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Abstract: In this paper, we characterize the main building blocks and numerically verify the
classification accuracy and energy performance of SmartFog, a distributed and virtualized networked
Fog technological platform for the support for Stacked Denoising Auto-Encoder (SDAE)-based
anomaly detection in data flows generated by Smart-Meters (SMs). In SmartFog, the various layers
of an SDAE are pretrained at different Fog nodes, in order to distribute the overall computational
efforts and, then, save energy. For this purpose, a new Adaptive Elitist Genetic Algorithm (AEGA) is
“ad hoc” designed to find the optimized allocation of the SDAE layers to the Fog nodes. Interestingly,
the proposed AEGA implements a (novel) mechanism that adaptively tunes the exploration and
exploitation capabilities of the AEGA, in order to quickly escape the attraction basins of local minima
of the underlying energy objective function and, then, speed up the convergence towards global
minima. As a matter of fact, the main distinguishing feature of the resulting SmartFog paradigm is
that it accomplishes the joint integration on a distributed Fog computing platform of the anomaly
detection functionality and the minimization of the resulting energy consumption. The reported
numerical tests support the effectiveness of the designed technological platform and point out that the
attained performance improvements over some state-of-the-art competing solutions are around 5%,
68% and 30% in terms of detection accuracy, execution time and energy consumption, respectively.

Keywords: Fog Computing; Smart-Meter; energy efficiency; anomaly detection; Stacked Denoising
Auto-Encoder (SDAE); Adaptive Elitist Genetic Algorithm (AEGA)

1. Introduction

Anomalies in Smart-Meter (SM) data, due to a malfunction of the meter or a theft from users,
cause a major problem for electric companies [1]. In this regard, in recent years, many research efforts
have been devoted to the development of specific computational algorithms that would be able to
quickly identify the anomaly with high accuracy. Among the different approaches presented in the
literature, the most interesting ones are those based on computational intelligence, such as Deep Neural
Networks (DNNs), clustering [1], and those based on linear programming [2].

Recently, promising techniques are developed by exploiting deep learning approaches [3]. In fact,
when correctly trained on the available recorded data, these methods are able to attain high accuracy [4].
However, since a deep architecture consists in the cascade of several computational layers, the resulting
layered structure usually makes the training phase difficult, due to vanishing gradient problem among
others [4]. To overcome this problem, a layer-wise pretraining solution, followed by a fine-tuning of
the resultant whole architecture, was proposed in the literature. This method provides good results in
practical applications [5].
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In all cases, approaches based on deep learning suffer high computational complexity, since very
large architectures with a huge number of parameters have to be trained [5]. A (partial) solution to
this problem is to resort to the Cloud Computing (CC) paradigm, that enables the ubiquitous access
to large-size pools of virtualized computing resources by establishing (typically) multi-hop wireless
communication paths [6]. Although CC offers a huge computational capability, it is characterized by
its high energy consumption [7].

The quite recent paradigm of Fog Computing (FC) can help to overcome this problem [7,8].
In fact, by definition, FC enables the pervasive local access to distributed and virtualized small-size
energy-saving pools of computing resources that can be quickly provisioned, dynamically scaled
up/down and released on an on-demand basis. Nearby resource-limited edge devices (e.g., SMs)
may access these resources by establishing single-hop WiFi-supported communication links [7].
Hence, in principle, virtualized Fog nodes could be exploited in a distributed way to implement
the unsupervised pretraining of the layer of a deep architecture. The (possible) supervised final
fine-tuning of the whole SDAE can be performed by a CC node, being this phase of centralized type.

However, a potential problem of multi-tier architectures (composed of devices, Fog nodes and
Cloud nodes) is the considerable amount of energy wasted by the networking resources needed for
inter-node communication. Also in this case, in literature there exist some solutions being able to
optimize the total energy consumption, such as the Genetic Algorithm (GA) [9]. Hence, it is reasonable
to expect that the exploitation of the Fog architecture, along with the distributed pretraining procedure,
could reduce the energy consumption with respect to solutions based on the use of the Cloud only.

Motivated by these considerations, the contribution of this paper is threefold:

1. we introduce a Stacked Denoising Auto-Encoder (SDAE) architecture for the anomaly detection
of SM data, and exploit the FC to implement the distributed pretraining of the SDAE layers;

2. we engineer the overall networked Fog infrastructure, in order to minimize the total
communication-plus-computing energy wasted by the proposed anomaly detector; and,

3. we design a new Adaptive Elitist GA (AEGA) to optimize the mapping of the SDAE layers to be
pretrained to the available Fog nodes, in order to meet the aforementioned energy minimization
tasks. The adaptive mechanism implemented by the proposed AEGA makes it robust against
trapping phenomena generated by the attraction basins of local minima of the underlying objective
function and, then, reduces the resulting convergence time.

