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Forecasting in big datasets is a common but complicated task, which cannot be executed using the well-known parametric linear
regression. However, nonparametric and semiparametric methods, which enable forecasting by building nonlinear data models,
are computationally intensive and lack sufficient scalability to cope with big datasets to extract successful results in a reasonable
time.We present distributed parallel versions of some nonparametric and semiparametric regressionmodels. We usedMapReduce
paradigm and describe the algorithms in terms of SPARK data structures to parallelize the calculations. The forecasting accuracy
of the proposed algorithms is compared with the linear regression model, which is the only forecasting model currently having
parallel distributed realization within the SPARK framework to address big data problems. The advantages of the parallelization of
the algorithm are also provided. We validate our models conducting various numerical experiments: evaluating the goodness of
fit, analyzing how increasing dataset size influences time consumption, and analyzing time consumption by varying the degree of
parallelism (number of workers) in the distributed realization.

1. Introduction

The most current methods of data analysis, data mining,
and machine learning should deal with big databases. Cloud
Computing technologies can be successfully applied to par-
allelize standard data mining techniques in order to make
working with massive amounts of data feasible [1]. For this
purpose, standard algorithms should often be redesigned
for parallel environment to distribute computations among
multiple computation nodes.

One such approach is to use Apache Hadoop, which
includes MapReduce for job distribution [2] and distributed
file system (HDFS) for data sharing among nodes.

Recently, a new and efficient framework called Apache
SPARK [3] was built on top of Hadoop, which allows more
efficient execution of distributed jobs and therefore is very
promising for big data analysis problems [4]. However,
SPARK is currently in the development stage, and the number
of standard data analysis libraries is limited.

R software is a popular instrument for data analysts.
It provides several possibilities for parallel data processing

through the add-on packages [5]. It is possible also to use
Hadoop and SPARK inside of R using SPARKR. This is an R
package that provides a lightweight front-end to use Apache
SPARK within R. SPARKR is still in the developing stage and
supports only some features of SPARK but has a big potential
for the future of data science [6].

There exist also alternative parallelization approaches,
such as Message Passing Interface (MPI) [7]. However, in the
present paper, we will concentrate on SPARK because of its
speed, simplicity, and scalability [8].

In this study, we consider regression-based forecasting
for the case where the data has a nonlinear structure,
which is common in real-world datasets. This implies that
linear regression cannot make accurate forecasts and, thus,
we resort to nonparametric and semiparametric regression
methods, which do not require linearity and are more robust
to outliers. However, themain disadvantage of thesemethods
is that they are very time-consuming, and therefore the
term “big data” for such methods starts much earlier than
with parametrical approaches. In the case of big datasets,
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traditional nonparallel realizations are not capable of pro-
cessing all the available data. This makes it imperative to
adapt to existing techniques and to develop new ones that
overcome this disadvantage. The distributed parallel SPARK
framework gives us the possibility of addressing this dif-
ficulty and increasing the scalability of nonparametric and
semiparametric regression methods, allowing us to deal with
bigger datasets.

There are some approaches in the current literature to
address nonparametric or semiparametric regression models
for parallel processing of big datasets [9], for example, using
R add-on packages, MPI. Our study examines a novel, fast,
parallel, and distributed realization of the algorithms based
on the modern version of Apache SPARK, which is a prom-
ising tool for the efficient realization of different machine
learning and data mining algorithms [3].

The main objective of this study is to enable a parallel
distributed version of nonparametric and semiparametric
regression models, particularly kernel-density-based and
partial linear models to be applied on big data. To realize
this, a SPARK MapReduce based algorithm has been devel-
oped, which splits the data and performs various algorithm
processes in parallel in the map phase and then combines the
solutions in the reduce phase to merge the results.

More specifically, the contribution of this study is (i) to
design novel distributed parallel kernel density regression
and partial linear regression algorithms over the SPARK
MapReduce paradigm for big data and (ii) to validate the
algorithms, analyzing their accuracy, scalability, and speed-
up by means of numerical experiments.

The remainder of this paper is organized as follows.
Section 2 reviews the traditional regression models to be
analyzed. Section 3 reviews the existent distributed compu-
tation frameworks for big datasets. In Section 4, we propose
parallel versions of kernel-density-based and partial linear
regression model algorithms, based on SPARK MapReduce
paradigm. In Section 5, we present the experimental setup
and in Section 6 we discuss the experimental framework and
analysis. Section 7 concludes the paper and discusses future
research opportunities.

2. Background: Regression Models

2.1. Linear Multivariate Regression. We start with linear
regression, which is the only regression model realized in
the current version of SPARK to compare the results of the
proposed methods.

Let us first consider the classical multivariate linear
regression model 𝐸(𝑌 | X) = X𝛽 [10, 11]:

Y = X𝛽 + 𝜀, (1)

where 𝑛 is a number of observations, 𝑑 is the number of
factors, Y𝑛×1 is a vector of dependent variables, 𝛽𝑑×1 is a
vector of unknown parameters, 𝜀𝑛×1 is a vector of random
errors, andX𝑛×𝑑 is amatrix of explanatory variables.The rows
of the matrix X correspond to observations and the columns
correspond to factors. We suppose that {𝜀𝑖} are mutually
independent and have zero expectation and equal variances.

(1) while not converged do
(2) for all 𝑗 ∈ 0, 𝑑 do
(3) 𝛽𝑗 ← 𝛽𝑗 − 𝛼 𝜕𝜕𝛽𝑗 𝐽(𝛽̂;X,Y)
(4) end for
(5) end while

Algorithm 1: Stochastic Gradient Descent algorithm.

The well-known least square estimator (LSE) 𝛽̂ of 𝛽 is

𝛽̂ = (X𝑇X)−1 X𝑇Y. (2)

Further, let (x𝑖, 𝑦𝑖)𝑛𝑖=1 be the observations sampled from
the distribution of (X, 𝑌). After the estimation of the param-
eters 𝛽, we can make a forecast for a certain 𝑘th (future) time
moment as 𝐸(𝑌𝑘) = x𝑘𝛽̂, where x𝑘 is a vector of observed
values of explanatory variables for the 𝑘th time moment.

