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Abstract. The present work presents the results of 3D CFD combustion 

simulations of a current production 4-cylinder turbocharged Diesel engine 

using oxygen-enriched and humidified combustion air. Enriched Air (EA) 

is supposed to be produced by desorption from water, exploiting the 

different Henry constants of N2 and O2. Simulation results show that  

EA permits to increase the engine thermal efficiency (up to 10%) and 

drastically reduces soot emissions but increases in-cylinder peak pressure 

and NOx emissions. Combustion air humidification helps to reduce  

NOx increment, without losing the advantage in terms of thermal efficiency 

and in soot reduction, even if NOx emissions cannot be reported to the base 

case values.  

1 Introduction  

Dry air is composed in volume by about 78% of nitrogen and about 21% of oxygen with 

little amount of other gasses, mainly argon. It is the gas mixture used as oxidizing agent in 

diesel engines. Oxygen enriched air (EA) is a gas mixture with similar composition but 

with a higher content of oxygen, in the range 22–35%. The use of this mixture in industrial 

processes is well known, in particular for oxidation reactions or as market products, for 

example in scuba tanks or for health treatments . 

In industrial chemical plants, enriched air is now produced by mixing a stream of pure 

oxygen with a stream of air [1]. Pure oxygen is currently produced by two different 

processes, i.e. the air cryogenic separation [2] and the membrane separation [3]. The energy 

demand for the oxygen production, and consequently for the achievement of enriched air 

production, is intensive for both these technologies. Moreover, from a process point of 
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view, the implementation of oxygen enrichment needs investments for a suitable oxygen 

supply system, with a control unit for the oxygen injector, in order to guarantee safe and 

reliable operation procedures. 

The present paper reports the study of a new technology for the production of the 

mixture of enriched air by simple water degassing from water. Moreover, the possible 

application of EA in Diesel engines, with particular interest for ship application where the 

availability of water is actually unlimited, will be considered and discussed. The main aim 

of the work is to evaluate this potential application and then to test it in real conditions. 

EA can be produced by desorption from water previously equilibrated with atmospheric 

air. In fact, due to the higher oxygen solubility in water compared to the nitrogen one, since 

the Henry constants of this two gases are different [4], the relative composition of N2 and 

O2 in water is different respect atmospheric air. In fact, depending on the temperature and 

pressure of the system, oxygen dissolves in water 22–35% more respect nitrogen .  

This new production technology can be limited by the little amount of oxygen and 

nitrogen solubilized in water and consequently the high quantity of water required for the 

combustion reaction in the engine. It is possible to overcome this important limitation by 

adding a pressurized tank for the equilibration of atmospheric air and water before the 

degassing process. Water and air can be put into contact at high pressure and then the 

exiting water from the equilibration tank, with high amount of dissolved gas, can be 

degassed decreasing the pressure. It will be possible to degas water equilibrated with air at 

room pressure, or under different pressures depending on the on the amount of EA required 

in the process. Moreover, in order to optimize the water use, this same liquid after its 

degassing can be further recycled getting it in contact with new atmospheric air. 

This new technology for enriched air production was already studied by theoretical 

considerations and experimental runs [5]. Preliminary process simulations and cost-analysis 

have been performed with positive feedbacks. [6]. The same technology has been checked 

from an environmental point of view and the eco-economical prospective, applying the life 

cycle assessment methodology (LCA), was discussed [7]. 

The use of enriched air in Diesel combustion engines is well known to be beneficial [8, 

9]: EA promoted combustion is considered as one of the most interesting technologies to 

improve the performance in diesel engines and to simultaneously reduce pollution. The 

most important advantage, using EA as oxidizer, concerns the decrease in fuel consumption 

and soot emissions. The application of EA in internal combustion engines has intuitively  

a tremendous potential: it is obvious that considering the number of engines in the world, 

also a very little advantage can lead to very important results. The application of EA to 

internal combustion engines can be proposed for both road vehicles (in this case a water 

vessel should be added) or, most promising, for ship engines for which the availability of 

water is actually endless. The authors already explored the potential of EA in Diesel 

engines [10], analysing, by means of 3D Computational Fluid Dynamics simulations, the 

effects of EA on the performance and exhaust emissions of a high-speed direct-injection 