The rest of the paper is organized as follows. After a review of the related work in Section 2,
in Section 3, we present the overall architecture of the SmartFog platform, while, in Section 4, we point
out the formal models adopted for the analytical evaluation of the resulting computing and networking
energy. In Section 5, we present the main design principles behind the proposed AEGA and, then,
we detail the AEGA pseudo-code. Section 6 is devoted to numerically testing the performance of the
resulting optimized SmartFog platform in terms of detection accuracy, execution time and energy
consumption. For this purpose, the results of performance comparisons against some competing
state-of-the-art benchmark solutions are also presented. Finally, in Section 7, we recap the main
contributions of this paper and point out some areas for future research.

2. Related Work

It is expected that the convergence of the DNN and FC paradigms will be fostered by the results
stemming from (at least) three on-going research lines, namely [10]: (i) the design of anomaly detection
algorithms; (ii) the design and optimization of hierarchically organized multi-tier Fog platforms;
and, (iii) the development of “ad hoc” algorithms for the supervised distributed training of DNNs.

Anomaly detection algorithms exploiting DNNs—A very challenging issue when dealing with SM
data is represented by the early detection of anomalies. In this regard, the literature offers several
contributions, like [11–14].

Specifically, the work in [11] is focused on a Bayesian approach for the segmentation of data
sequences and the identification of anomalies based on an empirical estimate of the recurrent behavior
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of observed changepoints. Paper [12] provides a comparative analysis of some traditional “shallow”
machine learning algorithms (like k-NN, MLP and SVM), which were used to classify measurements as
regular or anomaly. In this work, well-known batch and online learning algorithms (both supervised
and semisupervised) were employed to cope with the anomaly detection problem. Differently from
our paper, works in [11,12] do not exploit deep learning and do not take account of the distribution of
the detection algorithm over several Fog nodes.

More recently, another line of research is addressed towards deep learning techniques,
e.g., see [13,14] and references therein. Specifically, the work in [13] integrates a DNN with a
cyber-physical protocol to identify and mitigate the information corruption in sensor-acquired
data. The proposed technique exploits unsupervised training based on Deep Belief Networks
(DBN). The authors in [14] propose a real-time detection of anomalies in Smart Grid by using an
architecture based on Conditional Deep Belief Networks (CDBNs). This work is also characterized by
a model that copes with the limited number of available measurements. Differently from our paper,
works in [13,14] are based on DBNs that exhibit a slow convergence behavior and high computational
costs, while we focus on the use of SDAE that retains a good compromise between convergence speed
and computational cost.

Overall, unlike our paper, works in [11–14] and references therein do not take account of
the accuracy-vs.-energy performance over a distributed and virtualized networked Fog platform,
deeply investigated in this paper.

Multi-tier Fog Computing platforms for the support of DNNs—The general topic of the design of
multi-tier FC platforms is receiving large attention, mainly due to the emerging areas of the Mobile
Cloud, Pervasive Computing and Edge Computing [15,16]. For the most part, these contributions
focus on the energy-efficient (and, typically, time-constrained) offloading of (parts of) application
programs from mobile devices to nearby FC servers through the exploitation of WiFi/Cellular-based
communication technologies (see, for example, [17] and references therein for an updated overview of
this topic).

Up to now, a few papers [18–21] are devoted, indeed, to the novel area of the integration of DNN
models onto FC platforms. In this regard, the authors of [19] developed a proof of concept that aims at
deploying DNNs onto Fog nodes for ML-based health prognosis. The underlying driving principle is
to perform a suitable search among the candidate Fog nodes, in order to find free nodes with sufficient
spare resources to delegate mining tasks. The work in [20] proposes an ecosystem that exploits the
synergic cooperation of mobile devices and Fog nodes running DNN models for fast object recognition.
In [21], a DNN-based face recognition application is simulated and the obtained performance exhibits
reduced mining time when smartphones’ photos are processed by proximate Fog nodes as opposed to
the remote Cloud. The work in [18] generalizes this result, and gives some numerical evidence that the
exploitation of Fog platforms for the joint fusion and distributed mining of sensor-acquired data may
reduce the processing time and the energy-bandwidth consumption with respect to the corresponding
fully centralized implementation of DNN models at the remote Cloud data centers. Overall, like our
paper, these contributions test the feasibility of FC platforms for the distributed execution of DNN
models under various operating conditions. However, unlike our paper, they do not formally address
the problem of the optimized mapping of the computing tasks needed to support the DNN models for
distributed Fog platforms.