For big data, it is a problem to perform the matrix opera-
tions in (2). For this purpose, other optimization techniques
can be used. One effective option is to use the Stochastic
Gradient Descent algorithm [12], which is realized in SPARK.
The generalized cost function to be minimized is𝐽 (𝛽;X,Y) = 12𝑛 (X𝛽 − Y)𝑇 (X𝛽 − Y) . (3)

Algorithm 1 presents the Stochastic Gradient Descent
algorithm, where 𝛼 is a learning rate parameter.

Algorithm 1 can be executed iteratively (incrementally)
that is easy to parallelize.

2.2. Kernel Density Regression. The first alternative to the
linear regression model we want to consider is the kernel
density estimation-based regression, which is of big impor-
tance in the case when data have a nonlinear structure. This
nonparametric approach for estimating a regression curve
has four main purposes. First, it provides a versatile method
for exploring a general relationship between two variables.
Second, it can predict observations without a reference to
a fixed parametric model. Third, it provides a tool for
finding spurious observations by studying the influence of
isolated points. Fourth, it constitutes a flexible method of
substitution or interpolation between adjacent 𝑋-values for
missing values [13].

Let us consider a nonparametric regression model,𝑚(𝑥) = 𝐸(𝑌 | 𝑋 = 𝑥) [14], with the same 𝑌, 𝑋, and 𝜀 as
for a linear model 𝑦 = 𝑚 (𝑥) + 𝜀. (4)

The Nadaraya-Watson kernel estimator [15, 16] of𝑚(𝑥) is𝑚𝑛 (𝑥) = ∑𝑛𝑖=1𝐾((𝑥 − 𝑥𝑖) /ℎ) 𝑦𝑖∑𝑛𝑖=1𝐾((𝑥 − 𝑥𝑖) /ℎ)= ∑𝑛𝑖=1𝐾ℎ (𝑥 − 𝑥𝑖) 𝑦𝑖∑𝑛𝑖=1𝐾ℎ (𝑥 − 𝑥𝑖) , (5)
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where𝐾(𝑢) is the kernel function of 𝑅𝑑, which is a nonnega-
tive real-valued integrable function satisfying the following
two requirements: ∫∞

−∞
𝐾(𝑢) 𝑑𝑢 = 1 and 𝐾(−𝑢) = 𝐾(𝑢)

for all values of 𝑢; ℎ > 0 is a smoothing parameter called
bandwidth,𝐾ℎ(𝑢) = (1/ℎ)𝐾(𝑢/ℎ). We can see that each value
of the historical forecast, 𝑦𝑖, is taken with some weight of
the corresponding independent variable value of the same
observation, 𝑥𝑖.

In a multidimensional case 𝐸(𝑌 | X) = 𝑚(X), the kernel
function𝐾H(x) = |H|−1𝐾(H−1x), whereH is a 𝑑×𝑑matrix of
smoothing parameters. The choice of the bandwidth matrix
H is the most important factor affecting the accuracy of the
estimator, since it controls the orientation and amount of
smoothing induced. The simplest choice is H = ℎI𝑑, whereℎ is a unidimensional smoothing parameter and I𝑑 is 𝑑 × 𝑑
identitymatrix.Then,we have the same amount of smoothing
applied in all coordinate directions. Another relatively easy
to manage choice is to take the bandwidth matrix equal to
a diagonal matrix H = diag(ℎ1, ℎ2, . . . , ℎ𝑑), which allows for
different amounts of smoothing in each of the coordinates.
We implemented the latter in our experiments. The multidi-
mensional kernel function, 𝐾(u) = 𝐾(𝑢1, 𝑢2, . . . , 𝑢𝑑), then is
easy to present with univariate kernel functions as 𝐾(u) =𝐾(𝑢1) ⋅𝐾(𝑢2) ⋅ . . . ⋅𝐾(𝑢𝑑). We used the Gaussian kernel in our
experiments. Then, (5) for the multidimensional case can be
rewritten as𝑚𝑛 (x𝑘) = ∑𝑛𝑖=1𝐾H (x𝑘 − x𝑖) 𝑦𝑖∑𝑛𝑖=1𝐾H (x𝑘 − x𝑖)= ∑𝑛𝑖=1∏𝑑𝑗=1𝐾H (x𝑘,𝑗 − x𝑖,𝑗) 𝑦𝑖∑𝑛𝑖=1∏𝑑𝑗=1𝐾H (x𝑘,𝑗 − x𝑖,𝑗) . (6)

An important problem in a kernel density estimation
is the selection of the appropriate bandwidth, ℎ. It has an
influence on the structure of the neighborhood in (5): the
bigger the value of ℎ selected, the higher the significant
influence that 𝑥𝑖 points have on the estimator 𝑚𝑛(x𝑘). In the
multidimensional case,H also regulates the balance between
factors. The most popular heuristic methods of bandwidth
selection are plug-in and resampling methods. However,
those heuristics require a substantial amount of computa-
tions, which is not possible for big datasets. For our case,
we used a well-known rule-of-thumb approach, proposed
by Silverman [17], which works for Gaussian kernels. In the
case of no correlation between explanatory variables, there
is a simple and useful formula for bandwidth selection with
Scott’s rule [18]: ℎ𝑗 = 𝑛−1/(𝑑+4)𝜎𝑗, 𝑗 = 1, 2, . . . , 𝑑, where 𝜎𝑗 is a
variance of the 𝑗th factor.

It is known [14] that the curse of dimensionality is one
of the major problems that arises when using nonparametric
multivariate regression techniques. For the practitioner, an
additional problem is that, for more than two regressors,
graphical illustrations or interpretations of the results are
hard or even impossible. Truly multivariate regression mod-
els are often far too flexible and general for making a detailed
inference.

A very suitable property of the kernel function is its
additive nature.This property makes the kernel function easy

to use for distributed data [13]. Unfortunately, such models,
even with current parallelization possibilities, remain very
time-consuming.

