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ABSTRACT ARTICLE HISTORY
In this framework, the current research work aims to analyse a sub- Received 10 October 2018
urban sector of the historic centre of Sant’Antimo, located in the prov- Accepted 12 March 2019

ince of Naples (ltaly), in order to assess the seismic vulnerability of old

masonry buildings in this sector and the expected damage scenarios

resulting from seismic events with different characteristics. Moreover, in ) - )
" . p . . . assessment; fragility curves;

order to mitigate the identified risk, a set of retrofitting techniques are damage scenarios;

considered and analysed taking into account their contribution for the retrofitting techniques;

reduction of the seismic vulnerability of buildings. The vulnerability ana- GIS mapping

lysis is performed through the application of an index-based seismic

vulnerability assessment approach integrated into a GIS tool in order to

identify the structural units (S.U) most susceptible at damage.

Subsequently, typological vulnerability curves, according to the EMS-98

scale, are obtained for the building stock analysed. Finally, a parametric

analysis, varying magnitude and seismogenic site-source distance, is per-

formed to obtain and discuss urban damage and loss estimation scen-

arios in terms of number of collapsed and unusable buildings, as well

as number of human casualties, severe injuries and homelessness.

KEYWORDS
Seismic vulnerability

1. Introduction

The large-scale seismic risk is a useful tool for assessing the susceptibility of a sample of build-
ings to overcome, in a given period of time, a certain seismic event of an assigned intensity.
Seismic risk can be understood as the combination of three factors, namely Exposure (E),
Vulnerability (V) and Hazard (H). Exposure is connected to the nature, quantity and value of
properties and activities of the area that can be influenced directly or indirectly by the seismic
event. Vulnerability can be defined as the intrinsic potential of buildings to suffer a certain level
of damage when subjected to a seismic event of defined intensity. Finally, the Hazard can be
defined as the expected ground motion in a specific site with a certain probability to be
exceeded in a given time interval. More precisely, it represents the probability that a certain
value of shaking occurs in a given time interval (Cacace, Zuccaro, De Gregorio, & Perelli, 2018;
Dolce & Goretti, 2015; McGuire, 1995). In addition, the heterogeneity of buildings, especially in
historical centres, is still one of the most important issues concerning the large-scale seismic risk
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evaluation. However, the risk, independently from the natural phenomena, is to be considered as
the attainment of a level of social and economic “losses” (Udias, 2003). It is important to know
the urban heterogeneity and the global socio-economic level, to ensure the development of poli-
cies and programs that prevent and, therefore, reduce the urban vulnerability in relation to the
number of inhabitants and their exposure to natural phenomena. In fact, an important aspect of
evaluating the seismic vulnerability of existing buildings is the progressive damage (cyclic
fatigue) produced by the seismic impact (Clementi, Gazzani, Poiani, & Lenci, 2016). In some cases,
a specific seismic event is characterised by a mainshock with high intensity followed by several
aftershocks. Even in the cases where the intensity of the mainshock does not produce any ser-
ious damage to the structure (Krstevska et al, 2010), the subsequent seismic event can cause
heavy levels of damage and, in some extreme cases, its collapse (Clementi, Quagliarini, Monni,
Giordano, & Lenci, 2017; Pierdicca et al., 2016) and for evaluation of economic and social losses,
would not only be able to estimate future potential losses due to the occurrence of earthquakes
that can affect a particular region, but it should also be used to prepare and implement risk miti-
gation measures (Calvi & Pinho, 2006). The methodologies used for large-scale estimations are
mainly based on observational methodologies for a significant sample of buildings considered as
isolate (Benedetti, Benzoni, & Parisi, 1988; Maio, Ferreira, Vicente, & Estévao, 2016), therefore
neglecting the aggregate configuration. This kind of approach was first proposed by the Italian
National Group for the Defence against Earthquakes (GNDT), which took profit of post-earth-
quake damage observations of masonry buildings in Italy (National Group for Protection from
earthquake GNDT, 1993). Subsequently, quick methods were proposed by many researchers in
several case studies, for instance in Spain (Lantada et al., 2010), Italy (Brando, De Matteis, and
Spacone, 2017a; D'Ayala & Paganoni, 2011; Formisano, 2017a), Romania (Armas, 2012), Portugal
(Ferreira, Vicente, Mendes da Silva, Varum, & Costa, 2013, Ferreira, Maio, & Vicente, 2017b;
Vicente, Parodi, Lagomarsino, Varum, & Silva, 2011), Nepal (Brando et al., 2017b) and Iran (Azizi-
Bondarabadi, Mendes, Lourenco, & Sadeghi, 2016). In addition, some other studies for the urban
seismic vulnerability assessment, including estimation of social costs and human losses, were
also delivered (Ferreira, Maio, & Vicente, 2017a; Uva, Sanjust, Casolo, & Mezzina, 2016). Among
other advantages, these methodologies can be combined with the macroseismic method
(Lagomarsino & Giovinazzi, 2006) for the evaluation of damage scenarios. In fact, instead of
refined numerical analyses and simplified theoretical approaches (Formisano & Marzo, 2017), the
macroseismic methodology allows to evaluate the propensity at damage of a sample of build-
ings under seismic events defined according to the EMS-98 macroseismic intensity scale
(Griinthal, 1998). The characterisation of seismogenic sources in terms of maximum expected
magnitude and cyclicity of events (number of “E” events in a “T" period) allowed to define more
accurate and realistic seismic scenarios for earthquake mitigation (Cornell, 1968).

