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Abstract: We investigate the topological properties of Nf = 2 + 1 QCD with physical

quark masses, at temperatures around 500 MeV. With the aim of obtaining a reliable sam-

pling of topological modes in a regime where the fluctuations of the topological charge Q are

very rare, we adopt a multicanonical approach, adding a bias potential to the action which

enhances the probability of suppressed topological sectors. This method permits to gain

up to three orders magnitude in computational power in the explored temperature regime.

Results at different lattice spacings and physical spatial volumes reveal no significant finite

size effects and the presence, instead, of large finite cut-off effects, with the topological

susceptibility which decreases by 3–4 orders of magnitude while moving from a ' 0.06 fm

towards the continuum limit. The continuum extrapolation is in agreeement with previous

lattice determinations with smaller uncertainties but obtained based on ansatzes justified

by several theoretical assumptions. The parameter b2, related to the fourth order coefficient

in the Taylor expansion of the free energy density f(θ), has instead a smooth continuum

extrapolation which is in agreement with the dilute instanton gas approximation (DIGA);

moreover, a direct measurement of the relative weights of the different topological sectors

gives an even stronger support to the validity of DIGA.
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1 Introduction

The topological properties of QCD in the high temperature regime represent an essential

input to axion cosmology. The QCD axion, originally introduced to explain the observed

suppression of the topological CP-breaking θ-parameter in QCD [1–4], has also been rec-

ognized as a possible candidate of dark matter. Through its coupling to the topological

charge density, the axion gets its effective (temperature dependent) mass ma(T ) from topo-

logical charge fluctuations, in particular m2
a(T ) = χ(T )/f2a , where χ(T ) is the topological

susceptibility and fa is the effective axion coupling. Assuming axions as the main source

of dark matter, in particular through the so-called misalignment mechanism [5–7], a pre-

cise knowledge of χ(T ) for temperatures at or above the GeV scale can give access to the

coupling constant fa and, in turn, to the value of the axion mass today, which is a quantity

relevant to present and future experiments trying to detect it.

The analytic semiclassical predictions for χ(T ) at asymptotically high T come from the

Dilute Instanton Gas Model [8–11], which is expected to become more and more reliable

as T approaches the perturbative regime: it predicts a topological susceptibility decaying

as a power law in T ,

χ(T ) ∝ T−D2 (1.1)

with D2 ' 8 for three light flavors. When trying to obtain determinations which are

reliable down to the GeV scale, non-perturbative lattice computations are needed. Lattice

QCD simulations have provided information on θ-dependence below [12–29] and across

the deconfinement temperature Tc [12, 13, 15, 30–34] since long, and the interest related

to axion physics has fostered renewed efforts from the lattice community in the recent

past [35–43]. However, the investigation of the topological properties of QCD in a regime

of temperatures much larger than Tc has to face various non-trivial numerical challenges

which can be summarized as follows:
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i) The topological susceptibility is usually determined starting from the probability

distribution P (Q) of the topological charge Q, in particular from its variance: χ(T ) =

〈Q2〉/V4, where V4 is the space-time volume. The suppression of χ(T ) at large T

implies that, on volumes reasonably achievable in lattice simulations, one may have

〈Q2〉 = V4 χ(T )� 1. Since Q is integer valued, that means that configurations with

Q 6= 0 become very rare, leading to the need of unaffordably large statistics in order

to achieve a correct sampling of the topological charge distribution;

ii) Topology in QCD with physical quark masses is strongly correlated with the chiral

properties of the theory, indeed θ-dependence would be strictly zero in the presence

of massless quarks. That means that the explicit chiral symmetry breaking that is

present in most fermion discretizations can lead to significant lattice artifacts, thus

requiring very small lattice spacings to achieve a reliable continuum extrapolation;

iii) On the other hand, when trying to get closer to the continuum limit, a different chal-

lenge emerges: because of the topological nature of the problem, standard updating

algorithms fail to correctly sample the distribution of Q and get trapped in path

integral sectors with fixed topology. This freezing of topological charge leads to a

severe critical slowing down of numerical simulations [44–48];

iv) Finally, since finite temperature numerical simulations are usually performed on lat-

tices L3
s ×Nt with a fixed aspect ratio Ls/Nt, as T = 1/(Nta) becomes large also the

physical spatial volume a3L3
s becomes small, so that the possible presence of finite

volume effects should be checked.

These are four different, partially independent and all potentially lethal problems,

which justify the discrepancies found in results from recent lattice studies. In particular,

in refs. [38, 39] the coefficient D2 of the power law suppression in eq. (1.1) was found to be

around 3, i.e. much smaller than the DIGA prediction, in a range of temperatures going

up to around 600 MeV and exploring lattice spacings down to around 0.06 fm. Within the

misalignment mechanism for cosmological axion production, a milder power law suppression

implies a larger value of the coupling constant fa in order to comply with the dark matter

upper bound, hence a smaller predicted value for the axion mass today. However, later

results found instead a substantial agreement with the DIGA exponent, even if larger by

about one order of magnitude in absolute value, in a range of temperatures starting from

very close to the pseudo-critical temperature Tc and going up to a few GeVs [40, 42, 43].

