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Abstract. In this paper we study some local spectral properties of Toeplitz
operators Tφ defined on Hardy spaces, as the localized single valued extension
property and the property of being hereditarily polaroid.

1. Introduction

This paper concerns some spectral properties of Toeplitz operators Tφ defined
on the Hardy spaces H2(T), where T denotes the unit circle of C, in particular,
a local spectral property, the so-called single valued extension property (SVEP)
and the property of being hereditarily polaroid. Example 4.8 provides un example
of Toepliz operator with a continuous symbol φ on the unit circle T for which
the single valued extension property fails for both Tφ and T ′φ, T ′φ the adjoint of
Tφ. Consequently also the property of being hereditarily polaroid may fail, since
this property entails the SVEP. The SVEP has some important consequences on
the fine structure of the spectrum, so it has interest to determine conditions on
φ which ensure SVEP for Tφ, or for T ′φ. We shall see that if φ ∈ H∞(T) then
Tφ has SVEP and is hereditarily polaroid, while for continuous symbol the SVEP
for Tφ (respectively, for T ′φ) holds if the orientation of the curve φ(T) traced out

by φ is counterclockwise (respectively, the orientation of the curve φ(T) traced
out by φ is clockwise). The SVEP is also ensured in some other special cases.
Weyl’s theorem for Toeplitz operators has been established first by Coburn [8].
In the last part we discuss Weyl type theorems for Toeplitz operators and the
permanence of these theorems under functional calculus.

The results in this paper have not been published in journals, and part of these
results have been included in the recent book by the first author [1].

2. Preliminaries

In what follows, by X we denote a complex infinite-dimensional Banach space,
and by L(X) the Banach algebra of all bounded linear operators defined on X.
Let T ∈ L(X), let α(T ) and β(T ) denote the dimension of the kernel ker T and
the codimension of the range R(T ) := T (X), respectively. Let

Φ+(X) := {T ∈ L(X) : α(T ) <∞ and T (X) is closed}
denote the class of all upper semi-Fredholm operators, and let

Φ−(X) := {T ∈ L(X) : β(T ) <∞}
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denote the class of all lower semi-Fredholm operators. If T ∈ Φ±(X) := Φ+(X)∪
Φ−(X), the index of T is defined by ind (T ) := α(T )−β(T ). The semi-Fredholm
spectrum (called also the Wolf spectrum) is the set

σsf(T ) := {λ ∈ C : λI − T /∈ Φ±(X)},

while the upper semi-Fredholm spectrum is defined by

σusf(T ) := {λ ∈ C : λI − T /∈ Φ+(X)}.

If Φ(X) := Φ+(X) ∩ Φ−(X) denotes the set of all Fredholm operators, the set
of Weyl operators is defined by

W (X) := {T ∈ Φ(X) : indT = 0},

the class of upper semi-Weyl operators is defined by

W+(X) := {T ∈ Φ+(X) : indT ≤ 0}.

The classes of operators before defined give origin to the following spectra: the
Weyl spectrum, defined by

σw(T ) := {λ ∈ C : λI − T /∈W (X)};

the upper semi-Weyl spectrum, defined by

σuw(T ) := {λ ∈ C : λI − T /∈W+(X)}.
and the lower semi-Weyl spectrum, defined by

σlw(T ) := {λ ∈ C : λI − T /∈W−(X)}.
A well known result of Fredholm theory establishes that for every K ∈ K(X)

we have

(1) σw(T ) = σw(T +K), σuw(T ) = σuw(T +K), σlw(T ) = σlw(T +K)

(note that commutativity is not required). For an operator T ∈ L(X) set

ρ+sf(T ) := {λ ∈ C : λI − T ∈ Φ±(X), ind (λI − T ) > 0},

and

ρ−sf(T ) := {λ ∈ C : λI − T ∈ Φ±(X), ind (λI − T ) < 0}.

Lemma 2.1. If T ∈ L(X) then

(i) σw(T ) = σsf(T ) ∪ ρ+sf(T ) ∪ ρ−sf(T ).

(ii) σuw(T ) = σsf(T ) ∪ ρ+sf(T ).

Proof. (i) The inclusion (⊆) is evident. Conversely, if λ /∈ σw(T ), then λI − T ∈
W (X), so λ /∈ σsf(T ) ∪ ρ+sf(T ) ∪ ρ−sf(T ).

(ii) The inclusion σsf(T ) ∪ ρ+sf(T ) ⊆ σuw(T ) is clear. Conversely, suppose that

λ /∈ σsf(T )∪ρ+sf(T ). Then λI−T ∈ Φ±(X) and ind (λI−T ) ≤ 0, so α(λI−T ) ≤
β(λI − T ), which obviously implies that λI − T ∈ Φ+(X) and hence λ /∈ σuw(T ).
Therefore, the equality (ii) holds.