The possibility of identifying the most vulnerable buildings in an urban context based on
these scenarios makes it possible to limit the effects of seismic phenomena, safeguarding the
historical heritage and life of people. The seismic risk analysis on a regional scale requires the
development of simplified methods and models capable of characterising both the capacity of
buildings exposed to risk and the seismic demand (see, for instance, lervolino et al.,, 2007).
Therefore, a large-scale risk analysis does not refer to individual structures, but to classes of
buildings having vulnerability expressed as a function of structural parameters collected by
standard in situ investigations (Quagliarini, Maracchini, & Clementi, 2017).

In this work, different seismic scenarios obtained on the basis of a parametric approach are
used to evaluate the seismic risk of an urban sector located in the municipality of Sant’Antimo, a
district of Naples (Italy). Such scenarios are subsequently used to estimate different types of
losses, from the building uninhabitable condition and collapse to human casualties and home-
less, and to analyse the global impact resulting from the adoption of a set of seismic retrofitting
techniques. In order to improve the interpretation of the results, they are mapped using the free
and open-source GIS software, QGIS (QGIS Development Team, 2014), wherein geo-referenced
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Figure 1. The city of Sant’Antimo in the Campania region of Italy.

graphical information are combined and connected to a relational database containing the main
structural characteristics of the assessed buildings.

2, Seismic vulnerability assessment of the historical Centre of Sant’Antimo
2.1. Historical news

The municipality of Sant’Antimo (Figure 1) territorially belongs to the Ancient Atella, extended
district between the province of Naples and Caserta. The first urban nucleus of Sant’Antimo
dates back from IV — Il centuries BC. Subsequently to the regular layout of the cadastral division,
outlined in the V century BC, it was developed the road scheme of the medieval period, with
the characteristic winding roads crossing the building agglomerations erected around the castle
and the church.

The city has presently 33,905 inhabitants and sited 16km far from the historical city of
Naples, one of the major and most important urban centres of Southern ltaly and one of the
most densely populated areas in Europe (Peroni & Tucci, 2010). Over the recent decades, the
urban development of this area has been very heterogeneous, conserving a typological majority
of historic masonry structures built in the early 1900s and post-World War II. This sector is the
centre of the commercial activities of the city, in addition to containing numerous buildings of
historical value, such as the Renaissance baronial castle with a first structure dating back to the
Middle Ages, the church of Santo Spirito and the chapel of Sant’Antimo priest and martyr.

2.2. Characterisation of the study area

The vulnerability assessment of the sub-sector selected within the historical centre of
Sant’Antimo is considered as the initial stage of a wider study having the final purpose to
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Figure 2. Top view of the sub-sector selected as a case study (coloured area).

evaluate the seismic risk of the whole urban built-up area. The sub-sector under study, high-
lighted in Figure 2, is composed of 42 buildings erected in aggregate. The prevailing construc-
tion type is a masonry structure made of tuff block stones, which represent the local masonry
obtained by stones extracted from the ground.

The masonry walls present a two-leaf section about 65cm thick with a poor infill composed
of rubble material (sacco masonry). The foundations consist of shallow wall footing, which, in
practice, consists on arranging the masonry walls directly on the ground at a depth of about
1,50 m. This area is characterised by the presence of cavities with depths of more than 30 m. As
for the roofing systems, most of them still retain the traditional construction typology with tim-
ber structural elements and steel ties. Albeit in small numbers, reinforced concrete structures
were also observed, corresponding to recent interventions carried out from 2000 to 2017, often
as a result of the demolition of old buildings and the re-construction of new ones.