In particular, in ref. [42], various strategies were devised to circumvent the problems

exposed above. Problems i) and iii) were bypassed at the same time, in the high-T regime,

by giving up sampling the complete distribution P (Q) of the topological charge from the

path integral, and determining instead the ratio of probabilities between fixed topological

sectors, in particular P (±1)/P (0), based on an integral method which exploits numerical

simulations in which the value of Q is kept fixed on purpose (see also ref. [41]). This strategy

is justified provided the main DIGA assumption is at work, i.e. that the distribution of

instantons and anti-instantons is that of non-interacting topological objects. Indeed, in this
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case, the distribution is Poissonian, so that one can learn everything about the distribution

expected in the infinite volume limit even by exploring small volumes where the topological

sectors |Q| = 0, 1 are the only relevant ones; in absence of this strong assumption, one

could be misled in deducing the infinite volume limit of 〈Q2〉/V4 by a single measurement

of Z1/Z0. On the other hand this requires to know at least some properties of P (Q), like

for instance the so-called b2 coefficient, which is the fourth order coefficient in the Taylor

expansion of the free energy density as a function of θ [49],

b2 = −〈Q
4〉 − 3〈Q2〉2

12〈Q2〉
(1.2)

and approaches −1/12 when the DIGA sets in [8, 32]. However, as we will discuss later

on, b2 is still not the end of the story because, even when DIGA fails, it will turn out to be

very close to -1/12 if the volume is so small that just the |Q| = 0, 1 sectors dominate and

moreover Z1/Z0 � 1. What one should really do is to check that the relative probability

ratios of different topological sectors (with |Q| > 1) follow the volume scaling predicted

by DIGA. This requires, on the typical volumes accessible with available computational

power, to estimate events (multiple instanton occurrences) which are order of magnitudes

smaller than the already rare single instanton events.

In addition, in ref. [42], trying to improve the convergence to the continuum limit, a pro-

cedure was adopted which tries to correct for the absence of exact zero modes in the lattice

Dirac operator by suppressing gauge configurations with Q 6= 0, using an ad hoc reweight-

ing factor based on the actual lowest eigenvalues of the adopted lattice Dirac operator.

The main purpose of this paper is to make progress towards an independent deter-

mination of χ(T ) in the continuum limit, trying to solve at least problem i) from first

principles and without any extra assumption. To that purpose, we exploit a reweighting

technique which combines ideas typical of multicanonical simulations [50] and of metady-

namics [51–53], and has already proved to be extremely efficient in the toy model of the 1D

quantum rotor [48], where it permits to correctly sample the distribution P (Q) for 〈Q2〉
going down by several orders of magnitude, and more recently in pure gauge theories [54].

The main idea is to add a weight exp(−V (Q)) to the path integral distribution, where

the potential V (Q) is chosen so as to enhance the probability of topological sectors which

would otherwise be strongly suppressed. That is then corrected when computing averages

over the Monte-Carlo sample:

〈O〉 =
〈O exp(V (Q))〉V
〈exp(V (Q))〉V

(1.3)

where O is a generic observable and 〈·〉V stands for the average taken according to the

modified distribution. Averages are left unchanged, however fluctuations are modified

leading to an improved signal-to-noise ratio which, as we will show, permits to gain orders

of magnitude in terms of computational effort.

As already mentioned above, the idea is very similar in spirit to metadynamics, where

however the potential V (Q) is modified dynamically during the simulation, with the main

purpose of enhancing tunneling between topological sectors, thus defeating also the critical
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slowing down of topological modes. Actually, our algorithmic framework was originally

developed having a metadynamical approach in mind; however, since freezing has not

revealed to be a severe problem in the explored range of lattice spacings and temperatures,

we have decided to opt for a static version of the potential V (Q) which is determined a

priori. This framework is simpler because the problem comes back to a standard equilibrium

simulation and, on the other hand, the choice of the potential does not reveal to be critical,

apart from possible unwise choices which however are easily avoided.

The method is applied to numerical simulations of Nf = 2 + 1 QCD with physical

quark masses and for two different temperatures, T ' 430 and T ' 570 MeV, exploring

lattice spacings down to a ∼ 0.03 fm. The improved signal-to-noise ratio permits us to

perform reliable infinite volume and continuum limit extrapolations, which turn out to

be in agreement with those of ref. [42]. Lattice artifacts reveal to be significant, so that,

despite the improved precision reached in simulations performed at finite lattice spacing

and the absence of any ad hoc assumption which could bias the result, the final error for the

continuum extrapolation is still rather large. Therefore, efforts to suppress lattice artifacts

or to go to finer lattice spacings by defeating the critical slowing down are still needed.

Another important achievement reached by our strategy is the possibility to obtain a

direct measurement of the relative weights of the different topological sectors, even if they

are extremely small quantities on the accessible lattice volumes, thus giving a solid support

to the validity of DIGA in the explored temperature regime.

Finally, we would like to stress that, due to computer limitations, we had to use

staggered fermions, which require the rooting of the fermion determinant. In this paper

we intended to verify whether the reweighting procedure to enhance the lowest eigenvalues

and the limitation of the Montecarlo to the topological sectors with Q = 0, 1 would not

bias the final result. In the future further progress in our understanding of the complex

dynamics of the topological charge can be obtained by adopting different lattice actions

that do not require any rooting of the fermion determinant.

