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Abstract: Immune cells play critical roles in tumor prevention as well as initiation and progression.
However, immune-resistant cancer cells can evade the immune system and proceed to form tumors.
The normal microenvironment (immune cells, fibroblasts, blood and lymphatic vessels, and interstitial
extracellular matrix (ECM)) maintains tissue homeostasis and prevents tumor initiation. Inflammatory
mediators, reactive oxygen species, cytokines, and chemokines from an altered microenvironment
promote tumor growth. During the last decade, thyroid cancer, the most frequent cancer of the
endocrine system, has emerged as the fifth most incident cancer in the United States (USA), and its
incidence is steadily growing. Inflammation has long been associated with thyroid cancer, raising
critical questions about the role of immune cells in its pathogenesis. A plethora of immune cells
and their mediators are present in the thyroid cancer ecosystem. Monoclonal antibodies (mAbs)
targeting immune checkpoints, such as mAbs anti-cytotoxic T lymphocyte antigen 4 (anti-CTLA-4)
and anti-programmed cell death protein-1/programmed cell death ligand-1 (anti-PD-1/PD-L1), have
revolutionized the treatment of many malignancies, but they induce thyroid dysfunction in up to
10% of patients, presumably by enhancing autoimmunity. Combination strategies involving immune
checkpoint inhibitors (ICIs) with tyrosine kinase (TK) or serine/threonine protein kinase B-raf (BRAF)
inhibitors are showing considerable promise in the treatment of advanced thyroid cancer. This review
illustrates how different immune cells contribute to thyroid cancer development and the rationale for
the antitumor effects of ICIs in combination with BRAF/TK inhibitors.

Keywords: angiogenesis; chemokines; dendritic cells; CXCL8; lymphangiogenesis; macrophages;
mast cells; neutrophils; thyroid cancer; T reg cells

1. Introduction

Thyroid cancer (TC) is the most frequent type of cancer of the endocrine system [1], accounting for
approximately 90% of the endocrine malignancies and for 70% of deaths due to endocrine cancers [2].
During the past two decades, TC incidence increased [3,4]. Risk factors for TC include being female,
having a history of goiter or thyroid nodule, a family history of TC, a low-iodine diet, radiation exposure,
and obesity [5]. TC is three to four times more likely to develop in women, but it is more aggressive
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in men, who present with more advanced disease and have lower survival rates [6]. Differentiated
TC (DTC) includes papillary thyroid carcinoma (PTC) (≈80%) and follicular thyroid carcinoma (FTC)
(≈2%) and medullary thyroid cancer (MTC) (≈4%). Poorly differentiated TC (PDTC) and anaplastic
thyroid carcinoma (ATC) account for approximately 5–10% of all TCs [7], but the majority of deaths
for TC are attributable to this disease [8–10]. Calcitonin-producing parafollicular cells within the
thyroid can give rise to MTC [11]. The association between smoldering inflammation and TC has
long been recognized [12–14]. Indeed, a mixture of immune cells and proinflammatory mediators has
been associated with TC initiation and progression [13]. In this review, we discuss recent findings
investigating how the cells of the innate and adaptive immune system are involved in TC development
and progression. We also discuss the rationale and preliminary results of treatment with monoclonal
antibodies (mAbs), targeting immune checkpoints in patients with aggressive TCs.

2. Molecular and Genetic Factors

Genetic studies of PTCs reported a high frequency of activating somatic alterations of genes
encoding effectors in the mitogen-activated protein kinase (MAPK) signaling pathway, including
point mutations of BRAF (≈60%) and the GTPase RAS family genes (≈13%) [15–17], as well as
fusions involving the REarranged during Transfection (RET) [18] and neutrotrophic receptor tyrosine
kinase 1 (NTRK1) [19]. The most prevalent (≈60%) mutation in PTC is the activating BRAFV600E

mutation [9,17,20]. The second most prevalent genetic event in PTC is paracentric inversions of the long
arm of chromosome 10, causing the fusion of the REarranged during Transfection (RET) intracellular
domain and leading to ligand-independent RET kinase activation [21]. RET fusions are found in
approximately 7% of sporadic PTC [1] and in about 30% of young patients [22]. Mutations in the tumor
suppressor TP53 gene are the most frequent genetic alterations in PDTC [23]. RAS mutations have also
been found in PDTC [24]. Apart from the above-mentioned genetic alterations, several other genes
have been found mutated in FTC, including PI3CA, PTEN, DICER1, EXH1, and SPOP [25,26]. MTC are
commonly associated with RET mutations [21]. In a minority of PTCs, EWSR1 rearrangements have
been identified [27,28].

The TElomerase Reverse Transcriptase (TERT) [29] promoter mutations chr5, 1,295,228 C>T
(C228T) and 1,295,250 C>T (C250T) are present, on average, 0% (benign thyroid tumor), 11.3% (PTC),
17.1% (FTC), 43.2% (PDTC) and 40.1% (ATC) in thyroid tumors, displaying an association with
aggressive types of TC. Coexisting BRAFV600E and TERT promoter mutations have a robust synergistic
impact on the aggressiveness of PTC [30].

ATC is characterized by the accumulation of several different genetic alterations [9]. ATCs
and to a lesser extent PDTC are a challenge for genomic studies due to their extensive infiltration
of macrophages [31,32]. Three recent studies using a next-generation sequencing [33] approach
performed extensive cancer gene exome sequencing in PDTC and ATC [34–36]. Profound genomic
differences between the two advanced forms of the disease have been found. ATCs harbored a
higher number of oncogenic alterations than PDTCs, and the mutations in PDTCs were increased
compared to PTC. BRAFV600E mutations were present in 33% of PDTC and 45% of ATC, whereas
mutations in NRAS, HRAS, or KRAS occurred in 28% and 24% of PDTCs and ATCs, respectively.
TERT promoter mutations, which are important in tumorigenesis, were highly prevalent in ATC
compared to PDTC (73% versus 8%). Mutations in PIK3CA and PTEN were prevalent in ATC
(18% and 53%, respectively). Mutations in EIF1AX were reported in 11% of PDTC and 9% of ATC.
Mutations of genes encoding the phosphoinositide-3-kinase–protein kinase B/Akt-mammalian target
of rapamycin (PI3K-PKB/Akt-mTOR) pathway were more frequent in ATC than PDTC (39% versus
11%). Anaplastic lymphoma kinase (ALK) gene rearrangements have been found in ATC [37] and in
PTC [38]. GLIS3 rearrangements are prevalent in hyalinizing trabecular tumor (HTT), which is a rare
TC with a characteristic trabecular growth pattern and hyalinization [39]. Collectively, these results
have identified several genetic lesions that distinguish PDTC from ATC.
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3. Cytokines

Cytokines, produced by thyroid-infiltrating immune cells and by follicular cells, play a role in the
pathogenesis of autoimmune thyroid disease [14] and contribute to several aspects of TC initiation and
growth [13]. Interleukin (IL)-1 stimulated thyroid cell proliferation and the production of IL-8 [40].
IL-1β serum concentrations were increased in patients with atrophic thyroiditis and decreased in those
with PTC [41].

IL-4 and IL-13 produced by human T helper 2 (Th2) cells, basophils, and T follicular helper cells
(Tfh) [42,43] induce alternative (M2) activation of macrophages and tumor-associated macrophages [44].
Macrophages in TC displayed an M2-like phenotype [45]. The exposure of thyreocytes to ionizing
radiation (IR) caused IL-13 production, which stimulated reactive oxygen species (ROS) increase, and
was presumably responsible for genetic instability and the emergence of neoplastic clones in TC [46].