In volumetric terms, buildings develop in elevation from 2 to 3 stories. The inter-storey height
is about 3,00 to 4,00 m for the first level and 3,00 to 3,50 m for the upper floors. Horizontal struc-
tures are generally made of steel-hollow tile floors or timber. However, as often happens, renova-
tions and redistribution of the interior spaces are carried out without careful planning of the
interventions that alter the statics of the building. The presence of these vulnerability factors
increases the possibility of collapse and instability of such historical buildings when subjected to
seismic actions. The lack of connections among perimeter walls orthogonal to each other (cor-
ners) does not guarantee a global behaviour of the structure.

In order to perform the vulnerability assessment, and according to the Building Typology
Matrix (BTM) (Lagomarsino & Giovinazzi, 2006), the 42 buildings that compose the sub-sector
under study were classified into two different typological classes: class M3.3 for the masonry
structures with steel floors and a reinforced concrete slab at the roof level (in 36% of the cases);
and class and M3.4 for the masonry structures with reinforced concrete floors and roof (64%).
Their distribution over the study is presented in Figure 3.
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Figure 3. Numbering (a) and typological classes of the masonry buildings (b) in the sub-sector of Sant’Antimo under study.

Table 1. The new vulnerability assessment form for buildings in aggregate.

Class Score, §;

Parameters A B C D Weight, W;
1. Organisation of vertical structures 0 5 20 45 1,00
2. Nature of vertical structures 0 5 25 45 0,25
3. Location of the building and type of foundation 0 5 25 45 0,75
4. Distribution of plan resisting elements 0 5 25 45 1,50
5. In-plane regularity 0 5 25 45 0,50
6. Vertical regularity 0 5 25 45 0,50
7. Type of floor 0 5 15 45 0,80
8. Roofing 0 15 25 45 0,75
9. Details 0 0 25 45 0,25
10. Physical conditions 0 5 25 45 1,00
11. Presence of adjacent building with different height -20 0 15 45 1,00
12. Position of the building in the aggregate —45 -25 —15 0 1,50
13. Number of staggered floors 0 15 25 45 0,50
14. Structural or typological heterogeneity among adjacent S.U. —15 -10 0 45 1,20
15. Percentage difference of opening areas among adjacent facades -20 0 25 45 1,00

2.3. Seismic vulnerability assessment

Aiming at implementing a quick seismic evaluation procedure for masonry aggregates, it has
been used the new vulnerability form proposed in Table 1 (Formisano, Florio, Landolfo, &
Mazzolani, 2015, 2017, 2017a; Maio et al., 2015). This new form is based on the Benedetti and
Petrini’s vulnerability index method (Benedetti & Petrini, 1984), widely used in the past as a rapid
technique based on the collection of some features of individual buildings to investigate their
vulnerability in case of earthquake. This vulnerability assessment form, composed by 10 basic
parameters, was used to recognise the main structural system and the fundamental seismic defi-
ciencies of isolated buildings, as shown in Table 1.

It was adopted with some minor adjustments by the National Group Against Earthquakes as
the first screening tool for vulnerability assessment of masonry and RC buildings belonging to
historic centres affected by seismic actions. In order to consider the structural interaction
between adjacent buildings, not considered in the cited method, a new form was adopted. The
new investigation form appropriately conceived for aggregates of masonry buildings is achieved
by adding new five parameters to the ten basic parameters of the original form. These new
parameters take into account the interaction effects among the aggregated structural units
under earthquake (Formisano, Chieffo, & Mosoarca, 2017b; Formisano et al., 2016).
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Figure 4. Vulnerability index results: (a) mapping; and (b) histograms for each typological class.

The added parameters, partially derived from previous studies found in literature (Dolce &
Goretti, 2015), are:

(1) Parameter 11: Presence of adjacent buildings with different height

The elevation interaction among adjacent buildings takes into account the different height of
the adjacent buildings. S.U. located between buildings of the same height or higher are generally
the least vulnerable constructions. In fact, the external constructions provide confinement actions
on the walls of the building considered when they deform under seismic actions. On the con-
trary, the most unfavourable cases are when S.U. are located between two lower buildings (one
and two floors). In these cases, since the binding action of the adjacent buildings is only partial,
the central building is free to deform laterally to the last levels with the possibility of triggering
out-of-plane mechanisms.

