
Chapter 2

Processing and Analyzing Multiple Genomes Alignments
with MafFilter

Julien Y. Dutheil

Abstract

As the number of available genome sequences from both closely related species and individuals within
species increased, theoretical and methodological convergences between the fields of phylogenomics and
population genomics emerged. Population genomics typically focuses on the analysis of variants, while
phylogenomics heavily relies on genome alignments. However, these are playing an increasingly important
role in studies at the population level. Multiple genome alignments of individuals are used when structural
variation is of primary interest and when genome architecture permits to assemble de novo genome
sequences. Here I describe MafFilter, a command-line-driven program allowing to process genome align-
ments in the Multiple Alignment Format (MAF). Using concrete examples based on publicly available
datasets, I demonstrate how MafFilter can be used to develop efficient and reproducible pipelines with
quality assurance for downstream analyses. I further show howMafFilter can be used to perform both basic
and advanced population genomic analyses in order to infer the patterns of nucleotide diversity along
genomes.

Key words Multiple genome alignment, Synteny, Alignment post-processing, Quality filtering, Mul-
tiple alignment format

1 Introduction: Multiple Genome Alignments

Multiple genome alignments (MGAs) record the homology rela-
tionships between related genome sequences. While conventional
sequence alignments contain information about nucleotide substi-
tutions, insertions, and deletions, MGAs encode evolutionary
events occurring at a larger scale. Such events include chromosome
fusion, fission, and rearrangements, which break colinearity
between sequences (akasynteny break). Furthermore, genome
sequences, as opposed to gene sequences, are generally segmented.
The underlying cause of this segmentation may be biological (pres-
ence of multiple chromosomes) or technical (genome sequence
could only be assembled at the contig or scaffold level).
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MGAs are typically used to compare genomes in distinct species
(see, for instance, the 99 vertebrate genome alignments from the
UCSC Genome Browser [1]). Conversely, population genomic
analyses typically focus on micro-variation events—single nucleo-
tide polymorphisms (SNP) and short indels—and assume synteny
and karyotype conservation between individual genomes. As a
result, genetic variation is stored as variant calls with respect to a
reference genome, often as a file in the Variant Call Format (VCF)
[2] or MAP format [3]. Variant files, however, do not usually
contain information about invariable positions and need to be
combined with additional information for most evolutionary appli-
cations (e.g., as a list of “callable positions,” that is, positions where
enough information was available to detect a SNP if any).

The Multiple Alignment Format (MAF, not to be confounded
with the Mutation Annotation Format) describes the homology
relationships between several genomes, as flat text files (see https://
genome.ucsc.edu/FAQ/FAQformat.html, last accessed 29/08/
18). A MAF file is a list of several alignment blocks where the
constitutive sequences are in synteny (see Fig. 1). While the struc-
ture of each block is identical to traditional sequence alignments
(as in the Clustal or Phylip formats), where homologous positions
in each sequence are on top of each other and form an alignment
column, sequence names follow a dedicated syntax in order to
record genome coordinates. Besides, several annotation lines can
be included, including, for instance, sequence quality scores.
Genome alignment programs producing MAF files as output
include TBA [4], Mugsy [5], ROAST http://www.bx.psu.edu/
~cathy/toast-roast.tmp/README.toast-roast.html (last accessed
29/08/18), Last [6], and Mauve [7].

MGAs are also used in population genomic studies, either
when complete individual genomes can be obtained (e.g., [8, 9])
or when pseudo-genomes can be generated [10] (see Note 1).
Because they contain information about both variable and invari-
able positions, MGAs can be directly used for conducting evolu-
tionary analyses, accounting for missing data and structural
variation. This, however, comes at the cost of extended computer
requirements, in particular in terms of file size. Additional align-
ment quality checks are also typically required, as full-genome
aligners do not include post-processing steps as most variant calling
pipelines do.

In this chapter, we will see how to use the MafFilter pro-
gram to conduct population genomic analyses. In the following, we
assume that the data is available as a MGA in the MAF format.
Conversion to variant call formats will also be discussed.
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2 General Principles on MafFilter Usage

As MAF files were initially used for multi-species alignments, each
input genome is referred to as a species. In the following, a species
can, however, also denote a particular strain or individual in a
population. Similarly, the term chromosome will be used in a broad
sense encompassing scaffolds and contigs, in case of unmapped
genome assemblies (see Fig. 1).

2.1 Serial Processing

of Alignment Blocks:

Filters

As MAF files are organized into a series of syntenic blocks, Maf-
Filter sequentially processes input files one block at a time by
applying filters. A filter takes a MAF alignment block as input,
conducts one or several analyses, and returns a MAF block.
Depending on the type of analysis performed, the output block
might be identical to the input one or a modified version. In some
cases, the filter can compute additional information that can be
written to an output file or stored as meta-data (see Table 1 for
examples). Filters are combined sequentially, the output of one
filter serving as input to the next one, allowing to design advanced
analysis workflows.