The paper is organized as follows. In section 2 we describe our numerical setup, re-

garding both the lattice discretization and the introduction and choice of the bias potential.

In section 3 we illustrate the improvement achieved by our approach and present results

for the topological susceptibility and the b2 coefficient. Finally, in section 4, we discuss

perspectives for further improvement.

2 Numerical setup

As in ref. [39], we adopted a rooted stout staggered discretization of Nf = 2+1 QCD, with

a tree level improved Symanzik action [55, 56] for the pure gauge sector. The standard,

finite temperature partition function reads

Z =

∫
DU e−SYM

∏
f=u, d, s

det
(
Mf

st[U ]
)1/4

, (2.1)

where

SYM = −β
3

∑
i,µ 6=ν

(
5

6
W 1×1
i;µν −

1

12
W 1×2
i;µν

)
(2.2)
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β a [fm] ams L3
s ×Nt T [MeV]

4.140 0.0572 2.24× 10−2 243, 323, 403 × 8 430

4.280 0.0458 1.81× 10−2 243, 323, 403 × 10 430

4.385 0.0381 1.53× 10−2 283, 363, 483 × 12 430

4.496 0.0327 1.29× 10−2 323, 403, 483 × 14 430

4.592 0.0286 1.09× 10−2 363, 483, 643 × 16 430

4.140 0.0572 2.24× 10−2 243 × 6 570

4.316 0.0429 1.71× 10−2 323 × 8 570

4.459 0.0343 1.37× 10−2 403 × 10 570

4.592 0.0286 1.09× 10−2 483 × 12 570

Table 1. Simulation parameters used in this work. Bare parameters have been fixed according

to refs. [61, 62] or spline interpolation of data thereof. The systematic uncertainty on the lattice

spacing determination is 2–3% and the light quark mass is fixed by ms/ml = 28.15.

and Wn×m
i; µν denotes the trace of the n×m Wilson loop in the µ, ν plane and starting at site

i, constructed in terms of the original gauge links of the theory, which are the integration

variables in eq. (2.1). The staggered fermion matrix Mf
st[U ] reads instead

(Mf
st)i, j = amfδi, j +

4∑
ν=1

ηi; ν
2

[
U

(2)
i; ν δi,j−ν̂ − U

(2)†
i−ν̂; νδi,j+ν̂

]
(2.3)

and is constructed in terms of the modified link variables U
(2)
i,µ , which are obtained after

two levels of the stout-smearing procedure introduced in ref. [57], with isotropic smearing

parameter ρ = 0.15.

Stout smearing is a convenient smoothing procedure which shares with other smooth-

ing techniques the benefits of suppressing lattice artifacts, in particular by reducing the

taste violations present in the staggered discretization. However, at a variance with other

smoothing techniques, stout smeared links are analytic functions of the original gauge link

variables [57], so that a standard Rational Hybrid Monte-Carlo (RHMC) algorithm [58–60]

can be easily applied.

The bare parameters, β, ms and ml ≡ mu = md, have been chosen so as to move

on a line of constant physics (LCP), with a physical value of the pseudo-Goldstone pion

mass, mπ ≈ 135 MeV and of the strange-to-light mass ratio, ms/ml ' 28.15. The LCP

parameters have been fixed according to the determinations reported in refs. [61–63] or to

a cubic spline interpolation of them. In table 1 we provide a summary of our simulation

points, including the lattice sizes L3
s ×Nt and the temperatures T = 1/(aNt).

2.1 The multicanonical algorithm

As already outlined above, in order to efficiently sample the topological charge distribution

P (Q) in a regime where fluctuations away from Q = 0 become very rare, we will modify
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the Monte-Carlo weight of gauge configurations, adding to the distribution appearing in

eq. (2.1) a Q-dependent bias, i.e. sampling according to

P[U ]DU ∝ DU e−SYM
∏

f=u, d, s

det
(
Mf

st[U ]
)1/4

e−V (Qmc[U ]) (2.4)

where V (Qmc) is the bias potential and Qmc is a proper discretization of the topological

charge which will be in general different from the observable Q measured to determine the

cumulants of the topological charge distribution.

Monte-Carlo averages obtained in this way, denoted by 〈·〉V , can then be combined to

estimate standard averages based on eq. (2.1), using the reweighting formula

〈O〉 =

〈
O eV (Qmc)

〉
V〈

eV (Qmc)
〉
V

(2.5)

In principle, the choice of V is not critical, since after reweighting one recovers the original

averages anyway. However, on one hand we would like to construct V so as to enhance

topological sectors which would be otherwise strongly suppressed, in order to improve the

statistical accuracy in the determination of 〈Q2〉. On the other hand, we would like to

avoid a typical problem of reweighting, i.e. a possible bad overlap between the distribution

in eq. (2.1) and that in eq. (2.4), which could result in a failure to sample important

configurations. Both issues will be discussed in more detail in the next subsection, where

we show how V has been chosen in practice.