2.3. Partial Linear Models. Another alternative to the linear
regressionmodel is a semiparametric partial linear regression
model (PLM). Currently, several efforts have been allocated
to developing methods that reduce the complexity of high
dimensional regression problems [14]. The models allow
easier interpretation of the effect of each variable and may be
preferable to a completely nonparametric model. These refer
to the reduction of dimensionality and provide an allowance
for partly parametric modelling. On the other hand, PLMs
aremore flexible than the standard linearmodel because they
combine both parametric and nonparametric components.
It is assumed that the response variable Y depends on
variable U in a linear way but is nonlinearly related to other
independent variables T [19]. The resulting models can be
grouped together as so-called semiparametric models. PLM
of regression consists of two additive components, a linear
and a nonparametric part. PLM of regression is given as𝐸 (𝑌 | U,T) = U𝛽 + 𝑚 (T) , (7)

where 𝛽𝑝×1 is a finite dimensional vector of parameters of a
linear regression part and 𝑚(⋅) is a smooth function. Here,
we assume the decomposition of the explanatory variables X
into two vectors, U and T. The vector U denotes a 𝑝-variate
random vector which typically covers categorical explanatory
variables or variables that are known to influence the index
in a linear way. The vector, T, is a 𝑞-variate random vector
of continuous explanatory variables that is to be modelled
in a nonparametric way, so 𝑝 + 𝑞 = 𝑑. Economic theory or
intuition should ideally guide the inclusion of the regressors
in U or T, respectively.

An algorithm for the estimation of the PLMs was pro-
posed in [13], which is based on the likelihood estimator and
known as generalized Speckman [20] estimator.We reformu-
lated this algorithm (Algorithm 2) in terms of functions and
data structures, which can be easily parallelizable in Section 4.𝑃𝐿𝑀 function is the primary function of Algorithm 2,
which takes as parameters the training dataset [Y,U,T],
bandwidth vector h, and a test dataset, [U󸀠,T󸀠]. The first step
in the estimation is to execute the function, 𝑆𝑚𝑜𝑜𝑡ℎ𝑀𝑎𝑡𝑟𝑖𝑥,
to compute a smoother matrix, S, based on the training
data of the nonlinear parts T and h. This helps us to
obtain the smoother matrix, which transforms the vector
of observations into fitted values. Next, we estimate the
linear coefficients of the linear part of the model with the𝐿𝑖𝑛𝑒𝑎𝑟𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 function. First, we take into account
the influence of the nonlinear part on the linear part of
the independent variable, Ũ ← (I − S)U, and on the
dependent variable, Ỹ ← (I− S)Y. Then, we use the ordinary
equation (2) or Algorithm 1 to obtain the linear coefficients.
With these coefficients, we calculate the linear part of the
forecast. Next, we calculate the nonlinear part of the forecast,
using Nadaraya-Watson estimator (6). Here, we recalculate
a smoother matrix, taking into account the test-set data of
the nonlinear part. We take also into account the influence
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(1) function SmoothMatrix(T,T󸀠, h)
(2) 𝑛 ← 𝑟𝑜𝑤𝑠(T), 𝑛󸀠 ← 𝑟𝑜𝑤𝑠(T󸀠)
(3) for all 𝑖 ∈ 1, 𝑛, 𝑗 ∈ 1, 𝑛󸀠 do
(4) W : 𝑊𝑖,𝑗 ← 𝐾𝐻(T𝑖 − T󸀠𝑗), S : 𝑆𝑖,𝑗 ←𝑊𝑖,𝑗/∑𝑛𝑖=1𝑊𝑖,𝑗
(5) end for
(6) return S
(7) end function
(8)
(9) function LinearCoefficients(S, [Y,U,T])
(10) Ũ ← (I − S)U, Ỹ ← (I − S)Y
(11) return 𝛽← (Ũ𝑇Ũ)−1Ũ𝑇Ỹ
(12) end function
(13)
(14) function KernelPart(𝛽, [Y,U,T], h,T󸀠)
(15) S ← 𝑆𝑚𝑜𝑜𝑡ℎ𝑀𝑎𝑡𝑟𝑖𝑥(T,T󸀠, h)
(16) return 𝑚(T󸀠) ← S(Y − U𝛽)
(17) end function
(18)
(19) function PLM([Y,U,T], h, [U󸀠,T󸀠])
(20) Smooth matrix S ← 𝑆𝑚𝑜𝑜𝑡ℎ𝑀𝑎𝑡𝑟𝑖𝑥(T,T, h)
(21) 𝛽← 𝐿𝑖𝑛𝑒𝑎𝑟𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠(S, [Y,U,T])
(22) 𝑚(T󸀠) ← 𝐾𝑒𝑟𝑛𝑒𝑙𝑃𝑎𝑟𝑡(𝛽, [Y,U,T], h,T󸀠)
(23) return Y󸀠 ← U󸀠𝛽 + 𝑚(T󸀠)
(24) end function

Algorithm 2: PLM estimation, training set: [Y,U,T], test set: [Y󸀠,U󸀠,T󸀠].
of the linear part, Y − U𝛽. Finally, we sum the linear and
nonlinear part of the forecast to obtain the final result, Y󸀠 ←
U󸀠𝛽 + 𝑚(T󸀠).
3. Background: MapReduce, Hadoop,
and SPARK

MapReduce [2] is one of the most popular programming
models to deal with big data. It was proposed by Google in
2004 and was designed for processing huge amounts of data
using a cluster of machines. The MapReduce paradigm is
composed of two phases: map and reduce. In general terms,
in the map phase, the input dataset is processed in parallel
producing some intermediate results. Then, the reduce phase
combines these results in some way to form the final out-
put. The most popular implementation of the MapReduce
programming model is Apache Hadoop, an open-source
framework that allows the processing and management
of large datasets in a distributed computing environment.
Hadoop works on top of the Hadoop Distributed File System
(HDFS), which replicates the data files inmany storage nodes,
facilitates rapid data transfer rates among nodes, and allows
the system to continue operating uninterruptedly in case of a
node failure.

