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Abstract

We provide a new succession rule (i.e. generating tree) associated with Schröder
numbers, that interpolates between the known succession rules for Catalan and
Baxter numbers. We define Schröder and Baxter generalizations of parallelogram
polyominoes, called slicings, which grow according to these succession rules. In
passing, we also exhibit Schröder subclasses of Baxter classes, namely a Schröder
subset of triples of non-intersecting lattice paths, a new Schröder subset of Baxter
permutations, and a new Schröder subset of mosaic floorplans. Finally, we define
two families of subclasses of Baxter slicings: the m-skinny slicings and the m-row-
restricted slicings, for m ∈ N. Using functional equations and the kernel method,
their generating functions are computed in some special cases, and we conjecture
that they are algebraic for any m.

Mathematics Subject Classifications: 05A05, 05A15, 05A05

Keywords: Parallelogram polyominoes, Generating trees, Baxter numbers, Schröder
numbers, Catalan numbers, Non-intersecting lattice paths, Kernel method.

1 Introduction

The sequence of Catalan numbers (a000108 in [20]) is arguably the most well-known
combinatorial sequence. It is known to enumerate dozens of families of combinatorial
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objects, including Dyck paths, parallelogram polyominoes, and τ -avoiding permutations,
for any permutation τ of size 3. In this paper, we are interested in Catalan numbers as
well as in two larger combinatorial sequences: the Schröder and Baxter numbers.

Baxter numbers (sequence a001181) were first introduced in [14], where it is shown
that they count Baxter permutations. They also enumerate numerous families of combina-
torial objects, and their study has attracted significant attention, see for instance [6, 15].
Many such Baxter families can be immediately seen to contain a Catalan subfamily.
For instance, the set of triples of non-intersecting lattice paths (NILPs) contains all
pairs of NILPs (which are in essence parallelogram polyominoes, see Figure 1(a) and
the blue and red paths of Figure 1(c)); and Baxter permutations, defined by the avoid-
ance of the vincular1 patterns 2 41 3 and 3 14 2, include τ -avoiding permutations, for any
τ ∈ {132, 213, 231, 312}.

On the other hand, the (large) Schröder numbers (sequence a006318) seem to be a
bit less popular. They also form a sequence point-wise larger than the Catalan sequence,
and it is additionally point-wise smaller than the Baxter sequence. This is most eas-
ily seen by considering permutations, where the Schröder numbers count the separable
permutations [19, 21], defined by the avoidance of 2413 and 3142.

The first purpose of this article is to explain and illustrate the inclusions “Catalan in
Schröder in Baxter”. Although these inclusions are obvious on pattern-avoiding permuta-
tions, they remain quite obscure on other objects. Indeed, looking at several combinatorial
objects, it appears that the permutation example is a little miracle, and that the unclar-
ity of these inclusions is rather the rule here. To give only a few examples, consider for
instance lattice paths: the Dyck paths generalize to Schröder paths (by allowing an addi-
tional flat step of length 2), but have, to our knowledge, no natural Baxter analogue; on
the contrary, pairs of NILPs are counted by Catalan, whereas triples of NILPs are counted
by Baxter, leaving Schröder aside. Or, consider another well-known Catalan family: that
of binary trees. There are Schröder and Baxter objects generalizing binary trees (Schröder
trees, with an additional sign on the root on one hand, or pairs of twin binary trees on
the other), but they have apparently nothing in common.

As these examples illustrate, the Baxter and Schröder generalizations of Catalan ob-
jects are often independent and are not easily reconciled. This fact is also visible at a
more abstract level, i.e. without referring to specific combinatorial families: by consider-
ing the generating trees (with their corresponding succession rules) associated with these
sequences (we will review the basics of generating trees in Section 2). As we demonstrate
in this work, for the known generating trees associated with the Schröder and Baxter num-
bers, when they can be seen as generalizations of the generating tree of Catalan numbers,
then these two generalizations go in two opposite directions. Our first contribution is to
provide a continuum from Catalan to Baxter via Schröder that is visible at the abstract
level of succession rules. In this paper, as well as in our recent works [5, 9], we consider
several generating trees and their associated succession rules, and we focus on succes-

1Note that we do not represent vincular patterns with dashes, as it was done originally. We prefer
the more modern and more coherent notation that indicates by a symbol the elements of the pattern
that are required to be adjacent in an occurrence.
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sion rules that generalize, or conversely specialize, well-known succession rules. Although
this can be understood at a rather informal level (and this is actually how we originally
worked), we propose a formalization of this idea of generalizing (resp. specializing) a
succession rule in Section 4.1.

We will focus mostly on generalizations of parallelogram polyominoes, which we call
slicings of parallelogram polyominoes. In particular, Section 3 defines our Baxter slicings
(also showing their tight connection with triples of NILPs). These new objects allow us
to see that the usual Baxter succession rule does nothing but symmetrize the Catalan
succession rule. Then in Section 4, we introduce a new succession rule associated with
Schröder numbers that interpolates between the Catalan and Baxter rules of Sections 2
and 3. Letting our slicings grow with this rule allows us to define the family of Schröder
slicings. From there, the final sections go in different directions.

Section 5 presents other Schröder subclasses of Baxter classes, obtained via our new
Schröder succession rule. This includes triples of NILPs, permutations and mosaic floor-
plans. Note that Schröder subclasses of Baxter permutations and of mosaic floorplans
already appear in the literature, like the separable permutations [21, for instance] and
the slicing floorplans [22]: our Schröder subclasses are different from these. For triples of
NILPs on the contrary, we are not aware of any known Schröder subclass.

In Section 6, we introduce more intermediate classes between Catalan and Baxter,
refining our new Schröder succession rule with an integer parameter m that may vary.
This results in two families of subclasses of Baxter slicings: the m-skinny slicings and
the m-row-restricted slicings. Section 7 is interested in the generating functions for these
subclasses. First, the succession rules for m-skinny slicings and m-row-restricted slicings
are translated into systems of equations for their generating functions. For the first
values of m, these systems can be solved using the kernel method, showing an intriguing
enumerative coincidence. Although we were not able to solve these systems for general
m, we present a method to reach this goal, which fails only because we were not able to
prove that the power series solutions of a certain equation are linearly independent. Note
that this property is indeed verified for a few more values of m, as Table 1 (page 33) sums
up, solving a few more cases of the enumeration of m-skinny slicings and m-row-restricted
slicings. In view of our method, we offer the conjecture that the generating functions for
m-skinny slicings and m-row-restricted slicings are algebraic, for all m.

2 Parallelogram polyominoes and the generating tree for Cata-
lan numbers

There are many ways of defining (or characterizing) parallelogram polyominoes in the
literature, and we only give one that fits our needs.

Definition 1. A parallelogram polyomino P (see an example in Figure 1(a)) is an (edge-
)connected set of unit cells in the Cartesian plane that is the interior of a contour defined
by two paths which are composed of (0, 1) and (1, 0) steps and which never meet except at
their beginning and end. Denoting (k, `) the dimension of the minimal bounding rectangle
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of P (k being its width and ` its height), the semi-perimeter of P is k+ `, and the size of
P is k + `− 1.

(c)(a) (b)

Figure 1: (a) A parallelogram polyomino P of size 11, (b) a Baxter slicing of shape P ,
and (c) the triple of NILPs associated with it.

We start by reviewing generating trees [3, 4, 21], and in particular the generating tree
for Catalan numbers associated with parallelogram polyominoes.

A generating tree for a combinatorial class C is an infinite rooted tree, whose vertices
are the objects of C, each appearing exactly once in the tree, and such that objects of size
n are at level n in the tree (with the convention that the root is at level 1, and is labeled
by the only object of size 1 in C). The children of some object c ∈ C are obtained by
adding an atom (i.e. a piece of object that makes its size increase by 1) to c. Of course,
since every object should appear only once in the tree, not all additions are possible. We
should ensure the unique appearance property by considering only additions that follow
some restricted rules. We will call the growth of C the process of adding atoms following
these prescribed rules.

A generating tree of parallelogram polyominoes was described in [4], by means of a
so-called ECO operator, and its first levels are illustrated in Figure 2. The atoms that
may be inserted are rightmost columns (of any possible height – i.e., number of cells –
from 1 to the height of the current rightmost column), and topmost rows of width 1.
Note that the restriction on the width of the new row added is here only to ensure that no
polyomino is produced several times. Note also that the mirror image of this growth rule,
which allows rows of any admissible width but columns of height 1 only, also describes a
generating tree for parallelogram polyominoes, which is isomorphic to the first one.

All that matters to us is the shape of a generating tree, forgetting the combinatorial
objects on the vertices. In what follows, we will use the phrase “generating tree” to denote
this shape only, referring instead to “full generating trees” when the nodes are carrying
combinatorial objects.

Generating trees become substantially useful if they can be described in an abstract
way, without referring to the details of the combinatorial objects. More precisely, for a
combinatorial class C, assuming that there is a statistic on the objects of C whose value
determines the number of children in the full generating tree, then the (shape of the)
generating tree depends only on how the value of the statistic evolves from an object to
its children. When such a statistic exists, we give labels to the objects of C, which indicate
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Figure 2: The first levels of the generating tree of parallelogram polyominoes.

the value of the statistic. The associated succession rule is then given by the label of the
root and, for any label k, the labels of the children of an object labeled by k. A succession
rule characterizes completely a generating tree.

In the case of parallelogram polyominoes, the number of children is determined by
the height of the rightmost column (namely, it is this height +1), and it is easy to trace
the height of the rightmost column as a polyomino grows in size. It follows that the
generating tree of parallelogram polyominoes described above is completely determined
by the following succession rule:

root label (1) and (k) (1), (2), . . . , (k), (k + 1). (Cat)

We will denote this generating tree by TCat and its first levels are represented in Figure 4
(page 12).

Note that, given a succession rule and its subsequent generating tree, we can associate
with it an enumeration sequence, whose n-th term cn is the number of vertices in the tree
at level n. Of course, (cn) is the enumeration sequence of any combinatorial class that
has a (full) generating tree encoded by the given succession rule. But our point, which
will be essential later on, is that the sequence may also be associated directly with the
generating tree, without reference to any combinatorial class. In our example, it follows
that rule (Cat) (and the corresponding tree TCat) is associated with the Catalan numbers,
hence its name.