2.2 Option Files

and Command Line

Arguments

The MafFilter program can be controlled by arguments that are
passed from the command line or, more conveniently, as a script
file. Arguments take the form of ‘parameter’¼‘value’ statements,
which can potentially be nested. Arguments can also be called
within the script, allowing to define global variables. Below is a
minimalist example demonstrating the syntax:

Table 1
Example types of filters supported by MafFilter

Filter name Filter function Output

MafStatistic Compute statistics
on a block

Unmodified input block

MinBlockLength Filter blocks given
alignment length

Unmodified input block if its
length is larger than a given
threshold, otherwise the
block is discarded

Subset Keep only a subset of species A block with sequences from
the specified set of species

WindowSplit Split a block into smaller
blocks of a given size

Multiple smaller blocks

DistanceEstimation Compute an evolutionary
distance matrix from all
sequences in the block

Unmodified input block with
a distance matrix attached
as meta-data
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1 # maffilter param=MinimalistExample.bpp DATA=chr9
2 input.file=../Primates/$(DATA).maf.gz
3 input.file.compression=gzip
4 input.format=Maf
5 output.log=$(DATA).maffilter.log
6 maf.filter=\
7 MinBlockLength(min_length=1000),\
8 Output(file=$(DATA).min1kb.maf.gz, compression=gzip)

Line 1 is a comment line, which will not be parsed. Bash style
comments (starting with #), C style (surrounded by /* and */)
and C++ style (starting with //) are recognized. The script uses a
global variable named “DATA” that is set via the command line and
whose value is called using theMakefile syntax $(DATA). The script
can be run using the command

maffilter param=MinimalistExample.bpp DATA=chr9

It will parse the input alignment (here human chromosome
9 aligned with 19 other Mammals, downloaded from the UCSC
genome browser), keep only blocks that are at least 1 kb in length,
and write the result to a new MAF file. Line 2 indicates the path to
the input MAF file; line 3 specifies that the file was compressed
using gzip; line 4 indicates that the file is in the MAF format. While
MafFilter is dedicated to the analysis of MAF files, it can also
take as input a Fasta file for a single species, with one sequence per
chromosome. Line 5 indicates the path to a log file, where
information about the analysis will be written. Line 6 shows
the main argument, maf.filter, which contains a comma-
separated list of options, one per filter. Filters will be applied in
their order of specification, so that the output of filter 1 will be
the input of filter 2, etc. As the line can be rather long, it is split
using the “∖” character. In this most simple example, there are
two filters specified: MinBlockLength, which discards blocks
below 1 kb, and Output, which writes the resulting alignment
to a new gzip-compressed MAF file.

In the following, we will see more advanced examples of
filters and how they can be combined to conduct genomic
analyses.

3 MafFilter as a Data Processor

3.1 Extracting Data

of Interest

A MAF alignment contains information about all genomic regions
in a set of species, and some analyses can focus on a subset of such
species. Besides, certain types of analyses involve only a subset of
positions, such as protein-coding sites. MafFilter allows to pro-
cess a MAF alignment and restrict it both to a subset of species and
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positions. In the first case, selected species are specified as an
argument of a filter, while in the second, a file describing which
positions to keep is provided, as a feature file (such as a BED or
GFF-like file, see https://genome.ucsc.edu/FAQ/FAQformat.
html, last accessed 29/08/18).

The following example illustrates these aspects. The pipeline
filters block to keep only the ones with sequences in Human,
Chimpanzee, Bonobo, Gorilla, and Orangutan. Additional
sequences for other species, if any, are discarded. In a second step,
coding regions are extracted and written as a separate alignment
file.

1 # maffilter param=ExtractingData.bpp DATA=chr9
2 # Note: need to create subdirectory Alignments
3 # before running this script
4
5 input.file=../Primates/$(DATA).maf.gz
6 input.file.compression=gzip
7 input.format=Maf
8 output.log=$(DATA).maffilter.log
9 SPECIES=(hg38, panPan1, panTro4, gorGor3, ponAbe2)
10 maf.filter \=
11 Subset \(
12 species \,)SEICEPS($=
13 strict=yes, keep \,on=
14 remove_duplicates \,)sey=
15 Merge \(
16 species \,)SEICEPS($=
17 dist_max \,)0=
18 ExtractFeature \(
19 ref_species \,83gh=
20 feature.file=../Primates/chr9.CDS1kb.gtf, \
21 feature.format \,FTG=
22 complete \,sey=
23 ignore_strand \,)on=
24 OutputAlignments \(
25 format \,latsulC=
26 file=Alignments/FivePrimates%i-%c-%b-%e.aln, \
27 reference \)83gh=

The Subset filter (line 11) extracts blocks where certain species
are aligned (given as a list, here provided as a global variable set line
9). The strict and keep arguments can be combined to obtain
various behaviors: with strict set to “yes” and keep set to “no”,
we only keep blocks where the five selected species are all present
and discard sequences from putative additional species. The
remove_ duplicates argument further removes blocks where
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any of the selected species might be present more than once (para-
logous sequences). The Merge filter (line 15) subsequently fuses
consecutive blocks in complete synteny, which might have been
split apart because of a synteny break in one of the non-selected
species.

The position extraction is done by the ExtractFeature filter
(line 18), which retains regions specified in a file in the Gene
Transfer Format (GTF). The GTF file contains only Coding
DNA Sequences (CDS) with at least 1 kb in length. We further
specify to only extract regions that are fully covered in the
alignment (complete argument, line 23). The ignore_s-
trand argument, line 24, tells whether regions on the negative
strand should be reverse-complemented (“no” option) or kept as
is (“yes” option).

Finally, the writing of the extracted blocks is done by the
OutputAlignments filter (line 24). Each block is written in the
Clustal alignment format [11] into a file with path Align-
ments/FivePrimates% i-% c-% b-% e.aln, where %i will
be replaced by the index of the block. As a result, each block will
be written in a separate file. If the special %i code is omitted, all
alignments will be appended to a single output file. The additional
special codes %c, %b, and %e can be optionally used in combina-
tion with %i and correspond to the coordinates of the block
(chromosome, begin and end, respectively) according to one
“reference” species specified by the reference argument. Fur-
ther note that MafFilter cannot create directories, only files. In
case the provided output path is not valid, no output will be
generated.

