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The precision of lattice QCD computations of many quantities has reached such a precision that
isospin-breaking corrections, including electromagnetism, must be included if further progress
is to be made in extracting fundamental information, such as the values of Cabibbo-Kobayashi-
Maskawa matrix elements, from experimental measurements. We discuss the framework for in-
cluding radiative corrections in leptonic and semileptonic decays of hadrons, including the treat-
ment of infrared divergences. We briefly review isospin breaking in leptonic decays and present
the first numerical results for the ratio Γ(Kµ2)/Γ(πµ2) in which these corrections have been in-
cluded. We also discuss the additional theoretical issues which arise when including electromag-
netic corrections to semileptonic decays, such as K`3 decays. The separate definition of strong
isospin-breaking effects and those due to electromagnetism requires a convention. We define and
advocate conventions based on hadronic schemes, in which a chosen set of hadronic quantities,
hadronic masses for example, are set equal in QCD and in QCD+QED. This is in contrast with
schemes which have been largely used to date, in which the renormalised αs(µ) and quark masses
are set equal in QCD and in QCD+QED in some renormalisation scheme and at some scale µ .
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1. Introduction
The hugely impressive recent progress in lattice QCD computations has led to the determi-

nation of many quantities, including leptonic decay constants and semileptonic form factors, of
O(1%) or better [1]. In order to make further progress in determining the CKM matrix elements
from these decays, isospin-breaking effects, including radiative corrections, must be included. This
requires a procedure for handling the presence of infrared divergences, as well as an understanding
of the finite-volume effects due to the presence of the photon. In this talk we review the status
of our proposal for how this might be achieved [2, 3] and present the first numerical results for
the ratio of leptonic decay rates Γ(Kµ2)/Γ(πµ2) [4]. Ongoing work in extending the framework to
semileptonic decays is reviewed with a discussion of the new theoretical issues which arise in this
case. We start however, with a discussion of the convention-dependent question of how one might
separate strong isospin breaking effects from those due to radiative corrections.

2. What is QCD?
In the full (QCD+QED) theory what one means by QCD and what one means by radiative

corrections becomes convention dependent. To illustrate this consider the action for the full theory:

S full =
1
g2

s
SYM +∑

f

{
Skin

f +m f Sm
f
}
+SA +∑

`

{
Skin
` +m`Sm

`

}
, (2.1)

where SYM and SA are the gluon and Maxwell actions respectively and the sums are over the
flavours of the quarks f and the charged leptons `, with “kin" and "m" labelling the corresponding
kinetic and mass terms. We imagine calculating some observable O with this action and this is
unambiguous. At the level of O(1%) however, what the QCD and QED contributions to O are
separately requires a definition. Before explaining this, it may be instructive to recall how the
choice of bare quark masses m f and the strong coupling gs is made in the absence of QED.

Calculation of O in the absence of QED: When performing QCD simulations in the 4-flavour
theory without QED, for each value of gs we can, for example, choose the four physical bare quark
masses (m0

u,m
0
d ,m

0
s ,m

0
c) to be those for which the 4 dimensionless ratios:

R1 =
a0mπ0

a0mΩ

, R2 =
a0mK0

a0mΩ

, R3 =
a0mK+

a0mΩ

and R4 =
a0mD0

a0mΩ

, (2.2)

take their physical values. The superscript 0 on the bare masses and the subscript 0 on the lattice
spacing a0 below indicate that these quantities are defined in QCD, i.e. without QED. The lattice
spacing a0 corresponding to the chosen value of gs is obtained by imposing that some dimensionful
quantity, e.g. the mass of the Ω-baryon, takes its physical value:

a0 =
a0mΩ

mphys
Ω

. (2.3)

Of course different choices for the quantities used to determine the m0
u,d,s,c and a0 can be made,

leading to different lattice artefacts in predictions. Once QED corrections are included however,
the masses of hadrons H are shifted by O(α)mH and so some choice of convention is necessary if
we wish to define the QCD and QED contributions separately.
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Hadronic scheme(s): With the inclusion of QED, in the hadronic scheme (which we advocate) we
define QCD by imposing exactly the same conditions as above for QCD without QED. The QED
corrections now shift the hadronic masses used for the calibration and to compensate for this we
add mass counterterms m f = m0

f +δm f so that the ratios Ri in Eq.(2.2) take their physical values.
The Ω mass itself is changed, leading to a shift in the lattice spacing, a = a0 +δa.