(2) Parameter 12: Position of the building in the aggregate

This parameter aims to take into account the in-plane interaction among S.U. In particular,
this parameter allows to distinguish different positions and, consequently, different structural
behaviours of S.U. in the aggregate. Four possible positions are considered: isolated, enclosed
between buildings, in corner position and in heading position.

(3) Parameter 13: Number of staggered floors

The presence of staggered floors is contemplated accounting for the effect of pounding
caused by floors placed at different heights in adjacent buildings.

(4) Parameter 14: Structural or typological heterogeneity among adjacent S.U.

This parameter accounts for the structural or typological heterogeneity among adjacent S.U.
According to the formulation adopted, the building aggregates can be considered homogeneous
(from the typological and structural point of view) when they present the same material and the
same construction technique, which is the most favourable case. The following situations are
also considered: a S.U. adjacent to one made of the same material, but built resorting to a
weaker construction technique; a S.U. adjacent to one made of the same material, but built with
a better construction technique; a S.U. that has a structural typology very different from the adja-
cent one (for example a S.U. adjacent to a RC structure).

(5) Parameter 15: Percentage difference of opening areas among adjacent facades
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Figure 5. Damage probability matrices for typological classes (a) M3.3 and (b) M3.4.

This parameter takes into account the percentage difference of the opening areas among
adjacent S.U.

This factor was evaluated from the premise that percentage of openings influences negatively
the seismic response of the facade. Actually, the larger the percentage of openings difference
between two adjacent facades, the worse the distribution of horizontal loads between them.

Conceptually, the methodology is based on the calculation of a vulnerability index, /,, for
each S.U. as the weighted sum of the 15 parameters mentioned above. As can be seen in Table
1, these parameters are distributed into four classes (A, B, C and D) with scores S; of growing vul-
nerability. Each parameter is characterised by a weight W;, that can range from 0,25 for the less
important parameters to a maximum of 1,50 for the most important ones. According to this, the
vulnerability index, /,, can be calculated according to the following equation:

15
IV = ZS, X W,'
i=1

To facilitate its use and interpretation, the vulnerability index value is normalised in the range
[0+ 1] by means of Equation (2), adopting, from that moment on, the notation V,.

(1)

lv—(Z,Z Smin X W:)

Vi= 15
| > i [(Smax x Wi) — (Smin % W/)]|

)

As illustrated in Figure 4, the application of this procedure to the selected sub-urban sector
has allowed to evaluate the seismic vulnerability of the masonry buildings included within it.

From the application of the vulnerability index methodology, it can be seen that the distribu-
tion of the vulnerability results is quite homogeneous with an average value of 0,43 for both the
typological classes analysed (see Figure 4). The standard deviation () associated with the vulner-
ability index distributions for the analysed typological classes M3.3 and M3.4 is, respectively,
omz.3=0,048 and o34=0,062. The synthetic representation of the statistical data takes place
considering the distribution of the frequencies of the vulnerability indices, presented in Figure
4(b). It can be noted that 25% of buildings belonging to the typological class M3.3 have a vul-
nerability index of 0,45 and only 8% have an index of 0,35. Similarly, for the class M3.4, 20% of
buildings have a vulnerability index of 0,35, while 4% of them are associated to a vulnerability
index of 0,55.
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Figure 6. Mean vulnerability curves for building sample of typological classes (a) M3.3 and (b) M3.4.

2.4. Damage distribution: damage probability matrices (DPM) and vulnerability curves

The DPM express the probability of occurrence of a certain level of damage of different typo-
logical classes for different levels of seismic intensity according to the EMS-98 scale
(Grunthal, 1998).

Methodologically, they can be generated by referring to a scale of generic damage expressed
in terms of costs (such as the ratio of the repair cost to the reconstruction cost), which can be
understood both in phenomenological terms and according to a qualitative estimate of the dif-
ferent degree of damage that buildings may suffer in case of seismic events.

The proposal of GNDT SSN-2002 working group (Zuccaro & Papa, 1997), whose binomial coef-
ficients are obtained from statistical analysis of the damage suffered by the various building
types on the basis of occurred earthquakes, is herein adopted to compute the probability distri-
butions. From the practical point of view, the binomial distribution has the great advantage of
being defined by a single parameter, the mean damage level up. The binomial density function,
px, for the damage score, k, is defined in Equation (3) and shown in Figure 5.