3.2 Statistics

with MafFilter

The effect of each data extraction step can be visualized using
statistics filters. The SequenceStatistics filter is a powerful and
generic way of computing and reporting measures for each block. It
takes as input a list of statistics names and generates a table file with
computed statistics as columns, and each block as a row. The table
also contains the coordinates of the block according to one refer-
ence species.

The following pipeline is a modification of the one presented in
Subheading 3.1. After each step, a SequenceStatistics filter is
added to report the length (number of alignment columns) and
size (number of sequences) of each block. This creates four files,
summarized in Fig. 2.
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1 # maffilter param=Statistics.bpp DATA=chr9
2
3 input.file=../Primates/$(DATA).maf.gz
4 input.file.compression=gzip
5 input.format=Maf
6 output.log=$(DATA).maffilter.log
7 SPECIES=(hg38, panPan1, panTro4, gorGor3, ponAbe2)
8 maf.filter \=
9 SequenceStatistics \(
10 statistics=(BlockLength,BlockSize), \
11 ref_species \,83gh=
12 file=$(DATA).statistics1.txt), \
13 Subset \(
14 species \,)SEICEPS($=
15 strict=yes, keep \,on=
16 remove_duplicates \,)sey=
17 SequenceStatistics \(
18 statistics=(BlockLength,BlockSize), \
19 ref_species \,83gh=
20 file=$(DATA).statistics2.txt), \

Extract CDS
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Number of blocks
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Fig. 2 Effect of data extraction filters, as measured with statistics filters. Four steps are plotted: before filtering
(“Start”), after subsetting to five primate species (“Subset”), after merging synteny blocks (“Merge”) and after
extracting CDS regions (“Extract CDS”). (A) Number of blocks after each step. (B) Distribution of block sizes,
that is, the number of species represented in each block. (C) Distribution of block lengths, that is, number of
alignment columns in each block. (D) Total alignment length, that is, the sum of all block lengths
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21 Merge \(
22 species \,)SEICEPS($=
23 dist_max \,)0=
24 SequenceStatistics \(
25 statistics=(BlockLength,BlockSize), \
26 ref_species \,83gh=
27 file=$(DATA).statistics3.txt), \
28 ExtractFeature \(
29 ref_species \,83gh=
30 feature.file=../Primates/chr9.CDS1kb.gtf, \
31 feature.format \,FTG=
32 complete \,sey=
33 ignore_strand \,)on=
34 SequenceStatistics \(
35 statistics=(BlockLength,BlockSize), \
36 ref_species \,83gh=
37 file=$(DATA).statistics4.txt) \

After filtering, 81 alignment blocks are created. This is less than
the 146 entries in the GTF file, the difference being due to CDS
that are (at least partially) missing or not in synteny in any of the five
selected species. When only the human and chimpanzee genomes
are considered, for instance, the number of complete CDS present
in the alignment becomes 118.

3.3 Pre-Processing

the Data for Quality

Insurance

Comparative evolutionary analyses of sequences require high-
quality input data, as any error at this stage is likely to propagate
in the downstream analyses. Such errors may occur both at the
individual sequence level (sequencing and assembly errors) and at
the alignment level (wrong orthology inference, alignment errors).
In some cases, we also want to discard regions (e.g., protein-coding
positions) that are likely to violate the prior assumptions of a given
analysis (e.g., neutral evolution).

The MAF format allows storing position-specific scores. Using
QualFilter, it is possible to remove regions with a low score in a
given set of species. The filter further allows computing the average
score in a sliding window with user-specified size. Windows with an
average score below a given threshold are discarded, and the
corresponding block split accordingly. Similarly, MaskFilter can be
used to clean blocks according to the proportion of masked positions
in a given set of sequences. Masked regions are coded as lowercase
nucleotides and are typically used to annotate low-complexity regions.

The local quality of the alignment can be assessed via the
distribution of gaps in sliding windows. AlnFilter and AlnFilter2

both slide windows along the alignment and discard regions with
too many gaps. They differ by their scoring criteria: AlnFilter

computes the global frequency of gap characters, while AlnFilter2

estimates the number of indel events, independently of the length
of the insertion or deletion track. EntropyFilter can also be used
to remove highly variable regions in the alignment.

Finally, FeatureFilter can be used to exclude regions from the
alignment. Features to exclude can be specified as an annotation
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file, in GFF, GTF, or BedGraph format. When GFF or GTF anno-
tation files are provided, it is further possible to exclude only a given
subset of features.

Most filters allow writing the filtered regions in a separate file
optionally. This feature enables to finely tune the filtering criteria by
visually assessing which regions are kept or removed. Using the
SequenceStatistics filter is also convenient to monitor the pro-
portion of alignment discarded. In the following sections, concrete
example analyses will demonstrate the use of these filters. Before
getting there, however, we will introduce a last set of filters enabling
inter-operability between analysis tools: format conversion filters.

3.4 Conversion

to Other Formats

When MGAs store genomes from individuals of the same species,
they can be exported as variants. This requires that a reference
genome is specified, usually implying that any synteny break will
be further ignored, together with parts of the alignment that do
not include the chosen reference species. When exporting to variant
formats, it is generally recommended to first project the alignment
on the reference species, so that the variants are sorted (see, for
instance, program maf_project in Subheading 5). MafFilter
can export in three distinct variant formats: the widely used VCF
[2] (VcfOutput filter), Plink ped and map files [3] (PlinkOutput
filter), and MSMC [12] (see Chapter 7, MsmcOutput filter).