3 Baxter slicings

3.1 A Baxter succession rule generalizing the Catalan rule

There are several succession rules associated with Baxter numbers [7, 10, 12, 13]. We will
be interested in one of these rules only which, in addition to being the most well-known,
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is the one that generalizes the rule for Catalan numbers in the most natural way. The
rule is:

root label (1, 1) and (h, k) 

{
(1, k + 1), (2, k + 1), . . . , (h, k + 1),

(h+ 1, 1), (h+ 1, 2), . . . , (h+ 1, k).
(Bax)

We denote by TBax the generating tree associated with this rule, and illustrate it
in Figure 4 (page 12). A proof that it corresponds to Baxter numbers can be found
in [7, 16], where it is proved that Baxter permutations grow according to rule (Bax).
Recall that Baxter permutations are those avoiding the vincular patterns 2 41 3 and 3 14 2,
i.e. permutations σ such that no subsequence σiσjσj+1σk satisfies σj+1 < σi < σk < σj or
σj < σk < σi < σj+1.

It is easily seen, however rarely noticed, that rule (Bax) generalizes rule (Cat). Indeed,
the production of label (h, k) in rule (Bax) includes labels (h + 1, i) for 1 6 i 6 k (in
the second row of the production) and label (1, k + 1) (among others, in the first row
of the production). Keeping track only of the second element of these labels gives back
the Catalan rule (Cat). (Observe that, comparing the growth of Baxter slicings – defined
later – with that of parallelogram polyominoes, it is natural to keep the label (1, k + 1)
in the first row, rather than, for instance, (h, k + 1).)

In some sense, rule (Bax) is just the symmetric version of rule (Cat). This is easy
to see by considering the growth of parallelogram polyominoes according to rule (Cat).
As we have seen, with rule (Cat), a rightmost column may be added, of all possible
heights; but only a topmost row of width 1 is allowed. But the symmetric variant of
this rule, allowing addition of a topmost row of all possible widths, and of a rightmost
column of height 1, also works. So we can think of rule (Bax) as generating parallelogram
polyominoes symmetrically, allowing at the same time the insertion of a rightmost column
of any possible height, or of a topmost row of any possible width. Of course, this process
generates the parallelogram polyominoes ambiguously.

3.2 Definition and growth of Baxter slicings

Our remark that rule (Bax) generates parallelogram polyominoes symmetrically but am-
biguously motivates the definition of new combinatorial objects that generalize parallelo-
gram polyominoes and grow unambiguously according to rule (Bax). From the discussion
above, the natural generalization is to let parallelogram polyominoes grow according to
rule (Bax) as we explain, but to record the “building history” of the polyomino, that
is, which columns and rows where added by the growth process. The objects obtained
are parallelogram polyominoes whose interior is divided into blocks, of width or height 1.
We call these objects Baxter slicings of parallelogram polyominoes, or Baxter slicings for
short.

Definition 2. A Baxter slicing (see an example in Figure 1(b)) of size n is a parallelogram
polyomino P of size n whose interior is recursively divided into n blocks as follows.
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• The first block is the topmost row or the rightmost column of P – such blocks are
called horizontal and vertical blocks, respectively.

• The first block may be the topmost row (resp. rightmost column) of P only if the
removal of the topmost row (resp. rightmost column) of P makes its semi-perimeter
decrease by exactly 1. (Note that at least one of these two statements holds.)

• The other n− 1 blocks form a Baxter slicing of the parallelogram polyomino of size
n− 1 obtained by deletion of the topmost row (resp. rightmost column) of P .

In the second item above, note that the condition that the semi-perimeter decreases
by exactly 1 is equivalent to the fact that the topmost row and the row below it end in
the same rightmost column (resp. the rightmost column and the column to its left ends
in the same top row).

Theorem 3. Baxter slicings grow according to rule (Bax) and are enumerated by Baxter
numbers.

Proof. It is clear that Baxter slicings grow according to rule (Bax): a Baxter slicing has
label (h, k) when the topmost row has width h and the rightmost column has height k, and
the productions of label (h, k) are immediately seen to correspond to the Baxter slicings
obtained by adding a new horizontal block in a new topmost row, of any width between
1 and h, or a new vertical block in a new rightmost column, of any height between 1 and
k. As a consequence, Baxter slicings are enumerated by Baxter numbers.

An example of the growth of Baxter slicings according to rule (Bax) is shown in
Figure 3.

;

,,
.

(4,1) (4,2) (4,3)

, ,

(3,4)(2,4)(1,4)(3,3)

Figure 3: The growth of Baxter slicings following rule (Bax).
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3.3 Bijection with triples of NILPs

Among the combinatorial families enumerated by Baxter numbers, one can be seen to be
in bijection with Baxter slicings in a very simple way, namely, the triples of NILPs.

Definition 4. A path of size n is a sequence of North (N = (0, 1)) and East (E = (1, 0))
steps, containing n−1 steps in total. Given three paths u, m, and d of the same size n, all
containing the same number of E (and N) steps, (u,m, d) is a triple of non-intersecting
lattice paths (for short, triple of NILPs) of size n when the embeddings of u, m and d in
the plane never meet, with u (resp. m, resp. d) starting at the point of coordinates (0, 2)
(resp. (1, 1), resp. (2, 0)).

Theorem 5. The following construction, illustrated in Figure 1(c), provides a size-
preserving bijection between Baxter slicings and triples of NILPs:

Consider a Baxter slicing of a parallelogram polyomino P , whose bottom-left corner
is assumed to be placed at coordinates (0, 0). Define the paths

- u corresponding to the upper border of P , except the first and last steps,
- d corresponding to the lower border of P , except the first and last steps,
- and m going from (1, 1) to the top-right corner of P , following the lower border

of every horizontal block of the slicing, and the left border of every vertical
block,

and associate the triple (u,m, d) to the original Baxter slicing.

Proof. Consider a Baxter slicing of a parallelogram polyomino P of size n, and define
u,m and d as above. Shifting by one the path u (resp. d) upwards (resp. rightwards)
so that the starting point is at (0, 2) (resp. (2, 0)), we want to prove (u,m, d) is a triple
of NILPs of size n. Note that by construction each step of the path m is inside or on
the border of the polyomino P ; this immediately ensures the non-intersecting property.
Moreover, by construction all paths u,m and d have n− 1 steps, where n+ 1 denotes the
semi-perimeter of P . Finally, we easily check that u,m and d have the same number of E
and N steps. This follows immediately comparing the coordinates of the ending points of
these paths. But it is also helpful (in the description of the inverse below or for the proof
of Theorem 15) to see it as we now explain. Since the path m separates the horizontal
blocks, which remain above it, from the vertical ones, which remain below it, each step
of this path is either the right edge of a horizontal block or the upper edge of a vertical
block. Then, the paths u and m have the same number of N steps, as each N step of the
path u is the left edge of a horizontal block. Similarly, the paths d and m have the same
number of E steps, E steps in d corresponding to lower edges of vertical blocks.

To prove that this construction is a bijection, we describe its inverse. Any triple
(u,m, d) such as in Definition 4 corresponds to a unique Baxter slicing of a parallelogram
polyomino P , whose contour is defined by u and d and whose block division is obtained
by m. More precisely, the lower (resp. upper) border of P is the path E · d · N (resp.
N · u · E) drawn starting at (0, 0). Let the starting point of the path m be (1, 1). Then,
the blocks inside P are drawn according to the steps of m as follows. For every E step
s in m, draw a vertical block whose top edge is s and that extends downwards until the
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border of P . Similarly, for every N step s in m, draw a horizontal block whose right edge
is s and that extends leftwards until the border of P . And finally, add the initial block
consisting of one cell extending from (0, 0) to (1, 1).

Up to the simple bijective correspondence described in Theorem 5, our Theorem 3 can
also be seen as a description of the growth of triples of NILPs according to the generating
tree TBax, which was already described in [6].

3.4 Baxter slicings of a given shape

One of the most basic enumerative questions that one may ask about Baxter slicings is to
determine the number of Baxter slicings whose shape is a given parallelogram polyomino
P . In the light of the previous bijection between Baxter slicings and triples of NILPs, this
question can be rephrased in terms of counting how many triples of NILPs correspond to
given “external” paths (i.e. u and d), which are the two paths defining P . This is not
the main focus of our work, so we just give the extremal cases as observations.

Observation 6. Let P be the parallelogram polyomino of rectangular shape, whose bound-
ing rectangle has dimensions k × `. The number of Baxter slicings of P is

(
k+`−2
`−1

)
.

Proof. This follows from Theorem 5, since the number of Baxter slicings of P coincides
with the number of paths from (1, 1) to (k, `) using N and E steps.

Observation 7. Let P be a snake, that is, a parallelogram polyomino not containing four
cells placed as . There is only one Baxter slicing of P .

Proof. We prove that if P is a snake of size n, then its interior is unambiguously divided
in n blocks, each consisting of a single cell. Since P does not contain , then the topmost
cell in the rightmost column is the only cell in its row or the only cell in its column. In
the former (resp. latter) case, it forms a horizontal (resp. vertical) block. Removing this
block from P , the remaining cells form a snake of size n − 1, and the result follows by
induction.

4 Schröder slicings

Our first interest in defining Baxter slicings is to find a family of objects enumerated by the
Schröder numbers which lie between parallelogram polyominoes and Baxter slicings, and
which grow according to a succession rule that generalizes (Cat) while specializing (Bax).
Note that to our knowledge, out of the many succession rules for Schröder numbers [18, 21],
none has this property.

4.1 Specializations and generalizations of succession rules

Earlier in this article, we have compared the succession rules for Catalan numbers and
Baxter numbers, and described how the latter generalizes the former. To deal with this
first example, it was enough to stay at an informal level of what we mean by “generalize”.
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However, in the remainder of the paper, we wish to compare more succession rules, and we
offer to that effect a formalization of this informal idea that a succession rule generalizes
(or conversely specializes) another one.