_ n! o\ Hp Sk
s (3) (%) 2

Subsequently, vulnerability curves (Lagomarsino & Giovinazzi, 2006) have been derived to esti-
mate the propensity to damage of the analysed structural units varying the seismic intensity.
More in detail, these curves can be properly defined as the probability P[SL|] that a building
reaches a certain limit state “LS” at a given intensity “I" defined according to the European
Macroseismic Scale (EMS-98). In particular, as mathematically expressed by Equation (4), vulner-
ability curves depend on three variables: the vulnerability index (V)), the macroseismic intensity
() and a ductility factor Q that describes the ductility of a certain typological class (ranging from
1,0 to 4,0). According to (Lagomarsino, 2006), a mean value of 2,3 was herein assumed for the
ductility factor Q.

l+6,25><V,71371)} @

=25 1+tanh<
Hp [ Q

Resorting to Equation (2), it is also possible to derive vulnerability curves using the mean
value and the upper and lower bound ranges of the vulnerability index distribution for different
scenarios (Vi—avimeans Vi +0vimeans Vi +20vimean; Vi +26vimean)- Such a result is presented in
Figure 6(a, b), respectively, for typological classes M3.3 and M3.4.
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Figure 7. Seismic hazard map of the municipality of Sant'Antimo (DPC-INGV S1).

3. Estimated damage scenarios
3.1. Deterministic damage model prediction

For management and mitigation purposes, risk is usually defined as the economic, social and
environmental consequences of a dangerous event that may occur in a given period of time. A
prediction on the possible damage scenarios induced by natural events is a useful tool for the
quantitative definition of expected losses (Giovinazzi et al.,, 2004). The proposed study is based
on empirical-forecasting analysis, according to which the probable damage scenarios are esti-
mated by means of the disaggregation of the seismic hazard for the N-sources combined. Such a
procedure is usually obtained by accumulating each moment magnitude, M,,, and site-source
distance, R, as well as the contribution to the global hazard, 1. Therefore, disaggregating the haz-
ard in terms of M,, and R has lately become a routine practice in the seismic hazard evaluation
community (Barani et al., 2009; Bazzurro & Cornell, 1999).

Formally, therefore, this disaggregation represents the conditional probability distribution of
M., R, given the event that S, exceeds a fixed-level intensity (IM;) at the site. According to the
seismic hazard map, proposed by National Institute of Geophysics and Volcanology, INGV (National
Institute of Geophysics and Vulcanology, n.d.) the city of Sant’Antimo is characterised by a max-
imum expected PGA of 0,259 (medium-high seismicity) with a probability of exceeding 10% in
50years, see Figure 7. Furthermore, based on the disaggregation of the PGA’s, the maximum
moment magnitude estimated is M,,=5,15. Based on these considerations, a set of moment
magnitude, M,,, were selected in the range from 4 to 6.
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Table 2. Correlation between moment magnitude, M,,, and macroseismic intensities, lgms.og, for different seismogenic site-
source distances.

Macroseismic Intensity, /gys-og

Magnitude, M,, R=7 (km) R=21 (km) R=235 (km)
4 IX Vi '

5 Xl Vil Vil

6 Xl IX Vil

To this purpose, a range of macroseismic magnitude, between Igys.9¢ = VIII and XlI, site-source
distances and focal depth between 5 and 25km, have been considered (Chieffo et al., 2019).
Subsequently, the attenuation relationship of seismic effects proposed by Esteva (1974), reported
in Equations (5) and (6), is also adopted as follows:

lems—og = 1,45 -M,, — 2,461n (R) + 8,166 (5)
R=+/d?2 + h% (6)

where M,, is the moment magnitude and R is the site-source distance expressed in kilometres,
which, as detailed in Equation (5), depends on the epicentre distance (d) and the focal depth
(hg). The correlation obtained between moment magnitude, M,, and macroseismic intensity,
lems-og, for different site-source distances is summarized in Table 2.

As one can observe from the analysis of the values presented in Table 2, when the site-source
distance increases, the seismic intensity tends to attenuate progressively. Furthermore, referring
to the damage parameter pp, it is possible to obtain nine damage scenarios, presented in
Figure 8.