TC-derived conditioned media (CM) induced the up-regulation of IL-6 in human mast cells [47]
and contributed to epithelial-to-mesenchymal transition (EMT) and stemness, which are features of
TC [48]. Studies comparing levels of circulating IL-6 among TC patients and controls have provided
inconsistent results [49–51].

Tumor-associated macrophages (TAMs) [44] and tumor cells themselves produce IL-10 [52].
IL-10 circulating levels were higher in PTC associated with multinodular goiter (MNG) compared
to MNG alone [53]. Malignant epithelial cells isolated from PTC and ATC [7] produced in vitro IL-4
and IL-10, which increased the expression of the anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2),
B-cell lymphoma-extra large (Bcl-xL), cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory
protein (cFLIP), and Phosphoprotein enriched in diabetes/Astrocytic phosphoprotein (PED/PEA-15)
in TC cells [54,55]. IL-4 and IL-10 serum concentrations were higher in PTC patients compared to
Hashimoto’s thyroiditis [56]. Moreover, IL-10 expression was correlated with thyroid tumor size and
malignancy [57]. Interestingly, B cells from TC patients produced higher levels of IL-10 compared to
healthy controls [58].

IL-12, a proinflammatory cytokine with antitumor activity [59], was effective against ATC in a
mouse xenograft model [60], and its administration inhibited tumor growth and prolonged survival
by activating both CD8+ T and natural killer (NK) cells in a genetically engineered BRAFV600E mouse
model [61].

IL-17A is produced mainly by human CD4+ Th17 cells and to a lesser extent by CD8+ T cells (Tc17
cells), and was associated with both protumor or antitumor responses [62,63]. The serum concentration
of IL-17 was increased in TC patients compared to thyroid adenoma [64] and correlated with the percent
of circulating Th17 cells [62]. IL17RA polymorphisms negatively correlated with the development of
PTC [65]. The serum levels of IL-17 and the percentage of Th17, Tc17, and T regulatory cells (Tregs)
were increased in patients with DTCs compared to healthy controls [66]. IL-17 and IL-23 expression in
DTCs and MTCs were increased compared to thyroid adenoma, and IL-17 expression was associated
with recurrence and mortality [67].

IL-21 is highly expressed by both Tfh and Th9 cells [68]. In a large cohort of a Chinese population,
IL-21 polymorphism was associated with an increased risk of TC development [69].

IL-24 was induced by RET/PTC3 expression in the thyrocytes of RET/PTC3 transgenic mice, and
it was involved in autocrine growth/survival of RET/PTC3-expressing thyroid cells supporting its
role in early cellular transformation. Its expression decreased in poorly differentiated mouse tumors,
paralleling the loss of RET/PTC3 expression along with tumor progression, thus supporting a role for
IL-24 as a tumor suppressor factor [70].

In a murine model of transgenic BRAF, mouse thyrocytes and TAMs produced TGF-β, which
was responsible for the acquisition of EMT features and the invasiveness of TC cells [71]. In human
PTCs, TGF-β overexpression correlated with tumor invasiveness, regardless of BRAF mutations [72].
The expression of TGF-β in PTC correlated with CD68+ cell infiltration in PTC [73] compared to benign
thyroid nodules [74]. These findings led to suggest that targeting transforming growth factor beta β1
(TGF-β1) could inhibit ATC tumorigenesis [75].
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All three classes of interferons (IFNs), type I (IFN-α/β), type II (IFN-γ), and type III (IFN-λ/s),
induce the apoptosis of tumor cells and modulate cancer immunosurveillance [76]. In TC, type I and
type II IFNs induced the expression of Major Histocompatibility Complex (MHC)-I molecules on
human TC cell lines, thus limiting TC immunoevasion and potentiating TC susceptibility to immune
destruction [77]. IFN-γ inhibited the migration of PTC cells in vitro and induced EMT [78]. Moreover,
IFN-γ inhibited CXCL8 secretion from BRAFV600E mutated thyroid cell lines [79].

4. Chemokines

Chemokines are functionally related small molecules with chemoattractant and cytokine-like
functions that also modulate angiogenesis and lymphangiogenesis [80]. Chemokines can be produced
by TC cells, following the activation of the MAPK pathways by the RET/PTC, RAS, and BRAF oncogenic
drivers [81,82]. Thyroid cells produce a wide spectrum of CXC chemokines (i.e., CXCL1, CXCL8,
CXCL9, CXCL10, and CXCL11) in basal conditions and/or under the influence of specific stimuli [83,84].
In thyroid tissue, recruited T helper 1 (Th1) lymphocytes can enhance IFN-γ and tumor necrosis
factor α (TNF-α) production, which in turn stimulate the chemokine secretion from the thyroid cells,
therefore creating an amplification feedback loop, initiating and perpetuating the autoimmune process.
PTC and ATC cell lines release CXCL8 in basal conditions as well as under inflammatory stimuli,
such as IL-1 and TNF-α [40,85]. The exogenous induction of RET/PTC1 oncogene in primary normal
human thyrocytes induced the expression of CCL2, CCL20, and CXCL8 genes. CCL20 and CXCL8
were up-regulated in clinical samples of PTC [82]. PTCs displayed the highest expression of CCL20
and CXCL8 compared to normal tissues and thyroiditis, regardless of the genetic lesion beard by the
tumor [86]. In a model of orthotopic TC xenograft in nude mice, CXCL8 was involved in tumor growth
and progression [87]. Also, the tumor-infiltrating immune cells can be a source of chemokines. Indeed,
mast cell-derived CXCL8 in vitro induced EMT features and stemness in human TC cells [48]. TAMs
purified from PTC patients released CXCL8 [88].

PTC and ATC cell lines produce CXCL1/GRO-α and CXCL10/IP10 in basal conditions and
under inflammatory stimuli [81,83,89]. Moreover, mast cell-derived CXCL1/GRO-α (growth-regulated
oncogene α) and CXCL10/IP10 increased TC cell proliferation through the engagement of CXCR2
and CXCR3 on TC cells [47,81]. CXCL12/SDF-1 and its receptor CXCR7 have been found in PTC [90].
The CXCL12/SDF-1-CXCR7 axis promoted in vitro TC cell line proliferation and invasion [91]. Also,
CCL20 promoted TC cell invasion and migration in vitro [92]. Two splice variants of CXCR3 (A and
B), the receptor on follicular thyroid cells activated by several chemokines (CXCL4, CXCL9, CXCL10,
and CXCL11), have been found [93]. A progressive increase in CXCR3A expression over the CXCR2B
isoform was found from benign tumors to PTC.

We have found that the oncolytic adenovirus dl922-947 reduced CXCL8 and CCL2 production
by ATC cell lines. dl922-947 treatment impaired angiogenesis and favored the switch of tumor
macrophages toward an M1 phenotype. These results indicate that dl922-947 treatment, along with its
role in inducing TC cell death, has an impact on the ATC immune microenvironment.