The following definition of generalizing (resp. specializing) a succession rule is more
intended as a suggestion the reader may reflect on, than as a proper and accurate defini-
tion. This proposed definition is rather restrictive, and we shall see later some examples
of situations that it does not encapsulate. These examples indeed do not fit into our idea
of what generalization/specialization of succession rules should be. Despite the restrictive
character of our proposed definition, we believe that it applies to all our examples of the
current paper, and of the other papers [5, 9]. We leave open the questions whether the
“correct” definition should be a bit less restrictive to allow for more instances to fit in,
and whether it should be on the contrary more restrictive, to prevent other undesirable
examples.

Consider two succession rules ΩA and ΩB. These rules are to be thought of as encoding
growths of combinatorial classes A and B ⊆ A, respectively. We however do not refer at
all to the classes A and B in defining that ΩA generalizes ΩB, but rather work directly on
these succession rules. To say that ΩA generalizes ΩB (or equivalently, that ΩB specializes
ΩA), we require:

(1) the existence of a comparison relation “smaller than or equal to” (to be defined
specifically on each example) between the labels2 of ΩB and those of ΩA, and,

(2) for any labels `A of ΩA and `B of ΩB with `B smaller than or equal to `A, a way of
mapping the productions of the label `B in ΩB to a subset of the productions of the label
`A in ΩA, such that a label is always mapped to a larger or equal one.

The emblematic example of this definition is given by rule (Cat) as specialization of
rule (Bax). A label `B of rule (Cat) is an array of one integer value, say (j), whereas a label
`A of rule (Bax) is an array of two integer values, say (h, k). The relation “smaller than
or equal to” between `B and `A is defined by j = k. (Note that one could symmetrically
consider the comparison between j and the first component h of `A.) Moreover, the way
of mapping the productions of the label `B in (Cat) to a subset of the productions of the
label `A in (Bax) so that any label is always mapped to a larger or equal one is defined
as follows:

root label (1) and (k)  
(Cat)

(1), (2), . . . (k), (k + 1).y y y y . . .
y y

root label (1, 1) and (h, k)  
(Bax)

(h+ 1, 1), (h+ 1, 2), . . . (h+ 1, k), (1, k + 1).

Note that only the relevant subset of the productions of (h, k) for rule (Bax) has been
displayed in the second row of the above table.

The above definition allows to identify a canonical embedding of the generating tree
associated with ΩB into the generating tree associated with ΩA. More precisely, let us

2Labels are integers or ordered pairs of integers in the current paper, but they may be more complicated
structures in general.
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denote by TA and TB the two generating trees associated with the classes A and B and
their growths according to ΩA and ΩB. Then, induction shows that the above definition
implies the existence of an injection φ (corresponding to the mapping of labels in item (2)
of the definition) from the set of vertices of TB to the set of vertices of TA which preserves
the level and the parent-child relation, such that for any vertex v of TB, the label of v
is smaller than or equal to the label of φ(v) in TA. This injection allows to define the
“canonical” subtree of TA isomorphic to TB.

We conclude this section about a proposed definition of generalization/specialization
of succession rules with examples that do not fit into our proposed definition. If readers
wish to consider variants of the above definition, it is important to keep these examples in
mind: indeed, they display situations which we do not want to enter our framework. First,
to say that ΩA generalizes ΩB, it is not enough to know generating trees for combinatorial
classes A and B ⊆ A, encoded by succession rules ΩA and ΩB respectively. Indeed,
it may be the case that the underlying growths for the classes A and B have nothing
in common. This applies for instance to Dyck and Motzkin paths, with their growths
presented in [4], or to families of pattern-avoiding inversion sequences (namely, avoiding
the triple of relations (>,−,>) and (>,>, >), respectively) with their growths defined
in [5]. Second, we do not want the definition of ΩA generalizing ΩB to be dependent of the
combinatorial classes A and B. Namely, consider the case where the growth for B ⊆ A
corresponding to ΩB specializes the growth for A corresponding to ΩA, in the sense that
for any object b of B (which is of course also an object of A), the set of active sites of b
as an object of B is a subset of the set of active sites of b as an object of A. This does
not guarantee that ΩA generalizes ΩB for our proposed definition. Indeed, it may be the
case that the active sites are not encoded in the same way in the labels of ΩA and ΩB.
This happens for instance for the separable permutations (growth described in [21]) and
the Baxter permutations (growth described in [7]).

4.2 A new Schröder succession rule

Let us consider the following succession rule, whose associated generating tree is denoted
TSch (shown in Figure 4 page 12):

root label (1, 1) and (h, k) 


(1, k + 1), (2, k + 1), . . . , (h, k + 1),

(2, 1), (2, 2), . . . , (2, k − 1),

(h+ 1, k).

(NewSch)

Theorem 8. The enumeration sequence associated with rule (NewSch) is that of Schröder
numbers.

Proof. From [21], we know that the following succession rule is associated with Schröder
numbers:

root label (2) and (j) (3), (4), . . . , (j), (j + 1), (j + 1). (Sch)

We claim that rules (NewSch) and (Sch) produce the same generating tree. Indeed,
replacing each label (h, k) in rule (NewSch) by the sum h+ k of its elements immediately
gives rule (Sch).
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Figure 4: The first levels of the generating trees for rules (Cat), (NewSch) and (Bax). Bold characters are used to indicate
the first vertices of TBax that do not appear in TSch.
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What is further interesting with rule (NewSch) is that rule (Bax) for Baxter numbers
generalizes it and rule (Cat) for Catalan numbers specializes it. Indeed, it is not obvious
that rule (Sch) generalizes rule (Cat), ensuring that TSch contains a “canonical” subtree
isomorphic to TCat – see generating trees depicted in Figure 4. Yet this fact becomes clear
with rule (NewSch), which can be immediately seen to generalize rule (Cat), in the same
fashion rule (Bax) does.

Theorem 9. The succession rule (NewSch) generalizes rule (Cat), while specializing
rule (Bax). Hence, TCat is (isomorphic to) a subtree of TSch, which in turn is (isomorphic
to) a subtree of TBax.

Proof. Note first that the only difference between rules (Bax) and (NewSch) is that labels
(h + 1, i) for 1 6 i 6 k − 1 in the production of rule (Bax) are replaced by (2, i) in
rule (NewSch). Thus, first we prove that rule (NewSch) generalizes rule (Cat) in the
same way as rule (Bax) does. From this fact, it follows that TCat is isomorphic to a
subtree of TSch (the one called canonical subtree in Section 4.1).

More precisely, we define that a label (j) for rule (Cat) is smaller than or equal to a
label (h, k) in rule (NewSch) when j = k. Then, we consider the subset (2, 1), (2, 2), . . . ,
(2, k − 1), (h + 1, k) and (1, k + 1) of the productions of a label (h, k) by rule (NewSch),
whose second components give the productions of (k) for rule (Cat). Consequently, the
mapping below witnesses the fact that (Cat) specializes (NewSch):

root label (1) and (k)  
(Cat)

(1), . . . (k − 1), (k), (k + 1).y y y . . .
y y y

root label (1, 1) and (h, k)  
(NewSch)

(2, 1), . . . (2, k − 1), (h+ 1, k), (1, k + 1).

Now, we prove that rule (NewSch) specializes rule (Bax), from which, as before, it
follows that TSch is isomorphic to a subtree of TBax. Observe that labels in rule (NewSch)
are arrays of two integer values as well as those in rule (Bax). We define that a label (h, k)
for rule (NewSch) is smaller than or equal to a label (h′, k′) for rule (Bax) when h 6 h′

and k = k′. So, to conclude that (Bax) generalizes (NewSch), we just need to exhibit a
mapping which respects this order of the productions of a label (h, k) in (NewSch) to a
subset of the productions of the label (h′, k) in (Bax), for any h′ > h. This mapping is
given by

root label (1, 1) −→ root label (1, 1), and

(h, k)  
NewSch

(2, 1), . . . , (2, k − 1), (h+ 1, k), (1, k + 1), . . . , (h, k + 1).y . . .
y y y . . .

y
(h′, k)  

Bax
(h′ + 1, 1), . . . , (h′ + 1, k − 1), (h′ + 1, k), (1, k + 1), . . . , (h, k + 1).

To our knowledge, this is the first time three succession rules for Catalan, Schröder and
Baxter numbers are given, which are each a generalization of the previous one. The first
levels of the generating trees for rules (Cat), (NewSch) and (Bax) are shown in Figure 4
on page 12.
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4.3 Definition of Schröder slicings, and their growth

We want to define Schröder slicings so that they form a subset of the Baxter slicings that is
enumerated by the Schröder numbers, and whose growth is described by rule (NewSch).
To do that, recall that a “canonical” subtree of TBax isomorphic to TSch was built in
the proof of Theorem 9. From there, it is enough to label the vertices of TBax by the
corresponding Baxter slicings, and to keep only the objects which label a vertex of this
“canonical” subtree. With this global approach to the definition of Schröder slicings, the
problem is to provide a characterization of these objects that would be local, i.e. that
could be checked on any given Baxter slicing without reconstructing the whole chain of
productions according to rule (Bax) that resulted in this object.

For the sake of clarity, we have chosen to reverse the order in the presentation of
Schröder slicings: we will first give their “local characterization”, and then prove that
they grow according to rule (NewSch). It will be clear in the proof of this statement
(see Theorem 12) that Schröder slicings correspond to the “canonical” subtree of TBax on
Baxter slicings described earlier.

Definition 10. Let B be a Baxter slicing of a parallelogram polyomino P , and let u be
a horizontal block of B. We denote by `(u) the width of u. The projection X(u) of u on
the lower border of P is the lower-most point of this border whose abscissa is that of the
right edge of u. We now define r(u) to be the number of horizontal steps on the lower
border of P to the left of X(u) before a vertical step (or the bottom-left corner of P ) is
met.

(b)

k  (E )dd

m

(a)

r(u)

u

X(u)

(c)

u

m

N

E

E

N

d

Figure 5: (a) Illustration of Definition 10, (b) example of Schröder slicing, and (c) illus-
tration of Definition 13 and Theorem 15.