A different, important issue regards the discretized topological charge Qmc[U ] entering

the potential. Several different lattice implementations, gluonic or fermionic, are available

in principle. However, the need for an easy implementation of the potential into the RHMC

Molecular Dynamics equations constrains the choice. Indeed, the introduction of V (Qmc)

induces a new force term F related to the value of Qmc. By using the chain rule one obtains

Fµ(i) ≡ − ∂V

∂Uµ(i)
= − ∂V

∂Qmc

∂Qmc
∂Uµ(i)

. (2.6)

Therefore, the calculation of the new force term related to a given gauge link proceeds

through the calculation of the scalar coefficient ∂V /∂Qmc, and the calculation of the deriva-

tive of Qmc with respect to the given gauge link.

In order to keep the calculation of the derivative simple, an easy choice would be to

consider the field-theoretical clover-based definition of the topological charge [64, 65]:

Qft =
∑
i

qft(i) ; qft(i) = − 1

29π2

±4∑
µνρσ=±1

ε̃µνρσTr (Πµν(i)Πρσ(i)) , (2.7)

where Πµν is the plaquette operator, ε̃µνρσ is the Levi-Civita tensor for positive entries and

is fixed by antisymmetry and ε̃µνρσ = −ε̃(−µ)νρσ otherwise. With such a definition, the

calculation of the force term driving the dynamics amounts to a simple modification of the

usual Wilson gauge action force, in which the staples are decorated by clover insertions,

just as in pure gauge simulations implementing an imaginary θ term [21].

– 6 –
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However, despite the easy implementation, such a definition is not convenient for the

purpose of this study, in the naive way above. Indeed, it must be remembered that Qft,

like any field-theoretic definition, is related to the actual topological background Q, con-

figuration by configuration, through the relation

Qft = ZQ+ η, (2.8)

where Z is a multiplicative renormalization constant [66] and η is a noise term which

is practically independent of Q and has zero expectation value. It is well known that

the renormalization constant Z is typically quite small, while the variance of η is quite

large, with 〈η2〉 � Z2〈Q2〉, so that Qft has a small correlation with the actual topological

background Q, i.e.

〈QQft〉√
〈Q2〉〈Q2

ft〉
'

√
Z2〈Q2〉

Z2〈Q2〉+ 〈η2〉
� 1 . (2.9)

While this is not harmful to the reweighting procedure, which is exact anyway as long as

one uses the same charge in the RHMC and in eq. (1.3), it makes it useless, since the bias

potential will not be able to increase the variance of the sampled distribution of topological

charge Q, because of the loose correlation with it.1

In order to circumvent this problem, an improved definition of Qmc is needed. This can

be easily achieved by standard “smoothing” techniques, i.e. computing Qft on smoothed

gauge fields in place of the original ones. This has the effect of moving Z closer to 1, and of

reducing the fluctuations of the noise η, thus leading to a substantial improvement for the

correlation with Q. Many methods have been proposed so far to smooth gauge configura-

tions, including the gradient flow [67, 68], cooling [69–73], and several kinds of smearing

techniques, all being equivalent to each other [74–79]. Given the need of integrating the

equations of motion induced by V (Qmc), the most natural choice is again to make use of

the same stout smearing procedure adopted to define the fermion matrix, which makes

Qmc a differentiable function of the original gauge links.

In particular, assuming to compute Qft on n times stout-smeared links U
(n)
µ (i), the

computation of the “topological force” related to the bias potential proceeds through

∂Qmc
∂Uµ(i)

=
∂Qft[U

(n)]

∂U
(n)
ν (j)

∂U
(n)
ν (j)

∂U
(n−1)
ρ (k)

. . .
∂U

(1)
σ (l)

∂Uµ(i)
. (2.10)

The actual implementation of this chain relation amounts to the same procedure used to

compute the derivative of the pseudo-fermion contribution to the force, described in ref. [57]

and already adopted in our fermion discretization. For small values of the stouting param-

eter ρst, nst stout-smearing steps are equivalent to a gradient flow time τ = nst ρst [78],

hence to a number of cooling steps ncool = 3 τ = 3nst ρst [74].

One would like to have nst ρst large enough to enhance Z and suppress η, so as to

have a reasonable correlation between Qmc and Q. However, using a large number of stout

1The situation when using an imaginary θ term is more favourable in this respect, since the aim is to

change the average of the distribution and not its variance, in which case even Qft can be effective.
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smearing steps implies a large numerical overhead in the implementation of the molecular

dynamics equations while, on the other hand, stout smearing does not act as a smoothing if

ρst is too large [57]. As a matter of fact, we found as a good compromise to fix ρst = 0.1 and

to choose nst in the range from 10 (for the finest lattice spacing) to 20 (for the coarsest),

which corresponds to a number of equivalent cooling steps going from 3 to 6. For this

choice, the total numerical overhead due to the introduction of the bias potential goes from

a minimum of 30% to a maximum of 60%, measured with the respect to the computational

time needed in absence of the bias potential. Notice that, despite the moderate overhead,

implementation of the bias potential in full QCD, through the RHMC equations, does not

require a change of simulation paradigm as it is needed in the pure gauge case [54].

Finally, the determination of the topological charge Q used for measurements was

based on a standard cooling procedure, adopting in particular ncool = 80, then rounding

it to the closest integer value, in particular following the procedure originally proposed in

ref. [45] (see also ref. [28] for more details). Such a definition is based on the expectation

that the physical topological content of gauge configurations becomes stable under action

minimization when the continuum limit is approached, while ultraviolet (UV) fluctuations

responsible for renormalizations are removed, and has been proved to yield results equiv-

alent to the gradient flow [74, 77]. Results obtained in this work have been checked to be

indeed stable, within statistical errors, in a range of cooling steps going from 40 to 120;

however, in order to be sure to correctly include possible systematics of the method, the

observed small variations in this range has been added as a systematic error in all cases.