Another Apache project that also uses MapReduce as a
programming model, but with much richer APIs in Java,
Scala, Python, and R, is SPARK [3]. SPARK is intended to
enhance, not replace, the Hadoop stack. SPARK is more than
a distributed computational framework originally developed
in the UC Berkeley AMP Lab for large-scale data processing
that improves the efficiency by the use of intensivememory. It

also provides several prebuilt components empowering users
to implement applications faster and easier. SPARKusesmore
RAM instead of network and disk I/O and is relatively fast as
compared to Hadoop MapReduce.

Froman architecture perspective, Apache SPARK is based
on two key concepts; Resilient Distributed Datasets (RDDs)
and directed acyclic graph (DAG) execution engine. With
regard to datasets, SPARK supports two types of RDDs:
parallelized collections that are based on existing Scala
collections and Hadoop datasets that are created from the
files stored by the HDFS. RDDs support two kinds of opera-
tions: transformations and actions. Transformations create
new datasets from the input (e.g., map or filter operations
are transformations), whereas actions return a value after
executing calculations on the dataset (e.g., reduce or count
operations are actions). The DAG engine helps to eliminate
the MapReduce multistage execution model and offers sig-
nificant performance improvements.

RDDs [21] are distributed memory abstractions that
allow programmers to perform in-memory computations on
large clusters while retaining the fault tolerance of data flow
models like MapReduce. RDDs are motivated by two types
of applications that current data flow systems handle ineffi-
ciently: iterative algorithms, which are common in graph
applications and machine learning, and interactive data
mining tools. In both cases, keeping data in memory can
improve performance by an order of magnitude. To achieve
fault tolerance efficiently, RDDs provide a highly restricted
form of shared memory; they are read-only datasets that can
only be constructed through bulk operations on other RDDs.
This in-memory processing is a faster process as there is
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Figure 1: SPARK distributed architecture.

no time spent in moving the data/processes in and out of
the disk, whereas MapReduce requires a substantial amount
of time to perform these I/O operations, thereby increasing
latency.

SPARK uses a master/worker architecture. There is a
driver that talks to a single coordinator, called themaster, that
manages workers in which executors run (see Figure 1).

SPARK uses HDFS and has high-level libraries for stream
processing, machine learning, and graph processing, such
as MLlib [22]. For this study, linear regression realization
included in MLlib [23] was used to evaluate the proposed
distributed PLM algorithm.

In this paper, Apache SPARK is used to implement
the proposed distributed PML algorithm, as described in
Section 4.

4. Distributed Parallel Partial Linear
Regression Model

4.1. Distributed Partial Linear Model Estimation. In this
section, we continue to discuss kernel-density-based and
partial linear models (PLMs), described in Section 2. Next,
we consider kernel-density-based regression as a specific
case of PLM, when the parametric linear part is empty.
The general realization of PLM algorithm allows us to con-
duct experiments with nonparametric kernel-density-based
regression. We discuss how to distribute the computations
of Algorithm 2 to increase the speed and scalability of
the approach. As we can see from the previous subsection,
PLM presupposes several matrix operations, which requires
a substantial amount of computational demands [24] and,
therefore, is not feasible for application to big datasets. In
this section, we focus our attention on (1) how to organize
matrix computations in a maximally parallel and effective
manner and (2) how to parallelize the overall computation
process of the PLM estimation. SPARK provides us with
various types of parallel structures. Our first task is to
select the appropriate SPARK data structures to facilitate the
computation process. Next, we develop algorithms, which
execute a PLM estimation (Algorithm 2) using MapReduce
and SPARK principles.

Driver Worker i
Partial linear model training

Preprocesses
and sharesAccesses RDD

Smoother matrix

Shares RDD

1
2

3

4
5
6

7

8

9
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Collects and

Accesses RDD
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parallel computing of �훽
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k,j

/ ∑W(i)⟨j⟩

Figure 2: PLM parallel training.

Traditional methods of data analysis, especially based
on matrix computations, must be adapted for running on a
cluster, as we cannot readily reuse linear algebra algorithms
that are available for single-machine situations. A key idea is
to distribute operations, separating algorithms into portions
that require matrix operations versus vector operations.
Since matrices are often quadratically larger than vectors, a
reasonable assumption is that vectors are stored in memory
on a single machine, while for matrices it is not reasonable
or feasible. Instead, the matrices are stored in blocks (rectan-
gular pieces or some rows/columns), and the corresponding
algorithms for block matrices are implemented. The most
challenging of tasks here is the rebuilding of algorithms from
single-core modes of computation to operate on distributed
matrices in parallel [24].

Similar to a linear regression forecasting process, PLM
forecasting, because of its parametric component, assumes
training and estimating steps. Distributed architectures of
Hadoop and SPARK assume one driver computer and several
worker computers, which perform computations in parallel.
We take this architecture into account while developing our
algorithms.

Let us describe the training procedurewith the purpose of
computing the 𝛽 parameter, presented in Figure 2. This part
was very computationally intensive and could not be calcu-
lated without appropriate parallelization of computations.

First, the driver computer reads the training data,[Y,U,T], from a file or database, divides the data into
various RDD partitions, and distributes among the workers,[Y(𝑖),U(𝑖),T(𝑖)]. Next, the training process involves the follow-
ing steps:

(1) Each worker makes an initial preprocessing and
transformation of [Y(𝑖),U(𝑖),T(𝑖)], which include scal-
ing and formatting.
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Figure 3: PLM parallel forecasting.

(2) The driver program accesses all preprocessed data.
(3) The driver program collects all the preprocessed data

and broadcasts them to all the workers.
(4) Then, each worker makes its own copy of the training

data [Y,U,T].
(5) A smoother matrix,W, is computed in parallel. Since

the rows ofW are divided into partitions, each worker
then computes its partW(𝑖).

(6) Each worker computes the sum of elements in each
row within its partition W(𝑖): ∑𝑗W(𝑖)𝑗 , which is then
saved as a RDD.

(7) We do not actually need the normalized matrix S
itself, which could be computed as W(𝑖)𝑗 /∑𝑗W(𝑖)𝑗 ,
but only (I − S) as RDD, which is the part directly
computed by each worker: (I − S(𝑖)).