From the previous figure, it is possible to note that, when increasing the site distance, the
expected damage tends to decrease because the seismic intensity is greatly attenuated. As an
example, for a site-source distance of 7km and a moment magnitude of 6,0, according the
attenuation law proposed by Esteva (1974), it is expectable that most of the buildings reach
damage thresholds D4 (partial collapse). Differently, by increasing the distance up to a maximum
of 35km and by leaving unaltered the magnitude, the seismic effects are attenuated and, there-
fore, damage levels DO (no damage) and D1 (moderate) are expectable. Figure 9 shows the dam-
age distribution obtained for the above-described combinations. As can be observed in Figure 8,
for a moment magnitude M,, equal to 4,0 and a site-source distance of 7km, it is expected that
83% of the buildings reach damage level D1 and 17% reach damage level D2. For the same
moment magnitude, if the distance tends to increase either to 15km or 30km, it is expectable
that all buildings remain with no damage (D0). However, it can be noted that the most severe
combination was found for distance R=7 km with a moment magnitude M,, =6.

3.2. Fragility curves

Considering the average of vulnerability indices associated to a specific class of buildings, it was
possible to define the fragility curves for the typological classes. Fragility curves are used to rep-
resent the estimated damage and to define the probability of overcoming a certain degree or
state of damage, Dy, enclosed in the range [0+ 5]. This probability is obtained directly from the
physical damage distributions of the building derived from the beta probability function for a
given type of buildings. Equation (7) shows the discrete probabilities, P [Dy=d], derived from
the cumulative probability difference P[D; > dI.

P|Dx = d] = P|Dx > d]|—P[Dx+1 > d| (7)
In this particular case, the analysed vulnerability classes present on average the same vulner-

ability index, which means that the shape of the fragility curves are exactly the same for both
typological classes considered in this study, see Figure 10(a). Moreover, Figure 10(b) shows the
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Figure 8. Damage scenarios of the investigated sector within the historical centre of Sant’Antimo.

average damage distributions obtained by means of the binomial distribution by varying the
macroseismic intensity (/gys.0g) in the range [V + XII]

4. Retrofitting techniques for risk mitigation
4.1. Description of intervention strategies

The vulnerability of unreinforced masonry buildings (URM) to compromised performance is a ser-
ious issue. Such structural types, usually constructed of bricks or blocks and some older cut stone
buildings, have been designed primarily to resist gravity loads with little or no consideration for
lateral actions (Keller et al., 2017; Clementi et al., 2017).

Although URM buildings function satisfactorily in the presence of service loads, they can be
severely damaged in the presence of high lateral loads, such as earthquake inertia forces
(Clementi et al., 2018). The demolition and replacement of these old masonry structures is gener-
ally not feasible due to the enormous effort and cost of the new construction.

Consequently, for risk mitigation, especially in areas with high population density, retrofit
strategies are a solution to reduce the seismic emergency problem. In the specific case, in order
to improve the building’s behaviour also in a cost-effective perspective, two distinct solutions
are taken into consideration: steel tie rods (TR) (Ferreira et al., 2017a) and floor shear connectors
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Figure 9. Damage distributions for different epicentre distance and moment magnitude combinations.
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Figure 10. Typological fragility curves (a) and damage distribution functions (b).

(FSC) (Leca, 2015), as reported in Figure 10. Specifically, the TR system guarantees an important
constraint between perimeter walls, a prerequisite for the survival of the building to seismic
actions. This intervention technique consists in preparing a steel tie rod with a diameter
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Figure 11. Retrofitting solutions: (a) steel tie rods (TR) and (b) floor shear connectors (FSC).
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Figure 12. Before (Bl) and Post (Pl) interventions mean vulnerability curves for typological classes (a) M3.3 and (b) M3.4 and
vulnerability frequencies distributions for building classes (c) M3.3 and (d) M3.4.

16mm < ¢ <20mm, in a horizontal position on both walls and fixed by metal plates in order to
guarantee a box behaviour of the structure, Figure 11(a).

In the case of the second technique, illustrated in Figure 11(b), the use of shear connectors
and steel grid allows to increase the cooperating concrete slab and therefore the height of the
slab’s section, avoiding therefore the formation of cracks induced by the flexural regime. In this
case, the increase in resistance is proportional to the increase in the height of the section (Ruiz
et al., 2010).