3. The Proposed SmartFog Platform

The proposed SmartFog technological platform is sketched in Figure 1. It consists of N virtualized
Fog nodes and a virtualized Cloud node that can communicate with each other and the SMs through a
set of Network Interface Cards (NICs). Each Fog node can gather data measurements from several
SMs by using a Multiplexer (MUX). It uses an SDAE [3–5] for data analytics and a networked Fog
platform for SDAE pretraining and execution.
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In this regard, we shortly point out that a Stacked Auto-Encoder (SAE) is a feed-forward neural
network with 2L− 1 hidden layers trained to (quasi) reproduce its input at the output layer (see Figure 2).
The aim of an SAE is to learn a compressed and distributed representation hL (encoding) for a set of
(possibly, noisy) input data x (typically for the purpose of dimensionality reduction), using a set of
weight matrices Wk, k = 1, . . . , L. Then, an estimate x̂ of the data x is recovered (decoding) by using
tied weights (i.e., W∗k = WT

k ), as depicted in Figure 2 [4]. As a robust variant, the Stacked Denoising
Auto-Encoder (SDAE) [5] is a stochastic version of the SAE, where a stochastically corrupted x̃ version
of the input x is employed to feed the SAE (usually, using a Gaussian additive noise), while the
uncorrupted input x is still used as the target for the optimization of the weight matrices (see Figure 2).

As shown in Figure 2, the computation of the k-th layer in the encoding phase is performed
according to the following relationship [5]:

hk = σk (Wkhk−1 + bk) , k = 1, . . . , L, (1)

With h0 = x̃, while the companion decoding layer acts as follows [5]:

ĥk = WT
k+1ĥk+1 + ck, k = L− 1, . . . , 0. (2)

In Equations (1) and (2), Wk is the weight matrix of the k-th layer of the considered SDAE, bk and
ck are the bias vectors of the encoder and decoder at the k-th layer, σ(·)k is the element-wise nonlinear
activation function of the k-th layer of the encoder (e.g., sigmoid or ReLU) and ĥ0 ≡ x̂. The decoder
transformation in (2) is of affine type due to the continuous-valued nature of the input vector x.
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Figure 1. A sketch of the proposed SmartFog technological platform. Arrowed paths indicate data
links. SM: = Smart-Meter; MUX: = Multiplexer; FN: = Fog Node; CL: = Cloud; VC: = Virtual Clone;
NIC: = Network Interface Card.

The unsupervised pretraining of such an architecture is done on a per-layer basis [5].
Specifically, each layer is trained as a denoising auto-encoder by minimizing with respect to hk,
bk and ck the total squared reconstruction error:

L
(

ĥk

)
,

1
2 ∑

t

∥∥∥ĥt
k − ht

k

∥∥∥2

2
, k = 1, . . . , L, (3)



Appl. Sci. 2019, 9, 4193 5 of 15

where t is the batch index [5] and ht
k is the t-th batch of the input vector at layer k. In our framework,

the minimization of (3) is pursued by applying the Adam algorithm, a variant of the stochastic gradient
descent that is based on the adaptive estimation of the first and second order moments of the gradient
of (3) with respect to weights and bias of Figure 2 [4].

A k-NN classifier [4] is used atop the final hidden representation hL to detect whether or not the
input x contains an anomaly. The implemented classifier is binary and its output is 0 for “no anomalies”
while it is 1 for “anomalies” detected in the data x. The k-NN classifier assigns the input to the class
with most examples among the k neighbors of the input. All neighbors have equal vote, and the class
with the maximum number of votes among the k neighbors is selected. For this purpose, similarity is
defined according to a suitable distance metric (usually the Euclidean one) between two data points.
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Figure 2. The structure of the considered SDAE. x, x̃ and x̂ are equal-size and real-valued vectors that
represent the input, noise-corrupted and recovered data, respectively. W∗k = WT

k is the k-th tied weight
matrix.

4. Implementing SDAE over the Computing Nodes of SmartFog

To perform the per-layer pretraining over the available Fog and Cloud nodes of Figure 1,
we propose a (novel) adaptive version of the elitist GA [9]. The goal is to minimize the total
computing-plus-networking energy consumed by the resulting SmartFog platform of Figure 1.
Specifically, in the implemented GA, the chromosome is the vector a ∈ RL×1 containing the L indexes
of the involved computing nodes. The goodness of each chromosome a is measured through an
appropriate fitness function. In each generation, a set of elements is selected by comparing their fitness,
the best element is retained, a fraction of the “best” elements of the current population is recombined
through crossover, while the remaining “worst” elements are modified by randomly mutating each
one over randomly selected positions. For this purpose, the implemented Crossover function generates
a random pointer to the location index at which the crossover is performed and, then, carries out
the corresponding swapping [4]. After generating a random vector of pointers to the locations to be
mutated, the Mutation function returns the generated mutated values at the pointed locations of the
vector a. The fitness function used by SmartFog is the inverse of the total computing-plus-networking
energy E consumed by the SmartFog platform for the execution of these operations. It equates to [7]:

E =
N

∑
j=1

P(cmp)
j ∆t(cmp)

j +
N

∑
j=1

P(C−idle)
j ∆t(C−idle)

j

+
N

∑
j=1

P(net)
j ∆t(net)

j +
N

∑
j=1

P(N−idle)
j ∆t(N−idle)

j .