5. Angiogenic and Lymphangiogenic Factors

The formation of blood and lymphatic vessels is a complex process, requiring a finely tuned
balance between stimulatory and inhibitory signals such as vascular endothelial growth factors
(VEGFs), angiopoietins (ANGPTs), chemokines, and many others [94–96]. Several TC-infiltrating
immune cells can impact tumor angiogenesis and lymphangiogenesis. Figure 1 shows that a plethora
of cytokines, chemokines, angiogenic factors, and lymphangiogenic factors derived from immune cells
enrich the complexity of the inflammatory tumor microenvironment in TC. For instance, mast cells
(MCs) are a major source of proangiogenic (VEGF-A and VEGF-B) and lymphangiogenic (VEGF-C
and VEGF-D) factors [97]. Thyroid MCs modulated angiogenesis through the release of CXCL8 [48].
Human macrophages are also a major source of both angiogenic and lymphangiogenic factors [98], as
well as of several proangiogenic enzymes such as matrix metallopeptidase 9 (MMP-9), cyclooxygenase
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-2 (Cox-2), andinducible nitric oxide synthase (iNOS) [44]. Tumor-associated NK cells produce VEGF-A
and CXCL8 [99]. Tumor-associated DCs release VEGF-A, CXCL8, and osteopontin [100]. Human
eosinophils promote angiogenesis [101,102], and eosinophilia can be observed in ATC patients [103].
Tregs play a role in maintaining tolerance in TC and drive tumor angiogenesis through the release
of VEGF-A [104]. Myeloid-derived suppressor cells (MDSCs) promote tumor angiogenesis through
the release of VEGF-A and MMP-9 [105]. Human Th2 cells and neutrophils are sources of angiogenic
factors [94,106,107].
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Figure 1. Hypothetical scheme of immune contexture of thyroid cancer (TC). The immune network
in thyroid cancer is a complex and dynamic system characterized by multiple interactions between
tumor cells and nearly all immune cells. Tumor-associated macrophages (TAM), M2 macrophages,
tumor-associated mast cells, monocytes, polymorphonuclear-myeloid-derived suppressor cells
(PMN-MDSCs), monocyte-derived suppressor cells (M-MDSCs), T regulatory cells (Treg) and T helper
2 (Th2) cells, tumor-associated neutrophils (TAN), and immature DCs (iDCs) and their mediators play
protumorigenic roles in thyroid cancer. M1 macrophages, cytotoxic CD8+ T cells, natural killer (NK) cells,
Th1 cells, mature DCs (mDCs), and their mediators play an antitumorigenic role. There is increasing
evidence that eosinophils play an antitumorigenic role in different cancers [102,108,109]. VEGF-A and
CXCL8 produced by thyroid cancer cells activate tumor angiogenesis. Mast cells and macrophages are
major producers of lymphangiogenic factors (VEGF-C and VEGF-D). The antitumorigenic role of γδ T
cells, Th9 cells, and type I natural killer T (NKT) cells (grey and dashed lines) have been demonstrated
in several other human cancers. The protumorigenic role of Tfh cells and of type II NKT cells has been
shown in several other human tumors (grey and dashed lines). Protumor or antitumor activities of
Th17 and Tc17 cells are context-dependent (grey and dashed line). Modified with permission from
Galdiero et al. [110].
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6. The Immune Landscape in TC

The tumor microenvironment (i.e., immune cells, fibroblasts, blood and lymphatic vessels,
endothelial cell progenitors, and extracellular matrix components (ECM)) plays a central role in tumor
initiation and progression. The normal tissue microenvironment can suppress malignancy, while
certain pathogenetic tissue features can induce tumor progression [111,112].

6.1. Tumor-Associated Macrophages (TAM)

Macrophages are key components of the tumor microenvironment and are highly plastic
cells [113–115]. Under the influence of IFN-γ, macrophages undergo M1 polarization, which is
characterized by an immunostimulatory phenotype. In contrast, IL-4 or IL-13 induce the M2 phenotype,
which promotes tumor angiogenesis and suppresses immune responses [44]. This model distinguishing
between classically polarized antitumor M1 and alternatively polarized M2 subtypes incompletely
accounts for the extraordinary phenotypic diversity of macrophages in vivo [116,117]. High-resolution
analysis of TAMCs led to the identification of 17 major phenotypes of human macrophages [116].

In PTCs, TAMs correlated with lymph node metastasis [88], larger tumor size [118], and reduced
survival. In PDTC, TAM density correlated with capsular invasion and extrathyroid extension [32].
TAMs represent more than 50% of immune cells in ATCs, forming a “microglia-like” in close contact
with cancer cells [31]. In the diffuse sclerosing variant of PTC, M2-like macrophages can be found in
lymphatic emboli and correlated with tumor cell lymphatic invasion [119].

Macrophages are present in the immune landscape of PTC, especially in the BRAFV600E+

group [120]. The histologic grading of CD68+ TAM increased in more aggressive thyroid cancers
(i.e., PDTC and ATC) compared to PTC [121]. In a murine model of transgenic BRAFV600E-induced
thyroid carcinogenesis, tumors displayed a high TAM infiltration due to the increased expression of
Csf-1r and Ccr2 by tumor cells. In this model, TAMs displayed an M2-like phenotype. In addition, Csf-1
−/− BRAF transgenic mice displayed a reduction in tumor growth [45]. TAMs purified from human
PTC displayed a higher expression of IL-10 and CD206 compared to peripheral blood monocytes [122],
and promoted the invasiveness of TC cell lines in vitro through the production of CXCL8 [88]. TAMs
are present in ATC to variable degrees, ranging from 22% to 95% [31,32,123]. ATCs and to a lesser
extent PDTCs have an extensive infiltration of macrophages [31,32], which make an interconnected
network that envelops the tumor cells throughout the cancer specimen. A total of 68 genes that were
overexpressed in M2 macrophages were examined in PDTCs and ATCs, and M2 signatures clearly
differentiated the two TCs [34]. The role of macrophages in the formation of lung metastasis has
been evaluated in an experimental model of ATC [124]. Macrophage depletion in mice injected with
clodronate reduced the lung metastasis of ATC cell lines. Metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) is a lung non-coding RNA that is up-regulated in several cancers, including
TC [125]. MALAT1 is up-regulated in TC tissues and cells, and induced the expression of basic fibroblast
growth factor (FGF2) and IL-10 in TAM, which promoted FTC133 proliferation and angiogenesis [126].

Soluble factors released by TC cell lines (TPC1, BC-PAP, and FTC133) induced an inflammatory
phenotype of peripheral blood monocytes [127]. Zhang et al. examined the protumorigenic role of
testosterone using the ThrbPV/PV transgenic mouse model, which mimics human FTC development.
They found that testosterone reduced the expression of the immune regulatory genes Glipr1 and Sfrp1,
the M1 macrophage, and CD8+ T cell infiltration in thyroid samples. These immunosuppressive events
resulted in TC progression in ThrbPV/PV mice [128]. These interesting findings were corroborated by
the analysis of the database of the National and Cancer Institute’s Surveillance Epidemiology End
Results (NIH, Bethesda, USA), which found that men had a higher rate of large primary or locally
advanced FTC than women. Furthermore, there was higher FTC-associated mortality in men than in
women in the 40-to-60-year age group.

High-dimensional analysis, particularly single-cell RNA-seq, will be necessary in order to better
characterize the role of macrophages in thyroid tumorigenesis.
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6.2. Dendritic Cells (DCs)

Tumor-infiltrating dendritic cells (DCs) display an immature phenotype, with impaired antigen
presentation ability [129]. S100+ (mature and immature), CD1a+ (immature), and CD83+ (mature)
DCs are increased in human PTC compared to normal thyroid tissue [130]. Conditioned media from
the primary cultures of PTC induced the chemotaxis of peripheral blood monocyte-derived DCs.
Hepatocyte growth factor (HGF) enhanced this chemotactic activity through the engagement of the
receptor Met on TC cells [131]. PTCs expressed the DC chemotactic molecule macrophage inflammatory
protein 1α (MIP-1α), and DCs expressed CCR6, thus suggesting a role for TC cells in recruiting DCs [132].
PTC displayed a higher CD1a+ DC infiltration compared to FTC and adenomas [132]. In contrast, a
reduced or absent DC infiltration in PDTC and ATC was described in comparison to DTC [133]. DCs
are present in the immune landscape of PTC, especially in the BRAFV600E+group [120].

