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1. Introduction

The muon anomalous magnetic moment aµ ≡ (g− 2)/2 is one of the most precisely deter-
mined quantities in particle physics. It is experimentally known with an accuracy of 0.54 ppm
(BNL E821) and the current precision of the Standard Model (SM) prediction is at the level of
0.4 ppm [1]. The discrepancy between the experimental value, aexp

µ , and the SM prediction, aSM
µ ,

corresponds to ' 3.7 standard deviations, according to the most recent determination of the HVP
contribution [2], namely aexp

µ − aSM
µ = 27.1 (7.3) · 10−10. The forthcoming g− 2 experiments at

Fermilab (E989) and J-PARC (E34) aim at reducing the experimental uncertainty by a factor of
four, down to 0.14 ppm, making the comparison of aexp

µ with the theoretical predictions one of the
most stringent tests of the SM in the quest of new physics effects. With such a reduced experimen-
tal error, the uncertainty of the hadronic corrections, due to the HVP and hadronic light-by-light
contributions, will soon become the main limitation of this SM test.

The theoretical predictions for the HVP contribution, aHVP
µ , have been traditionally obtained

from experimental data using dispersion relations for relating the HVP function to the experimental
cross section data for e+e− annihilation into hadrons [3, 4]. An alternative approach, originally
proposed in Ref. [5], is to compute aHVP

µ in lattice QCD from the Euclidean correlation function of
two electromagnetic (em) currents. An impressive progress in the lattice determinations of aHVP

µ

has been achieved in the last few years, based on improved evaluation of the leading-order hadronic
contribution, which is of order O(α2

em), as well as of the next-to-leading-order hadronic corrections,
which include O(α3

em) contributions.
With the increasing precision of the lattice calculations, it becomes mandatory to include

em and strong isospin-breaking (IB) corrections to the HVP, contributing at order O(α3
em) and

O(α2
em(m̂d− m̂u))

1 respectively. In Ref. [6] a lattice calculation of both the leading and the IB cor-
rections to the HVP contribution due to strange- and charm-quark intermediate states was carried
out, using the time-momentum representation for aHVP

µ [7] and the expansion method of the path
integral in powers of the electromagnetic coupling αem and of the d- and u-quark mass difference
(m̂d− m̂u) (the RM123 approach of Refs. [8, 9]).

In this contribution we present preliminary results of a lattice calculation of the IB corrections
to the HVP contribution due to light u- and d-quark (connected) intermediate states, using the
RM123 approach. Given the observed large statistical fluctuations, we do not have yet results for
the disconnected contributions.

2. Time-momentum representation

Following our previous work [6], we adopt the time-momentum representation for the evalu-
ation of the IB corrections δaHVP

µ (ud) to the u- and d-quark contributions to the muon anomalous
magnetic moment, namely

δaHVP
µ (ud) = 4α

2
em

∫
∞

0
dt f (t) δV ud(t) , (2.1)

1Throughout this contribution by m̂ we indicate a quark mass renormalized in the full theory with both QCD and
QED interactions switched on.
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where t is the Euclidean time, f (t) is a known kinematical kernel [7] (depending also on the
muon mass mµ ) and δV ud(t) (see Section 4) represents the IB corrections to the light-quark vector
current-current Euclidean correlator V ud(t), defined as

V ud(t)≡ ∑
f=u,d

1
3 ∑

i=1,2,3

∫
d~x 〈J f

i (~x, t)J
f
i (0)〉 . (2.2)

In Eq. (2.2) J f
µ(x) ≡ q f ψ f (x)γµψ f (x) is the em current with q f being the electric charge of the

quark with flavor f in units of e.
A convenient procedure relies on splitting Eq. (2.1) into two contributions corresponding to

0 ≤ t ≤ Tdata and t > Tdata, respectively. In the first contribution the IB corrections to the light-
quark vector correlator are directly given by the lattice data, while for the second contribution an
analytic representation is required and justified for lattice simulations at non-physical pion masses
(see Refs. [6, 10, 11]). If Tdata is large enough that the ground-state contribution is dominant for
t > Tdata and it is smaller than T/2 in order to avoid backward signals, one can write

δaHVP
µ (ud) = 4α

2
em

{
Tdata

∑
t=0

f (t) δV ud(t)+
∞

∑
t=Tdata+a

f (t)
Zud

V

2Mud
V

e−Mud
V t
[

δZud
V

Zud
V
− δMud

V

Mud
V

(1+Mud
V t)

]}
.