(4)
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According to the clone-based virtualized Fog architecture detailed in [7], in (4), we have that:
(i) P(cmp)

j is the power consumed by the virtual clone at the j-th Fog node for the computing; (ii) P(C−idle)
j

is the power consumed by the j-th Fog node in the idle state; (iii) P(net)
j is the power consumed by

the virtual clone at the j-th Fog node for the communication with the SM, the Cloud node and/or
with other Fog nodes; and, (iv) P(N−idle)

j is the power consumed by the j-th network card in the idle
state, while the related ∆tj is the execution time of state j. The power consumed by the computing
nodes of Figure 1 for computing and networking is proportional to the squared values of the CPU
frequencies and communication bandwidths [7]. Detailed analytical models for the evaluation of the
computing/networking power present in (4) are developed in [7] and, for the sake of brevity, are not
replicated here.

5. The Proposed Adaptive Elitist GA

A main advantage of the (previously mentioned) elitist mechanism is that it guarantees that,
by design, the “best” chromosome delivered at the current iteration is also globally the best chromosome
generated up to the current iteration [22]. This implies that, in our framework, the sequence of the
energy returned by the Elitist GA is guaranteed to exhibit a non-increasing behavior. However, this pro
is typically counterbalanced by one major disadvantage. In fact, elitism is, by design, a conservative
strategy that tends to enhance the exploitation capability of the GA by reducing the corresponding
exploration capability [22]. This means, in turn, that elitist GAs tend to be trapped by the local minima
of the underlying objective functions and, then, they are slow to converge [22].

Motivated by these considerations, we propose a suitable Adaptive version of the standard Elitist
GA (namely the AEGA), whose ultimate goal is to attain an improved trade-off between the two
contrasting requirements of high exploitation and exploration capabilities.

Algorithm 1 reports a pseudo-code of the proposed AEGA, together with a description of its
input, output and local variables. Roughly speaking, the following main design principles are on the
basis of the proposed AEGA:

1. the size SPOP of the full population to be generated at each iteration is specified as an
input parameter and it is held constant (see the list of the input parameters of Algorithm 1).
However, the sizes SELIT and SCHA of the sub-lists of the elite chromosomes and the crossed
over-plus-mutated chromosomes are adaptively updated at each iteration. The goal is to adaptively
balance the exploitation-vs.-exploration capabilities of the resulting AEGA (see the “for” statement
at line #7 of Algorithm 1), while guaranteeing that the summation: SELIT + SCHA remains equal
to SPOP (see lines #14 and #18 of Algorithm 1);

2. at each iteration, the relative (absolute) gap: |ECUR − EPRE| /ECUR between the energy ECUR and
EPRE returned by the AEGA at the current iteration and the previous one is used for indicating
if the algorithm is trapped by the attraction basin of an already explored local minimum or is
just entering the still unexplored attraction basin of the new local minimum (see the two “if”
statements at lines #12 and #16 of Algorithm 1);

3. when the relative energy gap is below a (user defined) lower threshold THLOW (see line #12 of
Algorithm 1), it is reasonable to expect that the algorithm is currently trapped by the attraction
basin of an already explored local minimum. Hence, in order to quickly escape it, the exploration
capability of the AEGA should be increased. For this purpose, the size SELIT of the list of the elite
chromosomes is reduced by a (user defined) factor r, with 0 < r < 1 (see line #13 of Algorithm 1),
while the corresponding size SCHA of the list of the crossed over-plus-mutated chromosomes is
increased as reported in line #14 of Algorithm 1. Such updated values of SELIT and SCHA will be
used for performing the next iteration (see the “for” statement at line #7 of Algorithm 1);

4. when the relative energy gap is larger than a (user defined) upper threshold THUPP (see line
#16 of Algorithm 1), it is reasonable to expect that the AEGA is just entering the still unexplored
attraction basin of a new local/global minimum. Hence, in order to finely examine this new
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region of the solution landscape, the exploitation capability of the AEGA should be increased.
For this purpose, the size SCHA of the list of the crossed over-plus-mutated chromosomes is
reduced by the factor r (see line #17 of Algorithm 1), while the size SELIT of the list of the elite
chromosomes is increased as reported in line #18 of Algorithm 1;

5. finally, when the relative energy gap falls into the inter-threshold interval [THLOW , THUPP], SELIT
and SCHA remain unchanged.