Synteny block can also be exported into standard alignment
format with the OutputAlignments filter, as seen in Subheading 3.1.
The OutputAlignments filter further accepts a ldhat_header
argument allowing to export alignments readable by the convert
program from the LDhat package [13].

Meta-data associated with alignment blocks can be exported
using dedicated filters. The OutputDistanceMatrices filter exports
all matrices into a file in the Phylip format. Similarly, the Output-

Trees filter exports trees in Newick format. Both require the speci-
fication of a tag name used to attach the meta-data to each block
(e.g., MLdistance or BioNJ).

4 Examples of Advanced Analyses

4.1 Example

Analysis 1: Computing

Nucleotide Diversity

Along the Genome

This section describes the first complete analysis example. We use
the publicly available Drosophila Population Genomics Project
phase 3 (DPGP3, see Chapter 13) [10], containing 197 genomes
from a single African ancestral population. We restrict our analysis
to one chromosome arm (2L) and ten individuals. The
corresponding dataset has been combined into a single MAF file
(see online Supplementary Information). The following script first
uses AlnFilter to process the data in 10 bp windows slid by one bp
in order to remove regions with too many gaps, which discards 10%
of the alignment (see Fig. 3A). This leads to many more blocks (see
Fig. 3B), of shorter length (see Fig. 3C). The resulting split blocks
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are then merged if not further apart than a 100 bp, using the Merge

filter. When merged, missing regions are filled by unresolved char-
acters (“N”). The resulting blocks are split into non-overlapping
windows of 10 kb, and smaller blocks are discarded (MinBlock-
Length and WindowSplit filters). As a result, 32% of the original
alignment is lost (see Fig. 3A). Two statistics are used to compute
population genetics quantities: SiteFrequencySpectrum, which
counts minor allele frequencies (see Chapter 1 in this volume) and
DiversityStatistics, which computes various diversity estimators
(see Table 2).
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The MafFilter script starts by defining a few variables: data-
set (line 3), list of individual sequences used (lines 4–5), reference
sequence used for the output of coordinates (line 6) and size of the
window for which estimators are computed (here 10 kb, line 7).

Table 2
Available statistics for the SequenceStatistics filter

Statistic name Statistic function Output

BlockSize Report the number of sequences Numerical value

BlockLength Report the number of alignment
columns

Numerical value

SequenceLength Report the number of nucleotides for
a given sequence

Numerical value

AlnScore Report the alignment score for the
block, as encoded in the input MAF
file

Numerical value

BlockCounts Report the frequencies of each
nucleotide

Numerical values, one for each
character state

SiteStatistics Compute the number of sites with
missing data/gaps, numbers of
mono, di, tri, and quadri-allelic
sites, number of parsimony-
informative sites

Numerical values, one for each
statistic

PairwiseDivergence Compute the percentage of
mismatches between two user-
specified species

Numerical values

SiteFrequencySpectrum Count sites based on their minor
allele frequency, according to user-
specified bins

Numerical values, one per bin

PolymorphismStatistics Compare two sets of sequences and
compute the number of fixed and
polymorphic positions in both sets.

Numerical values, for all
combination of fixed and
polymorphic sites (e.g., fixed
in one set and polymorphic in
the other)

DiversityStatistics Compute the number of segregating
sites, Watterson’s theta, Tajima’s pi,
and Tajima’s D.

Four numerical values

ModelFit Given a phylogenetic tree, fit a
nucleotide substitution model
using maximum likelihood and
report the parameter estimates. A
large variety of models from Jukes-
Cantor to General Time Reversible
are available, including rate across
sites variation models.

Numerical values, one per
estimated parameter
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The script generates a text file with all computed statistic per 10 kb
windows, together with their coordinates in the reference genome.
Besides, simpler statistics files are generated at each step of the
analysis to summarize the data used. The actual alignment is also
output as a new MAF file for further assessment.

1 # maffilter param=Maffilter-Diversity.bpp
2
3 DATA=dpgp3_Chr2L_10indv
4 INDV=ZI152,ZI173,ZI190,ZI199,ZI211,ZI219,\
5 ZI253,ZI344,ZI374,ZI490
6 REF=ZI152
7 WSIZE=10000
8
9 input.file=../Drosophila/$(DATA).split.maf.gz

10 input.file.compression=gzip
11 input.format=Maf
12 output.log=$(DATA).maffilter-diversity.log
13 maf.filter \=
14 SequenceStatistics \(
15 statistics=(BlockLength,BlockSize), \
16 ref_species \,)FER($=
17 file \,)txt.1scitsitats.)ATAD($=
18 AlnFilter \(
19 species \,))VDNI($(=
20 window.size \,01=
21 window.step \,1=
22 missing_as_gap \,sey=
23 max.gap \,3.0=
24 max.ent \,1-=
25 relative \,sey=
26 file \,fam.nla_hsart.)ATAD($=
27 compression \,enon=
28 verbose \,)sey=
29 SequenceStatistics \(
30 statistics=(BlockLength,BlockSize), \
31 ref_species \,)FER($=
32 file \,)txt.2scitsitats.)ATAD($=
33 Merge(species=($(INDV)), dist_max=100), \
34 SequenceStatistics \(
35 statistics=(BlockLength,BlockSize), \
36 ref_species \,)FER($=
37 file \,)txt.3scitsitats.)ATAD($=
38 Output \(
39 file \,zg.fam.deretlif.)ATAD($=
40 compression \,)pizg=
41 MinBlockLength(min_length=$(WSIZE)), \
42 WindowSplit \(
43 preferred_size \,)EZISW($=
44 align \,retnec=
45 keep_small_blocks \,)on=
46 SequenceStatistics \(
47 statistics=(BlockLength,BlockSize, \
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48 DiversityStatistics \,(
49 ingroup \,)))VDNI($(=
50 SiteFrequencySpectrum \(
51 ingroup \,))VDNI($(=
52 bounds=(-0.5,0.5,1.5,2.5,3.5,4.5,5.5)) \
53 \,)
54 ref_species \,)FER($=
55 file=$(DATA).diversity_statistics.txt) \