2.2 Practical implementation and choice of the potential

In this section, as an illustrative example, we discuss the way in which we fixed the form

of the biasing potential for the case of the 323 × 8 lattice at β = 4.140 (see table 1),

corresponding to T ' 430 MeV.

In figure 1 we report the Monte-Carlo history of the topological charge, from which

it is already clear that only rare fluctuations to just the Q = ±1 topological sectors take

place, this is also clear looking at figure 2, where we report the probability distribution

of the topological charge measured after 20 steps of stout smearing. Indeed, we obtain

〈Q2〉 ' 0.01, meaning that the sectors with non-zero topological background are suppressed

by about 2 orders of magnitude with respect to the Q = 0 sector. In particular, taking

also autocorrelations into account, we obtain a4 χ = 〈Q2〉/V4 = (4.1±1.6)×10−8, which is

compatible with the value obtained at the same temperature and lattice spacing in ref. [39].

In principle, the optimal choice for V (Qmc) would be the one which makes the biased

topological charge distribution flat, i.e. V (Qmc) should be taken equal to minus the loga-

rithm of the probability distribution for Qmc determined in absence of the potential: that

would enhance the probability of configurations at the border between different topological

sector, thus defeating critical slowing down at the same time. However, this would require

a precise a priori knowledge of P (Qmc): were that available, the problem would have al-

ready been solved. On the other hand, we are not looking for the optimal choice but just

for a substantial improvement, so we will explore some suitable smooth potentials.
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0 5000 10000
RHMC trajectories

-1

-0.5

0

0.5

1

Figure 1. Monte-Carlo history of the topological charge measured after 80 cooling steps and

adopting the standard updating algorithm, i.e. with no bias potential, for a 323 × 8 lattice at

β = 4.14. Measurements are taken every 10 RHMC trajectories, and 〈Q2〉 ∼ 0.01, meaning that

the sectors with non-zero topological background are suppressed by about 2 orders of magnitude.

-4 -3 -2 -1 0 1 2 3 4

Q
mc

0.1

1

10

P
( 

Q
m

c
 )

Figure 2. Probability distribution of the topological charge Qmc measured after 20 stout smearing

steps with ρst = 0.1, for the same run parameters relative to figure 1. The probability distribution

is plotted in logarithmic scale, to better visualize the peaks corresponding to a non-zero topological

background, which are suppressed by about 2 orders of magnitude.
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-4 -3 -2 -1 0 1 2 3 4

Q
mc

-30

-25

-20

-15

-10

-5

0

V
 (

 Q
m

c
 )

Figure 3. Bias potentials adopted in the illustrative example discussed in the text. The continuous

line refers to the potential in eq. (2.11), with aq = 3.25 and a cut-off at Qmax = 3. The dashed line

refers to the potential in eq. (2.12), with B = 6, C = 2 and a cut-off at Qmax = 3.

A first possibility is to choose a quadratic potential,

V (Qmc) = −aq Q2
mc (2.11)

since, at least for large enough volumes, the probability distribution of Qmc is expected to

become Gaussian-like. Willing to enhance the Q = ±1 sectors by a factor O(100), as it

seems necessary looking at figure 2, one should choose aq ∼ log(100) ' 4.6; however, even

smaller magnitudes of aq may lead to dangerous instabilities. Indeed, as an example, con-

sider a potential like that in eq. (2.11), with aq = 3.25, which is shown in figure 3, where the

bias towards larger topological charges is stopped at a threshold charge Qmax = 3, fixing

V (Qmc) = V (Qmax) for |Qmc| ≥ Qmax. The Monte-Carlo history of the topological charge

obtained with this bias potential is shown in figure 4: Qmc gets trapped around Qmax and as

a result also Q assumes only positive values. That means that the bias is too strong towards

large values of |Qmc|, so that the biased system develops a sort of spontaneous breaking

of CP symmetry: that clearly affects the validity of the reweighting procedure, since topo-

logical sectors which are relevant to the original path integral now are badly sampled.2

It is of course possible to choose lower values of aq for which this problem does not

appear, however, in order to maintain a good enhancement of low Q 6= 0 sectors, we have

explored a different class of potentials with a less steep behavior at large Q, in particular

V (Qmc) = −
√

(BQmc)2 + C . (2.12)

In figure 3 we show one example of such potential, which we have found as a good com-

promise after a few trial runs, for which B = 6 and C = 2: also in this case the bias

2Indeed, trying to apply eq. (2.5) to this sample, we obtain a determination of 〈Q2〉/V4 which is about

one order of magnitude larger than the one found in the standard simulation, with an error which is even

two orders of magnitudes larger than that, meaning that it is completely out of control.
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Figure 4. Monte-Carlo history of the topological charges obtained after 80 cooling steps and after

20 stout-smearing steps (with ρst = 0.1), for the run on the 323 × 8 lattice at β = 4.14, adopting

the quadratic bias potential (see eq. (2.11)) illustrated in figure 3.

is cut at Qmax = 3. The corresponding Monte-Carlo history is shown in figure 5: the

topological charge now fluctuates evenly around Q = 0, and sectors which are important

in the original partition function are well sampled, however also contributions from Q 6= 0

are explored frequently, so that it is possible to obtain a more accurate determination of

their contribution to 〈Q2〉 after using eq. (2.5). This is also visible from the probability

distribution obtained for Qmc during the biased run shown in figure 6.

