggest that
FOXG1 has a postulated role in regulating neuronal
death.1,23 Recent studies in mice24 suggest that
FOXG1 mutations cause overexpression of a group
of genes in the basal ganglia that are involved in
movement control, although no models directly
examining neuronal function or survival in the stria-
tum currently exist. Neuronal dysfunction or early
apoptosis within the basal ganglia could explain the
movement disorders and aberrant neurotransmitter
patterns seen in this condition. However, the mech-
anism by which mutations in FOXG1 and other
related genes cause disease is yet to be fully elucidated
and likely to be multifactorial.

We were able to well characterize the phenotypic
spectrum of movement disorders associated with
FOXG1 mutations. However, given the retrospective
nature of our study, there are limitations to our
approach. Participants were identified as having a
FOXG1 mutation as part of their clinical care, and

not in the context of a genetic epidemiology study. As
such, our cohort may show selection bias and not be
representative of the full FOXG1 mutation spectrum.
Despite these limitations, we still portray a broad
phenotypic spectrum including both mildly and
severely affected patients. As a retrospective study,
there was no standardized approach to videotaping.
Video recordings were not standardized, and the
majority of videos were filmed in the home setting
by family members. As a result, for some cases, our
clinical assessment was limited by video quality and
the presence of different movement disorders (partic-
ularly episodic movements that may not have been
captured in the videos) may have been underesti-
mated. The use of caregiver-reported ratings for as-
sessing response to treatment represents a potential
source of bias and is less rigorous than clinical assess-
ment of treatment response. Nevertheless, this is the
most comprehensive analysis of the movement disor-
der associated with FOXG1 mutations to date.

Our research confirms that movement disorders
are a defining feature of patients with FOXG1 muta-
tions. Given the expanding disease spectrum, FOXG1
genetic analysis should be considered in the differen-
tial diagnosis for patients with unexplained hyperki-
nesia, especially in the context of neurodevelopmental
delay. While further research is required, our study
suggests that tetrabenazine and levodopa may be
effective in some cases. Further elucidation of disease
mechanisms in FOXG1 syndrome is paramount in
order to provide pathogenic insight into the processes
governing movement disorders, epileptogenesis and
neurodevelopmental delay, thereby potentially iden-
tifying novel therapeutic targets for future transla-
tional research.
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