Lemma 2.2. For every T ∈ L(X) we have isoσw(T ) ⊆ isoσuw(T ) ⊆ isoσsf(T ).
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Proof. Let λ0 ∈ isoσw(T ). Then there exists an ε > 0 such that λI−T ∈W (X)
for all 0 < |λ| < ε. This easily implies that λ0 ∈ σsf(T ). In fact, if not, then
λ0I − T ∈ Φ+(X). By the continuity of the index function we then obtain
ind (λ0I − T ) = 0, i.e., λ0 /∈ σw(T ), a contradiction. Since, by Lemma 2.1, we
have σuw(T ) = σsf(T )∪ρ+sf(T ), then D(λ0, ε)∩σuw(T ) = {λ0}, so λ0 ∈ isoσuw(T ).

Now, choose an arbitrary µ0 ∈ isoσuw(T ). To show the second inclusion it
suffices to prove that µ0 ∈ σsf(T ). Assume that µ0 /∈ σsf(T ). Then µ0I − T ∈
Φ±(X), and, since Φ±(X) is an open subset of L(X), there exists a δ > 0 such
that µI − T ∈ Φ±(X) for all µ ∈ D(µ0, δ). Again by the continuity of the index
function, there exists an n ∈ Z ∪ {−∞,+∞} such that ind (µI − T ) = n for all
µ ∈ D(µ0, δ). Note that σuw(T ) = σsf(T ) ∪ ρ+sf(T ), by Lemma 2.1. If n ≤ 0 then
µo /∈ σuw(T ), a contradiction. If n > 0 then D(µ0, δ) ⊆ ρuw(T ) = C \ σuw(T ),
and hence µ0 is an interior point of σuw(T ), again a contradiction. Therefore,
µ0 ∈ σsf(T ).

Let p(T ) := p be the ascent of an operator T ; i.e. the smallest non-negative
integer p such that ker T p = ker T p+1. If such integer does not exist we put
p(T ) = ∞. Analogously, let q(T ) := q be the descent of T ; i.e the smallest non-
negative integer q such that T q(X) = T q+1(X), and if such integer does not exist
we put q(T ) = ∞. It is well known that if p(T ) and q(T ) are both finite then
p(T ) = q(T ), see [?, Theorem 3.3]. Moreover, if 0 < p(λI − T ) = q(λI − T ) <∞,
then λ is a pole of the resolvent, see [14, Proposition 50.2], and in particular an
isolated point of σ(T ).

The class of all Browder operators is defined

B(X) := {T ∈ Φ(X) : p(T ), q(T ) <∞};

while the class of all upper semi-Browder operators is defined

B+(X) := {T ∈ Φ+(X) : p(T ) <∞}.

The Browder spectrum is defined by

σb(T ) := {λ ∈ C : λI − T ∈ B(X)},

while the upper semi- Browder spectrum is defined by

σub(T ) := {λ ∈ C : λI − T ∈ B+(X)}.

Obviously, B(X) ⊆ W (X) and B+(X) ⊆ W+(X), see [?, Theorem 3.4], so
σw(T ) ⊆ σb(T ) and σuw(T ) ⊆ σub(T ).
Recall that R ∈ L(X) is said to be a Riesz operator if λI − T ∈ Φ(X) for all
λ 6= 0. The Browder spectra are invariant under Riesz commuting perturbations
R, i.e.,

(2) σb(T ) = σb(T +R) and σb(T ) = σb(T +R.

In the sequel we denote by σap(T ) the approximate point spectrum, defined by

σap(T ) := {λ ∈ C : λI − T is not bounded below},

where an operator is said to be bounded below if it is injective and has closed
range. All the spectra above defined are nonempty compact subsets of C.
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We now introduce a basic property of local spectral theory: an operator T ∈
L(X) is said to have the single valued extension property at λ0 ∈ C (abbreviated
SVEP at λ0), if for every open disc U of λ0, the only analytic function f : U → X
which satisfies the equation (λI − T )f(λ) = 0 for all λ ∈ U is the function
f ≡ 0. An operator T ∈ L(X) is said to have SVEP if T has SVEP at every
point λ ∈ C. Evidently, an operator T ∈ L(X) has SVEP at every point of
the resolvent ρ(T ) := C \ σ(T ), and both T and T ∗ have SVEP at the points λ
which belong to the boundary ∂σ(T ) of the spectrum, and in particular at all the
isolated points of the spectrum. It is known that an operator T has SVEP at the
points λ /∈ σap(T ), and by duality T ∗ has SVEP at the points λ /∈ σs(T ). Hence
if σap(T ) is contained in the boundary ∂σ(T ) then T has SVEP, and analogously,
if σs(T ) is contained in ∂σ(T ) then T ∗ has SVEP.