Having calibrated the lattice, imagine we wish to make a prediction for an observable O, which
for illustration we take to be of mass dimension 1:

O =
〈aO〉full

a
=
〈a0O〉QCD

a0
+

δO
a0
− δa

a2
0
〈a0O〉QCD + O(α2) , (2.4)

where δO is the contribution from the electromagnetic corrections and mass counterterms. The
first term on the right-hand side can be calculated within QCD alone and has a well defined con-
tinuum limit as does the sum. Such a separation allows us to answer the question: “What is the
difference between QCD (defined as above) and the full theory"? The isospin breaking corrections
are calculated directly, i.e. without taking the difference between calculations performed in the full
theory and in QCD. If needed in the future, the scheme can be extended to higher orders in α .

The GRS scheme: Other ways of defining what the QED corrections are clearly possible. An
indirect one has been proposed by Gasser, Rusetsky and Scimemi [5], and has been followed in
a number of publications, including the reviews of the Flavour Physics Lattice Averaging Group
(FLAG) [1]. In this scheme the renormalised coupling and masses are equal in QCD and QCD+QED
in some scheme and at some renormalisation scale

gs(µ) = Zg(0,g0
s ,µ)g0

s = Zg(e,gs,µ)gs

m f (µ) = Zm f (0,g
0
s ,µ)m0

f (0,g
0
s ) = Zm f (e,gs,µ)m f (e,gs) , (2.5)

where g0
s is the bare coupling in QCD. FLAG has adopted such a definition in the MS scheme at

a scale of µ = 2GeV. The four dimensionless ratios Ri (i = 1-4) in Eq.(2.2) no longer take their
physical values and we can write: Ri = Rphys

i (1+ εi) , where the εi are O(α).
Since hadronic masses are now calculated precisely in lattice simulations and their values are

well known from experimental measurements, we strongly suggest that it is more natural to use
hadronic schemes to define what is meant by QCD. By contrast, the renormalised couplings and
masses are derived quantities which are not measured directly in experiments.

3. Radiative corrections in leptonic decays
We now consider leptonic decays of pseudoscalar mesons illustrated for K`2 and π`2 decays in

Fig. 1(a). Without QED corrections all the QCD effects are contained in a single number, e.g. for
K`2 decays it is the kaon decay constant fK (〈0| s̄γµγ5u |K(p)〉 ≡ i fK pµ ), and the rate is given by

Γ(K−→ `−ν̄`) =
G2

F |Vus|2 f 2
K

8π
mK m2

`

(
1−

m2
`

m2
K

)2

, (3.1)

where GF is the Fermi constant. Equation (3.1) is a particularly simple paradigm illustrating the
approach taken in much of precision flavour physics. On the left-hand side is a quantity which is
measured experimentally. On the right-hand side is the fundamental quantity to be determined (in

2
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π−, K−

d, s

ū

l−

ν̄

W

(a)
(b)

π−, K−

ℓ−

ν̄ℓ

γ

Figure 1: (a) Schematic diagram illustrating the leptonic decays of π and K mesons in QCD. (b) one of the
diagrams contributing to the radiative corrections to K`2 decays; the solid circle represents the insertion of
the effective weak Hamiltonian.

this case Vus) and also term(s) containing the non-perturbative QCD effects (here fK) and known
kinematic factors. Thus once fK is determined we can use (3.1) to obtain Vus (although in practice
it is more useful to compare the rates for K`2 and π`2 decays and obtain the ratio Vus/Vud [1]).

If we require a precision of better than about 1%, then radiative corrections must be included
and one contributing diagram is sketched in Fig.1(b). From this diagram we can see that the strong
and electroweak interactions no longer factorise and that the non-perturbative strong interactions
are no longer contained in the single number fK . Moreover, diagrams such as these are infrared
divergent, as can be seen by simple power counting; in the region of small photon momenta k, the
photon propagator ∼ 1/k2 and the meson and lepton propagators each ∼ 1/k, leading to an inte-
grand which behaves as 1/k4. In order to construct a physical observable which is free of infrared
divergences we must include real photons in the final state [6]; indeed any measurement of the lep-
tonic decay rate will necessarily include the contributions of real photons with energies below the
resolution of the detector. We have proposed a method for computing radiative corrections to decay
rates in lattice simulations, including the handling of infrared divergences, as we now explain.