4.2. Post intervention and damage scenario distributions

As discussed in Section 4.1, the proposed intervention techniques improve the behaviour of the
analysed building sample. The proposed intervention techniques (PI=TR+ FSC) will be indis-
tinctly applied to all buildings in the study area. In this case, the box behaviour is guaranteed
with the steel tie rods, while, considering the shear connectors and steel grid, in-plane resistance
of the existing floors is increased. In methodological terms, this can be done by reassessing the
vulnerability classes, S;, of the parameters that are related to those features, namely of Parameter
1, which evaluates the organisation of the vertical structures, Parameter 7, which evaluates the
horizontal diaphragms, and Parameter 8, which evaluates the roofing system. The buildings were
thus virtually retrofitted by upgrading the original vulnerability classes of these parameters to
class B, in the case of P1 and P7, and A, in the case of P8, resulting in the reduction of their
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Table 3. Mean vulnerability distributions related to the cases of before (Bl) and post (PI) interventions.

BI PI
Typological class v a; v g; AV, [%] Aa; [%]
M3.3 0,43 0,048 0,26 0,046 -39 —4,16
M3.4 0,43 0,062 0,26 0,055 -39 —-11,29

vulnerability indexes values, I, and, consequently, in the decrease of their mean damage grade
values, up.

Figure 12(a,b) present the comparison among the mean vulnerability curves for the typo-
logical classes M3.3 and M3.4 before (Bl) and after (PI) interventions, respectively. In addition,
Figures 12(c,d) show in the same cases the vulnerability distributions for the two inspected build-
ing classes.

The characteristic results obtained for the new vulnerability distribution (after intervention)
are summarized in Table 3.

From the analysis of results given in Table 3, it is possible to see how the use of the two ret-
rofitting systems herein investigated are able to improve the global behaviour of the building
sample. In fact, as can be seen, there is a vulnerability reduction of about 39% for both typo-
logical classes. Statistically, the standard deviation provides a measure of the magnitude of the
sample variation examined with a reduction of 4,16% and 11,29% for typological classes M3.3
and M3.4, respectively.

Adopting the same presentation scheme followed in Section 3, Figure 13 presents the dam-
age scenarios obtained for the post interventions (Pl) condition, considering the nine site-source
conditions detailed in Table 2.

4.3. Collapsed and unusable buildings

The consequences of seismic events in terms of collapsed and unusable buildings are evaluated
in this work following the empirical correlations proposed for the Italian territory in (Bramerini &
Lucantoni, 2000) on the basis of the observed damages. Thus, and resorting to Equations (8) and
(9), probabilities of collapsed and unusable buildings are estimated for the above-presented
damage scenarios, see Figure 13.

Neon. = D5 + 0,4 x D4 (8)
Nunus. = 0,6 x (D4 + D3) + 0,6 x D2 9)

Regarding the probabilities of building failures, it is possible to perceive that the percentage
of collapses tends to decrease proportionally when the distance R increase. The overall results
for the different combinations considered are summarised in Table 4.

From the analysis of results, it is worth noting that, with the application of the two retrofitting
solutions, there is a reduction of the seismic impact both in terms of collapsed and unusable
buildings. Focusing on the worst-case scenario (R=7, M,,=6,0), we moved from a situation
where 40% of the buildings are expected to collapse, to a situation without any collapse (see
Table 4).

4.4. Human casualties and homelessness

From the analysis of the impacts in terms of collapsed and unusable buildings presented in
Section 4.2, it is further possible to estimate casualty rates (number of deaths and severely
injured) and homelessness.

As discussed in Zuccaro and Cacace (2015), such rates can be estimated considering that
there is a direct consequence between them and the probability of exceeding a damage
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Figure 13. Post intervention (Pl) damage scenarios for different magnitudes and site-source distances.

Table 4. Estimation of collapsed and unusable buildings for different combinations of moment magnitude and site-source
distance related to the cases of before (Bl) and post (Pl) interventions.

Number of collapsed and unusable buildings (BI)

M, = 4,0 M, =50 M, = 6,0
Site-source distance, R (km) Collapsed Unusable Collapsed Unusable Collapsed Unusable
7 - 7 (10%) 2 (2%) 25 (60%) 17 (40%) 24 (57%)
21 - - - - - -

35 - - - - - -
Number of collapsed and unusable buildings (PI)
M, =40 M, =5, M, =6,
Site-source distance, R [km] Collapsed Unusable Collapsed Unusable Collapsed Unusable
7 - - - 14 (34%) - 25 (60%)
21 - - - - - -

35 -




EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING @ 17

Table 5. Estimation of human casualties and homelessness for different combinations of moment magnitude and site-
source distance related to the cases of before (Bl) and post (Pl) interventions.