A bounded operator T ∈ L(X) is said to be polaroid (respectively, a-polaroid)
if every λ ∈ isoσ(T ) (respectively, λ ∈ isoσap(T ) is a pole of the resolvent.
An operator T ∈ L(X) is said to be isoloid (respectively, a-isoloid) if every
λ ∈ isoσ(T ) (respectively, λ ∈ isoσap(T ) is an eigenvalue. Note that if T ∈ L(X)
is a-polaroid then T is polaroid and hence isoloid, and every a-polaroid is a-isoloid.
Furthermore, every a-isoloid operator is isoloid.

Lemma 2.3. If isoσw(T ) = ∅ then T is polaroid. If isoσuw(T ) = ∅ then T is
a-isoloid.

Proof. Let λ ∈ isoσ(T ). Then either λ ∈ σw(T ) or λ /∈ σw(T ). If λ ∈ σw(T ) then
λ ∈ isoσw(T ) and this is impossible. Therefore, λ /∈ σw(T ), so λI − T is Weyl
and, since both T and T ∗ have SVEP at 0, see [?, Theorem 3.16 and Theorem
3.17 ], it then follows that p(λI − T ) = q(λI − T ) < ∞, i.e. λ is a pole of the
resolvent.

Assume that isoσuw(T ) = ∅ and λ0 ∈ isoσap(T ). Then there exists ε > 0 for
which λI−T is bounded below for all 0 < |λ−λ0| < ε. We have either λ0 ∈ σuw(T )
or λ0 /∈ σuw(T ). If were λ0 ∈ σuw(T ) then we would have λ0 ∈ isoσuw(T ) and
this is impossible. Hence, λ0 /∈ σuw(T ), i.e, λ0I−T ∈W+(X). Hence λ0I−T has
closed range, and since λ0 ∈ σap(T ), it then follows that λ0I − T is not injective,
so T is a-isoloid.

The set of all analytic functions defined on an open disc containing the spec-
trum σ(T )) will be denoted by H(σ(T )). Then f(Tφ) is defined by the classical
functional calculus. In the sequel we shall need the following simple result.

Lemma 2.4. Let T ∈ L(X) and f ∈ H(σ(T )). Then isoσ(f(T )) ⊆ f(isoσ(T )).

Proof. Let λ0 ∈ isoσ(f(T )) = iso f(σ((T )) and µ0 ∈ σ(T ) for which λ0 = f(µ0).
Suppose that µ0 /∈ isoσ(T ). Then there exists a sequence µn which converges
to µ0. Evidently, fixed c ∈ C, the set {µj : f(µj) = c} is a finite set, since the
function g(λ) := c− f(λ) may have only a finite number of zeros in σ(T )). Hence
{f(µn) : n ∈ N} is an infinite set and f(µ0) = λ0 = limn→∞ f(µn), so λ0 is
not an isolated point of f(σ(T ), a contradiction. Therefore, µ0 ∈ isoσ(T ) and
consequently λ0 ∈ f(isoσ(T )).

Recall that T ∈ L(X) is said to be hereditarily polaroid if any restriction T |M
of T on a invariant closed subspace M is polaroid. A proof of the following result
may be found in [11].



SOME REMARKS ON THE SPECTRAL PROPERTIES OF TOEPLITZ OPERATORS 5

Theorem 2.5. Every hereditarily operator T ∈ L(X) has SVEP.

If T ∈ L(X), the quasi-nilpotent part of T is defined by H0(T ) := {x ∈ X :

||Txn||1/n → 0}. Note that ker Tn ⊆ H0(T ) for all n ∈ N, and that

H0(λI − T ) closed ⇒ T has SVEP λ,

see [?].

A bounded operator T ∈ L(X) is said to belong to the class H(p) if there exists
a natural p := p(λ) such that:

(3) H0(λI − T ) = ker (λI − T )p for all λ ∈ C.
Evidently, every H(p) operator has SVEP. Since the restriction of a H(p)-

operator to closed invariant subspace is still H(p), see [17], it then follows that
every H(p)-operator is hereditarily polaroid. It has been observed that every
subscalar operator is H(p) and in particular every subnormal operator is H(p),
see [1, Chapter 4]. Recall that a bounded operator T ∈ L(H) on a Hilbert
space H is said to be hyponormal if T ′T ≥ TT ′. By an important result due to
Putinar [18], every hyponormal operator is similar to a subscalar operator, see
also [15, section 2.4]. Since the property of being H(p) is preserved by quasi-affine
transforms [17] then all hyponormal operators are H(p).

3. Toeplitz operators

An important class of polaroid operators is provided by the Toeplitz operators
on the classical Hardy spaces H2(T), where T denotes the unit circle of C. To
define the Hardy space H2(T), for n ∈ Z, let χn be the function on T defined by

χn(eit) := eint for all n ∈ N.
Let µ be the normalized Lebesque measure on T, and L2(T) the classical Hilbert
space defined with respect to µ. The set {χn}n∈Z is a orthogonal basis of L2(T).
The Hardy space H2(T) is defined as the closed subspace of all f ∈ L2(T) for
which

1

2π

∫ 2π

0
fχndt = 0 for n = 1, 2, . . . .