At this stage, the observable we calculate is Γ0(K → `ν̄`)+Γ1(K → `ν̄`γ), where the sub-
scripts 0,1 denote the number of photons in the final state and the energy of the photon in the kaon
rest-frame Eγ , satisfies Eγ < ∆E where the cut-off ∆E is sufficiently small for the structure depen-
dence of K to be neglected 1. In practice one might take ∆E . 20 MeV which is possible with the
energy resolution of the KLOE [10, 11] and NA62 experiments. It is now very useful to rewrite the
observable in the form

Γ0 +Γ1(∆E) = lim
V→∞

(Γ0−Γ
pt
0 )+ lim

V→∞
(Γ

pt
0 +Γ1(∆E)) , (3.2)

where Γ
pt
0 is the width calculated for a point-like kaon and V is the volume. The second term on the

right-hand side can be calculated in perturbation theory directly in infinite-volume. It is infrared
convergent, but contains a term proportional to log∆E; the result is presented in Ref. [2]. The first
term is also infrared convergent, since when the virtual photon in diagrams for Γ0, see Fig. 1(b) for
example, is soft it couples only to the charge of the meson. Γ

pt
0 is calculated in perturbation theory

whereas Γ0 itself must be computed non-perturbatively in a lattice simulation since hard modes,
which do resolve the structure of the kaon, contribute to diagrams such as that in Fig. 1(b).

1We are also developing techniques to compute Γ1 in lattice simulations, removing the need for a low value of ∆E.
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Figure 2: Left-hand plot: results for the correction δRKπ obtained using a range of quark masses, β s and
volumes with the twisted-mass formulation for the fermions. The cross corresponds to the extrapolation
to the physical point. Right-hand plot: Volume dependence of results for δRK,π , and for δRK and δRπ

separately, obtained at the same β and meson masses (as indicated) after the universal terms proportional to
log[mπ,KL] and 1/L have been subtracted.

We use QEDL to regulate the zero-mode in the photon propagator in a finite volume [7]. The
finite-volume effects then take the form:

Γ
pt
0 (L) =C0(r`)+C̃0(r`) log(mπL)+

C1(r`)
mπL

+ . . . , (3.3)

where r` = m`/mK and m` is the mass of the final-state charged lepton `. The coefficients C0(r`),
C̃0(r`) and C1(r`) are universal, i.e. independent of the structure of the meson beyond the value of
fK computed in QCD, so that the leading structure-dependent finite-volume effects in Γ0−Γ

pt
0 are

of O(1/L2). We present the explicit expressions for C0,1(r`) and C̃0(r`) in Ref. [3].
As a first numerical study of the method, we have computed the ratio Γ(Kµ2)/Γ(πµ2) using

the twisted mass formulation of lattice fermions. We define the correction δRKπ using the relation

Γ(Kµ2)

Γ(πµ2)
=

∣∣∣∣∣Vus

Vud

f (0)K

f (0)π

∣∣∣∣∣
2

m3
π

m3
K

(
m2

K−m2
µ

m2
π −m2

µ

)2

(1+δRKπ) , (3.4)

where mK,π are the physical masses and (in spite of the discussion in Sec.2) f (0)K,π are the decay
constants obtained in iso-symmetric QCD with the renormalized MS masses and coupling equal to
those in the full QCD+QED theory extrapolated to infinite volume and to the continuum limit [4].
Using numerous twisted-mass ensembles we find δRKπ =−0.0122(16) . With this definition of the
correction we can compare directly with the same quantity obtained in chiral perturbation theory
δRKπ =−0.0112(21) [8], where the unknown low-energy constants cancel in the ratio.

In Fig. 2 we present two plots from [4] showing the results from the individual ensembles as
well as the extrapolation to the physical point (left-hand plot) and the volume dependence (after
subtraction of the universal terms) of results obtained at four different volumes at the same masses
and β . The calculation has been performed in the electro-quenched approximation. Full details,
and the separate results for Γ(Kµ2) and Γ(πµ2) will be presented in a paper currently in preparation.