Algorithm 1 Adaptive Elitist GA (AEGA).
Input: SPOP: integer-valued population size;

THLOW : positive-valued lower threshold;
THUPP: positive-valued upper threshold, with THLOW ≥ THUPP;
IGEN : number of performed iterations;
r: reducing factor, with 0 < r < 1.

Output: EBEST : energy consumed by the globally best generated chromosome.

Local variables: ECUR: energy consumed by the best chromosome of the current population;
EPRE: energy consumed by the best chromosome of the previous population;
SELIT : integer-valued size of the current set of elite chromosomes;
SCHA: integer-valued size of the current set of crossed over-plus-mutated

chromosomes, with SCHA + SELIT = SPOP;
L: full list (of size SPOP) of the currently generated chromosomes.

— Initialization phase —
1: Randomly generate a list L of SPOP chromosomes of size L + 1;
2: Compute the energy of the generated chromosomes through Eq. (4);
3: Sort the chromosomes into ascending order of their consumed energy values and return the sorted

list L;
4: Store into EPRE the energy of the first (i.e., the best) element of the sorted listL;
5: Initialize the size SELIT of the set of the elite chromosomes, with 1 ≤ SELIT ≤ SPOP;
6: Initialize the size SCHA of the set of the crossed over-plus-mutated chromosomes at SCHA = SPOP−

SELIT ;
— Iterative phase —

7: for i = 1 : IGEN do
8: Perform the crossover and mutation of the last SCHA chromosomes of the current population

and return the updated population list L;
9: Evaluate the energy of the SPOP chromosomes of the returned list L;

10: Sort the chromosomes into ascending order of their consumed energy values and return the
sorted list L;

11: Store the energy of the first chromosome of the sorted list L into ECUR;
12: if (|ECUR − EPRE| /ECUR) < THLOW then . Increase the exploration capability of the AEGA
13: SELIT = round (rSELIT);
14: SCHA = SPOP − SELIT ;
15: end if
16: if (|ECUR − EPRE| /ECUR) > THUPP then . Increase the exploitation capability of the AEGA
17: SCHA = round (rSCHA);
18: SELIT = SPOP − SCHA;
19: end if
20: Update: EPRE = ECUR;
21: end for

— End of the iterative phase —
22: EBEST = ECUR; . Store the energy of the globally best generated chromosome
23: return EBEST .
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Due to the elitist nature of the proposed AEGA, the energy ECUR returned at the end of the last
iteration (i.e., at i ≡ IGEN ; see line #7 of Algorithm 1) is also the minimum energy obtained over the
overall set of carried out iterations (see line #22 of Algorithm 1). Hence, it constitutes the final output
of the AEGA (see line #23 of Algorithm 1).

Before proceeding, three main remarks about the expected impact on the performance of the
AEGA of the setting of the input parameters THLOW , THUPP and r of Algorithm 1 are in order.
First, since these parameters play, indeed, the role of hyper-parameters, their optimized setting
depends on the actual landscape of the adopted objective function, and, then, we must resort to
numerical trials for their optimization (see the following Section 6 for additional details on this topic).
Second, we expect that, by design, the exploration capability of the proposed AEGA increases for
increasing values of the lower threshold THLOW (see line #12 of Algorithm 1), while lower values
of the upper threshold THUPP enhances the corresponding exploitation capability (see line #16 of
Algorithm 1). Third, we expect that the sensitivity of the AEGA on local variations of the landscape of
the adopted objective function increases for decreasing values of the reducing factor r. This means,
in turn, that lower values of r may shorten the transient phase and speed up the convergence of
the AEGE toward good local (or even global) minima, but, at the same time, they may also induce
oscillation phenomena in the converged performance. Therefore, we expect that the right setting of r is
the suitable trade-off among the two contrasting requirements of short transient phases and stable
performance at the convergence.

6. Numerical Performance of the Proposed SmartFog

The goal of this section is threefold. First, we describe the implemented setting for the simulation
of the proposed SmartFog platform. Second, we numerically test the accuracy performance of the
proposed SDAE of Figure 2 and compare it with the corresponding one of a benchmark solution
that uses a shallow Support Vector Machine (SVM) for anomaly detection. Third, we test the energy
performance of the SmartFog platform equipped with the proposed AEGA of Algorithm 1 and compare
it to the corresponding ones of two benchmark solutions. Specifically, the first benchmark solution
performs the mapping of the SDAE layers of Figure 2 onto the SmartFog platform of Figure 1 by
resorting to a non-adaptive conventional Elitist GA, while the second one uses only the Cloud node for
performing the training of the implemented SDAE of Figure 1.