(8) Using the 𝑖th part ofmatrix (I−S), wemultiply it from
the right side with the corresponding elements of
matrixU. Thus, we obtain the 𝑖th part of transformed
matrix Ũ(𝑖) as a RDD. The 𝑖th part of transformed
matrix Ỹ(𝑖) as RDD is computed analogously.

(9) Finally, the driver program accesses and collects
matrices Ũ and Ỹ.

(10) The driver program initializes computing of the stan-
dard linear regression algorithm, LinearRegression-
ModelWithSGD, which is realized in SPARK.

(11) The parameters 𝛽 are computed in parallel.

(12) Then, 𝛽 are accessed by the driver computer.

Let us now describe the forecasting process (Figure 3),
which occurs after the parametric part of the PLM has
completed its estimation. Note that the kernel part of the
model is nonparametric and is directly computed for each
forecasted data point.

Since the forecasting is performed after the training
process, then the preprocessed training set is already dis-
tributed among the workers and is available as a RDD. The
PLMdistributed forecasting procedure includes the following
steps:

(1) The driver program broadcasts the estimated linear
part coefficients, 𝛽, to the workers.

(2) Receiving new observation [u󸀠, t󸀠], the driver pro-
gram broadcasts it to all the workers.

(3) Each worker receives its copy of [u󸀠, t󸀠] and 𝛽.
(4) We compute a smoother matrix W, which is in a

vector form. This computation is also partitioned
among the workers (see (5)), so the 𝑖th worker
computes W(𝑖) as particular columns ofW.

(5) Each worker computes partial sums of the rows of the
matrixW(𝑖) elements and shares the partial sums with
the driver program.

(6) The driver program accesses the partial sums and
performs reducing step to obtain the final sum,∑𝑖W(𝑖).

(7) The driver program broadcasts the final sum to all the
workers.

(8) Each worker receives the final sum, ∑𝑖W(𝑖).
(9) Each worker computes its columns of the smoother

matrix S(𝑖).

(10) Based on the RDD part [Y(𝑖),U(𝑖),T(𝑖)] (known from
the training step), each worker computes the linear
part of the forecast for training data. It was necessary
to identify the kernel part of the forecast, performing
subtraction of the linear part from the total forecast,
the values of which were known from the training
set.

(11) Each worker computes the kernel part of the forecast𝑚(t󸀠)(𝑖) as RDD and shares with the driver pro-
gram.

(12) The driver program accesses the partial kernel fore-
casts𝑚(t󸀠)(𝑖).

(13) The driver program performs the reducing step to
make the final forecast, combining the accessed kernel
parts and computing the linear part: y󸀠 = u󸀠𝛽 +∑𝑖𝑚(t󸀠)(𝑖).
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4.2. Case Studies. We illustrate the distributed execution of
PLM algorithm with a simple numerical example. First, the
driver computer reads the training data, [Y,U,T]:

[Y,U,T] =(
(

Y U T1234
1 22 32 12 2

1 22 32 11 1
)
)

. (8)

We suppose that the algorithm is being executed in
parallel on two workers. The driver accesses [Y,U,T] and
creates the corresponding RDDs.

First, data preprocessing takes place. This job is shared
between the workers in a standard way, and the result is
returned to the driver.We do not change our data at this stage
for illustrative purposes.

The goal of the training process is to compute the
coefficients 𝛽 of the linear part. First, the matrices [Y,U,T]
are divided into the parts by rows:[Y,U,T] = (Y(1),U(1),T(1)

Y(2),U(2),T(2))
=(((((
(

Y(1) U(1) T(1)1 1 2 1 22 2 3 2 3
Y(1) U(2) T(2)3 2 1 2 14 2 2 1 1

)))))
)

. (9)

Each worker 𝑖 accesses its part of data [Y(𝑖),U(𝑖),T(𝑖)], and
it has access to the whole data.

Each worker computes its part of the smoother matrix
S(𝑖), in particular:

S = (S(1)
S(2)

) = (𝑆𝑚𝑜𝑜𝑡ℎ𝑀𝑎𝑡𝑟𝑖𝑥 (T(1),T)𝑆𝑚𝑜𝑜𝑡ℎ𝑀𝑎𝑡𝑟𝑖𝑥 (T(2),T)) . (10)

The first worker obtains the elements of smoother matrix
S(1) (it gets directly matrix I − S(𝑖)); the corresponding
elements of matrix W(1) should be computed first. For
example, to get the element W(1)1,3 according to the function𝑆𝑚𝑜𝑜𝑡ℎ𝑀𝑎𝑡𝑟𝑖𝑥,

W(1)1,3 = 𝐾𝐻 (T(1)1 − T3) = 𝐾𝐻 ((1, 2) − (2, 1))= 𝐾𝐻 ((−1, 1)) = 𝐾 ((−2, 2)) = 0.007. (11)

Then, matrixW for both workers is the following:

W = (W(1)
W(2)

) = (0.399 0.007 0.007 0.0540.007 0.399 0.000 0.0000.007 0.000 0.399 0.0540.054 0.000 0.054 0.399) . (12)

To get the element (I − S(1))1,3 knowing matrix W(1)
according to the function SmoothMatrix, we compute(I − S(1))

1,3
= − 0.007(0.399 + 0.007 + 0.007 + 0.005)= −0.016. (13)

Then, matrix (I − S) for both workers is the following:(I − S) = ((I − S)(1)(I − S)(2))
= ( 0.147 −0.016 −0.016 −0.115−0.018 0.018 −0.000 −0.000−0.016 −0.000 0.133 −0.117−0.106 −0.000 −0.107 0.213 ) . (14)

Then, the corresponding smoothed matrices Ũ and Ỹ
computed by both workers are

Ũ = (Ũ(1)
Ũ(2)

) = (−0.147 −0.0000.018 0.0190.016 −0.1340.106 0.106 ) ,
Ỹ = (Ỹ(1)

Ỹ(2)
) = (−0.3930.018−0.0850.426 ) .

(15)

Matrices Ũ(1) and Ũ(2) are sent to the driver and collected
into the matrix Ũ, but Ỹ(1) and Ỹ(2) are collected into the
vector Ỹ.