The Hilbert space H2(T) is the closed linear span of the set {χn}n=0.1,.... More-
over, H2(T) is a closed subspace of L∞(T). Let H∞(T) denote the Banach space
of all φ ∈ L∞(T) such that

1

2π

∫ 2π

0
φχndt = 0 for all n = 1, 2, . . . .

H∞(T) is a closed subalgebra of L∞(T) and H∞(T) = L∞(T) ∩ H2(T). If
φ ∈ L∞(T) and f ∈ L2(T) then φf ∈ L2(T), so we may define an operator
Mφ : L2(T)→ L2(T) by

Mφf = φf for all f ∈ L2(T),

where φf is the point-wise product.

Let P denote the projection of L2(T) onto H2(T).
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Definition 3.1. If φ ∈ L∞(T), the Toeplitz operator with symbol φ Tφ on H2(T)
is defined by

Tφf := P (φf) for f ∈ H2(T).

The adjoint of the Hilbert space operator Mφ on L2(T) is M ′φ = Mφ and

obviously, MφM
′
φ = M ′φMφ, so Mφ is a normal operator. If φ ∈ H∞(T), the

operator Tφ is the restriction of Mφ to the closed invariant subspace H2(T), so
Tφ is subnormal.

Theorem 3.2. If φ ∈ H∞(T), the Toeplitz operator Tφ is hyponormal. In par-
ticular, Tφ is hereditarily polaroid and hence has SVEP.

Proof. Tφ, φ ∈ H∞(T), is subnormal and hence hyponormal, see Conway [9,
Proposition 2.4.2]. The last statement is clear. Every hyponormal operator is
hereditarily polaroid, and hence has SVEP, by Theorem 2.5.

Denote byHnc(σ(T )) the set of all analytic functions defined in a neighborhood
of σ(T ) such that f is nonconstant on each of the components of its domain.
Recall that an operator K is said algebraic if there exists a polynomial h such that
h(T ) = 0. Example of algebraic operator are nilpotent operators and operators
K for which a power Kn is finite-dimensional. The result of Theorem 3.2 may be
improved as follows:

Theorem 3.3. If φ ∈ H∞(T), then we have

(i) f(Tφ) is polaroid and has SVEP for every f ∈ Hnc(σ(Tφ)).

(ii) f(Tφ + K) is polaroid, and has SVEP for all algebraic operators K which
commutes with Tφ and f ∈ Hnc(σ(Tφ +K)), while f(T ′φ +K ′) is a-polaroid:

Proof. (i) Tφ is hereditarily polaroid, so, by [2, Theorem 2.4], f(Tφ) is polaroid
for every f ∈ Hnc(σ(Tφ)). Furthermore, since Tφ has SVEP then f(Tφ) has SVEP
for every f ∈ Hnc(σ(Tφ)), see [1, Theorem 2.86].

(ii) By [3, Theorem 2.15], Tφ+K is polaroid for every algebraic operator which
commutes with Tφ, and hence f(Tφ+K) is polaroid for every f ∈ Hnc(σ(Tφ+K)),
always by [2, Theorem 2.4]. By duality, then f(T ′φ+K ′) is polaroid. Since Tφ+K

has SVEP, by [5, Theorem 2.3], then f(Tφ +K) has SVEP, again by [1, Theorem
2.86]. The SVEP for f(Tφ + K) entails that the approximate point spectrum
σap(f(Tφ +K)) coincides with σ(f(Tφ +K)), hence f(T ′φ +K ′) is a-polaroid.

The Toeplitz operators with continuous symbols are particulary amenable to
study. Indeed, consider the case that the symbol φ is a continuous function on
T and let Γ := φ(T). Given λ /∈ Γ denote by wn(φ, λ) the winding number of Γ
with respect to λ (recall that the winding number wn(φ, λ) of a closed curve Γ
in the plane around a given point λ is an integer representing the total number
of times that curve travels counterclockwise around the point).

The following result, due to Coburn ([8]) plays a crucial role in characterizing
the Toeplitz operators which are Fredholm:

Theorem 3.4. Suppose that φ ∈ L∞(T) is not almost everywhere 0. Then either
α(Tφ) = 0 or β(Tφ) = α(T ′φ) = 0.

If the symbol φ ∈ L∞(T), Weyl operators Tφ may be characterized in the
following way:
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Corollary 3.5. Suppose that φ ∈ L∞(T) is not almost everywhere 0. Then Tφ
is Weyl if and only if Tφ is invertible. Consequently, σ(Tφ) = σw(Tφ).

The following nice result is due to a number of authors, see for instance, Widom
[19].

Theorem 3.6. If φ ∈ C(T) then Tφ is a Fredholm operator if and only if φ does
not vanish. In this case

ind Tφ = −wn(φ, 0),

where wn(φ, 0) is the winding number of the curve traced by φ with respect to
the origin. In particular, Tφ is Weyl, or equivalently, invertible, if and only if
wn(φ, 0) = 0.