6.3. Tumor-Associated Mast Cells (TAMCs)

Mast cells are ubiquitous in nearly all tissue and in close proximity to epithelia, fibroblasts,
blood vessels, lymphatic vessels, and nerves [95,134]. Mast cells can play a role in angiogenesis [134],
lymphangiogenesis [97], and tumor initiation and progression [110,135,136]. Mast cells are present in
the microenvironment of several solid [47,137–143] and hematologic tumors [144]). The contribution of
mast cells in cancer varies according to the stages of tumorigenesis and to their microlocalization [142].

Melillo et al. were the first to investigate the contribution of mast cells in thyroid cancer. Mast
cell density was very low in normal thyroid tissue, whereas in PTC samples, there was a mast cell
infiltration that correlated with tumor extrathyroid extension [47]. These findings were extended to a
limited number of PDTCs and ATCs [48]. The presence of mast cells in the immune landscape of PTC
has been recently confirmed [120].

A higher mast cell density was also found in FTC compared with adenomas and correlated
with extracapsular extension [145]. In vitro studies demonstrated that TC cell line conditioned media
induced mast cell chemotaxis through the release of VEGF-A [47], which activated the VEGFRs
on human mast cells [97,146]. Moreover, TC cells activated mast cells to release cytokines (IL-6,
TNF-α, granulocyte-macrophage colony-stimulating factor—GM-CSF) and chemokines (CXCL10/IP10
and CXCL1/Gro-α). In turn, mast cells promoted TC cell proliferation through CXCL1/GROα and
CXCL10/IP10. In an in vivo model of a TC xenograft, mast cells were recruited at the tumor site and
accelerated tumor growth, enhancing tumor vascularization and cell proliferation of the xenograft [47].
These results indicate that mast cells are present in human TCs and play a protumorigenic role in TC.

Epithelial-to-mesenchymal transition (EMT) is important in tumor progression, and is in part
responsible for the acquisition of the invasive properties of cancer cells [147]. A mast cell-conditioned
medium induced the EMT of human TC cell lines mainly through the release of CXCL8 [48]. Interestingly,
the blockade of CXCL8 receptors (i.e., CXCR1 and CXCR2) with blocking antibodies markedly reduced
the sphere-forming ability of TC cells [48]. Collectively, these findings support the hypothesis that
mast cell-derived CXCL8 favors the acquisition of stem-like features of TC cells.

Recent evidence indicates that mast cells, similar to macrophages [116,148] and neutrophils [107],
comprise several subsets of cells [149,150]. Single-cell RNA-seq analysis will be necessary to better
understand the role(s) of mast cells subsets in TC development and the formation of metastases.

6.4. Tumor-Associated Neutrophils (TANs)

Neutrophils participate in the early phases of inflammation and resistance against extracellular
pathogens [107,151], and play a role in cancer initiation and growth [152]. In humans, the ratio between
peripheral blood neutrophil and lymphocyte count (neutrophil-to-lymphocyte ratio—NLR) has been
proposed as an index of systemic inflammation, and has been found to be associated with tumor
development [153]. A higher NLR was associated with a larger tumor size and higher risk of recurrence
in TC patients, but failed to distinguish patients with benign or malignant nodules [154]. In contrast,
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an increased NLR has been found in TC compared with benign lesions and healthy controls [155].
No correlation was found with patient disease-free survival or risk of occult metastasis [156]. In a
large cohort of PTC, PDTC, and ATC, NLR was increased in ATC and to a lesser extent in PDTC [157].
In a meta-analysis based on seven prospective cohorts comprising 7349 patients, no difference in
NLR was found between DTC and patients with benign nodules [158]. Preoperative NLR was not
associated with clinicopathological characteristics in PTC patients [159,160]. By contrast, other studies
reported that the preoperative NRL was correlated with the size and lymph node metastasis of PTC
patients [161–164]. In conclusion, the diagnostic and prognostic significance of NLR in different types
of TC remains uncertain.

Maria Rosaria Galdiero et al. elegantly investigated the potential involvement of neutrophils in
human TC [165]. Conditioned media from TC cell lines TPC1 and 8505 (TC-CM) promoted human
neutrophils chemotaxis and survival. Neutrophil chemotaxis was mediated at least in part by CXCL8,
and survival was mediated by GM-CSF. TC-CM induced morphological changes and the activation of
neutrophils (i.e., CD11b and CD66 overexpression and CD62L shedding). Moreover, TC-CM induced
the production of ROS and angiogenic mediators (i.e., VEGF-A and CXCL8). Importantly, the density
of tumor-infiltrating neutrophils correlated with TC size. This study was the first to reveal the possible
involvement of neutrophils in human TC.

Due to their relatively low transcriptional activity and short lifespan [166], neutrophils are
generally believed to be terminally differentiated homogeneous cells once they leave the bone marrow.
This view is rapidly changing, and various subsets of neutrophils that are mostly defined by surface
markers [167] and density [168] have been described. Studies in murine models of cancer have
identified two functionally antagonistic populations of neutrophils, which are referred to as N1 and
N2 to mirror the nomenclature of M1 and M2 macrophages with similar activity [152]. The lack of
definitive cell markers of human N1 and N2 subsets has been so far a major obstacle to establish their
role in TC.

6.5. Myeloid-Derived Suppressor Cells (MDSCs)

Myeloid-derived suppressor cells (MDSCs) are largely immature myeloid cells that are
characterized by a state of activation and display potent immune suppressive activity [169]. Two
major subsets of MDSCs have been identified so far: monocytic (M-MDSCs) and polymorphonuclear
(PMN-MDSCs) [170]. M-MDSCs share phenotypic and morphologic features with monocytes, whereas
PMN-MDSCs are similar to neutrophils. MDSCs have been implicated in tumor immune responses,
tumor initiation and progression, angiogenesis, and the formation of pre-metastatic niches [169,170].
MDSCs inhibit anti-cancer immune responses by releasing cytokines (IL-1 and TGF-β), ROS, and
reactive nitrogen species (RNS) that condition the tumor microenvironment and by stimulating
Foxp3+ Treg cells and M2 tumor-associated macrophages (TAM) [171]. Moreover, MDSCs promote
angiogenesis and condition the pre-metastatic niches [170]. M-MDSCs and PMN-MDSCs differentiate
from normal progenitors of monocytes and neutrophils, respectively [172]. Recently, PMN-MDSCs
were distinguished from human neutrophils by the expression of the lectin-type oxidized LDL receptor 1
(LOX-1). LOX-1+ neutrophils were potent suppressor of T cells, while LOX-1− neutrophils, presumably
classical neutrophils, were not [173,174].

Peripheral blood MDSC levels were increased in patients with ATC compared to healthy controls
and correlated with the serum level of IL-10, suggesting a correlation between MDSCs and systemic
immunosuppression [175]. MDSCs are attracted to tumor sites in response to various cytokines
(CCL2, CCL5, and CSF1 for M-MDSCs, and CXCL1, CXCL5, CXCL6, CXCL8, and CXCL12 for
PMN-MDSCs) [176]. In tumors, the incoming cells dive into a fairly hostile microenvironment
characterized by hypoxia, low pH, and high concentrations of cytokines, lactate, adenosine, and
oxidative agents (ROS, NO) [176,177]. These conditions heavily affect MDSC survival, functions, and
differentiation. It is generally thought that PMN-MDSCs in tissues are short-living cells, and that
monocytic cells in the tumor microenvironment most likely represent bona fide M-MDSCs. In a wide
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cohort of TC patients (253 PTCs and 13 FTCs), the intratumoral MDSCs count, which were identified
as CD11b+ and CD33+ cells, did not correlate with patient clinicopathological features [178]. Two
studies did not find increased peripheral blood MDSCs, which were defined as CD11b+ CD33+ cells,
in PTC patients compared to control, but showed accumulation in patients with ATC [175,179]. More
recently, circulating CD11b+ HLA-DRlow (presumably PMN-MDSCs), but not CD33+ HLA-DRlow

(presumably M-MDSCs), were increased in DTC, mostly PTC, compared to benign nodules [180].
The lack of definite cell markers for human MDSC subsets has been so far a major obstacle to establish
their clinical significance in TC patients. Single-cell RNA-seq will be needed to identify subsets of
M-MDSCs and PMN-MDSCs in different types of human TCs.