It is interesting to notice, looking at figure 5, that the correlation between the two

charges, Q and Qmc is visibly good; from a quantitative point of view one obtains, using

the definition in eq. (2.9), a good correlation around 0.86, meaning that the bias on Qmc
is also a good bias for Q. For comparison, the corrlation between Q and Qft before any

stout smearing step is quite low and around 0.08, while topological charges obtained after

prolongated cooling show of course larger correlation, for instance that between 60 and 80

cooling steps is 0.97.

The final estimate obtained for the susceptibility from this run is a4χ = 〈Q2〉/V4 =

(6.1 ± 1.1) × 10−8, where the error has been estimated after a binned jackknife analysis

using eq. (2.5). Notice that, after reweighting, the relative contribution to 〈Q2〉 from the

Q = 3 sector turns out to be well below 0.01 , so that the cut at Qmax, which does not

enhance the contribution from sectors with larger values of Q, is totally irrelevant.

In the following we will show results from several runs performed for different lattice

volumes and at different values of the lattice spacing. In all cases we have adopted a

bias potential of the form showed in eq. (2.12), fixing the coefficient by reasonable guesses

followed by some preliminary short runs. For instance, changing the lattice volume at fixed

temperature and lattice spacing, 〈Q2〉 is expected to scale proportionally to V4, so that a

good starting guess is to rescale B2 proportionally to 1/V4.
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Figure 5. Monte-Carlo history of the topological charges obtained after 80 cooling steps and after

20 stout-smearing steps (with ρst = 0.1), for the run on the 323 × 8 lattice at β = 4.14, adopting a

bias potential as in eq. (2.12), with B = 6 and C = 2, and illustrated in figure 3.

3 Numerical results

In this section, after discussing the effectiveness of our numerical approach, as compared

to standard Monte-Carlo simulations, we will illustrate results obtained for the topological

susceptibility and for the b2 coefficient, and discuss the relevance of finite size and finite

discretization effects.

3.1 Efficiency of the method and gain over the standard approach

In the exploratory simulation that we have discussed in some detail in the previous sec-

tion, the relative error has decreased from 39%, with the standard approach, to about 18%

when using the bias potential in eq. (2.12), maintaining more or less the same number of

RHMC trajectories. That is as if we have gained roughly a factor 4 in statistics, which

however, when considering the 60% overhead required to integrate the equations of mo-

tion for V (Qmc) with 20 stout smaring steps, reduces to about a factor 2.5 in terms of

computational effort gain.

Of course, one should consider the additional moderate effort spent in the preliminary

small runs required to find a reasonable bias potential. However, the gain is expected

to grow rapidly as the value of 〈Q2〉 one has to determine decreases further: that could

happen either by increasing the temperature further or, according to the indications for a

strong cut-off dependence of χ [40, 42], by decreasing the lattice spacing.

Therefore, let us consider a run performed on a 483 × 16 lattice at β = 4.592, cor-

responding to a ' 0.0286 fm and the same temperature T ' 430 MeV considered in the

previous example. In this case we do not have a simulation adopting the standard approach

to compare with, since in that case no topological fluctuation at all is expected in a few
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Figure 6. Probability distribution of the topological charge Qmc, measured after 20 stout smearing

steps with ρst = 0.1, for the same run parameters and the same bias potential relative to figure 5.

As a reference, we also show (dashed line) the probability distribution obtained with the same bare

parameters at zero bias potential, which has been already reported in figure 2.

days run. Instead, in figure 7, we show the Monte-Carlo (MC) history of the topological

charge over about 4.5 × 104 trajectories performed with a bias potential as in eq. (2.12),

with B = 11 and C = 2. In this case, the final result that we obtain after reweighting is

〈Q2〉 = 2.1(7)× 10−4.

From that we get a rough estimate of the computational effort that would have been

required to obtain the same statistical accuracy, which is around 30%, with the standard

approach. One should observe roughly O(10) fluctuations away from Q = 0: given the

value of 〈Q2〉, that would require around 5 × 104 independent draws of Q when using the

standard run. We do not know what the autocorrelation time for Q in the standard run

would have been, however we can assume it is at least of the same order of magnitude as

that observed in figure 7, which is O(103). Therefore, one estimates the number of RHMC

trajectories that would have been necessary using the standard approach to be roughly

between 107 and 108, implying a gain in computational effort of O(103).