Theorem 3.7. If φ ∈ C(T) then

σ(Tφ) = σw(Tφ) = σb(Tφ) = φ(T) ∪ {λ ∈ C : wn(φ, λ) 6= 0}.
and

σsf(T ) = σe(Tφ) = φ(T).

In particular, σ(Tφ) = σw(T ) is connected.

Proof. Observe first that σw(Tφ) ⊆ σb(Tφ) ⊆ σ(Tφ), and hence, by Corollary
3.7, σb(Tφ) = σ(Tφ). Furthermore, σ(Tφ) is connected since it is formed from
the union of Γ and certain components of the resolvent of Tφ. For the equality
σe(Tφ) = φ(T), see Douglas [10, Chapter 7]. It remains only to show the equality
σsf(T ) = φ(Tφ). Evidently, σsf(Tφ) ⊆ σe(Tφ) = φ(Tφ). To show the reverse
inclusion assume that λ ∈ φ(T) and λ /∈ σsf(Tφ). Then λI − Tφ is semi-Fredholm
while λI − Tφ is not Fredholm, so either α(λI − Tφ) =∞ orβ(λI − Tφ) =∞. By
Corollary 3.4, if α(λI − Tφ) = ∞ then β(λI − Tφ) = 0, so λI − Tφ is surjective.
But λ belongs to the boundary of the spectrum, so Tφ has SVEP at λ. This
implies that λI−Tφ is injective, see [1, Corollary 2.61], so we get a contradiction,
since λ is a spectral point. Suppose the other case β(λI − Tφ) =∞. Thus, again
by Corollary 3.4, α(λI − Tφ) = 0, so λI − Tφ is injective. On the other hand,
since λ belongs to the boundary of the spectrum, T ′φ has SVEP at λ and hence

q(λI − Tφ) < ∞, see [1, Theorem 2.98]. This implies, by [1, Corollary 3.4], that
β(λI − Tφ) ≤ α(λI − Tφ) = 0, again a contradiction. Therefore, λ ∈ σsf(Tφ) and
the proof is complete.

The result of Corollary 3.7 may be improved. The spectra σ(Tφ) and the
essential spectrum σe(Tφ) are connected also if φ ∈ L∞(T), see [10, Corollary
7.47 and Theorem 7.45].

Theorem 3.8. If φ ∈ C(T) then the following statements are equivalent:

(i) φ is nonconstant.

(ii) isoσw(Tφ) = isoσ(Tφ) = ∅.
Consequently, Tφ is polaroid.

Proof. If φ ∈ C(T) we have

ρw(Tφ) = σ(Tφ) = {λ ∈ C : wn(φ, λ) = 0},
and

ρ+sf(Tφ) = {λ ∈ C : wn(φ, λ) < 0},
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while
ρ−sf(Tφ) = C \ σlw(Tφ) = {λ ∈ C : wn(φ, λ) > 0}.

From Lemma 2.1, we know that

σw(Tφ) = σsf(Tφ) ∪ ρ+sf(Tφ) ∪ ρ−sf(Tφ)

so σw(Tφ) consists of Γ = φ(T) and those holes with respect to which the winding
number of φ is nonzero.
We see now that

isoσw(Tφ) = ∅ ⇔ φ is non-constant.

Indeed, if isoσw(Tφ) 6= ∅, then, by Lemma 2.2, we have isoσsf(Tφ) 6= ∅. Because
Γ = σe(Tφ) is connected, it then follows that Γ is a singleton and φ is constant.
On the other hand, if φ is constant, for instance φ ≡ λ, then it is obvious that
σ(Tφ) = σw(Tφ) = {λ}. Thus, isoσw(Tφ) = {λ}. From Lemma 2.3 we conclude
that every Toeplitz operator with continuous symbol is polaroid.

Lemma 3.9. If φ ∈ C(T) and f ∈ H(σ(Tφ), then f ◦ φ ∈ C(T) and there
exists a compact operator K on H2(T) such that Tf◦φ = f(Tφ) + K. Moreover,
σ(Tf◦φ) ⊆ f(σ(Tφ)).

Proof. The first assertion is evident. The proof of the second assertion may be
found in [13, Lemma 2.1]. The inclusion σ(Tf◦φ) ⊆ f(σ(Tφ)) has been proved in
[13, Lemma 3.1].

4. Weyl-type theorems for Toeplitz operators

The results of the previous section allow to establish Weyl type theorems for
perturbations of Toepltz operators. Set

π00(T ) := {λ ∈ isoσ(T ) : 0 < α(λI − T ) <∞},
and, analogously,

πa00(T ) := {λ ∈ isoσap(T ) : 0 < α(λI − T ) <∞}.
Define

∆(T ) := σ(T ) \ σw(T ) and ∆a(T ) := σap(T ) \ σuw(T ).