This example demonstrates the use of AlnFilter: lines 20–21
specify the size of the window and the amount by which it is slid
(10 nucleotides slid by 1). Line 22 further tells the filter that
missing nucleotides (“N”) should be counted as gaps. The maximal
proportion of gaps allowed in the window is set to 0.3 (line 23).
Absolute numbers of gaps can also be specified by changing line
25 to “no.” In this example, we do not filter according to the site
variability, and the maximal entropy is set to � 1 (line 24). Alterna-
tively, windows will be discarded if they both display a number of
gaps and entropy higher than the specified thresholds. Discarded
regions are output to a separate MAF file (lines 26–27), for further
assessment. Finding the optimal alignment filtering criteria requires
to compare both the retained and rejected regions. Multiple Aln-

Filter can be combined in order to achieve the desired quality.
Diversity estimators are computed as standard statistics (see

Subheading 3.2). DiversityStatistics takes only one input argu-
ments, the list of individuals to use (line 49, in this case, all of
them). SiteFrequencySpectrum requires, in addition, specifying
boundaries for the frequencies to compute (line 52). As we have
ten genomes, the possible SNPs minor frequencies are 0, 1, 2, 3,
4, and 5 out of 10. We therefore specify as boundaries � 0.5, 0.5,
1.5, 2.5, 3.5, 4.5, and 5.5. Note that it is possible to specify fewer
boundaries to pull two or more categories. Each category generates
one column in the output statistic file. Besides, positions with
unresolved characters or more than two alleles are counted sepa-
rately and excluded from the site frequency spectrum calculation.

The computed site frequency spectrum reveals an excess of
low-frequency variants (see Fig. 3d), resulting in a globally negative
Tajima’s D value (see Fig. 3e). The effect is relatively constant along
the chromosome, except for the most telomeric region (see Fig. 3f),
suggesting that this population underwent a demographic expan-
sion. Patterns of heterozygosity, on the other hand, show a sub-
stantial reduction at the telomere, and a positive correlation with
the distance to the centromere, at the right end of the align-
ment (Kendall’s tau ¼ 0.28, p-value < 2.2 � 10�16, see Fig. 3g).
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4.2 Example

Analysis 2: Inferring

Phylogenetic

Relationships

In this example, we infer the phylogenetic relationships of five great
apes. We use the UCSC 20-way genome alignment, containing
16 Primates genomes. For the sake of computational efficiency,
we restrict the analysis to chromosome 9 only. We implement the
following pipeline:

1. extract the genome alignment for human, chimpanzee,
bonobo, gorilla, and orangutan,

2. filter the alignment to remove ambiguously aligned regions,

3. split the resulting filtered alignment into non-overlapping
10 kb windows,

4. compute a pairwise distance matrix using maximum likelihood
and estimate a BioNJ tree for each window,

5. root each tree using the orangutan sequence as an outgroup,

6. write the resulting trees to a file,

7. fit a model of sequence evolution on the human, bonobo,
chimpanzee, and gorilla ingroup using maximum likelihood
and output parameters to a file.

This results in the following MafFilter option file:

1 # maffilter param=MafFilter-Phylogeny.bpp
2
3 DATA=chr9
4 SPECIES=(hg38, panPan1, panTro4, gorGor3, ponAbe2)
5 WSIZE=10000
6
7 input.file=../Primates/$(DATA).maf.gz
8 input.file.compression=gzip
9 input.format=Maf
10 output.log=$(DATA).maffilter.log
11 maf.filter \=
12 Subset \(
13 species \,)SEICEPS($=
14 strict=yes, keep \,on=
15 remove_duplicates \,)sey=
16 XFullGap(species=$(SPECIES), verbose=no), \
17 MinBlockLength(min_length \,)01=
18 AlnFilter2(verbose \,on=
19 species \,)SEICEPS($=
20 window.size=10, window.step \,1=
21 missing_as_gap \,sey=
22 max.gap=2, max.pos=2, relative=no, \
23 file \,enoN=
24 compression \,)enon=
25 Merge \(
26 species \,)SEICEPS($=
27 dist_max \,001=
28 rename_chimeric_chromosomes=yes), \
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29 Output \(
30 file \,zg.fam.deretlif.)ATAD($=
31 compression \,)pizg=
32 MinBlockLength(min_length=$(WSIZE)), \
33 WindowSplit \(
34 preferred_size \,)EZISW($=
35 align \,retnec=
36 keep_small_blocks \,)on=
37 DistanceEstimation(verbose \,on=
38 method \,lm=
39 model=K80(kappa \,)2=
40 rate=Gamma(n=4, alpha \,)5.0=
41 parameter_estimation \,laitini=
42 max_freq_gaps \,33.0=
43 gaps_as_unresolved \,sey=
44 profiler \,enon=
45 message_handler \,enon=
46 extended_names \,)sey=
47 DistanceBasedPhylogeny(verbose=no, \
48 method=bionj, dist_mat=MLDistance), \
49 NewOutgroup \(
50 tree_input \,JNoiB=
51 tree_output \,detoor_JNoiB=
52 outgroup \,)2ebAnop=
53 OutputTrees \(
54 tree \,detoor_JNoiB=
55 file \,dnd.seert.)ATAD($=
56 compression \,enon=
57 strip_names \,)sey=
58 DropSpecies \(
59 tree_input \,detoor_JNoiB=
60 tree_output \,eertbus_JNoiB=
61 species \,)2ebanop=
62 SequenceStatistics \(
63 statistics \(=
64 BlockCounts(suffix \,)lla.=
65 BlockCounts(species=hg38 , suffix=.hs), \
66 BlockCounts(species=panPan1, suffix=.pp), \
67 BlockCounts(species=panTro4, suffix=.pt), \
68 BlockCounts(species=gorGor3, suffix=.gg), \
69 BlockCounts(species=ponAbe2, suffix=.pa), \
70 ModelFit \(
71 model=HKY85(kappa=1, theta=0.5, \
72 theta1=0.5, theta2=0.5), \
73 rate_distribution=Gamma(n=4, alpha=0.5), \
74 root_freq \,lluF=
75 tree \,eertbus_JNoiB=
76 parameters_output=(HKY85.theta_1, \
77 HKY85.theta1_1, HKY85.theta2_1, \
78 HKY85.kappa_1, Gamma.alpha, \
79 Full.theta1, Full.theta2, Full.theta), \
80 fixed_parameters \,)(=
81 reestimate_brlen \,on=
82 max_freq_gaps \,3.0=
83 gaps_as_unresolved \,))sey=
84 ref_species \,83gh=
85 file=$(DATA).model-statistics.csv), \
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This rather large option file starts with the selection of the species of
interest, which we store as a list in the SPECIES variable (line 4).
The Subset filter (lines 12–15) extracts the corresponding species
for each block, excluding blocks where not all five species are
present (strict¼yes), and removing any additional species that
might be present (keep¼no). Besides, we discard any block
where a species might be present more than once because of
paralogy (remove_duplicates¼yes). As a result, after this
step, all blocks contain exactly five sequences, one for each
species.

We then proceed with alignment filtering (starting line 16). We
first remove all alignment columns containing a gap in all kept
sequences, due to putative indels with more distant species, which
have now been discarded. This is achieved via the XFullGap filter
(line 16). We then slide a 10 bp window in order to exclude regions
with a least two indel events, independent of their size. Only indel
events involving at least two species are counted (AlnFilter2, with
arguments max.pos¼2 and max.gap¼2). The number of gaps is
specified as a number of occurrences (relative¼no); it can also
be specified as a proportion of the number of sequences. As we are
sliding 10 bp windows, we first discard alignment blocks with less
than ten columns (MinBlockLength filter, line 17). The resulting
alignment is spread into numerous, potentially small blocks. In
order not to discard too much data in subsequent steps of the
analysis, we perform a merging step (lines 25–28). With the speci-
fied configuration, consecutive blocks will only be merged if all
input species are syntenic, that is, the sequences in the two blocks
are colinear (same chromosome, same strand, same distance
between the start of the new block and end of the previous one).
By specifying a subset of species only, it is possible to merge accord-
ing to some focus species, resulting in coordinates being lost for
other species. We further consider a maximum distance of 100 bp in
order to merge consecutive blocks (line 27). When two blocks are
merged, so are the sequence names, which may result in excessively
long names. Using the rename_chimeric_chromosomes
argument, we tell the program to arbitrarily give new names to
merged sequences, which will be called chimtigXX, XX being a
unique number. When merged, missing positions will be replaced
by “N” characters, allowing to preserve coordinates. In effect, the
combination of the AlnFilter2 and Merge filters result in a masking
of the discarded positions.

We analyze the resulting filtered dataset in windows of 10 kb.
The focus window size is specified as a global variable (line 5) and
can be changed in order to assess the impact of the window size on
the results. The WindowSplit filter breaks each block into
non-overlapping blocks of a given size (lines 33–36). Input argu-
ments allow specifying how to cut a block when its size exceeds the
specified window size: either start from the left, center on the block
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while discarding start and end regions or adjust the size in order not
to lose any data. Note that in the latter case, the input window size
w will be the minimum size. The resulting window size can, there-
fore, be comprised between w and 2 � w � 1. When the
keep_small_blocks option (line 36) is set to yes, and the
window size is not adjusted, out-of-window alignment parts and
block smaller than the specified window size will be kept as separate
blocks. Otherwise, they will be discarded.