3.2 Results for χ and b2

We now illustrate the numerical results obtained for the topological susceptibility and for

the b2 coefficient at two different temperatures and several lattice spacings, as illustrated

in table 1, with the aim of obtaining a continuum extrapolation. Given the small values of

χ, one would also like to exclude that the limited spatial volume available induces signif-

icant distortions in the distribution of topological charge: therefore, at least for the lower

temperature, we have also explored, for every lattice spacing, different spatial volumes, in

order to exclude the possibile presence of finite size effects.
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Figure 7. Monte-Carlo history of the topological charges obtained after 80 cooling steps and after

10 stout-smearing steps (with ρst = 0.1), for the run on the 483 × 16 lattice at β = 4.592, adopting

a bias potential as in eq. (2.12), with B = 11 and C = 2.
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Figure 8. Topological susceptibility in lattice spacing units, as a function of the inverse spatial vol-

ume, for different values of Nt at a fixed value of the temperature, T = 1/(Nta) ' 430 MeV. The vol-

ume dependence is not significant and the horizontal bands are the result of a fit to a constant value.

In figure 8 we report the whole collection of results obtained for T ' 430 MeV, where

results for a4χ are reported as a function of the inverse spatial volume for the different

lattice spacings (see table 1), which appear in increasing order starting from the bottom.

Finite size effects appear to be not significant, and the horizontal bands represent our

infinite volume estimates for a4χ.
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Figure 9. Ratios of the partition functions with |Q| = 1 to that with |Q| = 0, divided by the four

volume V4, for the same lattice spacings and volumes shown in figure 8, and compared with the

infinite volume estrapolation of aχ4 (horizontal bands).

It is interesting to compare the results obtained for a4χ with those that one would

obtain by just sampling the topological sectors with |Q| = 0, 1: in this case the estimate of

a4χ would be given by (2Z1/Z0)/V4, where V4 is the four volume and ZQ is the partition

function restricted to topological sector Q. In general, the ratio ZQ1/ZQ2 can be simply

obtained from our simulations by taking the ratios between the reweighted averages for the

occurences of Q1 and Q2. In figure 9 we report (2Z1/Z0)/V4 computed for the same lattice

spacings and volumes reported in figure 8: it is clear that in fact, at least for the explored

physical volumes, the two lowest topological sectors |Q| = 0, 1 contain practically the whole

information relevant to the computation of the aχ4, whose infinite volume extrapolation,

already reported in figure 8, is reported again for a better comparison (horizontal bands).

However, it is important to stress that our simulations contain much more information

than just Z1/Z0, indeed we are able to estimate the ratios ZQ1/ZQ2 with good accuracy

also for higher values of Q1 and Q2. In figure 10 we report, as an example, the ratio Z2/Z0,

normalized by V 2
4 and measured for the different lattice spacings and volumes. The reason

of the normalization is to elucidate an important piece of information contained in these

data: Z2/Z0 scales proportionally to V 2
4 , as expected for the occurrence of two independent

and non-interacting topological objects in the same volume, i.e. for the Poissonian distri-

bution of the topological charge predicted by DIGA. A similar behaviour, i.e. a scaling

with the appropriate power of the volume predicted by DIGA, is observed also for Z3/Z0.

The same estimates, expressed in physical units for χ1/4, are reported in figure 11 as

a function of a2; in the same figure, continuum extrapolations at the same temperature

from ref. [39] and ref. [42] are also reported. As one can easily appreciate, finite cut-off

effects are huge, with χ decreasing by a factor 40 when moving from a ' 0.0576 fm to

a ' 0.0286 fm: that explains the discrepancy observed among previous literature results.
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4 , for

the same lattice spacings and volumes shown in figure 8.

Continuum extrapolation is possible with our present data: we require to include O(a4)

corrections when considering all explored lattice spacings, and just O(a2) for the three

smallest ones: results are consistent and we obtain χ1/4 = (3.2± 3.3) MeV (χ̃2 = 7.6/2) in

the first case and χ1/4 = (5.3±3.1) MeV (χ̃2 = 2.8/1) in the second case, both compatible,

even if within large error bars, with the results reported in ref. [42]. A similar agreement

is observed for results obtained at T = 570 MeV, which are reported in figure 12: in this

case we obtain χ1/4 = (6.6 ± 4.8) MeV (χ̃2 = 1.3/1) when considering O(a4) corrections

for all lattice spacings and χ1/4 = (13± 3) MeV (χ̃2 = 2.4/1) when considering just O(a2)

corrections for the three smallest lattice spacings.

In almost all the cases the values of χ̃2 are somehow large, however (because of the small

number of degrees of freedom) these numbers are not incompatible with the hypothesis that

χ1/4(a) is linear in a2 for the three smallest values of the lattice spacing. On the other

hand the large χ̃2 value obtained for T = 430 MeV when using all data points, and the

only marginal agreement between the results of the two fits performed at T = 530 MeV,

are indications that the continuum limit systematics are still not completely under control.

A fair account of our final results, based on the fits with lowest chisquared but including

such systematics, would be (3 ± 3 ± 2) MeV for T = 430 MeV and (7 ± 5 ± 6) MeV for

T = 530 MeV. Moreover, the almost 100% relative errors of our continuum extrapolations

prevent a reliable estimate of the power law coefficient in eq. (1.1). Let us however stress

once more that our main purpose in this paper was not to provide a precise determination

of the temperature dependence of χ(T ), but to show that the obstacle represented by

the suppression of the Q 6= 0 sectors at high temperature can be overcome in a model

independent way. This is obviously not the end of the story since we still have other

obstacles and, as we discuss in the next section, smaller lattice spacings or a way to reduce

lattice artifacts are needed for the future.
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Figure 11. Fourth root of the topological susceptibility, as a function of a2, for T ' 430 MeV.