Definition 11. A Schröder slicing is any Baxter slicing such that for any horizontal block
u, the following inequality holds:

`(u) 6 r(u) + 1. (`r)

Figure 5(a,b) illustrates the definitions of `(u) and r(u), and shows an example of a
Schröder slicing.
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Theorem 12. A generating tree for Schröder slicings is TSch, associated with the rule
(NewSch).

Proof. Like Baxter slicings, Schröder slicings grow by adding vertical blocks on the right
and horizontal blocks on top, but whose width is restricted, so that condition (`r) is
always satisfied.

To any Schröder slicing P , let us associate the label (h, k) where h (resp. k) denotes
the maximal width (resp. height) of a horizontal (resp. vertical) block that may be added
to P , without violating condition (`r). Note that if a horizontal block of width i may be
added, then for all i′ 6 i, the addition of a horizontal block of width i′ is also allowed.
Consequently, we may add horizontal blocks of width 1 to h to P . Notice also that k
denotes the height of the rightmost column of P (since condition (`r) introduces no
restriction on vertical blocks), and that columns of any height from 1 to k may be added
to P .

Figure 6 illustrates the three cases discussed below in the growth of Schröder slicings
according to rule (NewSch).

 h

kk

 h h

kk

 h
 j

k

 i

, ,

Figure 6: The productions of a Schröder slicing of label (h, k) following rule (NewSch).

For any i 6 h, consider the Schröder slicing P ′ obtained by adding a horizontal block
u of width `(u) = i. We claim that the label of P ′ is (i, k + 1). Obviously, the height
of the last column of P ′ is k + 1. Moreover, if we were to add a further horizontal block
u′ of any width `(u′) = i′ 6 i, u′ would satisfy condition (`r), since X(u) = X(u′) and
r(u) = r(u′).

Next, consider the Schröder slicing P ′ obtained by adding a column of height k to P .
We claim that it has label (h+ 1, k). Of course, the rightmost column of P ′ has height k.
Moreover, the horizontal blocks u′ that may be added to P ′ are of two types: either the
block u′ is made of one single cell on top of the rightmost column of P ′, or u′ is exactly
the same as a horizontal block that could be added to P , except that it is augmented by
one cell on the right. In this latter case, condition (`r) is indeed satisfied since both `(u′)
and r(u′) increase by 1, when going from P to P ′.

Finally, for any j < k, the Schröder slicing P ′ obtained by adding a column of height
j to P has label (2, j). Indeed, the rightmost column of P ′ has height j, and only
horizontal blocks u′ of width 1 or 2 may be added to P ′ without violating condition (`r),
since r(u′) = 1.
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5 Other Schröder restrictions of Baxter objects

For any Baxter class C whose growth according to rule (Bax) is understood, it is immediate
to define a Schröder subclass of C. Indeed, we can consider the full generating tree of
shape TBax associated with C, its “canonical” subtree isomorphic to TSch, and keep only
the objects of C associated with a vertex of TSch. This method has the advantage of
being systematic, but it does not a priori provide a characterization of the objects in the
Schröder subclass which does not refer to the generating trees.

In this section, we give three examples of Schröder subclasses of Baxter classes. They
have not been obtained with the above general method, but we provide for each of them
a characterization of the Schröder objects without reference to generating trees.

5.1 A Schröder family of NILPs

From Theorem 5, we have a simple bijection between triples of NILPs and Baxter slicings.
And in Section 4, we have seen a subset of Baxter slicings enumerated by the Schröder
numbers. A natural question, which we now solve, is then to give a characterization of
the triples of NILPs which correspond to Schröder slicings via the bijection of Theorem 5.

Definition 13. Let (u,m, d) be a triple of NILPs as in Definition 4.
A pair (Nu, Nm) of N steps of u and m is matched if there exists i such that Nu

(resp. Nm) is the i-th N step of u (resp. m). Similarly, a pair (Em, Ed) of E steps of m
and d is matched if there exists i such that Em (resp. Ed) is the i-th E step of m (resp. d).

Moreover, for any N step Nu in u, we denote by hu(Nu) the number of E steps of
u that occur before Nu. Similarly, for any N step Nm in m, we denote by hm(Nm) the
number of E steps of m that occur before Nm. And for any E step Ed in d, we denote by
kd(Ed) the largest k such that Ek is a factor of d ending in Ed.

Figure 5(c) (page 14) should help understand these definitions.

Definition 14. A Schröder triple of NILPs is any triple (u,m, d) as in Definition 4 such
that for any N step Nu of the path u, denoting Nm the N step of m such that (Nu, Nm) is
matched, Em the last E step of m before Nm, and Ed the E step of d such that (Em, Ed)
is matched, the following inequality holds:

hm(Nm)− hu(Nu) 6 kd(Ed). (?)

Theorem 15. Schröder slicings are in one-to-one correspondence with Schröder triples
of NILPs by means of the size-preserving bijection described in Theorem 5.

Proof. We prove that the image of the class of Schröder slicings under the bijection given
in Theorem 5 coincides with the class of Schröder triples of NILPs of Definition 14. This
will follow since condition (?) on triples of NILPs is equivalent to condition (`r) on Baxter
slicings.
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Let (u,m, d) be the image of a Baxter slicing P . By construction (see also Figure 5(c)),
every horizontal block w of P is associated with a pair (Nu, Nm) of matched N steps of
u and m, which correspond to the left (for Nu) and right (for Nm) edges of w. Similarly,
every vertical block of P is associated with a pair (Em, Ed) of matched E steps of m and
d, corresponding to the upper and lower edges of the block.

Consider a horizontal block w in P , and let (Nu, Nm) be the associated pair of matched
steps. Denote by Em the last E step of m before Nm, and by Ed the E step of d such
that (Em, Ed) is matched. This is the situation represented in Figure 5(c). We claim that
w satisfies condition (`r) if and only if Nu, Nm and Ed satisfy condition (?). On one
hand, note that the width `(w) of w is also expressed as hm(Nm) + 1 − hu(Nu). On the
other hand, it is not hard to see that r(w) = kd(Ed). Indeed, the projection X(w) of w
on the lower border of P is the ending point of the step Ed in d, so that both r(w) and
kd(Ed) denote the maximal number of E (or horizontal) steps seen when reading d (that
is to say, the lower border of P ) from right to left starting from X(w). It follows that
`(w) 6 r(w) + 1 if and only if hm(Nm)−hu(Nu) 6 kd(Ed), which concludes the proof.

5.2 Another Schröder subset of Baxter permutations

Recall that a permutation σ = σ1σ2 . . . σn contains a permutation τ = τ1τ2 . . . τk (called
pattern) if there exists i1 < i2 < . . . < ik such that σia < σib if and only if τa < τb.
Moreover, recall that a permutation π = π1π2 . . . πn contains the vincular pattern 2 41 3
if there exists a subsequence πiπjπj+1πk of π (with i < j < k − 1), called an occurrence
of the pattern, that satisfies πj+1 < πi < πk < πj. Containment and occurrence of the
pattern 3 14 2 is defined similarly. A permutation not containing a pattern avoids it.

Baxter permutations [7, among many others] are those that avoid both 2 41 3 and
3 14 2. The class of separable permutations, defined by the avoidance of 2413 and 3142,
is a well-known subset of the set Bax of Baxter permutations and is enumerated by the
Schröder numbers. A generating tree for separable permutations following rule (Sch) has
been described in [21], but we have not been able to explain the growth of separable
permutations according to rule (NewSch). However, restricting the growth of Baxter
permutations according to rule (Bax), we are able to describe a new subset of Baxter
permutations, enumerated by the Schröder numbers, and whose growth is governed by
rule (NewSch).

As explained at the beginning of this section, a Schröder subset of Baxter permutations
can be obtained by considering the “canonical” embedding of TSch in TBax. Doing so, the
two Baxter permutations of size 5 that are not obtained are 13254 and 23154, which
correspond to the vertices of TBax shown in bold characters in Figure 4. Although this
subset of Baxter permutations is easy to define from the generating tree perspective, we
have not been able to characterize the permutations it contains without referring to the
generating trees, which is somewhat unsatisfactory. On the other hand, the subset of
Baxter permutations studied below is not as immediate to define from the generating
trees themselves, but has a nice characterization in terms of forbidden patterns.

The definition (in a special case) of bivincular patterns is useful to define the subset
of Baxter permutations we are considering: a permutation σ avoids the pattern 41323+

the electronic journal of combinatorics 26(3) (2019), #P3.13 17



(resp. 42313+) when no subsequence σiσjσkσ`σm of σ satisfies σj < σ` < σk (resp. σ` <
σj < σk), σm = σk + 1, and σm < σi.

Theorem 16. Let S be the subset of Baxter permutations defined by avoidance of the
(bi)vincular patterns 2 41 3, 3 14 2, 41323+ and 42313+. The generating tree obtained by
letting permutations in S grow by insertion of a maximal element is TSch (associated with
rule (NewSch)), and consequently S is enumerated by the Schröder numbers.

Note that the two Baxter permutations of size 5 that are not in S are 51324 and 52314.
Figure 7 depicts the graphical representation of permutation 24351, which belongs to S,
and the set of permutations of S obtained by adding a new maximum to it.

(2,3) (3,2)(2,2) (2,1)(1,3)

Figure 7: The growth of a permutation σ ∈ S according to rule (NewSch). The ith
entry σi is plotted in the grid at coordinate (i, σi). The active (resp. non-active) sites are
indicated by the symbol ♦ (resp. ×).

Proof. First, note that if σ ∈ S, then the permutation obtained by removing the maximal
element of σ also belongs to S. So we can make permutations of S grow by insertion of
the maximum.

Second, observe that S is a subset of Bax. So the set of active sites (i.e. positions
where the new maximum can be inserted while remaining in the class) is a subset of the
set of active sites in the growth of Baxter permutations according to rule (Bax). These
active sites are described in [6] and are:

• the sites immediately to the right of right-to-left maxima, and

• the sites immediately to the left of left-to-right maxima.

In particular, the two sites surrounding the current maximum are always active.