Definition 4.1. Let T ∈ L(X).

• T is said to satisfy Weyl’s theorem, ((W )), if ∆(T ) = π00(T ).
• T is said to satisfy a- Weyl’s theorem, ((aW )), if ∆a(T ) = πa00(T ).
• T is said to have property (w), ((w)), if ∆a(T ) = π00(T ).

Remark 4.2. a-Weyl’s theorem or property (w) for T entails Weyl’s theorem for
T , a-Weyl’s theorem and property (w) are independent, see [6].

Theorem 4.3. [4] Let T ∈ L(X) be polaroid. Then we have

(i) If T ′ has SVEP then (W ), (aW ), and (w) hold T . Moreover, T ′ satisfies
(W ).

(ii) If T has SVEP then (W ), (aW ), (w), hold for T ′. Moreover, T satisfies
(W ).

For the proof of the following theorem see [4, Theorem 3.3].
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Theorem 4.4. Suppose that T ∈ L(X) is polaroid and either T or T ∗ has SVEP.
Then Weyl’s theorem holds for both T and T ∗.

Evidently, in the case of Hilbert space operators in the statement of Theorem
4.4, the dual T ∗ may be replaced by the Hilbert adjoint T ′.

In general, Theorem 4.4 cannot be applied to Toeplitz operators with continu-
ous symbol, because, as we show in the next Example 4.8, the SVEP for both Tφ
or T ′φ may fail. However, all Toeplitz operators with continuous symbol satisfy

Weyl’s theorem, since σ(Tφ) = σw(Tφ), and hence ∆(Tφ) = σ(Tφ) \ σw(Tφ) = ∅.
Moreover, if φ is non-constant, by Theorem 3.8 we have isoσ(Tφ) = isoσw(Tφ)
and hence π00(T ) = ∅, so Weyl’s theorem holds for Tφ.

The equivalence (i)⇔ (iii) of next result is due to Farenick and W. Y. Lee [13].

Theorem 4.5. Let φ ∈ C(T) and f ∈ H(σ(Tφ). Then the following are equiva-
lent:

(i) f(Tφ) satisfies Weyl’s theorem;

(ii) The spectral theorem holds for σw(Tφ), i.e., f(σw(Tφ)) = σw(f(Tφ));

(iii) σ(Tf◦φ) = f(σ(Tφ)).

Proof. (i) ⇔ (ii) Every Toeplitz is operator is isoloid, since isoσ(Tφ) = ∅.
Furthermore, by [1, Theorem 3.119], Tφ has stable sign index on ρsf(Tφ) (i.e.
ind(λI − Tφ) and ind(µI − Tφ) are the same for all λ, µ ∈ ρsf(Tφ)). Since Tφ
satisfies Weyl’s theorem, by Theorem [1, Theorem 6.52] then Weyl’s theorem
holds for f(Tφ) if and only if the spectral theorem holds for σw(Tφ).
As observed before, the equivalence (i) ⇔ (iii) has been proved in [13].

Weyl’s theorem holds for f(Tφ) if we assume that f is injective.

Corollary 4.6. If φ ∈ C(T) and f ∈ H(σ(Tφ) is injective, then Weyl’s theorem
holds for f(Tφ) and σ(Tf◦φ) = f(σ(Tφ)).

Proof. The spectral mapping theorem holds for σw(Tφ) = σ(Tφ), see [1, Theorem
3.21]

The spectral mapping theorem holds for σw(Tφ) = σ(Tφ) also if either Tφ or
T ′φ have SVEP, see [1, Chaper 3]. In this case f(Tφ) satisfies Weyl’s theorem for

all f ∈ Hnc(σ(Tφ)):

Theorem 4.7. Let φ ∈ C(T) and suppose that Tφ, or T ′φ, has SVEP. Then both

f(Tφ) and f(T ′φ) satisfy Weyl’s theorem for all f ∈ Hnc(σ(Tφ)). Moreover,

(4) σ(Tf◦φ) = f(σ(Tφ)).

In particular, if Tφ has SVEP then both a-Weyl’s theorem and property (w) hold
for f(T ′φ), while if T ′φ has SVEP then both a-Weyl’s theorem and property (w)

hold for f(Tφ).

Proof. (i) The first assertion is a consequence of Theorem 4.5, since the spectral
mapping theorem holds for σw(Tφ) = σ(Tφ) if Tφ, or T ′φ, has SVEP, see [1, Chaper

3]. Note that the first assertion is also a consequence of Theorem 4.9, since the
SVEP for Tφ, or T ′φ entails the SVEP for f(Tφ), or f(T ′φ) for every f ∈ Hnc(σ(Tφ)),
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see [2, Chapter 2]. Since Tφ is polaroid then f(Tφ) is polaroid, by [2, Theorem 2.4],
so both f(Tφ) and f(T ′φ) satisfy Weyl’s theorem, by Theorem 4.4. The equality

(4) has been observed before. If an operator T ∈ L(X) has SVEP then Weyl’s
theorem, a-Weyl’s theorem and property (w) are equivalent, see [6], so the latter
statements are clear.