A mouse model HrasG12V/Pten/TPO-Cre developed multifocal FTC, which displayed many of
the classical hallmarks of high-grade human FTC and PDTC, including an extrathyroidal extension
and lung metastasis [181]. These tumors were heavily infiltrated by macrophages, MDSCs, and
double-positive CD4+ CD25+ T cells (Treg cells), and contained arginase-1+ cells. These findings are
suggestive of an immunosuppressive tumor microenvironment (TME) of TC.

6.6. Natural Killer (NK) Cells

Natural killer (NK) cells are a family of innate immune cells that play crucial roles in protective
immunity against tumors and viral infections [182]. Subtypes of human NK cells have been identified
on the basis of the relative surface expression of CD16 and CD56. CD56dim CD16+ NK cells display
a higher cytotoxic activity, whereas CD56bright CD16−/low NK cells are more efficient in cytokine
production [183]. Tumor-infiltrating NK cells were increased in PTCs compared to goiters and healthy
thyroids, whereas no differences were found in peripheral blood NK cells [184,185]. In PTC patients,
NK cell infiltration negatively correlated with disease stage [186]. An increased infiltration of the
immunoregulatory subset of NK cells CD56bright was found in PTC samples compared to MNG.
CD56bright NK cells inversely correlated with the disease stage, whereas cytotoxic NK cells positively
correlated with the disease stage in PTC patients. These results indicate that the TC microenvironment
modulates the phenotype of NK cells [187].

NK cells mediated the lysis of ATC cell lines through the expression of the activating receptor
NKG2D on NK cells and its ligands UL16 binding proteins (ULBP2/5/6) on ATC cells [188]. ATC cell
lines and TC derived from human fine-needle aspiration [189] samples from ATC patients expressed
ULB2/5/6, whereas non-malignant thyroid tissue did not. ATC cell lines induced NK cell migration
through the activation of the CXCL10–CXCR3 axis. NK cells from FNA and the peripheral blood of
ATC patients displayed a suppressed phenotype, which was characterized by a lower percentage of
CD56dim cells and CXCR3+ cells and a reduced NKG2D expression, compared to peripheral blood
NK cells. PGE2 produced by thyroid cancer cells [190] can be responsible for ATC-mediated NK cell
suppression [188]. A recent study found a decrease frequency of peripheral blood cytotoxic NK cells
(i.e., CD56lo CD16hi) in ATC patients compared to controls [191]. By contrast, NK cells CD56hi CD16lo/hi

(cytokine producing) were increased in ATC compared to non-ATC patients and healthy controls.
In a knock-in mouse model, BRAF oncogene was expressed under the control of the thyroid

peroxidase (TPO) promoter (LSL-BRAFV600E/TPO Cre mice). IL-12 gene therapy and recombinant IL-12
reduced tumor growth, restored the follicular architecture of the gland, and improved the survival of
tumor-bearing mice. Interestingly, IL-12 improved the cytotoxicity of CD8+ T cells and NK cells, and
increased the infiltration of M1 macrophages within the tumors [61]. NK cells inhibited the growth of
metastasis in an in vivo mouse model of ATC pulmonary metastasis [192].

6.7. Natural Killer T Cells (NKT)

NKT cells are a heterogeneous lymphoid population that recognizes the lipid antigens presented
by CD1d and plays an important role in tumor immunosurveillance [193]. Two NKT subsets have
been identified: type I induce the lysis of tumor cells directly via a perforin/granzyme B-mediated
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mechanism or indirectly via the activation of NK cells and DCs; type II show immunosuppressive
activity through the production of IL-13 [194]. NKT subsets have not been characterized in TC.

6.8. γδ T Cells

γδ T lymphocytes, expressing a γδ T cell receptor (TCR), are not MHC-restricted and do not
recognize peptide antigens [195]. The contribution of γδ T cells in tumor immunosurveillance is
controversial. Zitvogel et al. demonstrated that IL-17-producing γδ T cells play a prominent role in
chemotherapy-induced anti-cancer immune responses [196]. The role of tumor-infiltrating γδ T cells in
TC is still unknown.

6.9. Innate Lymphoid Cells (ILCs)

Innate lymphoid cells (ILCs) lack TCR, but functionally resemble effector T cells [197]. ILCs
include three subsets of cytokine-producing helper cells: group 1 ILCs produce IFN-γ and include
conventional NK cells; group 2 produces Th2-type cytokines (e.g., IL-4, IL-5, and IL-13); group 3 ILCs
comprises several distinct cell subsets [198]. ILCs have a critical role in the development of lymphoid
structures, the maintenance of immune homeostasis, tissue remodeling, and the maintenance of
epithelial integrity [199]. ILCs have also been implicated in the control and suppression of tumors [200].
There is evidence that the tumor microenvironment dictates the fate of the tumor-suppressive functions
of ILC2. Moreover, ILC2 can modulate T cell-to-MDSC balance in cancer [201]. Studies are required to
understand the role of ILC subsets in different TCs.

6.10. CD8+ Cytotoxic T Cells

CD8+ cytotoxic T lymphocytes (CTLs) recognize and attack tumor cells expressing tumor
antigens [202]. In a wide immunohistochemical characterization of the immune network in patients
with chronic lymphocytic thyroiditis concurrent with DTC, a high CD8+ T lymphocyte infiltration was
associated with improved disease-free survival [178]. In a study conducted in a wide cohort of DTC
patients, including papillary and follicular subtypes, immunohistochemical analysis of tumor samples
revealed that the combined enrichment of CD8+ cells and Cox-2 overexpression correlated with the
highest risk of disease relapse. In the majority of the tumor samples analyzed (68%), CD8+ cells were
granzyme B negative, reflecting a state of anergy [203].

A low intratumoral CD8+/Foxp3+ ratio was found in human BRAFV600E PTC, which was
associated with an increased expression of the immunosuppressive molecules arginase-1, indoleamine
2,3-dioxygenase (IDO), and programmed death-ligand 1 (PD-L1). The latter findings suggest a
BRAF-driven tumor-promoting microenvironment [204]. A recent study evaluated the CXCR5+

CD8+ T cell subset in peripheral blood, tumor-draining lymph nodes (TDLNs), and tumors from TC
patients [205]. Although CXCR5+ CD8+ T cells expressed higher PD-1, T-cell immunoglobulin and
mucin-domain containing-3 (TIM-3), and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) markers than
CXCR5− CD8+ T cells, these cells displayed a higher expression of cytotoxic molecules (e.g., granzymes
and perforin).