(2.3)
In Eq. (2.3) Mud

V is the ground-state vector-meson mass and Zud
V is the squared matrix element of the

vector current between the state |V 〉 and the vacuum, i.e. Zud
V ≡ (1/3)∑i=1,2,3 ∑ f=u,d q2

f |〈0|ψ f (0)γi ·
· ψ f (0)|V 〉|2. The corresponding corrections, δMud

V and δZud
V , can be respectively extracted from

the “slope” and the “intercept” of the ratio δV ud(t)/V ud(t) at large time distances (see Refs. [8, 9,
12]). We have checked that the sum of the two terms in the r.h.s. of Eq. (2.3) is independent of the
specific choice of the value of Tdata.

3. Simulation details

The ETMC gauge ensembles used in this work are the same adopted in Ref. [13] to determine
the up-, down-, strange- and charm-quark masses in isospin symmetric QCD with N f = 2+1+1
dynamical quarks. The gauge fields are simulated using the Iwasaki gluon action [14]. In the light-
quark sector a unitary setup is adopted and the Wilson Twisted Mass action [15–17] at maximal
twist is employed. We consider three values of the inverse bare lattice coupling β , corresponding
to lattice spacings varying from 0.089 to 0.062 fm, pion masses in the range Mπ ' 220÷490 MeV
and different lattice volumes. For earlier investigations of finite volume effects (FVEs) the ETMC
had produced three dedicated ensembles, A40.20, A40.24 and A40.32, which share the same quark
mass (corresponding to Mπ ' 320 MeV) and lattice spacing (a ' 0.09 fm) and differ only in the
lattice size L (L/a = 20÷32). To improve such an investigation a further gauge ensemble, A40.40,
has been generated at a larger value of the lattice size, L/a = 40.

The evaluation of the vector correlator has been carried out using the following lattice defini-
tion of the vector current:

J f
µ(x) = ZA q f ψ f ′(x)γµψ f (x) , (3.1)

where ψ f ′ and ψ f represent two quark fields with the same mass, charge and flavor, but regu-
larized with opposite values of the Wilson r-parameter, i.e. r f ′ = −r f . Being at maximal twist,
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the current (3.1) renormalizes multiplicatively with the renormalization constant (RC) ZA of the
axial current. The local current (3.1) does not generate disconnected contributions in the vector
correlator (2.2). In addition, as discussed in Ref. [6], the properties of the kernel function f (t) in
Eq. (2.1), guarantee that the contact terms, generated in the HVP tensor by a local vector current,
do not contribute to the evaluation of the muon anomalous magnetic moment.

The good statistical accuracy of the meson correlator relies on the use of the so-called “one-
end” stochastic method [18], which includes spatial stochastic sources at a single time slice chosen
randomly. We have calculated the vector correlator (2.2) adopting the local current (3.1) for the
light u and d quarks using 160 stochastic sources (diagonal in the spin variable and dense in the
color one) per each gauge configuration.

4. Isospin-breaking corrections

Let’s now turn to the IB corrections δV ud(t) to the vector correlator at leading order in the
small parameters αem and (m̂d − m̂u), which consist of the em, δV QED(t), and SU(2)-breaking,
δV QCD(t), contributions. The separation between the QED and the strong IB terms is prescription
dependent. In this contribution we impose a specific matching condition in which the renormalized
couplings and quark masses in the full theory and in isosymmetric QCD coincide in the MS scheme
at a scale of 2 GeV [9, 19].