We claim that the active sites of σ ∈ S are the following, where n denotes the size
of σ:

• the sites immediately to the right of right-to-left maxima, and

• for any left-to-right maximum σi, the site immediately to the left of σi, provided
that the sequence σi+1 . . . σn contains no pattern 212+ where 2 is mapped to a value
larger than σi.
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More formally, the condition above on σi+1 . . . σn is expressed as follows: there is no
subsequence σaσbσc of σi+1 . . . σn such that σa > σi, σb < σa and σc = σa + 1.

For the first item, it is enough to notice that the insertion of n+ 1 in any site located
to the right of n cannot create a 41323+ or 42313+ pattern (if it would, then n instead of
n+ 1 would give a forbidden pattern in σ).

For the second item, consider a left-to-right maximum σi. The insertion of n + 1
immediately to the left of σi creates a 41323+ or 42313+ pattern if and only if it creates
such a pattern where n+ 1 is used as the 4.

Assume first that the sequence σi+1 . . . σn contains a pattern 212+ where 2 is mapped
to a value larger than σi. Then together with n + 1 and σi, we get a 41323+ or 42313+

pattern: such insertions do not produce a permutation in S.
On the other hand, assume that the sequence σi+1 . . . σn contains no pattern 212+

where 2 is mapped to a value larger than σi. If the insertion of n+ 1 immediately to the
left of σi creates a 41323+ or 42313+ pattern, say (n+ 1)σaσbσcσd, then σbσcσd is a 212+

pattern in σi+1 . . . σn, and by assumption σb < σi. This implies that σi is larger than all
of σa, σb, σc and σd, so that σiσaσbσcσd is a 41323+ or 42313+ pattern in σ, contradicting
the fact that σ ∈ S. In conclusion, under the hypothesis that the sequence σi+1 . . . σn
contains no pattern 212+ where 2 is mapped to a value larger than σi, then the insertion
of n+ 1 immediately to the left of σi produces a permutation in S.

To any permutation σ of S, associate the label (h, k) where h (resp. k) denotes the
number of active sites to the left (resp. right) of σ’s maximum. Of course, the permutation
1 has label (1, 1). We shall now see that the permutations produced by inserting a
new maximum in σ have the labels indicated by rule (NewSch), concluding our proof of
Theorem 16.

Denote by n the size of σ. When inserting n + 1 in the i-th active site (from the
left) on the left of n, this increases by 1 the number of right-to-left maxima. Moreover,
no pattern 212+ is created, so that all sites to the left of n that were active remain so,
provided they remain left-to-right maxima. The permutations so produced therefore have
labels (i, k + 1) for 1 6 i 6 h. Similarly, when inserting n + 1 immediately to the right
of n, no 212+ is created, and the subsequent permutation has label (h + 1, k). On the
contrary, when inserting n + 1 to the right of a right-to-left maximum σj 6= n, a pattern
212+ is created (as nσj(n + 1)). Consequently, there are only two left-to-right maxima
such that there is no pattern 212+ after them with a 2 of a larger value: namely, those
are n and n+ 1. If σj was the i-th right-to-left maximum of σ, starting their numbering
from the right, then the resulting permutation has label (2, i), for any 1 6 i < k.

5.3 A Schröder family of mosaic floorplans

Mosaic floorplans (a simplified version of general floorplans) were defined by Hong et
al. [17] in the context of chip design. A mosaic floorplan is a rectangular partition of a
rectangle by means of segments that do not properly cross, i.e. every pair of segments that
intersect forms a T-junction of type , , , or . The empty spaces between the segments
are called rooms. Internal segments of a mosaic floorplan F are segments that are not part
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of the bounding rectangle of F . Mosaic floorplans are considered up to equivalence under
the action of sliding segments, namely up to translating their internal segments to modify
the dimensions of the rooms yet without removing any T-junction. Figure 8 shows two
mosaic floorplans that are equivalent. From now on, we write mosaic floorplan to denote
an equivalence class of mosaic floorplans. So, the two objects of Figure 8 are rather two
representatives of the same mosaic floorplan. Yao et al. [22] proved that mosaic floorplans
are enumerated by Baxter numbers.

In this section, we explain the growth of mosaic floorplans according to rule (Bax),
i.e. along the generating tree TBax. Then, we define a subfamily of mosaic floorplans
enumerated by Schröder numbers, which we call Schröder floorplans. We prove that they
grow according to rule (NewSch).

Remark 17. In their article [22], Yao et al. have also described a subfamily of mosaic
floorplans enumerated by Schröder numbers, called slicing floorplans. They are defined

by the avoidance of the configurations and .

Our Schröder floorplans are also defined by a forbidden configuration of segments –
see Definition 21. However, slicing floorplans do not coincide with our Schröder floor-
plans. Nevertheless, both slicing floorplans and Schröder floorplans avoid the configura-

tion , and the similarity of the forbidden configurations is striking. We leave open

the problem of explaining this similarity combinatorially, for instance by describing an
explicit bijection between slicing floorplans and Schröder floorplans.

Note that we were not able to describe a growth of slicing floorplans that follows
rule (NewSch).

A difficulty in working with mosaic floorplans is that they are equivalence classes of
combinatorial objects. To address this difficulty, packed floorplans have been introduced
in [2], where it is proved that every mosaic floorplan contains exactly one packed floorplan.
(In some sense, packed floorplans can then be considered as canonical representatives of
mosaic floorplans.) It follows from the enumeration of mosaic floorplans in [22] that
packed floorplans are enumerated by Baxter numbers.

Definition 18. A packed floorplan (PFP) of dimension (d, `) is a partition of a rectangle
of width ` and height d, by means of segments that do not properly cross, into d +

` − 1 rectangular blocks whose sides have integer lengths and such that the pattern
is avoided, i.e. for every pair of blocks (b1, b2), denoting (x1, y1) the coordinates of the
bottom rightmost corner of b1 and (x2, y2) those of the top leftmost corner of b2, it is not
possible to have both x1 6 x2 and y1 > y2.

The size of a packed floorplan of dimension (d, `) is n = d+ `−1 and the set of packed
floorplans of size n is denoted Fn.

Observation 19. Some properties of PFPs have been proved in [2]. Relevant to our
work is the fact that every horizontal (resp. vertical) line of integer coordinate inside the
bounding rectangle of a PFP is the support of exactly one segment of the PFP.

the electronic journal of combinatorics 26(3) (2019), #P3.13 20



Notice the slight change of terminology: while we speak of rooms in mosaic floorplans
(whose dimensions may change inside an equivalence class), we prefer the word blocks in
PFPs (since the dimensions of the empty spaces between segments of a PFP may not
change).

Figure 8(a) shows an example of a packed floorplan, while Figure 8(b) shows another
(non-packed) representative of the same mosaic floorplan.

(a) (b)

Figure 8: (a) An example of a packed floorplan of dimension (3, 3), (b) a non-packed
representative of the same mosaic floorplan.

Theorem 20. The family of PFPs grows according to the succession rule (Bax), i.e. along
the generating tree TBax.

Observe that a generating tree for PFPs is presented in [2] (via a procedure called
InsertTile for adding a new block in PFPs). Considering only the first few levels of this
generating tree, it is immediately clear that it is not isomorphic to TBax. Therefore, to
prove Theorem 20, we need to define a new way of adding a block to a PFP.

Proof. Consider a PFP F of dimension (d, `) and size n = d + ` − 1. We give to F the
label (h, k), where h (resp. k) is one greater than the number of internal segments of F
that meet the right (resp. upper) border of the bounding rectangle of F . We build h+ k
children of size n + 1 for F as described below. (See also Figure 10, which shows an
example of the growth of PFPs of dimension (3, 3) having label (3, 2).)

The first h children, of dimension (d, ` + 1), are obtained by adding a new block b
on the right of the north-east corner of F : the left side of b then forms a new internal
segment that can reach the bottom border of the floorplan or stop when meeting any
segment s incident with the right border of F (note that there are h− 1 such segments).
The segments reaching the right border of F which are below s (and the corresponding
blocks) are then extended to reach the right border of the wider rectangle of dimension
(d, `+ 1).

The other k children, of dimension (d + 1, `), are obtained by adding a new block b
on top of the north-east corner of F : similarly, the bottom side of b then forms a new
internal segment that can reach the left border of the floorplan or stop when meeting any
segment s incident with the upper border of F (note that there are k− 1 such segments).
Again, the segments reaching the upper border of F which are to the left of s (and the
corresponding blocks) are extended to reach the upper border of the higher rectangle of
dimension (d+ 1, `).

With h and k defined as above, and giving label (h, k) to PFPs, it is clear that the
children of a PFP with label (h, k) have labels (i, k + 1) for 1 6 i 6 h (insertion of a new
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block on the right of F ) and (h + 1, j) for 1 6 j 6 k (insertion of a new block on top
of F ). Moreover, the unique packed floorplan of size 1 (having dimension (1, 1)) has no
internal segment, so its label is (1, 1).

To prove that PFPs grow according to rule (Bax), it is then enough to show that the
above construction generates each PFP exactly once.

First, we prove by induction that this construction generates only PFPs. The relation
between the number of blocks and the dimensions of the bounding rectangle is clearly
satisfied. So we only need to check that, if F is a PFP, then all of its children avoid the
pattern . Consider a child F ′ of F obtained by adding a new block b on the right of
the north-east corner of F . The bottom right corners of the existing blocks may only be
modified by being moved to the right. Similarly, if a child F ′ of F is obtained by adding
a new block b on top of the north-east corner of F , the top left corners of the existing
blocks may only be modified by being moved upwards. So, in either case, those corners
cannot create any pattern . And the new block b cannot create any such pattern either,
since it has no block above it nor to its right.

Next, we prove by induction that all PFPs are generated. Consider a PFP F of
size n > 2. Let b be the block in the north-east corner of F and s (resp. t) be the left

(resp. bottom) side of b. Their graphical configurations can be either
s

t or
s

t .