To two bands represent the result of two different continuum extrapolations, taking into account

respectively O(a2) or O(a4) corrections. The two horizontal lines are the continuum extrapolations

reported respectively in refs. [39] and [37] at the same temperature.

Despite the huge cut-off effects observed for χ, the values obtained for the b2 coefficient

defined in eq. (1.2), which are reported in figure 13 for T = 430 MeV, are practically

independent of a within errors, and always compatible with the prediction from DIGA,

b2 = −1/12. A fit to all lattice spacings at this temperature assuming O(a2) corrections

yields −12b2 = 1.0006(10) (χ̃2 = 0.75/3), while −12b2 = 0.9997(3) (χ̃2 = 1.6/4) is obtained

taking a fit to a constant function. These results for b2 are consistent with the assumption

of a dilute gas of independent topological objects, however let us stress that we could not

have expected anything different from that, given the fact that, on the explored volumes,

the topological sectors with |Q| = 0, 1 are largely dominant (see figure 9) and moreover

Z1/Z0 � 1: that alone yields inevitably to b2 ' −1/12 and would happen even for T = 0 if

one takes the volume small enough. Therefore, a more substantial support to the validity

of DIGA, which is assumed in ref. [42], is given by the analysis of the volume scaling of the

ratios ZQ/Z0 that we have discussed above: that guarantees that, even when making the

volume large enough that |Q| = 1 does not dominate any more, b2 will remain consistent

with DIGA and the susceptibility will maintain the value already determined on the smaller,

accessible volumes.

4 Discussion

The determination of the topological susceptibility in the high temperature regime has to

face various numerical challenges: topological fluctuations become very rare and difficult

to sample, UV cut-off effects can be quite large because of the non-exact lattice chiral sym-

metry of the adopted fermion discretization and, finally, the freezing of topological modes

leads to a critical slowing down when one gets too close to the continuum limit. These
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Figure 12. Fourth root of the topological susceptibility, as a function of a2, for T ' 570 MeV. To
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in ref. [37] at the same temperature.

difficulties are at the basis of the discrepancies found among recent lattice determinations

adopting different approximations or assumptions.

In this study, we have shown how rare topological events can be effectively sampled, in

a controlled way, by inserting a bias Q-dependent potential in the probability distribution of

gauge configurations, which is then reweighted away in the analysis. That permits to gain

orders of magnitude in terms of computational effort, in situations in which 〈Q2〉 � 1. That

has given access not only to the topological susceptibility and to b2, but also to quantities

like ZQ/Z0 with |Q| > 1, which are extremely small on the accessible lattice volumes and

would have been completely unaccessible otherwise: a careful check of the volume scaling

has revealed that finite size effects are not relevant and has given substantial support to

the validity of the DIGA assumption in the explored temperature regime.

Nevertheless, as we have seen, the large UV cut-off effects still represent a problem: χ

drops by 3–4 orders of magnitude when moving from a ∼ 0.06 fm towards a = 0, meaning

that, despite the huge improvement induced by the bias potential, the final continuum

extrapolation still has considerable error bars. In particular, the present accuracy obtained

at the two explored temperatures, with relative errors not far from 100%, does not permit

us to extract a reliable estimate for the power law coefficient in eq. (1.1).

In ref. [42], UV effects have been suppressed by an ad hoc procedure which reweights

gauge configurations with Q 6= 0 by forcing the Q lowest eigenvalues of the discretized Dirac

operator associated with them to be zero. This procedure becomes exact as one approaches

the continuum limit, where the Dirac operator indeed develops exact zero modes, however

it induces non-local modifications in the discretized theory at finite lattice spacing. For

that reason, an independent way of obtaining continuum extrapolations of χ with a good

statistical accuracy would be welcome.

– 18 –



J
H
E
P
1
1
(
2
0
1
8
)
1
7
0

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

a
2
 [fm

2
]

-0.084

-0.0835

-0.083

-0.0825

b
2

DIGA prediction

Figure 13. Numerical results obtained for the coefficient b2, as a function of a2, for T ' 430 MeV.

The horizontal line represents the prediction of the dilute instanton gas approximation (DIGA).

An obvious strategy is to push our efforts forward by exploring smaller lattice spacings.

However, that will require to face problems related to critical slowing down, since at the

smallest explored lattice spacing the autocorrelation length is already larger than O(103)

unit time RHMC trajectories. A natural solution could be represented by metadynam-

ics [51–53], where the bias potential is dynamically tuned so as to enhance the tunneling

between different topological sectors.

A different approach could be represented by a modification of the observable used to

determine the topological susceptibility. Present results are based on a gluonic definition

of the topological charge relying on the smoothing of gauge configurations. The adoption

of a fermionic definition of the topological charge could be a much better choice: the

point here is not about the solid theoretical basis of this definition, but rather about the

practical benefits that one could achieve if the same discretization of the Dirac operator is

adopted both for the MC simulation and for the determination of the topological content.

In particular, recent studies performed at zero temperature [80] have shown that definitions

of χ based on spectral projectors [81] lead to finite cut-off effects which are significantly

reduced with respect to those based on standard gluonic observables. We plan to consider

both strategies in the near future.
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