The driver program calls the standard procedure of
regression coefficient calculation, which is shared between
workers in a standard way. The resulting coefficients 𝛽 are
collected on the driver:

𝛽 = (𝛽0𝛽1𝛽2) = (−0.0022.7531.041 ) . (16)

At the forecasting stage, each worker receives a set of
points for forecasting. Now, we illustrate the algorithm for a
single point [u󸀠, t󸀠] = [(2, 1), (1, 1)] and two workers.

Each worker 𝑖 accesses its part of training data[Y(𝑖),U(𝑖),T(𝑖)] and computes then the elements of matrix
S(𝑖) = 𝑆𝑚𝑜𝑜𝑡ℎ𝑀𝑎𝑡𝑟𝑖𝑥(T(𝑖), t󸀠). First, smoother matrix W(𝑖)
should be computed. For example, worker 1 computes the
element

W(1)1,1 = 𝐾𝐻 ((1, 2) − (2, 1)) = 𝐾𝐻 ((−1, 1))= 𝐾 ((−2, 2)) = 0.007. (17)

So, workers 1 and 2 obtain matrices

W = (W(1)
W(2)

) = (0.007 0.0000.399 0.054) . (18)
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Now, each worker computes partial sums (so for worker
1,W(1)1,1 +W(1)1,2 = 0.007 + 0.000 = 0.007; for worker 2, 0.399 +0.054 = 0.453) and shares them to the driver program. The
driver computes the total sum 0.007+0.453 = 0.46 and sends
it to the workers.

Now, each worker computes matrix S(𝑖). For example,
worker 1 computes the element S(1)1,1 = 0.007/0.46 = 0.016.

Then, matrices S(𝑖) for both workers are

S = (S(1)
S(2)

) = (0.016 0.0000.867 0.117) . (19)

Now, each worker computesU(𝑖)𝛽 and the corresponding
difference Y − U(𝑖)𝛽:

U𝛽 = (U(1)𝛽
U(2)𝛽) = (4.838.636.557.59) ,

Y − U𝛽 = (Y(1) − U(1)𝛽
Y(2) − U(2)𝛽

) = (−3.83−6.63−3.55−3.59) .
(20)

Each worker computes the smoothed value of the kernel
part of the forecast:𝑚(𝑖) (t󸀠) = S(𝑖) (Y(𝑖) − U(𝑖)𝛽) , (21)

so 𝑚(1)(t󸀠) = −0.0628 and 𝑚(2)(t󸀠) = −3.49. These values are
sharedwith the driver program. It computes their sum, which
is considered as a kernel part of the prediction:𝑚(t󸀠) = −3.56.

The driver program computes the linear part of the
prediction, u󸀠𝛽 = 3.79, and the final forecast, y󸀠 = u󸀠𝛽 +𝑚(t󸀠) = 0.236.

In the next sections, we evaluate the performance of the
proposed algorithms by various numerical experiments.

5. Experimental Setup

5.1. Performance Evaluation Metrics

5.1.1. Parameters. In our study, we divided the available
datasets into two parts: training dataset and test dataset. The
training dataset was used to train the model and the test
dataset was used to check the accuracy of the results.The sizes
of the training and test datasets were the important param-
eters as they influenced accuracy, scalability, and speed-up
metrics.

Another important parameterwas the level of parallelism,
which we considered in the number of cores used. We varied
this parameter between 1 (no parallelism) and 48 cores.

We also considered processing (learning) time as an
important parameter to compare the methods. In most of
our experiments, we varied one parameter and fixed the
remaining parameters.

We conducted three kinds of experiments.

5.1.2. Accuracy Experiments. In the accuracy experiments, we
evaluated the goodness of fit that depended on the sizes of
training and test datasets. As the accuracy criterion, we used
the coefficient of determination 𝑅2, which is usually a quality
metric for regression model. It is defined as a relative part of
the sum of squares explained by the regression and can be
calculated as

𝑅2 = 1 − 𝑆𝑆res𝑆𝑆tot = 1 − ∑𝑖 (𝑦𝑖 − 𝑦𝑖)2∑𝑖 (𝑦𝑖 − 𝑦)2 , (22)

where 𝑦 = ∑𝑛𝑖=1 𝑦𝑖/𝑛 and 𝑦𝑖 is the estimation (prediction) of𝑦𝑖 calculated by the regression model.
Note that we calculated 𝑅2 using test dataset. Thus, the

results were more reliable, because we trained our model on
one piece of data (training set) but checked the accuracy of
the model on the other one (test set).

5.1.3. Scalability Experiments. Next, we tested the proposed
methods on big data. We analyzed how increasing the size of
the dataset influences the time consumption of the algorithm.
First, we discussed how the execution time changed with the
increasing of the size of the dataset. Then, we analyzed how
methods accuracy depends on the execution (training) time
under different conditions. Scalability was measured with the
fixed number of cores.

5.1.4. Speed-Up Experiments. Finally, we analyzed the rela-
tionship between time consumption and the degree of par-
allelism (number of cores) in the distributed realization. We
varied the various parallelization degrees and compared the
speed of work of various methods. The speed was measured
with the fixed accuracy and scale.

5.2. Hardware and Software Used. The experiments were car-
ried out on a cluster of 16 computing nodes. Each one of these
computing nodes had the following features: processors: 2x
Intel Xeon CPU E5-2620, cores: 4 per node (8 threads), clock
speed: 2.00GHz, cache: 15MB, network: QDR InfiniBand
(40Gbps), hard drive: 2TB, RAM: 16GB per node.

Both Hadoop master processes the NameNode and the
JobTracker were hosted in the master node. The former con-
trolled the HDFS, coordinating the slave machines by means
of their respective DataNode processes, while the latter was
in charge of the TaskTrackers of each computing node, which
executed the MapReduce framework. We used a standalone
SPARK cluster, which followed a similar configuration, as
the master process was located on the master node, and the
worker processes were executed on the slave machines. Both
frameworks shared the underlying HDFS file system.

These are the details of the software used for the exper-
iments: MapReduce implementation: Hadoop version 2.6.0,
SPARK version 1.5.2, operating system: CentOS 6.6.