Implemented test framework—Numerical tests of the SmartFog platform have been carried out
by using the UCI “Individual household electric power consumption” data set available at: https:
//archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption. It embraces
more than 2 millions of measurements gathered in a house located in Sceaux (near Paris, France)
between December 2006 and November 2010. Instances in the dataset represent the active per-minute
energy (in Watt hour) consumed by the household and measured by the SM. From this data set, we
have selected 30 days from 10 SMs (43,200 instances) for the train set and 10 days (14,400 instances) for
the test set. The number of anomalies in the data set is about 12% of the total. These anomalies consist
of time-series representing faulty meters or fraudulent users.

The performance of the proposed SmartFog platform was simulated by leveraging the recently
proposed VirtFogSim toolbox [9]. It provides several primitives for the customized simulations of
virtualized (i.e., clone-based) networked Fog ecosystems.

The input provided to the simulated SDAE consists of frames of duration of one, two, four and
six hours, which are equivalent to 60, 120, 240 and 360 input units, respectively. A Gaussian noise with
zero mean and a variance equal to 1% of the mean squared value of the considered training data was
added to the input vector x, in order to guarantee a robust classification (see Figure 2).

We tested two SDAEs with L = 3 (3L-SDAE) and L = 5 (5L-SDAE) hidden layers and four
different lengths of the input vector x. The number of units in the hidden layers are detailed in
Table 1. We used the sigmoid function as nonlinear function in all layers. In the implemented Adam
algorithm [4], the learning rate is set to µ = 0.001 for all layers, and the hyper-parameters β1 and β2 [4]

https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
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are set to β1 = 0.9 and β2 = 0.999, respectively. For the k-NN classifier, we have used 5 neighbors and
the Euclidean distance as similarity measure.

Table 1. Per-layer hidden units in the tested 3L-SDAE and 5L-SDAE architectures.

Input L. First L. Second L. Third L. Fourth L. Fifth L.

3L-SDAE—3 Hidden Layers

60 30 20 10 — —
120 60 40 20 — —
240 120 80 40 — —
360 180 120 60 — —

5L-SDAE—5 Hidden Layers

60 40 30 20 10 5
120 80 60 40 20 10
240 160 120 80 40 20
360 240 180 120 60 30

Comparative accuracy performance—The obtained numerical results in terms of classification
accuracy are reported in Table 2. Accuracy is defined as the ratio between the number of instances
correctly classified out the total instances. From Table 2, we can argue that the accuracy decreases
when the length of the analysis window is too short or too long: interestingly, a time window of two
hours produces the best accuracy. Moreover, we can see that the use of three hidden layers produces
better results than five hidden layers. Hence, the 3L-SDAE with a time window of two hours can be
considered as the most reliable solution for detecting anomalies in SM data.

Table 2. Tested classification accuracy of the 3L-SDAE and 5L-SDAE architectures.

Time Window [h] # Inputs Accuracy 3L-SDAE Accuracy 5L-SDAE

1 60 0.854 0.792
2 120 0.926 0.884
4 240 0.869 0.801
6 360 0.795 0.725

As a benchmark, a Support Vector Machine (SVM) classifier was trained on the same set of raw
data. The corresponding soft-margin parameter C was optimized by a grid search algorithm over the
set: C ∈

{
10−3, 10−2, . . . , 106, 107}, selecting the best value of C = 100. The accuracy obtained by the

tested SVM is detailed in Table 3. This table puts in evidence that the SVM produces a worse accuracy
than the 3L-SDAE architecture of about 5%.

Table 3. Classification accuracy for the benchmark SVM classifier.

Time Window [h] Accuracy

1 0.826
2 0.885
4 0.811
6 0.808

Comparative energy performance— Passing to consider the energy consumption of the underlying
SmartFog execution platform of Figure 1, we carried out several tests by varying the strategy for the
mapping of the hidden layers of SDAE of Figure 2 onto the available Fog-Cloud computing nodes
of Figure 1. For this purpose, three mapping strategies were implemented and numerically tested.
The first one relies on the proposed AEGA of Algorithm 1. The second one implements a Non-Adaptive
Elitist GA (NA-EGA), that is obtained by removing from the pseudo-code of Algorithm 1 both the “if”
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statements at lines #12 and #16. The last strategy is the simplest one and maps all the hidden layers
of the considered SDAE of Figure 2 to the Cloud node of Figure 1 for their training. In this last case,
no energy consumption can be obtained since the entire algorithm is running on the unique Cloud
node. In all performed tests, the size SPOP of the populations of the simulated GAs is held constant,
equal to 10, the only-Cloud solution is included in the initial populations and a maximum of IGEN = 30
iterations are run. Furthermore, the (numerically optimized) hyper-parameters THLOW , THUPP and r
used for the simulation of the proposed AEGA of Algorithm 1 are set to 0.1, 1.1 and 0.85 respectively,
while, in the simulated NA-EGA, the (numerically optimized) sizes SELIT and SCHA of the elite and
crossed over-plus-mutated sub-lists are fixed to 4 and 6, respectively. In the following, the optimized
inter-threshold interval will be denoted as T0.