Using the expansion method of Refs. [8, 9], the em corrections δV QED(t) to the light-quark
vector correlator can be computed through the evaluation of the self-energy, exchange, tadpole,
pseudoscalar and scalar insertion diagrams described in Ref. [6]2. The removal of the photon zero-
mode is done according to QEDL [20], i.e. the photon field Aµ satisfies Aµ(k0,~k =~0)≡ 0 for all k0.
We also adopt the quenched-QED approximation, which treats the sea quarks as electrically neutral
particles. In addition one has to consider the QED corrections to the RC of the vector current of
Eq. (3.1), namely

ZA = ZA

[
1+Zem

A Z f act
A

]
+O(α2

em) , (4.1)

where ZA is the RC of the current in pure QCD (determined in Ref. [13]), Zem
A is the one-loop

perturbative estimate of the QED corrections at order O(α0
s ) and Z f act

A takes into account correc-
tions of order O(αemαn

s ) with n ≥ 1, i.e. corrections to the “naive factorization” approximation in
which Z f act

A = 1. We make use of the result Zem
A =−15.7963 αem q2

f /(4π) from Ref. [22] and of a

preliminary non-perturbative estimate [21] determined via the RI′-MOM method, Z f act
A = 0.95 (5),

which improves the one obtained through the axial Ward-Takahashi identity derived in Ref. [6].

The overall IB corrections δaHVP
µ (ud) can be calculated by summing the QED and QCD con-

tributions in Eq. (2.1). The accuracy of the lattice data can be improved by forming the ratio of the
IB corrections over the leading-order term. Therefore, we have performed our analysis of the ratio
δaHVP

µ (ud)/aHVP
µ (ud), which is shown in Fig. 1.

2The standard combinatorial factor 1/2 was missing in Eq. (23) of Ref. [12] and in Eq. (5.2) of Ref. [6], but included
in the calculations.
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Figure 1: Results for the ratio
δaHVP

µ (ud)/aHVP
µ (ud) versus the renormal-

ized light-quark mass mud . The empty markers
correspond to the raw data, while the full ones
represent the lattice data corrected by the FVEs ob-
tained in the fitting procedure (4.2). The solid lines
correspond to the results of the combined fit (4.2)
obtained in the infinite-volume limit at each value
of the lattice spacing. The black asterisk represents
the value of the ratio δaHVP

µ (ud)/aHVP
µ (ud) extrap-

olated to the physical pion mass [corresponding to
mphys

ud (MS,2 GeV) = 3.70 (17) MeV, (determined
in Ref. [13])] and to the continuum limit, while the
red area indicates the corresponding uncertainty
as a function of mud at the level of one standard
deviation. Plotted errors are statistical only.

We have performed combined extrapolations to the physical pion mass and to the continuum and
infinite-volume limits adopting the following fitting function:

δaHVP
µ (ud)

aHVP
µ (ud)

= δ0
[
1+δ1 mud +δ2 X+D a2 +FV E

]
, (4.2)

where we have considered both a quadratic (X = m2
ud) and a logarithmic (X = mud ln(mud)) phe-

nomenological chiral dependence of the lattice data in order to estimate the systematic uncertainty
due to the chiral extrapolation to the physical pion mass. The finite-volume correction is estimated
by using alternately one of the following fitting ansatzes3:

FV E = F e−M̄L ,

FV E = F̂n
M̄2

16π2 f 2
0

e−M̄L

(M̄L)n , with n =
1
2
, 1,

3
2
, 2

FV E =
F̃
L3 , (4.3)

where M̄2 ≡ 2B0mud , B0 and f0 are the QCD low-energy constants at leading order. Discretization
effects play a minor role and, for our O(a)-improved simulation setup, they can be estimated by
including (D 6= 0) or excluding (D= 0) the term proportional to a2 in Eq. (4.2). The free parameters
to be determined by the fitting procedure are δ0, δ1, δ2, D and F(F̂n, F̃).