Diesel engine. The simulations revealed that EA permits to increase engine thermal 

efficiency (up to 8%), thanks to a faster and more complete combustion, and drastically 

reduces soot emissions. The drawbacks of the technology are the increase of in-cylinder 

peak pressure and the rise of NOx emissions. In [10], it has been also found that the increase 

of in-cylinder peak pressure can be definitely eliminated slightly retarding the injection 

profile, without losing the advantage in terms of thermal efficiency and in soot reduction, 

while, the increase of NOx emissions does not seem to be easily limited modifying injection 

timing. The present paper explores, again by means of 3D-CFD simulations, the 

effectiveness of another technology able to reduce NOx emissions: the humidification of 

combustion air [11]. This technology is a well-known technic for NOx reduction in internal 
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combustion engine [12, 13], but, in the case of EA produced by water degassing, there is  

a further advantage: EA after degassing phase has a very high water content (relative 

humidity is close to 100%) and then a water injection system is not needed. In the paper, 

combustion air humidification is applied to the engine in order to reduce the negative effect 

of enriched air on NOx emissions and results are compared with the ones obtained delaying 

the injection profile.  

2 Enriched air production 

When water is in equilibrium with atmospheric air, it contains different amount of 

dissolved O2 and N2 depending on the temperature and pressure. In order to increase the 

amount of oxygen and nitrogen in the water, a pressurized tank in which water and air are 

put in contact can be proposed. The exiting water, with a high amount of dissolved gas, due 

to the pressure action, can be then degassed at lower pressure and EA consequently 

produced. The scheme and the optimization of this continuous plant were already presented 

and discussed [14], after the experimental validation of the theoretical principles [6]. The 

amount of water present in the enriched air can be calculated by simulation of the same 

plant, based on the thermodynamics previously validated. We simulated the proposed 

flowsheet with the software PRO/II by AVEVA. UNIQUAC was selected as 

thermodynamic model and the oxygen and nitrogen Henry’s coefficient was used, 

according to Manenti and Pirola [5]. The optimal configuration of the EA production plant 

is based [6] on a pressurized saturation tank at 30 bar and a degassing tank at 1 bar. Both 

these are at room temperature to achieve the lowest price for EA. The concentration of 

water in the enriched air so produced results 0.0419 as molar fraction, i.e. moles of water 

respect the total number of moles. It is possible to investigate the influence of different 

experimental parameters on water concentration. The water concentration in the enriched 

air stream is mainly influenced by temperature and pressure of the degassing tank, as 

reported in Fig. 1 and Fig. 2, respectively. 

 

Fig. 1. EA flowrate and water molar fraction 

vs. degassing tank temperature. Water 

flowrate in the saturation tank: 5000 kg/h; air 

flowrate in the saturation tank: 30 m3/h. 

 

 Fig. 2. EA flowrate and water molar fraction 

vs. degassing tank pressure. Water flowrate in 

the saturation tank: 5000 kg/h; air flowrate in 

the saturation tank: 30 m3/h. 

As shown in the Figures, it is possible to change the water content in the exiting stream 

of enriched air by using different temperature and pressure in the degassing tank. Water 

content in fact is dependent from its vapor pressure and then increases for higher 

temperature and lower pressure. The change of operative parameters obviously influences 

the EA flowrate too. An increase of temperature increases the gas release, as shown in Fig. 
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2, while an increase of the pressure decreases EA production rate. The concentration of 

oxygen in only little influenced by T and P in the considered range. 

3 Engine simulation 

3.1 The reference engine 

The engine used for the study is a current production turbocharged Diesel engine 

manufactured by FCA. It has four cylinders, disposed in-line, with a total displacement of 

1247 cc and four valves per cylinder. It is equipped with a high-pressure common-rail  

fuel-injection system and four six-holed electro-injectors. The main features of the engine 

are listed in Table 1.  

Table 1. Main engine parameters. 