Number of casualties and homeless people (B)

M, =4,0 M, =5,0 M, =6,0
Site-source distance, R [km] Death Homeless Death Homeless Death Homeless
7 - - 3 (2%) 92 (60%) 62 (40%) 87 (57%)
21 - - - - - -
35 - - - - - -

Number of casualties and homeless people (Pl)

M,=4,0 M,=5,0 M,=6,0
Site-source distance, R [km] Death Homeless Death Homeless Death Homeless
7 - - - 52 (34%) 10 (7%) 92 (60%)
21 - - - - - -
35 - - - - - -

threshold D4 and D5, see Equation (10):

NTot res.
Npy=—"— 10
mr Nora (10)
where N, , is the average number of residents in the analysed area, Niot res is the total number
of residents (153) and N, is the total number of buildings investigated (42).
Subsequently, the number of deaths and homelessness is assessed according to the number
of collapsed and unusable buildings by using the following Equations (11) and (12):

Ndied = Nm,r X Ncoll. (1 1)
Npmis = Nm,r X Nunus. (12)

where Ngieq and Np,s are, respectively, the number of dead and homeless, i.e., people living in
buildings that it is expected to suffer partial (D4) or total collapse (D5) or in buildings that it is
expected to suffered substantial damage (D2), significant damage (D3) or partial collapse (D4),
respectively. As mentioned before, N and N, stand, respectively, for the number of col-
lapsed and unusable buildings. The overall results for each moment magnitude versus epicentre
distance combination are presented in Table 5.

Similarly, to what was analysed in the previous section, referring to the worst-case scenario,
there is a reduction of 33% of the number of casualties, from 62 to 10 injured and/or
dead people.

5. Conclusion

The study analysed the seismic vulnerability of an urban sector in the historic centre of
Sant’Antimo by using a parametric-probabilistic approach. The city of Sant’Antimo is located in
an area characterised by medium to high seismicity with expected PGAs values included in the
range [0,15g -+ 0,25¢].

The assessment of seismic vulnerability has been analysed by means of a quick approach,
allowing to identify the propensity of buildings to suffer a certain damage grade. The statistical
distribution of vulnerability indices shows, globally, a medium to high vulnerability of the area.

This aspect is related to the presence of buildings that show substantial deficiencies.
Afterwards, the vulnerability curves have been defined in order to characterise, on average, the
expected damage by varying the seismic intensity according to the EMS-98 scale. It is important
to note that, for moderate values of seismic intensity (/zys.0s<X) the expected damage has not
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been relevant, but for high values of seismic intensity (X</gys.0s< XlI), the expected damage
would cause an incipient collapse of the analysed sample. Analysis of the damage and loss scen-
ario by means parametric approach have been considered using the attenuation law in terms of
seismic intensity proposed by Esteva. Having defined a set of magnitude (M,,) and site-source
distances (R), it has been possible to analyse in detail the influence of these factors on an urban-
scale and estimate the associated damage caused by different earthquakes. The results obtained
have shown that, for distances very close to the site of interest, the expected damage increases
with increasing seismic intensity. In fact, for R=7km and M, = 6, it corresponds to the most
severe scenario.

The representation of spatial data has been made by using the GIS tool, an effective inte-
grated support for the mitigation and management of the seismic emergency.

Risk mitigation is an important preparatory aspect for planning and developing possible inter-
ventions for reducing the vulnerability and safeguard the people. Two distinct intervention tech-
niques have been applied indiscriminately to the typological classes examined in order to
improve their seismic behaviour. In this sense, steel tie rods and shear connectors have been
considered for the purpose of increasing the global behaviour of structures studied.

From a critical comparison of the results obtained from the losses point of view, it is worth
noting that the adoption of appropriate retrofitting systems reduces the possibility of structural
collapse by 40%. However, the uselessness buildings increase of 3%. The seismic scenarios have
been mitigated for seismogenic site-source distances of 21 and 35km, respectively. In this case,
the effects induced by the earthquake have not caused any substantial damage. In conclusion,
the proposed study implements a parametric procedure, based on macroseismic approach, for
the prediction of possible damage scenarios and expected physical impacts in urban areas.

In this sense, this research could be developed in other historical centres, so to become a
very useful tool for appropriate risk mitigation plans.
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