5.3. Datasets. We used three datasets: synthetic data, airlines
data, and Hanover traffic data. The main characteristics of
these datasets are summarized in Table 1. Table 2 presents
sample records for each dataset.
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Table 1: Characteristics of the datasets.

Dataset Number of records Number of factors
Synthetic data 10,000 2
Traffic data 6,500 7
Airlines delays 120,000,000 (13,000) 29 + 22 (10)

Synthetic Data. We started with synthetic data in order
to check how the partially linear regression performs on
partially linear data and to compute the basic performance
characteristics that depended on training and test set sizes.
We took the following model:𝑦 = 0.5𝑥1 + 𝑥2 sin (𝑥2) + 𝜀, (23)

where 𝑥1 and 𝑥2 were independently uniformly distributed
in the interval [0; 1000] and 𝜀 ∼ 𝑁(0; 50). The dependence
on 𝑥2 was clearly nonlinear and strictly fluctuating.

Hanover Traffic Data. In [25], we simulated a traffic network
in the southern part of Hanover, Germany, on the base of
real traffic data. In this study, we used this simulation data
as a dataset. The network contained three parallel and five
perpendicular streets, which formed 15 intersections with a
flow of approximately 5000 vehicles per hour. For our exper-
iments, 6 variables were used: 𝑦 travel time (min), 𝑥1 length
of the route (km), 𝑥2 average speed in the system (km/h),𝑥3 average number of stops in the system (units/min), 𝑥4
congestion level of the flow (veh/h), 𝑥5 traffic lights in the
route (units), and 𝑥6 left turns in the route (units).

For the Hanover traffic data, we solved the problem of
travel time predictions. We did not filter the dataset and
instead used the data in the original form. Principally, the
analysis of outliers allows deleting suspicious observations
to obtain more accurate results; however, some important
information can be lost [26].

Taking different subsets of variables, we found that the
following variable assignment to linear and kernel parts of
PLM is optimal:

(i) Linear part U: 𝑥4, 𝑥6
(ii) Kernel part T: 𝑥1, 𝑥2, 𝑥3, 𝑥5

Airlines Data.The data consists of flight arrival and departure
details for all commercial flights within the USA, from
October 1987 to April 2008 [27]. This is a large dataset: there
are nearly 120 million records in total, taking up 12 gigabytes.
Every row in the dataset includes 29 variables. This data was
used in various studies for analyzing the efficiency ofmethods
proposed for big data processing, including regression [28].
In order to complement this data and to obtain a better
prediction, we added weather average daily information,
including daily temperatures (min/max), wind speed, snow
conditions, and precipitation, which is freely available from
the site https://www.wunderground.com/. This provided an
additional 22 factors for each of the 731 days.The airlines and
weather datasets were joined on the corresponding date.

For this data, we aimed to solve the problem of the depar-
ture delay prediction, which corresponded to the DepDelay
column of data.

For test purposes, we selected the Salt Lake City Interna-
tional Airport (SLC).Our experiments showed that construc-
tion of a model for several airports resulted in poor results;
this required special clustering [29] and could be the subject
of future research.

Therefore, we selected two years (1995 and 1996) for our
analysis. This yielded approximately 170,000 records.

An additional factor, which was added to this data, was
the number of flights 30 minutes before and 30 minutes after
the specific flight.

The initial analysis showed the heterogeneous structure
of this data. Clustering showed that two variables are the
most important for separating the data: departure time and
travel distance.A very promising clusterwith goodprediction
potential was short late flights (DepTime≥ 21:45 andDistance≤ 1000Km). They could provide relatively good predictions;
however, the distribution of delays did not significantly differ
from the original dataset. This cluster contained approxi-
mately 13,000 records.

In subsequent experiments, we used subsets from this
data in order to demonstrate the influence of dataset sizes on
the prediction quality.

For the PLM algorithm, the first important issue was
how to divide the variables for the linear and kernel parts
of the regression. Taking different subsets of variables and
including/excluding variables one by one, we found 10 most
significant variables and the following optimal subsets:

(i) Linear part U: distance of the flight (Distance),
average visibility distance (MeanVis), average wind
speed (MeanWind), average precipitation (Precipita-
tionmm),wind direction (WindDirDegrees), number
of flights in 30-minute interval (Num), and departure
time (DepTime)

(ii) Kernel part T: day of the week (DayOfWeek), thun-
derstorm (0 or 1), and destination (Dest)

Table 2 presents data fragments of 10 random records
from each training dataset.

6. Experimental Framework and Analysis

6.1. Accuracy Experiments. We compared the goodness-of-fit
metric (𝑅2) of the partially linear, linear, and kernel regression
for the datasets by varying the size of the training dataset.
Note that the accuracy did not depend on the size of the test
set (which was taken equal to 1000).The results are presented
in Figures 4, 5, and 6.

We observed very different results. For synthetic data,
one variable was linear by definition and another one was
nonlinear; the partially linear model was preferable as it
produced 𝑅2 with a value of 0.95 against 0.12 for both linear
and kernel models. For the airlines dataset, partially linear
model was also preferable, but the difference was not so
significant. In contrast, for the Hanover data, the kernel
model was preferable compared with the partially linear one

https://www.wunderground.com/
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Table 2: Fragments of datasets.