The condition that f is injective in Corollary 4.6 or the condition that either
Tφ, or T ′φ, has SVEP in Theorem 4.7, plays a crucial role. The next example

shows that if f ∈ H(σ(Tφ) is not injective, or if neither Tφ or T ′φ have SVEP, then

Weyl’s theorem holds for f(Tφ) may fail.

Example 4.8. Let φ be defined by

φ(eiθ) :=

{
−e2iθ + 1 if 0 ≤ θ ≤ π,
e−2iθ − 1 if π ≤ θ ≤ 2π.

In [13, ] it has been observed that

σ(Tφ2) 6= [(σ(Tφ))]2,

so, by Theorem 4.5, Weyl’s theorem fails for f(T 2
φ) in the case that f(λ) = λ2.

Now, the orientation of the graph of φ is shown in the following figure.

x

y

Ω1Ω2

C2 C1

Let Ω1 and Ω2 be the interior of the circle C1 and C2, respectively. Since
wn(φ, λ) = 1 in Ω1 and wn(φ, λ) = −1 in Ω2, we have

ind (λI − Tφ) < 0 for all λ ∈ Ω1,

while

ind (λI − Tφ) > 0 for all λ ∈ Ω2.

Observe that λI−Tφ is Fredholm for every λ ∈ Ω1∪Ω2, since λ /∈ φ(T) = σe(Tφ),
so, by [1, Corollary 2.106], the operator Tφ cannot have the SVEP, otherwise we
would have ind (λI−Tφ) ≤ 0 for all λ ∈ Ω2, and, analogously, if T ′φ has the SVEP

we would have ind (λI − Tφ) ≥ 0 for all λ ∈ Ω1. A contradiction.

Note that Example 4.8 also provides an example of Toeplitz operator Tφ which
is polaroid but not hereditarily polaroid, because Tφ does not have SVEP.

In general, for symbols φ ∈ L∞(T), the operators Tφ are not hyponormal,
also if the symbol is continuous. For instance, the operator Tφ in the Example
4.8, cannot be hyponormal, since hyponormality entails SVEP. Toeplitz operators
with continuous symbol which are hyponormal have been also studied by Farenick
and W. Y. Lee [13].

Recall that given a compact set Ω ⊆ C, a hole of Ω is a bounded component of
the complement C \ Ω. Since C \ Ω always has an unbounded component, C \ Ω
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is connected precisely when Ω has no holes.
In the next results we show that if orientation of the curve φ(T) does not

change then either Tφ, or T ′φ, has SVEP.

Theorem 4.9. Let φ ∈ C(T ) and suppose that the orientation of the curve φ(T)
with respect to each hole does not change. Then we have:

(i) If the orientation of the curve φ(T) traced out by φ with respect to each hole
is counterclockwise then Tφ has SVEP.

(ii) If the orientation of the curve φ(T) traced out by φ with respect to each
hole is clockwise then T ′φ has SVEP.

Proof. (i) For simplicity we can suppose that σ(Tφ) has only a hole Ω1 and
that the orientation of φ(T) with respect to Ω1 is counterclockwise. Then Ω1 is
a bounded component of C \ φ(T). Denote by Ω2 the unbounded component of
C \ φ(T). Then wn(φ, λ) > 0 for every λ ∈ Ω1, while wn(φ, λ) = 0 for every
λ ∈ Ω2. Therefore, for every λ ∈ Ω1 we have

ind (λI − Tφ) = −wn(φ, λ) < 0,

and consequently
σ(Tφ) = σw(Tφ) = Ω1 ∪ φ(T).

Now, if λ ∈ Ω1 the condition ind (λI−Tφ) < 0 entails that α(λI−Tφ) < β(λI−Tφ)
and hence β(λI − Tφ) > 0. From Theorem 3.4 we have that α(λI − Tφ) = 0, and
λI − Tφ has a closed range, since λ /∈ σe(Tφ) = φ(T), and hence λI − Tφ is Fred-
holm. Consequently, λ /∈ σap(Tφ). Therefore, σap(Tφ) ⊆ φ(T). Since φ(T) is the
boundary of the spectrum σ(Tφ), then Tφ has the SVEP at every λ ∈ σap(Tφ).
But every operator has SVEP at the points outside the approximate point spec-
trum, so Tφ has SVEP.