We claim that in the first (resp. second) case, b has width (resp. height) 1. This follows
from Observation 19. Indeed, assuming it is not the case, we can consider the segment
of F lying on the rightmost internal vertical line (resp. the topmost internal horizontal

line), and display an occurrence of the pattern , which is forbidden in PFPs – see (a)
and (b) of Figure 9.
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if width >1

1

(a)

1

(b) (c) (d)

if height >1

Figure 9: Proof of Theorem 20. (a) and (b): The block b has width (resp. height) 1. (c)
and (d): Removing the hatched part from the PFP F produces the PFP F ′.

So, in the first (resp. second) case, we define F ′ by deleting the part of F on the right
of the line on which s lies, (resp. the part of F above the line on which t lies), which is at
distance 1 from the boundary of the rectangle – see (c) and (d) of Figure 9. This removal
does not create any occurrence of the forbidden pattern. So F ′ is indeed a PFP, of size
one less than F , and F is by construction one of the children of F ′.

Finally, it remains to prove that no PFP is generated several times. Obviously, the
children of a given PFP are all different. So we only need to make sure that the parent of
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a PFP F is uniquely determined. Looking again at the block b in the north-east corner of
F , and at the type of the T-junction at the bottom-left corner of b, we determine whether
b was added on top or on the right of the north-east corner of its parent. By construction,
the parent is then uniquely determined: it is necessarily obtained from F by deleting the
parts of F described above.

;

.,

(4,2)(4,1)

(3,3)(2,3)(1,3)(3,2)

, ,

Figure 10: The growth of packed floorplans following rule (Bax).

Definition 21. A Schröder PFP is a PFP as in Definition 18, whose internal segments
avoid the following configuration:

.

(Note that an occurrence of the above configuration where the bottom segment is the
bottom border – which is of course not an internal segment – does not prevent a PFP
from being a Schröder PFP.)

Figure 11 shows some packed floorplans that contain the forbidden configuration of
Definition 21 and so, they are not Schröder PFPs.

(b) (c)(a)

Figure 11: (a),(b) The two packed floorplans of size 5 which are not Schröder PFPs, (c)
a non-Schröder packed floorplan of size 6.

Theorem 22. The generating tree obtained by letting Schröder PFPs grow by insertion
of a new block as in the proof of Theorem 20 is TSch. More precisely, they grow following
rule (NewSch).

Proof. Let F be a PFP, and b be the block in the north-east corner of F . Recall that the
parent F ′ of F was described in the proof of Theorem 20. It follows immediately that if F
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is a Schröder PFP, then F ′ is also a Schröder PFP. Consequently, we can make Schröder
PFPs grow by addition of a new block either on the right of the north-east corner or
above it, as in the proof of Theorem 20.

Let F be a Schröder PFP. We consider all its children following the growth of PFPs
described in the proof of Theorem 20, and we determine which of them are Schröder
PFPs. Let b be a new block added to F . Note first that the addition of b may only
create forbidden configurations involving the sides of b. Moreover, if such a forbidden
configuration is created, the sides of b are necessarily the segments shown in bold line in

the following picture: . In particular, the T-junction at the bottom left corner of

b is of type .
If b is added above the north-east corner of F , then by construction the bottom side

of b reaches the left border of F or forms a T-junction of type with a segment meeting
the upper border of F . So the forbidden configurations cannot be created, and all PFPs
obtained by adding blocks above the north-east corner of F are Schröder PFPs.

On the contrary, if b is added on the right of the north-east corner of F , then the
T-junction at the bottom left corner of b is of type , so a forbidden configuration may
be created. More precisely, the forbidden configuration is generated if and only if the
following situation occurs: the segment corresponding to the left side of b reaches an
internal segment meeting the right border of F , which in turn is below another internal
segment that is incident with the right border of F and that forms a T-junction of type

with some internal segment. So, to determine which children of F are Schröder PFPs,
among those obtained by adding b on the right of the north-east corner of F , it is essential
to identify the topmost internal segment which meets the right border of F and which
forms a T-junction of type with some internal segment of F . If such a segment exists, it
is denoted pF . Then, adding b to F , a Schröder PFP is obtained exactly when the bottom
side of b is either the bottom border of F or an internal segment meeting the right border
of F which is above pF (pF included).

With the above considerations, it is not hard to prove that Schröder PFPs grow
according to rule (NewSch). To any Schröder PFP F , we assign the label (h, k) where

• if pF exists, h is one greater than the number of internal segments meeting the right
border of F above pF (included),

• if pF does not exist, h is one greater than the total number of internal segments
meeting the right border of F ,

• in both cases, k is one greater than the number of internal segments meeting the
upper border of F .

Of course, the only (Schröder) PFP of size 1 has label (1, 1). Following the growth
previously described, a Schröder PFP F of label (h, k) produces:

• h Schröder PFPs obtained by adding a block b on the right of the north-east corner
of F . The left side of b may reach the bottom border of F , and then a Schröder
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PFP of label (1, k+1) is obtained. It may also reach any internal segment s incident
with the right border of F that is above pF (included), and Schröder PFPs of labels
(2, k+ 1), . . . , (h, k+ 1) are obtained in this way. Indeed, for the PFP F ′ produced,
pF ′ = pF , but the number of internal segments meeting the right border above it
takes a value between 1 and h− 1.

• k Schröder PFPs obtained by adding a block b above the north-east corner of F . The
bottom side of b may reach the rightmost segment incident with the upper border
of F , and then a Schröder PFP of label (h+ 1, k) is obtained. But if it reaches any
other segment incident with the upper border of F (left border of F included), then
a T-junction of type is formed with at least one internal segment meeting the
upper border of F . By definition, for the Schröder PFP F ′ produced, we therefore
have that pF ′ is the segment that supports the bottom edge of b. Consequently, the
labels of the Schröder PFPs produced are (2, k − 1), . . . , (2, 1).

This concludes the proof that Schröder PFPs grow with rule (NewSch), and so along the
generating tree TSch.

To illustrate the growth of Schröder PFPs with rule (NewSch), note that, seen as a
Schröder PFP, the object whose growth is depicted in Figure 10 has label (2, 2) and it
has only four children (the middle object of the first line is not produced, and indeed it
is not a Schröder PFP).

Figure 12 shows an example of the growth of a Schröder PFP F of dimension (4, 2)
having label (3, 1). The segment pF (the topmost internal segment of F which meets
the right border and forms a T-junction of type with an internal segment of F ) is
highlighted in bold line.

F

(4,1)

(3,2)(2,2)(1,2)(3,1)

, ., ,
p

Figure 12: The growth of a Schröder PFP F following rule (NewSch).

Remark 23. In the same fashion, we can define a subfamily of PFP enumerated by the
Catalan numbers, and prove that they grow according to rule (Cat) (the label k of a
Catalan PFP is one greater than the number of internal segments meeting its upper
border). A Catalan PFP would be a PFP as in Definition 18, whose internal segments
avoid the configuration . The proof that they grow according to rule (Cat) is omitted,
but very similar to that of Theorem 22.

We point out that a different proof that these Catalan PFP (considered up to a −90◦

rotation) are enumerated by the Catalan numbers has been given in [11, Example F13 in
the Appendix], giving a product rule for Catalan PFP which corresponds to the standard
Catalan product rule.
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6 More families of restricted slicings

With the Schröder slicings, we have seen in Section 4 one way of specializing the succession
rule (Bax). In this section, we are interested in other specializations of rule (Bax), which
allow us to define Catalan slicings, m-skinny slicings and m-row-restricted slicings, for any
integer m > 0. The next section will explore the properties of the generating functions
for m-skinny slicings and m-row-restricted slicings.

6.1 Catalan slicings

Similarly to the path followed to define Schröder slicings, we can consider the generating
tree TBax of Baxter slicings, and its subtree isomorphic to TCat discussed in Subsection 3.1,
to define “Catalan slicings” of parallelogram polyominoes. As expected, we find exactly
one Catalan slicing C for every parallelogram polyomino P , namely, the Baxter slicing
of shape P whose horizontal blocks all have width 1. Alternatively, C can be recursively
described as follows: if the top row of P contains just one cell, then this cell constitutes a
horizontal block of C, and we proceed by computing the Catalan slicing of P minus this
top row; otherwise, the rightmost column of P constitutes a vertical block of C, and we
proceed by computing the Catalan slicing of P minus this rightmost column.

6.2 Skinny slicings

We have seen in Definition 11 that Schröder slicings are defined by condition (`r), that
is to say, `(u) 6 r(u) + 1, for any horizontal block u. Figure 5(a) (page 14) shows
which quantities are to be checked for satisfying the above condition. A rough idea to
characterize a Schröder slicing of a parallelogram polyomino P is: every corner of the
lower path defining P may have above it only horizontal blocks that do not protrude
more than one cell leftward its x-coordinate.

Therefore, this condition (`r) can be naturally generalized for any integer m > 0: for
any horizontal block u,

`(u) 6 r(u) +m. (`rm)

Definition 24. An m-skinny slicing is a Baxter slicing such that for any horizontal block
u, the inequality (`rm) holds.

Note that an m′-skinny slicing, with m′ 6 m, is an m-skinny slicing as well. For
instance, the slicing of Figure 5(a) is an m-skinny slicing, for any m > 3.

Theorem 25. A generating tree for m-skinny slicings is described by the following suc-
cession rule:
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root label (1, 1) and (h, k) 


(1, k + 1), (2, k + 1), . . . , (h, k + 1),

(h+ 1, 1), . . . , (h+ 1, k − 1), (h+ 1, k), if h < m,

(m+ 1, 1), . . . , (m+ 1, k − 1), if h > m,

(h+ 1, k). if h > m.

(Ωm)

Proof. The proof follows the exact same steps as the proof of Theorem 12, which corre-
sponds to m = 1. The only difference is that the maximal width of the horizontal block
that may be added in the third case is min(h+ 1,m+ 1) instead of 2.

Considering the case m = 0, we obtain a family of Baxter slicings which is intermediate
between Catalan slicings (for which `(u) = 1, for all horizontal blocks u) and Schröder
slicings (i.e. 1-skinny slicings). The first few terms of the enumeration sequence of 0-
skinny slicings are 1, 2, 6, 21, 80, 322, . . .. This sequence, and a curious enumerative result
relating to it, are further explored in Section 7 (see Theorem 27).