According to Figure 1, the simulated SmartFog platform is composed of five Fog nodes and a single
Cloud node, with each node being equipped with a corresponding virtual clone [9]. The computing
and network capacities of each Fog clone are randomly selected over the sets: 5–12 Mbit/s for the
processing rates of CPUs, 5–10 Mbit/s for the SM-to-Fog transmission rates and 10–20 Mbit/s for the
intra-Fog and the Fog-Cloud transmission rates. However, the computing and network capacities of
the Cloud clone are fixed to their respective maximum values (i.e., 12, 10 and 20 Mbit/s, respectively),
in order to reflect the more stable and larger resources made available by the Cloud. Furthermore,
the simulated inter-node network topology is meshed, with inter-Fog and Fog-Cloud links that are
bidirectional and symmetric. Since we consider here the 3L-SDAE, we need to allocate L = 3 hidden
layers over the available computing (i.e., Fog-plus-Cloud) nodes.

The resulting energy plots are reported in Figure 3. Each simulated point was obtained
by averaging over 30 independent runs of randomly generated computing and network
capacities of the (aforementioned) five Fog nodes that compose the simulated SmartFog platform.
Specifically, in Figure 3, the continuous black (resp., dashed blue) curve plots the simulated average
energy consumption of the proposed AEGA of Algorithm 1 under the optimized inter-threshold
T0 = [0.1, 1.1] (resp., the benchmark NA-EGA), while the point marked by the red diamond reports
the average energy consumption of the (aforementioned) only-Cloud solution that uses only the Cloud
node for the training of the implemented 3L-SDAE.

An examination of the energy plots of Figure 3 leads to three main insights.
First, being of elitist type, both the proposed AEGA and benchmark NA-EGA converge to

the same final energy value by following non-increasing trajectories. However, the convergence
time (in multiple of the generated populations) of the proposed AEGA (resp., benchmark NA-EGA)
is around 16 (resp., 27), so that the convergence of the AEGA is about 1.7 times faster than the
corresponding one of the benchmark NA-EGA.

Second, the behavior of the energy curve of the AEGA is step-like (see the cliffs at the iteration
indexes 3, 6 and 16 in Figure 3), while the corresponding behavior of the NA-EGA is smoother. We have
numerically ascertained that the step-like behavior of the energy plot of the AEGA is induced, indeed,
by the adaptive mechanism implemented by the “if” statements at lines #12 and #16 of Algorithm 1,
which allows the AEGA to quickly escape already explored regions of the underlying objective function
and to fast enter still unexplored attraction basins of new local/global minima.

Third, the gap between the energy consumption of the only-Cloud solution (i.e., the red diamond
in Figure 3) and the steady-state one of the proposed AEGA is noticeable (e.g., around 30%) and it is
approached by the AEGA after several iterations limited up to 16 (see the continuous curve of Figure 3).

Sensitivity on the threshold setting—In this paragraph, we consider the impact of the setting of
the two hyper-parameters THLOW and THUPP on the average energy consumption of the proposed
SmartFog platform. Specifically, we performed the tests by using the following two additional
inter-threshold intervals T1 = [0.3, 0.6] and T2 = [0.05, 2.0], respectively, while the hyper-parameter
r was set to the previous value of 0.85. The average energy consumption of the proposed AEGA of
Algorithm 1 under the inter-threshold intervals T1 and T2 is shown by the dotted dark green curve
and the dash-dotted magenta curve of Figure 3, respectively.



Appl. Sci. 2019, 9, 4193 11 of 15

Interestingly enough, we can observe from the dotted dark green curve of Figure 3 that when
the more stressed inter-threshold interval T1 is used, the proposed AEGA converges to the same final
energy value of the optimized interval T0. However, the convergence time is very different from
the previous one. Since, in fact, the threshold are more restrictive, the proposed AEGA shows a fast
transitory behavior, but after a few iterations the convergence becomes flat (the thresholds are too
restrictive and more iterations are needed) and the time period for obtaining the final solution is
stretched. The total convergence time is around 20 iterations. On the other hand, when the more
relaxed inter-threshold interval T2 is used, the dash-dotted magenta curve of Figure 3 shows that the
convergence behavior tends to emulate the shape of the non-adaptive GA strategy depicted by the
dashed blue curve of Figure 3. In this case, the convergence time is about 24 iterations while the AEGA
converges to the same final energy value of the optimized interval T0.
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Figure 3. Average energy consumption of the simulated SmartFog platform of Figure 1 for the
training of the 3L-SDAE under the: AEGA with the optimized inter-threshold T0 (continuous black
curve), AEGA with the inter-threshold T1 (dotted dark green curve), AEGA with the inter-threshold
T2 (dash-dotted magenta curve), NA-EGA (dashed blue curve) and only-Cloud (red diamond)
mapping solutions.