4. Radiative corrections in semileptonic decays
We are now generalising the framework developed for leptonic decays and described in Sec. 3

to semileptonic decays, such as K̄0 → π+`−ν̄` which we will use for illustration. Although the

4
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K̄0

ν̄ℓ

ℓ−

π+

γ

Figure 3: One of the diagrams contributing to radiative corrections to K`3 decays.

main ideas presented above are also applicable in this case, several new features arise which we
now explain.

In QCD the amplitude depends on two form factors f0,+(q2), where q = pK− pπ = p`+ pν :

〈π(pπ) |s̄γµu |K(pK)〉= f0(q2)
M2

K−M2
π

q2 qµ + f+(q2)

[
(pπ + pK)µ −

M2
K−M2

π

q2 qµ

]
. (4.1)

When including radiative corrections, the natural observable to consider is d2Γ/dq2dsπ`, where
sπ` = (pπ + p`)2 and we follow the same procedure as for leptonic decays and write:

d2Γ

dq2dsπ`
= lim

V→∞

(
d2Γ0

dq2dsπ`
−

d2Γ
pt
0

dq2dsπ`

)
+ lim

V→∞

(
d2Γ

pt
0

dq2dsπ`
+

d2Γ1(∆E)
dq2dsπ`

)
(4.2)

where ∆E is the cut-off on the energy of the real photon. The infrared divergences cancel separately
in each of the two terms on the right-hand side.

We have determined the integrands/summands which need to be input into the Poisson sum-
mation formula to determine the finite-volume corrections. An important difference with leptonic
decays is that the 1/L corrections depend on the derivatives of the form factors, d f0,+/dq2, and
not just on the form factors themselves. This is a general feature for amplitudes which depend
on external kinematic variables other than hadron masses. The derivatives d f0,+/dq2 are physical
quantities and in principle can be determined from experiment or lattice calculations. On the other
hand the 1/L corrections do not depend on derivatives of the form factors with respect to the meson
masses; such derivatives are not physical. The explicit calculation of the 1/L corrections has not
yet been performed.

A second significant difference with leptonic decays is the presence of intermediate states in
the diagram of Fig.3 which have a lower energy than that of the external pion-lepton pair. The
unphysical contributions to the correlation function from such states grow exponentially with the
temporal separation of the weak Hamiltonian and the operators at the sink which annihilate the pion
and lepton. The presence of such contributions and the need to subtract them is a general feature
in the calculation of long-distance effects and is a manifestation of the Maiani-Testa theorem [9].
The number of such states depends on the choice of the kinematic variables q2 and sπ` as well as
on the volume. The problem of intermediate states with energies smaller than that of the external
state, including those containing additional hadrons, is particularly severe for semileptonic decays
of heavy mesons. For much of the phase-space there appear to be too many lighter intermediate
states to handle effectively. This is analogous to the fact that the amplitudes and CP-asymmetries
for charmless two-body B-decays, such as B → ππ and B → πK, are not calculable in lattice
calculations, whereas K→ ππ decay amplitudes can be calculated.
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5. Future prospects
We are successfully developing and implementing a framework for the ab initio calculation

of radiative corrections to leptonic and semileptonic decays. Such a framework is necessary if we
are to determine the CKM matrix elements to a precision of better that 1% or so. The priority for
the improvement of the calculation(s) is the renormalization. The effective Hamiltonian for these
decays is Heff =

GF√
2
V CKM

i j

(
1+ α

π
log MZ

MW

)
OW

1 , where for kaon decays OW
1 = (ūγ

µ

L s)( ¯̀γµ Lν`) and
the superscript W indicates that the operator is to be evaluated in the W -regularisation in which
the photon propagator is M2

W/(k2(M2
W − k2)). Up to now we have matched the operators in the

lattice and W-regularisations at O(α) and are currently in the process of extending this to include
the strong interactions.

For semileptonic decays, in addition to the renormalization, some important practical issues
need to be investigated, including the subtraction of the unphysical (exponentially growing in time)
contributions in an actual computation. This requires a phenomenological understanding of the
phase-space needed to obtain precise determinations of the CKM matrix elements; what useful cuts
can be imposed on q2 and sπ` to facilitate the subtraction of the unphysical intermediate states?
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