In our combined fit the values of the parameters are determined by a χ2-minimization proce-
dure adopting an uncorrelated χ2. The uncertainties on the fitting parameters do not depend on the
χ2-value, because they are obtained by using the bootstrap samplings of Ref. [13]. This guarantees
that all the correlations among the lattice data points and among the fitting parameters are properly
taken into account. As for the lattice spacing a and the RCs ZP, which enters in the definition of the
renormalized quark mass, their uncertainties are taken into account by imposing a Gaussian prior
in the fitting procedure.

3As previously observed in Ref. [6], for neutral mesons with vanishing charge radius QED FVEs are expected to
start at order O(1/L3).
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At the physical pion mass and in the continuum and infinite-volume limits we get the prelimi-
nary result

δaHVP
µ (ud)

aHVP
µ (ud)

= 0.011 (3)stat+ f it+input(2)chir(2)FV E(1)disc(1)ZA [4] , (4.4)

where the errors come in the order from (statistics + fitting procedure + input parameters of the
eight branches of the quark mass analysis of Ref. [13]), chiral extrapolation, finite-volume and
discretization effects and from the uncertainty on the QED contribution to the RC ZA (see Eq. (4.1)).
In Eq. (4.4) the uncertainty in square brackets corresponds to the sum in quadrature of the statistical
and systematic errors. Further details will be given in a forthcoming paper, including a dedicated
study of FVEs as well as an estimate of the systematic uncertainty related to the quenched-QED
approximation.

Using the leading-order result of Ref. [11], aHVP
µ (ud) = 619.0 (17.8) · 10−10, we obtain a

preliminary determination of the leading-order IB corrections to aHVP
µ (ud), namely

δaHVP
µ (ud) = 7 (2) ·10−10 , (4.5)

which is the sum of the em contribution,[
δaHVP

µ (QED)
]
(MS,2 GeV) = 1.3 (0.9) ·10−10 , (4.6)

and of the strong IB one,[
δaHVP

µ (QCD)
]
(MS,2 GeV) = 5.6 (2.0) ·10−10 . (4.7)

We emphasize that the IB corrections (4.5) are by far dominated by the SU(2)-breaking term,
which is roughly of the order of ∼ 80% of δaHVP

µ (ud). In addition, we point out that the bulk of
the IB corrections to aHVP

µ , aHVP
µ (IB), comes from the light-quark contribution, being the strange

and charm-quark ones negligible with respect to the uncertainties of the leading-order terms [6].
Our lattice determination (4.5), obtained with N f = 2+ 1+ 1 dynamical flavors of sea quarks,
agrees within the errors with and is more precise than the phenomenological estimate of Ref. [23],
δaHVP

µ (ud) = 7.8 (5.1) · 10−10, by the BMW Collaboration and the lattice determination of the
RBC/UKQCD Collaborations, δaHVP

µ (ud) = 9.5 (10.2) · 10−10, [24] (N f = 2+ 1). Furthermore,
the FNAL/HPQCD/MILC Collaborations have recently determined the strong IB contribution,
δaHVP

µ (QCD) = 9.0 (4.5) ·10−10, [25] (N f = 1+1+1+1).
Adding the contributions of light, strange and charm quarks, aHVP

µ (ud) = 619.0 (17.8) ·10−10,
aHVP

µ (s) = 53.1 (2.5) · 10−10 and aHVP
µ (c) = 14.75 (0.56) · 10−10, determined by the ETMC in

Refs. [6] and [11], our preliminary result for the IB corrections, aHVP
µ (IB) = 7 (2) · 10−10, and an

estimate of the quark-disconnected diagrams, aHVP
µ (disconn.) = −12 (4) · 10−10, obtained using

the results of Refs. [23] and [24], we get

aHVP
µ = 682 (19) ·10−10 , (4.8)

which agrees with the recent determinations based on dispersive analyses of the experimental cross
section data for e+e− annihilation into hadrons (see e.g. Ref. [2] and references therein).
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