6.11. CD4+ Cells

The role of different subsets of CD4+ T cells in tumor immunity remains underappreciated.
Th1-mediated immunity is generally considered as antitumoral [206], while polarized Th2 and/or Treg
activity is believed to be protumorigenic [207]. This simplistic view is complicated by the plasticity
of Th differentiation, which can be extensively modulated by the tumor microenvironment [115,208].
In TC, the extent of tumor-infiltrating CD4+ cells does not appear to predict patient outcome [203].
No differences were found between PTC and MNG patients, with respect to tissue or peripheral blood
CD4+ cell frequencies [53]. Interestingly, a double negative CD4− CD8− lymphocyte population was
the dominant cell type in PTC, and was more abundant in PTC than in thyroid autoimmunity and ex
vivo released IFN-γ and IL-17 [209].
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6.12. Treg Cells

Tregs shut down antitumor immune response via the production of IL-10, the expression of
immunosuppressive molecules (e.g., CTLA-4 and PD-1), and the stimulation of angiogenesis [210].
Moreover, increased PD-1+ T and Treg cells in metastatic lymph nodes correlated with a more aggressive
TC [211]. Foxp3+ Tregs and VEGF were found in PTC samples, and Treg infiltration correlated with
disease stage and lymph node metastasis [212]. A higher Treg density was also observed in PTC
samples compared with nodular goiter, and positively correlated to the stage of the disease [186].
Accordingly, a high infiltration of Foxp3+ Treg cells was associated with aggressive features of PTC [213].
Moreover, increased Foxp3+ and reduced CD3+ tumor-infiltrating lymphocytes correlated with IDO1
expression. Similarly to PD-L1, IDO1 is overexpressed in different tumors, and is associated with
the activation of Foxp3+ Tregs and the down-regulation of cytotoxic cellular immunity in the tumor
microenvironment [214].

A higher percentage of Foxp3+ T cells and Inducible T-cell COStimulator (ICOS) + Treg cells
were found in tissues, but not in the peripheral blood of PTC patients with MNG compared to MNG
alone [53]. In PTC plus MNG, tissue ICOS+ Foxp3+ T cells were increased in advanced stages and
metastatic tumors. Tissue ICOS+ Foxp3+ T cell numbers correlated with tissue plasmocytoid DCs,
which favor an immunosuppressive microenvironment [53].

6.13. IL-17+ Cells

CD4+ IL-17+ T cells (Th17) cells can exert protumor or antitumor functions, depending on the
tissue microenvironment [215]. Only one study examined the prevalence and distribution of Th17
cells in TC samples. In peripheral blood and tissue samples of PTC patients, increased Th17 levels
were found compared to healthy controls, whereas the percentage of CD8+IL-17+ T cells (Tc17) in the
peripheral blood was reduced. The frequency of peripheral blood Th17 cells was positively correlated
with the IL-17 serum level, while no correlation between the serum level of IL-17 and Tc17 cells was
found. Peripheral blood Th17 cells inversely correlated with tumor size [62].

6.14. T Follicular Helper Cells (Tfh)

T follicular helper cells (Tfh) were discovered based on their expression of the essential transcription
factor BCL6 [42,216]. This led to the recognition of Tfh cells as an independent CD4+ subset specialized
in helping B cells in lymph nodes [42,217]. No single marker or combination of markers reliably
identifies Tfh cells as a discrete immune cell population. In fact, Tfh are part of the CD4+ T cell
differentiation spectrum. Several surface molecules (CCR5, PD-1, BCL6, BTLA4, and ICOS) vary in
expression and represent plastic features of Tfh heterogeneity. A fraction of CD4+ T cells in human
blood express CXCR5 or PD-1 and are called circulating Tfh (cTfh) cells. The latter cells are closely
related to tissue Tfh cells. Human cTfh are heterogeneous [42], and are divided into three major
functional subtypes (Tfh1, Tfh2, and Tfh17) [218]. IL-21 is a B-cell helper cytokine produced by Tfh
cells [219].

Overreactive Tfh cells have been reported in several human systemic autoimmune diseases [220].
An increased frequency of cTfh cells has been reported in patients with autoimmune thyroid disease,
and Tfh cells were also detected in the thyroid tissue of Hashimoto’s thyroiditis patients [221]. CXCR5+

CD4+ T cells were increased in the thyroid tissue of patients with Graves’ disease compared to control
subjects [222]. Furthermore, CD4+ IL-21R+ T cells and CD19+ IL-21R+ B cells were also observed in
Graves’ disease tissues.

Recent studies suggested that Tfh cell infiltrates may influence the growth and survival of certain
tumors [223,224]. To our knowledge, the characterization of different subtypes of circulating and
intratumor Tfh in different types of TC has not been reported yet. Future studies should investigate
the presence and functions of Tfh subsets in different types of TC.
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6.15. Th9 Cells

IL-9-producing CD4+ helper T cells (Th9 cells) are a subset of CD4+ helper T cells with
proinflammatory functions and anti-cancer properties in vivo [225]. The release of IL-9 has been
proposed to account for anti-cancer efficacy. Moreover, Th9 cells release IL-21, which promotes the
production of IFN-γ and tumor elimination by CD8+ T cells and NK cells [226]. The Th9 antitumor
efficacy has been attributed to the production of IL-9 [227]. Studies investigating the relevance of Th9
cells in thyroid oncogenesis are urgently needed. Figure 2 schematically illustrates a hypothetical
immune landscape of TC.
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Figure 2. Schematic representation of the rationale developing combinatorial therapies of advanced
thyroid cancer involving immune checkpoint inhibitors (monoclonal antibodies (mAbs) anti-cytotoxic
T lymphocyte antigen 4 (anti-CTLA-4), anti-programmed cell death protein-1 (anti-PD-1), or
anti-programmed cell death ligand-1 (anti-PD-L1)), BRAF inhibitors (BRAFi), multi-targeted tyrosine
kinase inhibitors (TKIs) (e.g., lenvatinib), chemotherapies, or radiotherapies. (A) Cancer cells release
neoantigens (dots of different colors) that are captured by antigen-presenting cells (APCs). These cells
present peptides in the context of MHC I molecule/T cell receptor (TCR) on the surface of CD8+ cytotoxic T
cells. APCs can also present peptides bound to MHC II molecules on CD4+ T helper cells. T-cell activation
requires costimulatory signals transmitted via CD28, which is activated by binding to CD80 and/or
CD86 on APCs. Tumor cells up-regulate CTLA-4 on T cells, which competes with CD28 for binding to
CD80/CD86 on APCs. The interaction of CTLA-4 with CD80/CD86 results in inhibitory signaling in T
cells, which favors thyroid cancer cell proliferation. The immunosuppressive activity of CTLA-4 is
mediated by the down-regulation of Th cells and the enhancement of Treg cells. Moreover, tumor cells
express high levels of PD-L1 and/or PD-L2, which binds to PD-1 on T cells, resulting in inhibitory signals
that decrease cytotoxicity and lead to T-cell exhaustion. (B) mAbs blocking CTLA-4 (e.g., ipilimumab,
tremelimumab), PD-1 (nivolumab, pembrolizumab, spartalizumab), or PD-L1 (avelumab, atezolizumab,
durvalumab) inhibit the interactions of CTLA-4/CD80/86 and PD-1/PD-L1, respectively, and activate
T-cell cytotoxicity. BRAF inhibitors (BRAFi), TKIs (e.g., lenvatinib), chemotherapies, and radiotherapies
can induce thyroid cancer cell death, increasing the release of tumor neoantigens in the tumor
microenvironment. Combining an anti-PD-L1 antibody with BRAFi [228,229] or with lenvatinib [229]
improved survival and tumor immunity in a immunocompetent murine model of ATC. Several
combination strategies involving immune checkpoint inhibitors (ICIs) are under evaluation in patients
with advanced TC (see Tables 1 and 2).
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Table 1. Clinical Trials Evaluating the Effects of PD-1 Inhibitors in Thyroid Cancer.