7. Conclusions and Hints for Future Research

In this contribution, we focused on the optimized design of SmartFog, a Fog-based networked
computing platform for the distributed training of deep auto-encoders for anomaly detection in data
streams generated by Smart-Meters (SMs). For this purpose, after defining the main building blocks of
the SmartFog platform, we proposed a new Adaptive Elitist GA (i.e., the AEGA) for the energy-efficient
distributed training of the implemented SDAE. The performance of the resulting optimized SmartFog
platform was numerically tested and compared with the corresponding ones of some state-of-the-art
benchmark solutions in terms of accuracy, energy consumption and execution time.

Overall, the main insights stemming from the reported numerical results are that: (i) the proposed
SmartFog platform reaches an accuracy of 92.6% by using an SDAE with three hidden layers and a
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time window of two hours; and, (ii) the proposed AEGA equipping the SmartFog platform allows
us to reduce the convergence time of about 1.6 times with respect to the conventional NA-GA,
while guaranteeing a 30% of energy saving with respect to the only-Cloud benchmark solution.

Being the integration of the Deep Neural Networks and Fog Computing paradigms in its
infancy [10], we believe that the reported results are, indeed, only the tip of the iceberg and,
then, they could be further developed along (at least) three main research lines.

First, the present paper focuses on the energy-efficient implementation of SDAEs atop Fog
platforms. However, SDAEs represent only an instance of the overall family of DNNs [4].
Hence, the generalization of the presented results to DNN models described by general directed
acyclic graphs could be a first research line of potential interest.

Second, this work focuses on the training phase of the SDAEs, that is typically considered
the most cumbersome one from a computational point of view. However, emerging IoT-oriented
real-time applications demand for stringent delay requirements during the inference phase [10].
Hence, the design and testing of distributed Fog technological platforms for the energy-saving and
real-time inference of big data through DNNs may be a second research line of potential interest.

Finally, the presented results rely on the (implicit) assumption that both the volume of data to
be processed and the states (that is, the bandwidths) of the communication links of the SmartFog
platform of Figure 1 stay unchanged over time intervals at least equal to the time required to carry out
the training of the SDAE of Figure 2. As (recently) pointed out, for example, in [23], this assumption
is typically met in SmartGrid networks for emerging Green Smart Home applications, in which
both SMs and Fog nodes are statically installed in buildings that communicate over fixed power
line-based wired links (see, for example, Section 3 of [23] and the reference framework of Figure 2).
However, in principle, both the here proposed SDAE-based approach to the anomaly detection and
the related AEGA-based resource management solution could be effectively employed even in the
emerging field of the so-called Vehicular Fog Computing (VFC) [24,25]. In this environment, devices on
board of parked or slowly moving vehicles are used to form a wireless (possibly, mobile) intermediary
Fog layer. These devices collect the data from wireless sensors installed on the vehicles, mine them and
communicates the pre-processed results to remote Clouds for further processing by using nearby Road
Side Units (see, for example, Figures 1–4 of [24] for some sketches of the underlying reference scenarios).
Hence, in principle, VFC fits the general architecture in Figure 1 of the proposed SmartFog technological
platform provided that (see Figure 1): (i) SMs are replaced by wireless (possibly, mobile) sensors;
(ii) Fog nodes are replaced by vehicles; and, (iii) both inter-Fog and Cloud-Fog links are assumed
to be wireless. However, in the resulting VFC scenario, both the assumptions of time-invariant
volume of data to be processed and time-invariant link bandwidths may fall short [26,27]. This needs
the introduction of imperfect channel estimation techniques [28–30]. How the proposed SmartFog
platform could be refined for effectively coping with the environmental time fluctuations of VFC-based
application scenarios could be an additional hint for future research.
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Abbreviations

The following abbreviations are used in this manuscript:

AE Auto-Encoder
AEGA Adaptive Elitist Genetic Algorithm
CC Cloud Computing
DBN Deep Belief Networks
DNN Deep Neural Network
FC Fog Computing
FN Fog Node
GA Genetic Algorithm
MUX Multiplexer
NA-EGA Non-Adaptive Elitist Genetic Algorithm
NIC Network Interface Card
NN Neural Network
SAE Stacked Auto-Encoder
SDAE Stacked Denoising Auto-Encoder
SM Smart-Meter
SVM Support Vector Machine
VC Virtual Clone
VFC Vehicular Fog Computing
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