(ii) Analogously, suppose that σ(Tφ) has only a hole Ω1, and that the orienta-
tion of φ(T) is clockwise. Then wn(φ, λ) < 0 for every λ ∈ Ω1, so, if λ ∈ Ω1 then
ind (λI − Tφ) > 0. Consequently,

σ(Tφ) = Ω1 ∪ φ(T),

If λ ∈ Ω1 the condition ind (λI−Tφ) > 0 entails that and α(λI−Tφ) > β(λI−Tφ)
for all λ ∈ Ω1, so α(λI−Tφ) > 0. From Theorem 3.4 we have that β(λI−Tφ) = 0,
so λ /∈ σs(Tφ) and hence σs(Tφ) ⊆ φ(T). Hence T ′φ has SVEP at every λ ∈ σs(Tφ).
But for every operator, the adjoint has the SVEP outside the surjective spectrum,
so T ′φ has the SVEP.

The case (i) of Theorem 4.9 applies in particular to the case where φ is a
trigonometric polynomial φ(eiθ) =: Σ−nk=nake

ikθ, or also in the case that Tφ is
hyponormal, since these operators have SVEP, and hence the index ind (λI −Tφ)
on a hole is less or equal to 0. Note that if φ is a trigonometric polynomial then
Tφ may be not hyponormal, see [13].

Corollary 4.10. If φ is a trigonometric polynomial on T then Tφ has SVEP.
Consequently, f(Tφ) satisfies Weyl’theorem for every f ∈ H(σTφ and the spectral
theorem holds for σw(Tφ). The same holds if Tφ is hyponormal.

Theorem 4.11. If φ ∈ C(T) and σ(Tφ) has planar Lebesgue measure zero then
both Tφ and T ′φ have the SVEP.
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Proof. The planar measure of σ(Tφ) is zero, because σ(Tφ) = σe(Tφ) = φ(T) is a
compact set consisting of φ(T) and some of its holes, so ∂σ(Tφ) = φ(T) = σ(Tφ),
which is just a continuous curve. Therefore, both Tφ and T ′φ have the SVEP.

If we assume that φ ∈ H∞(T), then, from Theorem 4.4 and Theorem 4.3, we
obtain:

Corollary 4.12. If φ ∈ H∞(T) then f(Tφ) satisfies Weyl’s theorem for all f ∈
Hnc(σ(Tφ)). Moreover, for all algebraic operators K which commute with Tφ
f(Tφ+K) satisfies Weyl’theorem, while f(T ′φ+K ′) satisfies a-Weyl and property

(w).

Proof. If φ ∈ H∞(T) then Tφ is hereditarily polaroid, by Theorem 3.2, so
T + K is polaroid, see [3, Theorem 2.15], and this implies that also f(Tφ + K)
is polaroid for every f ∈ Hnc(σ(Tφ + K)), see [2, Theorem 2.4]. Since Tφ has
SVEP, by Theorem 2.5, then Tφ +K has SVEP, see [5, Theorem 2.3] and hence
f(Tφ + K) has SVEP, by [1, Theorem 2.86]. By Theorem 4.4 we then conclude
that both f(Tφ + K) and f(T ′φ + K ′) satisfy Weyl’s theorem. Since f(Tφ + K)

has SVEP property (w) and a-Weyl’s theorem for f(T ′φ +K ′) are equivalent, see

[1, Theorem 6.96].

Corollary 4.13. Let φ ∈ C(T). Then we have:

(i) If the orientation of the curve φ(T) traced out by φ is counterclockwise with
respect to each hole, then f(Tφ) satisfies Weyl’s theorem for every f ∈ Hnc(σ(Tφ)),
while f(T ′φ) satisfies both a-Weyl’s theorem and property (w).

(ii) If the orientation of the curve φ(T) traced out by φ is clockwise with respect
to each hole, then f(T ′φ) satisfies Weyl’s theorem for every f ∈ Hnc(σ(Tφ)), while

f(Tφ) satisfies both a-Weyl’s theorem and property (w).

Proof. Tφ has SVEP, so, as observed above,f(Tφ) has SVEP, and f(Tφ) is
polaroid. The SVEP for f(Tφ) entails, as observed before that property (w) and
a-Weyl’s theorem for f(Tφ) are equivalent.

Corollary 4.14. Let φ ∈ C(T) such that σ(Tφ) has planar Lebesgue measure
zero. Then f(Tφ) satisfies a-Weyl’s theorem and property (w) for all f ∈ Hnc(σ(Tφ)).

Proof. T ′φ, and hence f(T ′φ), has SVEP, so property (w) and a-Weyl’s theorem

for f(Tφ) are equivalent.

It should be noted that Toeplitz operator Tφ may satisfy Weyl’s theorem, also
if the symbol φ is not continuous, for an example see [13]. Theorem 4.4 does not
apply, in general, to non commuting compact perturbations T +K of a polaroid
operator. The bilateral shift S on `2(Z) has Weyl spectrum σw(S) = T, so
ρw(S) = C \ T is not connected, and hence, see [12], there exists a compact
operator K for which the SVEP for T + K fails. On the other hand also the
property of being polaroid may be not preserved under compact perturbations,
indeed there exists a compact perturbation of a polaroid operator T for which
T +K is not polaroid, see [16, Theorem 1.5].
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