Clinical Trial Registry
NCT Number PD-1 Inhibitor Combination Study Phase

NCT03246958 Nivolumab Nivolumab + Ipilimumab Phase 2

NCT02834013 Nivolumab Nivolumab + Ipilimumab Phase 2

NCT03274258 Nivolumab Nivolumab + Ipilimumab Phase 2

NCT03866382 Nivolumab Nivolumab + Ipilumab Phase 2

NCT02688608 Pembrolizumab Pembrolizumab Phase 2

NCT03072160 Pembrolizumab Pembrolizumab Phase 2

NCT03360890 Pembrolizumab Pembrolizumab + Chemotherapy Phase 2

NCT03211117 Pembrolizumab Pembrolizumab + Chemotherapy
+ Radiation Phase 2

NCT02973997 Pembrolizumab Pembrolizumab + Lenvatinib Phase 2

NCT03012620 Pembrolizumab Pembrolizumab Phase 2

NCT03435952 Pembrolizumab Pembrolizumab + Clostridium
Novyi-NT Phase 1

NCT02628067 Pembrolizumab Pembrolizumab Phase 2

Table 2. Clinical Trials Evaluating the Effects of PD-L1 Inhibitors in Thyroid Cancer.

NTC Number PD-L1 Inhibitor Combination Study Phase

NCT03181100 Atezolizumab Atezolizumab + Chemotherapy Phase 2

NCT03170960 Atezolizumab Atezolizumab + Cabozantinib Phase 1 and 2

NCT03217747 Avelumab Avelumab + Chemotherapy Phase 1 and 2

NCT03753919 Durvalumab Durvalumab + Tremelimumab Phase 2

NCT03215095 Durvalumab Durvalumab + Radioiodine Phase 1

NCT03122496 Durvalumab Durvalumab + Radiotherapy Phase 1

7. Immune Checkpoint Inhibitors in TC

Immune checkpoints physiologically prevent excessive immune responses and the development
of autoimmunity [230–232]. Monoclonal antibodies (mAbs) targeting immune checkpoints (immune
checkpoint inhibitors: ICIs) have revolutionized the treatment of malignancies characterized by DNA
microsatellite instability [233]. Two major classes of ICIs have clinically emerged: those targeting
cytotoxic T lymphocyte antigen 4 (CTLA-4) (i.e., ipilimumab and tremelimumab), and those targeting
programmed cell death protein-1 (PD-1) (i.e., nivolumab, pembrolizumab, spartalizumab) or its ligand,
programmed cell death ligand-1 (PD-L1) (i.e., avelumab, atezolizumab, and durvalumab). CTLA-4
and PD-1 regulate different stages of the immune response. For instance, CTLA-4 modulates immune
response primarily in draining lymph nodes, whereas the primary site of action of PD-1 and its ligands
(PD-L1/PD-L2) is in the tumor microenvironment (TME). PD-1 expressed on activated T cells interact
with PD-L1 or PD-L2 expressed on the surface of cancer cells or tumor-infiltrating immune cells,
thus inhibiting the cytotoxic action of T cells [234]. The up-regulation of PD-L1 by tumor cells leads
to increased T-cell exhaustion, and is thought to be a means of cancer cell immune evasion [235].
When T cells are primed by exposure to antigens presented by APCs in draining lymph nodes, they
become activated and overexpress CTLA-4 on their surfaces, which competes with CD28 for binding
to CD80 or CD86 on the surface of APCs. This competition between CTLA-4 and CD28 attenuates the
early activation of CD4+ and CD8+ T cells, and improves the immunosuppressive functions of Treg
cells [236]. Figure 2A schematically illustrates the two interactions between CTLA-4 on T lymphocytes
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and CD80/CD86 on APCs and between PD-1 on T cells and tumor cells expressing PD-L1 or PD-L2.
Both interactions result in inhibitory signals that lead to T-cell exhaustion, decreased T-cell cytotoxicity,
and cancer cell proliferation.

The PD-1/PD-L1 pathway is expressed in ATC and DTC [237,238]. BRAFV600E cells express higher
expression of PD-L1 compared to BRAFWT cells [228]. The low rate of mutations—and therefore, of
neoantigens in DTC—might suggest that this would be a poor target for monotherapy with ICIs [239].
In fact, the results of a preliminary trial of the PD-1 inhibitor pembrolizumab in patients with PD-L1+

PTC or FTC confirmed that hypothesis [240]. More recently, higher numbers of mutation load and
genetic alterations have been identified in poorly DTCs and ATC than in DTCs [34]. To increase
the response rate of ICIs, a major focus is to find combinations that act synergistically. For example,
combination strategies that target multiple aspects of the immune response (e.g., PD-1/PD-L1 and
CTLA-4 pathways) or tumor cells themselves (e.g., tyrosine kinase inhibitors, BRAF inhibitors,
radiotherapy) could provide benefits for patients with advanced thyroid disease.

Brauner et al. found that combining the BRAF inhibitor and anti-PD-L1 antibody markedly
improved tumor immunity (e.g., CD8+ cell infiltration and CD8+: Treg ratio) and tumor regression in
an immunocompetent murine model of ATC. These findings were extended in an immunocompetent
model of orthotopic murine ATC by showing that the combination of the BRAF inhibitor (i.e., PLX4720)
and anti-PD-1/PD-L1 mAbs reduced tumor volume and improved survival [241]. Moreover, the
combination of lenvatinib—a multi-tyrosine kinase (TK) inhibitor—with anti-PD-1/PD-L1 mAb
reduced tumor volume and improved survival in immunocompetent mice with orthotopic ATC [229].
This combination treatment was associated with an increase in tumor-infiltrating CD8+ T cells and
granzyme B staining without changes in NK cells. Preliminary studies indicate that the combination
of a mAb anti-PD1 (i.e., pembrolizumab) with a TK inhibitor may be an effective salvage therapy for
the treatment of ATC [242]. Several ongoing clinical trials are evaluating the strategies that target
PD-1 alone or in combination with CTLA-4 inhibitor (ipilimumab), chemotherapy, radiation, or TKI
(lenvatinib) in advanced TCs (Table 1). Other clinical trials are evaluating the effects of PD-L1 inhibitors
(avelumab, atezolizumab, and durvalumab) in combination with CTLA-4 inhibitor (tremelimumab),
chemotherapy, or radiotherapy in advanced TCs (Table 2). Figure 2B schematically illustrates the
rationale of combinatorial therapies of advanced TC involving ICIs, BRAFi, multi-targeted TKIs,
chemotherapies, or radiotherapies.

8. Thyroid Disorders Induced by ICIs

CTLA-4-knockout mice often develop autoimmune diseases, such as pancreatitis and
myocarditis [243]. Similar to CTLA-4, mouse models lacking expression of PD-1 have distinct
autoimmune phenotypes, such as lupus-like syndromes or dilated cardiomyopathy [244,245].
In humans, inactivating CTLA-4 (i.e., ipilimumab) is linked with a wide array of autoimmune
disorders including thyroiditis [246–251]. Immune-related adverse events (irAEs) associated with
inhibitors of PD-1/PD-L1 axis tend to be more limited in severity and incidence, but have an earlier
onset than the adverse effects of CTLA-4 inhibition associated with these agents, which are sometimes
severe and can occur during treatment or even long after treatment cessation [230]). Hypothyroidism
is more common with anti-PD-1 antibodies than ipilimumab (4–10% versus 2–4% respectively), is
rarely severe [252–258], and occurs commonly after subclinical hyperthyroidism [259–261].

9. Outstanding Questions and Conclusions

During the last years, the incidence of TC has increased, and it now represents approximately 90%
of all endocrine malignancies and 70% of deaths due to endocrine cancers [2]. While the prognosis
of DTC is favorable, PDTC and ATC are among the most lethal human malignancies. Nearly all
immune cells are present in the TC microenvironment, and in some cases are associated with patient
outcome [32,47,121,123,124]. Studies assessing the functional role of TAMs, TAMCs, and TANs have
provided evidence for their protumorigenic role [45,47,165]. The majority of these studies were merely
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quantitative and qualitative analyses of immune cells in the TME of TC. Unfortunately, the presence
and functional role(s) of several subsets of immune cells (e.g., NKT and γδ T cells, Tfh, Th9, Th17, and
Tc17), which are known to be relevant for tumor initiation and growth, have not yet been investigated
in the microenvironment of different types of TC.