(a) Synthetic dataset𝑦 𝑥1 𝑥2
2.31 0.87 1.26
1.45 1.27 −0.36−0.5 0.47 −0.06−1.9 −0.94 1.51−1.51 0.33 1.72−0.09 −0.1 −1.71
0.17 0.24 1.64
1.8 0.07 0.77−0.5 0.45 −0.22
0.76 0.94 1.32

(b) Hanover dataset𝑦: travel time 𝑥1: length 𝑥2: speed 𝑥3: stops 𝑥4: congestion 𝑥5: tr. lights 𝑥6: left turns
256 2107.51 30.30 2.10 42.43 225 0
284 2349.74 22.36 4.89 85.56 289 4
162 1248.51 19.33 9.27 85.91 81 1
448 2346.80 20.58 8.39 86.60 289 1
248 352.67 19.33 9.27 85.91 25 1
327 907.30 23.54 3.96 86.95 100 0
443.5 1093.29 22.01 5.44 88.66 169 0
294 348.35 23.68 3.81 89.33 25 0
125.5 1236.62 18.97 10.65 85.21 81 1
511.5 357.23 19.96 7.66 84.85 25 1

(c) Airlines dataset

DepDelay DayOfWeek Distance MeanVis MeanWind Thunderstorm Precipitationmm WindDirDegrees Num Dest DepTime
0 3 588 24 14 0 12.7 333 18 SNA 2150
63 7 546 22 13 0 1.78 153 2 GEG 2256
143 5 919 24 18 0 9.14 308 27 MCI 2203−4 6 599 22 16 0 11.68 161 23 SFO 2147
4 6 368 24 14 0 7.62 151 22 LAS 2159
19 5 188 20 35 0 1.02 170 23 IDA 2204
25 7 291 23 19 0 0 128 22 BOI 2200
1 6 585 17 10 0 6.6 144 25 SJC 2151
0 3 507 28 13 0 9.91 353 24 PHX 2150
38 2 590 28 23 0 0 176 7 LAX 2243

starting from some point. One possible explanation is that the
dimension of traffic data was less than airlines data, so the
kernel model worked better when it had sufficient data.

6.2. Scalability Experiments. We compared the speed (execu-
tion time) of the partially linear, linear, and kernel regression
for the datasets by varying the size of training and test
datasets. Note that both sizes of training and test datasets
influenced the execution time.The results for airlines data are
presented in Figures 7 and 8. Other datasets produced similar
results.

For the partially linear regression, we could see quadratic
relationship between execution time and the size of the

training set and a linear dependence of execution time
from the size of the test set. These results could be easily
interpreted, because the computation of Ũ and Ỹ (steps (9)
and (10) of PLM training, Figure 2) required a smoother
matrix of size 𝑛×𝑛, where 𝑛 is the size of the training dataset.
On the other hand, the test set participated in the forecasting
step only, and the complexity had a linear relationshipwith its
size. For kernel and linear regressions, the relationship with
execution time was linear for both training and test set sizes.

Next, we demonstrated how much resources (execution
time) should be spent to reach some quality level (𝑅2) for
the partially linear regressionmodel.The results for synthetic
data are presented in Figure 9. This graph was constructed
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Figure 4: Forecast quality dependence on training set size for
synthetic data.
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Figure 5: Forecast quality dependence on training set size for traffic
data.

by fixing the test set size to 900, executing the algorithm
for different training set sizes, obtaining the corresponding
execution time and accuracy, and plotting them on the graph.

We could see relatively fast growth at the beginning, but
it slowed towards the end, and successive execution time
investments did not increase the goodness of fit, 𝑅2.
6.3. Speed-Up Experiments. Finally, we examined how the
execution time changes with the number of available cores.
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Figure 6: Forecast quality dependence on training set size for
airlines data.
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Figure 7: Execution timedependence on training set size for airlines
data.

The results for the Hanover traffic data are presented in
Figure 10 and the remaining datasets produced similar results.

We could see that the execution time decreased until it
reached a threshold of 5–10 cores and then slightly increased
(this is true for the PLM and the kernel regression; for the
linear regression, the minimum was reached with 2 cores).
This is explained by the fact that data transfer among a
large number of cores takes significantly more time than
computations. This meant that SPARK still needed a better
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Figure 8: Execution time dependence on test set size for airlines
data.
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Figure 9: Forecast quality dependence on execution time of PLM
algorithm for synthetic data.

optimization mechanism for parallel task execution. A sim-
ilar issue has been reported by other researchers in [30] for
clustering techniques.

7. Concluding Remarks

This paper presents distributed parallel versions of kernel-
density-based and partially linear regression models,
intended to process big datasets in a reasonable time. The
algorithms deploy Apache SPARK, which is a well-known
distributed computation framework. The algorithms were
tested over three different datasets of approximately 10,000
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Figure 10: PLM algorithm execution time depending on the
number of processing cores for traffic data.

records, which cannot be processed by a single computer
in a reasonable time. Thus, it was tested over a cluster of 16
nodes.We conducted three kinds of experiments. First, in the
Accuracy Experiments, the results indicated that they could
not be well forecasted using the linear regression model. We
conducted the experiments with a more common situation,
when the structure of the data is not linear or partially linear.
For all the datasets, (non)semiparametric models (kernel
and PLM) showed better results, taking as an efficiency
criterion coefficient of determination, 𝑅2. As discussed,
kernel regression experiences problem with increasing the
dimensionality, because it is difficult to find the points in the
neighborhood of the specified point in big dimensions. In our
experiments, benchmark data and real-world data had many
variables and we showed that semiparametric models gave
more accurate results. We also conducted experiments by
increasing the training set to show that it resulted in increased
accuracy. Next, in the Scalability Experiments, we changed
the sizes of training and test sets with the aim of analyzing
the algorithms’ computation time with the same fixed level
of parallelism (number of working nodes/cores). All the
experiments showed that the training set influenced the time
nonlinearly (atmost quadratically), but the test set influenced
the time linearly. Finally, in the Speed-Up Experiments, our
purpose was to show the importance of parallel realization
of the algorithms to work with big datasets, taking into
account the fact that nonparametric and semiparametric
estimation methods are very computationally intensive. We
demonstrated the feasibility of processing datasets of varying
sizes that were otherwise not feasible to process with a single
machine. An interesting aspect was that for each combination
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(dataset, algorithm) we could find the optimal amount of
resources (number of cores) to minimize the algorithms
execution time. For example, for the PLM regression of the
airlines data, with the training set size equal to 2500 and test
set size equal to 500, the optimal number of cores was 5 and
with the same training set size and the test set size equal to
1000 the optimal number of cores was 9. After this optimal
point, the execution time of the algorithm starts to increase.
We could explain this phenomenon, as the distribution
expenses in this case were more than the award from the par-
allel execution.Thus, we could conclude that it is important to
find the optimal amount of the resources for each experiment.
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