6.3 Row-restricted slicings

Conditions (`rm) naturally generalize the condition that defines Schröder slicings, but it
is not the most natural restriction on horizontal blocks of Baxter slicings one may think
of. Indeed, for some parameter m > 1, we could simply impose that horizontal blocks
have width no larger than m. In what follows, we study these objects under the name of
m-row-restricted slicings.

Note that, taking m = 1, we recover Catalan slicings, and that the case m = 0 is
degenerate, since there is only one 0-row-restricted slicing of any given size: the horizontal
bar of height 1 and width n divided in (vertical) blocks made of one cell only.

Theorem 26. A generating tree for m-row-restricted slicings is described by the succession
rule:

root label (1, 1) and (h, k) 


(1, k + 1), (2, k + 1), . . . , (h, k + 1),

(h+ 1, 1), (h+ 1, 2), . . . , (h+ 1, k), if h < m

(m, 1), (m, 2), . . . , (m, k). if h = m

(Υm)

Proof. Again, the proof is similar to those of Theorems 3 and 25, and when a slicing has
label (h, k), h (resp. k) indicates the maximal width of a horizontal block that may be
added (resp. the maximal height of a vertical block that may be added). In the case of
m-row-restricted slicings, when a vertical block is added to the right, the maximal width
of a horizontal block that may be added afterward increases by 1, except if it was m
already, in which case it stays at m.
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7 Generating functions and functional equations

Recall that a univariate function f(x) is algebraic if there exists a polynomial P (x, y)
such that y = f(x) is a root of P (x, y) = 0; while f(x) is D-finite if it is the solution of a
linear differential equation cm(x)f (m)(x) + cm−1(x)f (m−1)(x) + . . .+ c0(x)f(x) = 0, where
all the ci(x) are polynomials. Note also that every algebraic function is D-finite.

Examples of algebraic generating functions are given by the well-known generating
functions for Catalan and Schröder numbers:

FCat(x) =
1−
√

1− 4x

2x
(GFCat)

FSch(x) =
1− x−

√
1− 6x+ x2

2x
(GFSch)

On the other hand, the generating function FBax(x) for Baxter numbers, as expressed
in [7], is D-finite but not algebraic.

7.1 Functional equations for skinny and row-restricted slicings

In this subsection we will set out the functional equations satisfied by the generating
functions for m-skinny slicings and m-row-restricted slicings, as defined in Section 6.
The solutions of these functional equations will then be discussed in the following two
subsections.

We begin by treating separately the set of 0-skinny slicings. From Theorem 25, 0-
skinny slicings grow according to rule (Ω0):

root label (1, 1) and (h, k) 

{
(1, k + 1), (2, k + 1) . . . , (h, k + 1),

(1, 1), (1, 2), . . . , (1, k − 1), (h+ 1, k).
(Ω0)

Now let
F0-Sk(x;u, v) ≡ F0-Sk(u, v) =

∑
α∈TΩ0

xn(α)uh(α)vk(α)

be the generating function for 0-skinny slicings, where the variable x takes into account
the size n(·) of the slicing, while u and v correspond to the labels h and k of the object.
The rule (Ω0) can be translated into the following functional equation

F0-Sk(u, v) = xuv +
∑
α∈TΩ0

xn+1 (u+ . . .+ uh) vk+1 +
∑
α∈TΩ0

xn+1 u (v + . . .+ vk−1)

+
∑
α∈TΩ0

xn+1 uh+1 vk =

= xuv +
xuv

1− u
[F0-Sk(1, v)− F0-Sk(u, v)] +

xu

1− v
[vF0-Sk(1, 1)− F0-Sk(1, v)]

+ xuF0-Sk(u, v).

(0-Sk)
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Next, recall that 1-skinny slicings are exactly Schröder slicings, whose generating function
is given by FSch(x) in (GFSch).

Thereafter, fix some m > 2. For any i < m, let

Fi(x;u, v) ≡ Fi(u, v) =
∑
α

xn(α)uh(α)vk(α)

be the trivariate generating function for m-skinny slicings whose label according to rule
(Ωm) is of the form (i, ·). For i = m, Fm(x;u, v) ≡ Fm(u, v) =

∑
α x

n(α)uh(α)vk(α) is defined
a bit differently: it is the trivariate generating function for m-skinny slicings whose label
according to rule (Ωm) is of the form (j, ·) for any j > m. Note that by definition Fi(u, v) =
uiFi(1, v) for all i < m, but this does not hold for i = m. The trivariate generating function
for m-skinny slicings is given by Fm-Sk(x;u, v) ≡ Fm-Sk(u, v) =

∑
i Fi(u, v). Similarly to

the above case of 0-skinny slicings the rule (Ωm) translates into the following system:

F1(u, v) = xuv + xuv [F1(1, v) + F2(1, v) + . . .+ Fm(1, v)] (Sk1)
...

Fi(u, v) =
xuiv

1− v
[Fi−1(1, 1)− Fi−1(1, v)] + xuiv [Fi(1, v) + . . .+ Fm(1, v)]

(for 1 < i < m)

(Ski)

...

Fm(u, v) =
xumv

1− v
[Fm−1(1, 1)−Fm−1(1, v)] +

xum+1

1− v
[vFm(1, 1)−Fm(1, v)] + xuFm(u, v)

+
xuv

1− u
[
um−1Fm(1, v)−Fm(u, v)

]
.

(Skm)

More precisely, Equation (Sk1) is obtained by observing that, in addition to the root
label (1, 1) which contributes for xuv, labels of the form (1, k) are obtained only as the first
production of the first row of the rule (Ωm). In Equation (Ski), the first (resp. second)
term accounts for labels of the form (i, k) produced via the second (resp. first) row of
the rule (Ωm). Finally, in Equation (Skm), the first (resp. second, third, fourth) term
corresponds to the productions of the second row of the rule (Ωm) for h = m − 1 (resp.
third row, fourth row, first row of the rule (Ωm)). In writing this equation, especially for
the second term, it is important to remember that the exponent of u in Fm(u, v) is not
identically m, but takes all possible values starting from m.

Lastly, we consider m-row-restricted slicings. As previously mentioned, m = 0 leads to
a trivial combinatorial class, while m = 1 yields the Catalan numbers and their generating
function FCat(x) as per (GFCat).

We thus fix some m > 2. The succession rule (Υm) yields a system of functional
equations satisfied by the generating function for m-row-restricted slicings. More pre-
cisely, for any i 6 m, denote by Gi(x;u, v) ≡ Gi(u, v) =

∑
α x

n(α)uh(α)vk(α) the trivariate
generating function for m-row-restricted slicings whose label according to rule (Υm) is of
the form (i, ·). Also in this case, for any m > 2, the trivariate generating function for m-
row-restricted slicings is given by Gm-RR(x;u, v) ≡ Gm-RR(u, v) =

∑
iGi(u, v). Note that

the electronic journal of combinatorics 26(3) (2019), #P3.13 29



Gi(u, v) = uiGi(1, v) for all i 6 m, which makes the variable u unnecessary. Rule (Υm)
translates into the following system:

G1(u, v) = xuv + xuv [G1(1, v) +G2(1, v) + . . .+Gm(1, v)]

...

Gi(u, v) =
xuiv

1− v
[Gi−1(1, 1)−Gi−1(1, v)] + xuiv [Gi(1, v) + . . .+Gm(1, v)]

(for 1 < i < m)
...

Gm(u, v) =
xumv

1− v
[Gm(1, 1)−Gm(1, v) +Gm−1(1, 1)−Gm−1(1, v)] + xumvGm(1, v),

or equivalently, written without u in Hi(v) ≡ Gi(1, v):

H1(v) = xv + xv [H1(v) +H2(v) + . . .+Hm(v)] (RR1)
...

Hi(v) =
xv

1− v
[Hi−1(1)−Hi−1(v)] + xv [Hi(v) + . . .+Hm(v)] (for 1 < i < m) (RRi)

...

Hm(v) =
xv

1− v
[Hm(1)−Hm(v) +Hm−1(1)−Hm−1(v)] + xvHm(v). (RRm)

7.2 The special case of 0-skinny and 2-row-restricted slicings

In this subsection we prove the following surprising result, for which we presently have
no bijective explanation.

Theorem 27. The number of 2-row-restricted slicings is equal to the number of 0-skinny
slicings, for any fixed size.

We first solve the generating function for 2-row-restricted slicings, and obtain the
following.

Theorem 28. The generating function H(x) for 2-row-restricted slicings satisfies the
functional equation

H(x) =
x(H(x) + 1)

1− x(H(x) + 1)2
. (†)

Proof. For 2-row-restricted slicings, the succession rule is

root label (1, 1) and (h, k) 

{
(1, k + 1), . . . , (h, k + 1),

(2, 1), (2, 2), . . . , (2, k)
(Υ2)
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and the corresponding system of functional equations is

H1(v) = xv + xv(H1(v) +H2(v))

H2(v) =
xv

1− v
(H2(1)−H2(v) +H1(1)−H1(v)) + xvH2(v).

(2-RR)

The quantity we wish to solve is the generating function for 2-row-restricted slicings, given
by H(x) ≡ G2-RR(x; 1, 1) = H1(1) + H2(1). Canceling H1(v) between (2-RR), we arrive
at

K(v)H2(v) =
xv

1− v

(
−xv

1− xv
+H1(1) +H2(1)

)
where

K(v) = 1− xv +
xv

1− v
+

x2v2

(1− v)(1− xv)
.

This equation is susceptible to the kernel method [3, 7]. The equation K(v) = 0 is cubic
in v, and one of the three roots has a power series expansion in x (the other two are not
analytic at x = 0). Letting λ(x) ≡ λ denote this root, we then have

H(x) = H1(1) +H2(1) =
xλ

1− xλ
.

It follows that λ = H
x(H+1)

, and the condition K(λ) = 0 rewrites as

xH3 + 2xH2 + (2x− 1)H + x = 0 (†′)

or equivalently equation (†).