Total displacement 1247 cc Number of valves 4 per cyl 

Bore x stroke 69.6 x 82.0 mm Intake valve closing 33.0° ABDC 

Connecting rod 131.3 mm Exhaust valve opening 67.6° BBDC 

Compression ratio 17.6:1 Injector hole diameter 0.121 mm 

3.2 The 3D-CFD code 

In this study, a customized version of the KIVA-3V code has been used [15]. The code 

solves the conservation equations for evaporating fuel sprays, coupled with the  

3-Dimensional Computational Fluid Dynamics (3D-CFD) of compressible,  

multi-component, reactive gases in an engine cylinder with arbitrarily-shaped piston 

geometry. The sub-models implemented into the customized version of the KIVA 3V code 

are listed in Table 2. These sub-models were previously implemented by the authors in the 

framework of the KIVA-3V codes and they are fully described in [16–18]. Moreover, the 

customized KIVA-3V code has been already applied by authors to the analysis of some 

current production Diesel engines and the results of calculations was found in very good 

agreement with experiments, as reported in [18–20]. 

Table 2. Main models used for 3D-CFD engine modelling. 

Turbulence model RNG k-ε model 

Breakup model Hybrid KH-RT model 

Evaporation model Single component, KIVA-3V 

Combustion PaSR coupled with chemical kinetics 

Fuel composition Diesel Oil Surrogate Model 

 
3.3 The engine numerical model 
 
Before application in EA combustion analysis, a 3D model of the engine has been built and 

validated by comparison with a set of available experimental data in terms of engine 

performance, indicated quantities (in-cylinder pressure traces, Rate of Heat), and pollutant 

emissions. Details of the engine model and its validation through comparison with 

experiments are fully reported in [10, 18], thus, in the present paper, only a brief description 

of the model is reported. The computational grid for combustion simulations is a 60° sector 

grid in order to exploit the axial-symmetry of the combustion chamber and consists of 
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about 70,000 cells at Top Dead Centre (TDC). Simulations have been carried out at full 

load, 2000 rpm. In this operating point the injection law consists of 2 separate pulses:  

a pilot injection at about 8 cad BTDC and the main injection at about 4 cad BTDC; the total 

amount of fuel injected in one stroke is 41.8 mg. Initial conditions for combustion 

simulations, such as pressure, temperature, trapped mass, and charge composition, are 

obtained from experimental data. As the focus of the present work the combustion phase, 

only the closed valves part of the cycle is simulated (simulations start at Intake Valve 

Closing (IVC, 33° After BDC) and stop at Exhaust Valve Opening (EVO, 68° Before 

BDC)); the initial in-cylinder flow field is imposed as an ideal swirl, which intensity is 

based on previous 3D-CFD simulations. It is important to note that, as far as emissions 

prediction is concerned, a specific tuning has been required to get a reasonable agreement 

in terms of absolute values. In particular, for soot analysis, since the oxidation reactions are 

supposed to be in the gas phase, the predicted concentrations have to be multiplied by one 

empirical coefficient, determined for matching the experimental values [18].  

4 Results and discussion 

Combustion simulations have been carried out for 2 different EA Oxygen levels (21% and 

31%), 5 Humidity Ratio (HR) and 4 different Start Of Injection (SOI). In details, the 

relative humidity of combustion air (HR) has been varied from 0% to 100% (step 25%) and 

4 different injection strategies have been investigated, delaying the base injection profile 

(label “0” in the plots) of 2, 4 and 6 crank angle degrees.  

The results of the simulation runs were then processed, producing the results reported in 

figures from 3 to 6 (cycle mean values) and 7 (indicated quantities). These results suggest 

the following considerations: 

•  As expected, delaying injection causes a significant decrease of IMEP and, 

consequentially, a decrease of engine performance and efficiency, but reduces  

in-cylinder peak pressure;     

•  Instead, engine performance and efficiency are increased with air enrichment and the 

improvement seems to be more relevant for late injections (on average +20% with  

6 cad of delay, +10% for base injection); air humidification has a smaller influence of 

on engine performance and efficiency (IMEP is reduced of 2–3% from RH 0% to  

RH 100%); 

•  Similarly, in-cylinder peak pressure is significantly increased with EA (+12 bar for 

base case) but only slightly decreased with air humidification (2–3 bar on average); 

•  As far as emission are concerned, air oxygen enrichment completely eliminates soot 

emission but increases NOx; on the contrary, air humidification and late injections 

decreases NOx and increases soot. On this last point it is however interesting to 

observe that air humidification seems to have better effects on emissions in 

comparison with late injections: NOx reduction is comparable with the 2 technologies, 

while soot rise is much more relevant with late injection; 

•  Referring to base case (oxygen level 21%) combustion air humidification allows  

a NOx reduction up to 30% with a slight decrease of IMEP; moreover, soot emissions 

are just slightly affected by air humiliation up to RH = 50% while the NOx reduction 

reaches 20%.  