Macrophages are key components of the TC microenvironment, and TAM and M2 macrophages
are associated with more aggressive cancers (PDTC and ATC) [121], larger tumor size [118], lymph
nodes [88], and lung metastases [124]. However, increasing evidence indicates that TAMs comprise
more than two (M1 and M2) subsets of cells [116,148]. Mast cell density in human PTC and FTC
correlated with tumor extrathyroid extension [47,145]. Mast cells, similar to macrophages, also
comprise several subsets of cells [149,150]. Therefore, single-cell RNA-seq will be necessary in order to
understand the role of different subsets of macrophages and mast cells in thyroid tumorigenesis and as
biomarkers of response to ICIs in patients with advanced disease.

Increasing evidence indicates that neutrophils, which were originally believed to be homogeneous
and terminally differentiated cells, are involved in tumor immunity [107,152]. Several studies have
simplistically suggested that the NLR could be associated with clinicopathological characteristics of
TC patients. The significance of NLR in different types of TC remains uncertain. Galdiero et al. have
demonstrated that neutrophils are present in human TC, and TC-CM promoted their activation [165].
Further studies are urgently needed to explore the role of subsets (e.g., low-density, high-density, N1,
N2) of neutrophils in different types of TC.

MDSC, similar to macrophages, mast cells, and neutrophils, comprise at least two subsets of
cells (i.e., PMN-MDSC and M-MDSC) [170]. PMN-MDSCs in tissues are considered short-living cells,
whereas MDSCs in the tumor microenvironment likely represent bona fide M-MDSCs. Unfortunately,
the lack of definitive markers for subsets of human MDSCs has so far prevented establishing their exact
role in different types of TC. NK cells play a central role in immune surveillance against tumors, and
comprise at least two subsets (i.e., CD56hi CD16lo/hi and CD56lo CD16hi). In a mouse model of ATC, it
was shown that NK cell-based immunotherapy is an effective therapy of pulmonary metastases [192].

TK inhibitors targeting RET or BRAF can induce either stable disease or partial responses in
PTC and FTC metastatic patients, but are much less effective in ATC [9,262]. Therefore, alternative
therapeutic approaches for these TC histotypes are needed. A possible approach is represented by
drugs targeting the interactions between immune cells and cancer cells and/or tumor stromal cells,
including immune cells. Various immunologic approaches are under evaluation in preclinical studies
or in early phase clinical trials for the treatment of ATC. Preclinical and preliminary clinical studies
have reported encouraging results on the efficacy of mAbs targeting the PD-1/PD-L1 network [228].
The rationale of this immunologic approach is based on the expression of the PD-1/PD-L1 pathway in
DTC and ATC [237,238]. A promising strategy is the immunotherapy combined or sequenced with
targeted therapy in the treatment of tumors [263,264]. Preliminary results suggest that combining
BRAF inhibitor and anti-PD-1 mAb can improve immunity in a murine model of ATC [229]. Similarly,
the combination of a TK inhibitor with anti-PD-1/PD-L1 mAbs improved survival in a murine model
of ATC [229]. Figure 2 schematically illustrates the rationale for the antitumor effect of BRAF or TK
inhibitor in combination with ICI.

Several other immune checkpoint receptors such as TIM-3, Lymphocyte-activation gene 3 (LAG-3),
T Cell Immunoreceptor With Ig And ITIM Domains (TIGIT), B- and T-lymphocyte attenuator (BTLA),
V-domain Ig suppressor of T cell activation (VISTA), sialic acid-binding immunoglobulin-type lectins
(SIGLEC) 9 and 7, and P-selectin glycoprotein ligand (PSGL)-1 have been identified to be potential
therapeutic targets in the immunotherapy of tumors [265]. mAbs targeting the above immune
checkpoints are under evaluation in preclinical and/or clinical studies, and should be considered also
for the treatment of ATC.

TC cells and several immune cells are a major source of protumorigenic and pro-angiogenic
cytokines and chemokines [97,98]. Anti-angiogenic agents, eventually in combination with ICIs, could
be exploited to block TC growth, since this strategy has been already developed for other tumors [266].
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Moreover, blocking immunosuppressive molecules (TGF-β, IL-10) expressed either by cancer cells or
by tumor-infiltrating immune cells [267] could represent another therapeutic strategy for the treatment
of TC.

Oncolytic viruses (OVs) are non-pathogenetic viral stains or viral mutants that selectively replicate
in and kill tumor cells without causing damage to normal cells [268]. The OV dl922-947 reduced CXCL8
and CCL2/MCP-1 expression and inhibited angiogenesis and macrophage infiltration in ATC [269].
The Food and Drug Administration (FDA) has approved the first OV to treat patients with advanced
melanoma [270]. Preclinical and clinical studies appear necessary for evaluating ATC virotherapy in
the context of TC immunotherapy.

Most of the in vivo experimental studies of TC have been performed with athymic nude mice
models. Studies conducted with these models have demonstrated a protumorigenic role of mast cells
in human TC [47,48]. The protumorigenic role of macrophages in TC has been established in mice in
which macrophage depletion has been obtained by either pharmacological or genetic tools [45,124].
Genetically modified mouse models of TC should be employed to better characterize the role of
different immune cell subsets in different stages of tumorigenesis [271].

Extraordinary progress has been made in recent years in the characterization of several, but not all,
cells of the immune system in the tumor microenvironment of different TCs. Moreover, it is becoming
clear that different subtypes of immune cells play a protumorigenic role, whereas other types play a
protective role in TC. Single-cell analysis of peritumoral and intratumoral immune cells could help to
elucidate the functions of subsets of cells in different types of TC. The result that will emerge from these
studies will contribute to elaborate targeted immunotherapy strategies for the treatment of advanced
thyroid cancer.
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ALK anaplastic lymphoma kinase
ANGPT angiopoietin
ATC anaplastic thyroid carcinoma
CTL cytotoxic T lymphocyte
CTLA-4 cytotoxic T lymphocyte antigen 4
DCs dendritic cell
DTC differentiated thyroid carcinoma
ECM extracellular matrix
EMT epithelial-to-mesenchymal transition
FNA fine-needle aspiration
FTC follicular thyroid cancer
GM-CSF granulocyte-macrophage colony-stimulating factor
HGF hepatocyte growth factor
HTT hyalinizing trabecular tumor
ICI immune checkpoint inhibitor
IDO1 indoleamine 2,3-dioxygenase 1
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IFN interferon
ILC innate lymphoid cell
INF interferon
mAb monoclonal antibody
MDSC myeloid-derived suppressor cell
MMP metalloproteinase
MNG multinodular goiter
MTC medullary thyroid cancer
NGS next-generation sequencing
NK natural killer
NKT natural killer T cell
NLR neutrophil-to-lymphocyte ratio
NSCLC non-small-cell lung cancer
OS overall survival
PD-1 programmed cell death protein-1
PD-L1 programmed cell death ligand-1
PDTC poorly differentiated thyroid cancer
PMN polymorphonuclear cell
PTC papillary thyroid cancer
RET REarranged during Transfection
RNS reactive nitrogen species
ROS reactive oxygen species
SCF stem cell factor
TAM tumor-associated macrophage
TAMC tumor-associated mast cell
TAN tumor-associated neutrophil
TC thyroid cancer
TCR T cell receptor
TDLN tumor-draining lymph node
Tfh T follicular helper cell
Th T helper cell
TK tyrosine kinase
TKI tyrosine kinase inhibitor
TME tumor microenvironment
TNF-α tumor necrosis factor-α
Treg regulatory T cell
VEGF vascular endothelial growth factor
VEGFR vascular endothelial growth factor receptor
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