Remark 29. It follows that the sequence for 2-row-restricted slicings is (up to the first
term) the same as sequence a106228 in [20]. Indeed, the generating function S for
sequence a106228 is characterized by xS3 − xS2 + (x− 1)S + 1 = 0 [1], and with (†′) it
is immediate to check that H + 1 satisfies this equation.

Proof of Theorem 27. The generating function F0-Sk(u, v) for 0-skinny slicings satisfies
(0-Sk), and this equation can also be solved via the kernel method. However, things are
somewhat more complicated here, due to the presence of two catalytic variables. First,
we rearrange the equation into the kernel form

L(u, v)F0-Sk(u, v) = xuv + xu

(
v

1− u
− 1

1− v

)
F0-Sk(1, v) +

xuv

1− v
F0-Sk(1, 1)

where
L(u, v) = 1− xu+

xuv

1− u
.

The equation L(u, v) = 0 is quadratic in u, and one of the two roots is a power series in
x with coefficients in Z[v] (the other is not analytic at x = 0). We denote this root by

µ(x, v) ≡ µ(v) =
1 + x− xv −

√
1− 2x− 2xv + x2 − 2x2v + x2v2

2x
.
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It follows that

M(v)F0-Sk(1, v) = v +
v

1− v
F0-Sk(1, 1) where M(v) =

1

1− v
− v

1− µ(v)
.

Now the kernel method can be applied again – the equation M(v) = 0 is (after rearrange-
ment) quartic in v, namely, it is 4xv(1−v+xv−xv2+xv3) = 0. One of the three non-zero
roots of this equation has a power series expansion in x. Denoting by κ(x) ≡ κ this root,
we finally have F0-Sk(1, 1) = κ − 1. Some elementary manipulations in Mathematica
(or any other computer algebra system) show that F0-Sk(1, 1) also satisfies (†).

We point out that D. Callan indicates in [20] that F0-Sk ≡ F0-Sk(1, 1) is also the
generating function for Schröder paths with no triple descents, i.e. having no occurrence
of the factor DDD, where D encodes the down step. It would be interesting to provide
a bijection between Schröder slicings and Schröder paths whose restriction to 0-skinny
slicings yields a bijection with Schröder paths having no triple descents. However, our
first investigations in this direction have been unsuccessful.

Remark 30. It does not hold in general that there are as many m-skinny slicings as (m+2)-
row-restricted slicings: already for m = 1, there are 91 3-row-restricted slicings but 90
Schröder (i.e. 1-skinny) slicings of size 5. More precisely, out of the 92 Baxter slicings of

size 5, only is not 3-row-restricted, but both and are not Schröder slicings.

7.3 Generating functions of m-skinny and m-row-restricted slicings for gen-
eral m

In this final subsection, we outline an approach for solving the generating functions for
m-skinny and m-row-restricted slicings, for arbitrary m. While this method is provably
correct for small m, we do not know how to show that all of the steps always work, and
so we omit any proofs. The following thus remains a conjecture.

Conjecture 31. For all finite m > 0, the generating functions for m-skinny and m-row-
restricted slicings are algebraic.

Table 1 summarizes the cases for which we know that the above statement holds,
either from previous results in this paper, or from the method described below.

We will mostly focus on m-row-restricted slicings, and briefly explain at the end how
to modify the method to solve m-skinny slicings. In the following it is assumed that
m > 3.

Step 1. Note that the system (RR1)–(RRm) can be rewritten in the form of a matrix
equation

Km(v)Hm(v) = Bm(v)Hm(1) + Cm(v), (Mat-RR)
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m 0 1 2 3 4 5
-row 1/(1− x) FCat(x) eq.(†) eq.(GF3RR) eq.(GF4RR) eq.(GF5RR)
restricted §6.3 §6.3 Thm 28 eq.(Alg3RR) p.34 p.34

p.34
-skinny eq.(†) FSch(x) eq.(GF2Sk) eq.(GF3Sk)

Thm 27 Thm 22 p.35 p.35

Table 1: For small values of m, the statement of Conjecture 31 holds. Each cell of the
table gives the corresponding generating function and/or an equation characterizing it.

where

Hm(v)=

H1(v)
...

Hm(v)

, Km(v)=



1− xv −xv −xv −xv · · · −xv
xv
1−v 1− xv −xv −xv · · · −xv
0 xv

1−v 1− xv −xv · · · −xv
...

. . . . . . . . . . . .
...

0 0 · · · xv
1−v 1− xv −xv

0 0 0 · · · xv
1−v 1− xv + xv

1−v


,

Bm(v)=



0 0 0 0 · · · 0
xv
1−v 0 0 0 · · · 0

0 xv
1−v 0 0 · · · 0

0 0 xv
1−v 0 · · · 0

...
...

. . . . . . . . .
...

0 0 0 · · · xv
1−v

xv
1−v


and Cm(v)=


xv
0
...
0

.

Step 2. The determinant |Km(v)| is a rational function of x and v which can be shown
to be not identically zero for any m. It follows that, in general, Km(v) has an inverse.
Write K∗m(v) = |Km(v)|K−1m (v) (the transpose of the matrix of cofactors of Km(v)). It
can further be shown that none of the elements of the last row of K∗m(v) are identically
zero.

Step 3. Multiply (Mat-RR) on the left by K∗m(v) to give

|Km(v)|Hm(v) = K∗m(v) [Bm(v)Hm(1) + Cm(v)] . (∇)

This can be viewed as a system of m kernel equations, where the kernel (namely |Km(v)|)
is the same for each. The LHS of the m-th equation of (∇) is |Km(v)|Hm(v), while
the RHS is a linear combination of all the m unknowns H1(1), . . . , Hm(1). Furthermore,
note that in (RR1)–(RRm), the unknowns Hm−1(1) and Hm(1) only appear together as
Hm−1(1) +Hm(1). Writing this latter quantity as H(m−1)+m(1), we now see that there are
really only m− 1 unknowns on the RHS of (∇).

Step 4. The equation |Km(v)| = 0 can be shown to have precisely m − 2 roots (in the
variable v) which are Puiseux series in x. Denote these roots by ν1(x), . . . , νm−2(x).
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Step 5. Substitute v = νi(x) into the first of the m equations comprising the system (∇),
for i = 1, . . . ,m− 2. This yields a system of m− 2 linear equations in m− 1 unknowns.

Step 6. To obtain one more equation, set v = 1 in (RR1) (again combining Hm−1(1) +
Hm(1) as H(m−1)+m(1)).

Step 7. Solve this entire linear system of m−1 equations with m−1 unknowns, and add
all solutions together to obtain the generating function H(x) for m-row-restricted slicings.

It is the validity of Step 7 which we are unable to verify in general. To do so, it would
be necessary to show that the νi(x) are distinct and linearly independent functions of x,
and moreover that the (m − 1)-th equation obtained in Step 6 is independent of those
obtained in Step 5. Nevertheless, this method has been verified manually for m 6 5.

The series expansion of the generating function for 3-row-restricted slicings is

x+ 2x2 + 6x3 + 22x4 + 91x5 + 405x6 + 1893x7 + 9163x8 + 45531x9 + 230902x10 +O(x11).
(GF3RR)

With some help from Mathematica, and here specifically from M. Kauers’ “Guess”
package, one finds that this generating function is a root of the cubic polynomial

x+2x2+x3+(−1−2x+2x2+3x3)H+(2−2x2+3x3)H2+(−1+3x−2x2+x3)H3. (Alg3RR)

The generating functions for m = 4 and m = 5 have the respective series expansions

x+ 2x2 + 6x3 + 22x4 + 92x5 + 421x6 + 2051x7 + 10449x8 + 55023x9 + 297139x10 +O(x11)
(GF4RR)

x+ 2x2 + 6x3 + 22x4 + 92x5 + 422x6 + 2073x7 + 10724x8 + 57716x9 + 320312x10 +O(x11).
(GF5RR)

By construction these functions must be algebraic, but as the order of the kernel equation
|Km(v)| = 0 increases with m, we have been unable to determine precisely the polynomials
satisfied by these generating functions.

We now briefly turn to m-skinny slicings. The method is largely the same, with some
minor differences. Firstly, an additional step is required at the start.

Step 0∗. Substitute u = µ(v) into (Skm), where µ(v) is the power series root of L(u, v)
as defined in the proof of Theorem 27. This eliminates the term Fm(u, v), leaving an
equation relating Fm−1(1, 1), Fm−1(1, v), Fm(1, 1) and Fm(1, v). Meanwhile, the variable
u is unnecessary in equations (Ski) for 1 6 i < m, so set it to 1.

The remaining steps can then be adapted to this system of equations, with Fi(1, v)
taking the place of Hi(v). One key difference is that Fm−1(1, 1) and Fm(1, 1) cannot be
combined, so there are m unknowns that need to be solved instead of m − 1. However,
this time the kernel (again the determinant of a matrix) has m − 1 Puiseux series roots
instead of m− 2, which exactly compensates for this problem.
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When m = 2 the desired solution F1(1, 1) +F2(1, 1) enumerating 2-skinny slicings has
the form

x+ 2x2 + 6x3 + 22x4 + 92x5 + 419x6 + 2022x7 + 10168x8 + 52718x9 + 279820x10 +O(x11).
(GF2Sk)

This generating function is a root of the quintic polynomial

x3 − x2(1− 6x)F − 3x2(2− 5x)F 2 + x(2− 13x+ 19x2)F 3 + x(5− 12x+ 12x2)F 4

− (1− 3x+ 4x2 − 3x3)F 5.

When m = 3 the generating function for 3-skinny slicings has the form

x+ 2x2 + 6x3 + 22x4 + 92x5 + 422x6 + 2070x7 + 10668x8 + 57061x9 + 314061x10 +O(x11).
(GF3Sk)

By construction it is certainly algebraic, but we make no attempt here to write down the
polynomial of which it is a root.
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[15] S. Felsner, É. Fusy, M. Noy, D. Orden, Bijections for Baxter families and related
objects, Journal of Combinatorial Theory Series A, vol. 118(3), pp. 993–1020, 2011.
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algorithmiques et combinatoires, Ph.D. thesis, Université Bordeaux I, 1993.
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