Finally, in order to assess the benefit of combustion air humidification coupled with oxygen 

air enrichment, the results of 3 different operating points are compared: 

•  B0 (21% O2, RH 0%, injection delay 0 cad) 

•  H1 (31% O2, RH 100%, injection delay 2 cad) 

•  D2 (31% O2, RH 0%, injection delay 4 cad) 
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Figure 8 reports simulation results for the selected operating points while Figure  

9 shows oxygen and temperature distribution on the computational grid symmetry plane 

during combustion process. It can be observed that soot is almost nullified in the 2 points 

operating with EA (H1 and D1) while NOx emissions are increased for both of them. One 

of the causes of NOx rise can be found looking at Figure 9 where the increment of 

combustion temperature with EA is clearly visible. Comparing points H1 and D2 it can 

concluded that the best results can be obtained with a combination of combustion air 

humidification and injection delay: H1 results in soot and NOx emissions slightly lower 

than D2, approximatively the same in-cylinder peak pressure of B0 and an IMEP that is 5% 

higher than base case. 

   

  
Fig. 3. Gross Indicated Mean Effective Pressure (calculated between IVC and EVO) normalized with 

reference to the baseline (21% vol. oxygen, RH 0%, original injection profile) for (left) base air (21% 

vol. oxygen) and (right) enriched air (31% vol. oxygen). 

 

  
Fig. 4. Max in-cylinder pressure for (left) base air (21% vol. oxygen) and (right) enriched air (31% 

vol. oxygen). 
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Fig. 5. Soot emissions normalized with reference to the baseline (21% vol. oxygen, RH 0%, original 

injection profile) for (left) base air (21% vol. oxygen) and (right) enriched air (31% vol. oxygen). 

 

  
Fig. 6. NOx emissions normalized with reference to the baseline (21% vol. oxygen, RH 0%, original 

injection profile) for (left) base air (21% vol. oxygen) and (right) enriched air (31% vol. oxygen). 

 
Influence of Oxygen level Influence of Combustion Air Humidification Influence of Injection Timing 

   

   

   
Fig. 7. Effect of enriched air (first column), air humidification (second column) and injection timing 

(third column) on in-cylinder pressure (first row), Rate of Heat Release (second row) and temperature 

(third row). 
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Fig. 8. Comparison between B0 (red line in chart), H1 (green line in chart) and D2 (blue line in chart) 

in terms of Gross IMEP, soot and NOx emissions, in-cylinder pressure and temperature. 

 

 TDC 13 cad ATDC  TDC 13 cad ATDC  
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Fig. 9. Oxygen and temperature distribution on a plane passing by the injector axis, for 3 different 

operating point. 

 
5 Conclusion 
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The goal of this work is to explore, by means of 3D CFD simulations focused on the 

combustion process, the potential on Diesel engines of oxygen Enriched Air coupled with 

combustion air humidification. Simulations are carried out on a previously validated 

through experiments model of a current production 4-cylinder turbocharged Diesel engine.  

The simulation results confirm that EA permits to increase engine thermal efficiency 

(up to 10%) and drastically reduces soot emissions but increases in-cylinder peak pressure 

and NOx emissions. Combustion air humidification helps to reduce NOx increment, without 

losing the advantage in terms of thermal efficiency and in soot reduction, even if  

NOx emissions cannot be reported to the base case values. Finally, the best results (+5% 

thermal efficiency, elimination of soot, limited increment of NOx, same peak pressure of 

base case) are obtained using EA (oxygen level 31%) and a combination of combustion air 

humidification (Humidity Ratio 100%) and injection postponing (2 cad of delay). 

 
The work was partially financed by the project ”Enriched Air POWERed Chemical Plants and 

Combustion Engines: EAPOWER” in the call “Azione A, Piano sostegno alla ricerca – anno 2018” 

by Dipartimento di Chimica, Università degli Studi di Milano. 
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