Phylogenetic reconstruction in each window is performed
using a distance method (BioNJ, [14]), which requires first to
estimate a pairwise distance matrix. We use a maximum likelihood
method, with a K80 substitution model (line 39) and a discrete
gamma distribution of rates across sites (line 40). For computa-
tional efficiency purpose, we only estimate distances and keep other
parameters fixed to realistic values (transition/transversion ratio
equal to 2 and gamma shape parameter equal to 0.5). We further
consider gaps as unknown characters in the modeling and discard
positions with more than one-third of unresolved characters (lines
42 and 43). For each windowed block, the resultingmatrix is stored
as meta-data, with label MLDistance. This distance matrix is then
given as input to the DistanceBasedPhylogeny filter, which recon-
structs a tree using the BioNj method (line 50) and stores it under
the label BioNJ. Further processing includes rooting each tree
using the Orangutan sequence (NewOutgroup filter, lines 49–52)
and removal of the outgroup branch (DropSpecies filter, lines
58–61). Rooted trees are saved into a text file using the Output-

Trees filter for further analysis.
The final step of the analysis consists in the estimation of

substitution parameters for each window. This is done via a
SequenceStatistics filter, and two dedicated statistics: Block-

Counts and ModelFit. The BlockCounts statistics is rather straight-
forward, as it computes nucleotide frequencies in a given set of
species. We use a combination of six calls to this statistic to compute
averaged (line 64) as well as species-specific frequencies (lines
65–69). Input arguments include the set of species to use in the
calculation, as well as suffix strings to distinguish the different
output results. The ModelFit statistic is more complex and requires
to specify a substitution model, similar to the DistanceEstimation

filter. As the model is being fitted to the full tree using Felsenstein’s
dynamic algorithm [15], a more parameter-rich model can be
employed (HKY85, [16]). In particular, we use a non-stationary
model, allowing us to estimate the observed and equilibrium fre-
quencies separately. Under such a model, the ancestral nucleotide
frequencies are different from the equilibrium ones and are fully
parameterized (line 74). In order to reduce computational time, we
do not reestimate branch lengths and keep them to the values
resulting from the BioNJ algorithm (line 81). Enabling branch
length reestimation does not change the results significantly (see
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companion material). Further parameters can be fixed to their
initial or default value using the fixed_parameters argument
(line 80). Finally, the output_parameters argument allows
specifying which estimated parameters should be output to the
result file. As the nomenclature of parameter names can be compli-
cated, MafFilter outputs the list of available parameters when
run. A two-step run might, therefore, be needed in order to fit the
desired model.

The results of this analysis are summarized in two files: a
spreadsheet file containing numerical values, one statistic per col-
umn and one 10 kb window per line (file chr9.model-statis-
tics.csv), and one text file containing a list of trees, one line per
window (file chr9.trees.dnd). R scripts are provided as com-
panion material in order to analyze these output files. The analysis
led to 883 trees. A majority rule consensus tree leads to a topology
compatible with the well-established phylogeny of the species (see
Fig. 4A) [17]. This topology is supported by a majority of windows
(Fig. 4B), but four other “minor” topologies are also inferred:
topology C and D are supported by 55 and 54 windows, and
group human with gorilla and chimpanzee + bonobos with gorilla,
respectively. Such topologies result from incomplete lineage sorting
in the humans-chimpanzees-bonobos ancestral populations
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[18]. The two last topologies, E and F, are supported by three and
four windows and group humans with bonobos and humans with
chimpanzees, respectively, revealing incomplete lineage sorting in
the common ancestor of bonobos and chimpanzees [19].

Having inferred the underlying genealogy for each window, we
could fit a model of sequence evolution and estimate parameters
related to the underlying substitution process. We find that the
proportions of A vs. T and G vs. C nucleotide are constant over
the chromosome and equals (A/(A + T) ’ G/(G + C) ’ 0.5).
The ratio of transitions over transversions increases along the chro-
mosome, from �4 on the left end to �5 on the right end (see
Fig. 5A). Observed GC content is highly conserved between all
species (see companion material), and increases at the right end of
the chromosome (ancestral GC, see Fig. 5B). Equilibrium GC
content, on the other hand, is higher in the two telomeric regions,
mirroring the recombination rate. Such relationships between
recombination and equilibrium GC content are expected when
GC-biased gene conversion is occurring [20]. In the online com-
panion material, an extended version of this script is provided,
which removes protein-coding regions in addition to filtering the
alignment. This increases the total execution time but does not
significantly affect the results.
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4.3 Example

Analysis 3: Running

External Software

MafFilter can integrate external tools within its analysis pipeline.
Programs can be run on each alignment block, and their result
parsed and further processed. Two types are currently supported,
based on the nature of the output.

The SystemCall filter exports each block as a standard align-
ment file, runs a program generating a new alignment, and subse-
quently replaces the original alignment block with the new
alignment. This procedure allows improving the genome alignment
by running standard gene alignment programs on synteny block.
The following script demonstrates this ability using the MAFFT
aligner [21] on the Primates chromosome 9 alignment:

1 DATA=chr9
2 SPECIES=(hg38, panPan1, panTro4, gorGor3, ponAbe2)
3
4 input.file=../Primates/$(DATA).maf.gz
5 input.file.compression=gzip
6 input.format=Maf
7 output.log=$(DATA).maffilter-realign.log
8 maf.filter \=
9 Subset \(
10 species \,)SEICEPS($=
11 strict=yes, keep \,on=
12 remove_duplicates \,)sey=
13 XFullGap(species=$(SPECIES), verbose=no), \
14 SequenceStatistics \(
15 statistics=(BlockSize, BlockLength), \
16 ref_species \,hg38=
17 file=$(DATA)_subset.statistics.csv), \
18 WindowSplit \(
19 preferred_size \,00001=
20 align \,tsujda=
21 keep_small_blocks \,)sey=
22 SystemCall \(
23 name \,TFFAM=
24 input.file \,atsaf.nIkcolb=
25 input.format \,atsaF=
26 output.file \,atsaf.tuOkcolb=
27 output.format \,atsaF=
28 call \,)hs.tffaMnur/.=
29 Merge \(
30 species \,)SEICEPS($=
31 dist_max \,0=
32 rename_chimeric_chromosomes=yes), \
33 SequenceStatistics \(
34 statistics=(BlockSize, BlockLength), \
35 ref_species \,hg38=
36 file=$(DATA)_windows_realigned.statistics.csv),\
37 Output \(
38 file \,zg.fam.dengilaer_)ATAD($=
39 compression \,pizg=
40 verbose \)1=
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As in Subheading 4.2, the pipeline starts by extracting
sequences for five species and removing full gap positions (lines
9–13). The SystemCall filter runs a wrapper script named run-
Mafft.sh, located in the current directory (lines 22–28). The
script reads a file named blockIn.fasta and writes the realigned
sequences into a new file blockOut.fasta, which will be parsed
by MafFilter. It further checks that the input block has at least
two sequences:

1 #! /bin/bash
2 if [ ‘grep ’>’ blockIn.fasta | wc -l‘ == "1" ];
3 then
4 #Only one sequence in block, we pass...
5 cp blockIn.fasta blockOut.fasta
6 else
7 mafft --fft --nomemsave --maxiterate 2 --thread -1 \
8 blockIn.fasta > blockOut.fasta 2> mafft.log
9 fi

For computational efficiency, we ensure that input alignments are
no longer than 10,000 sites and split long blocks using the Window-

Split filter (lines 18–21). The keep_small_blocks option is
set to yes, so that smaller blocks are kept unsplit and not discarded.
Realigned blocks are subsequently re-assembled using the Merge

filter (lines 29–32). However, note that this script will typically
take ca. 1 day to complete on a standard desktop computer. The
final alignment is exported to a new Maf file (lines 37–40), and
statistics are computed before and after realignment. The total
alignment length (number of aligned positions) slightly shrinks
from 89.245 to 89.223 Mb after realigning with MAFFT.

The ExternalTreeBuilding filter enables running an external
phylogeny reconstruction software on each alignment block and
import the resulting tree. As done in Subheading 4.2, we filter the
alignment of chromosome 9 and reconstruct the phylogenetic tree
in 10 kb windows, this time using the PhyML program [22]:

1 # maffilter param=MafFilter-Phylogeny.bpp
2
3 DATA=chr9_realigned
4 SPECIES=(hg38, panPan1, panTro4, gorGor3, ponAbe2)
5 WSIZE=10000
6
7 input.file=$(DATA).maf.gz
8 input.file.compression=gzip
9 input.format=Maf

10 output.log=$(DATA).maffilter-phylogeny.log
11 maf.filter \=
12 MinBlockLength(min_length \,)01=
13 AlnFilter2(verbose \,on=
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14 species \,)SEICEPS($=
15 window.size=10, window.step \,1=
16 missing_as_gap \,sey=
17 max.gap=2, max.pos=2, relative=no, \
18 file \,fam.nla_hsart.)ATAD($=
19 compression \,)enon=
20 Merge \(
21 species \,)SEICEPS($=
22 dist_max \,001=
23 rename_chimeric_chromosomes=yes), \
24 Output \(
25 file \,zg.fam.deretlif_)ATAD($=
26 compression \,)pizg=
27 MinBlockLength(min_length=$(WSIZE)), \
28 WindowSplit \(
29 preferred_size \,)EZISW($=
30 align \,retnec=
31 keep_small_blocks \,)on=
32 ExternalTreeBuilding \(
33 input.file \,yhp.nIkcolb=
34 input.format \(pilyhP=
35 order=sequential, type=extended), \
36 output.file=blockIn.phy_phyml_tree, \
37 output.format \,kciweN=
38 property_name \,LMyhP=
39 call \,)hs.lmyhPnur/.=
40 NewOutgroup \(
41 tree_input \,LMyhP=
42 tree_output \,detoor_LMyhP=
43 outgroup \,)2ebAnop=
44 OutputTrees \(
45 tree \,detoor_LMyhP=
46 file \,dnd.seert.)ATAD($=
47 compression \,enon=
48 strip_names \)sey=

The ExternalTreeBuilding filter exports the current block as
an alignment file (lines 32–39) and the runPhyml.sh script
launches phyml:

1 #! /bin/bash
2 phyml -i blockIn.phy -d nt -q -m HKY85 -f m -t e -c 4 \
3 -a e -s BEST -o tlr -b 0 > phyml.log 2> phyml.err

An HKY85 model of nucleotide substitutions is used with a four-
class discrete gamma distribution of rate fitted to the data. The best
tree from both nearest neighbor interchange (NNI) and subtree
pruning and regrafting (SPR) algorithms for topology search is
selected and further read by MafFilter. After rerooting (line
40), the trees for every block are collected and output. This pipeline
produces exactly 1000 trees, compared to 883 when no realign-
ment was performed, demonstrating that the realignment step
substantially increased the quality of the alignment. Results are
consistent with the BioNJ analysis, 852 blocks supporting the
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well-established phylogeny of the species. 85 and 58 trees cluster
human and gorilla or chimpanzee and bonobo with gorilla, respec-
tively, consistent with the occurrence of incomplete lineage sorting.
Interestingly, these analyses reveal a dissymmetry in the frequency
of the two ILS topologies, the one grouping human and gorilla
being more frequent than the one grouping gorilla and chimpan-
zee. This was previously observed [23] and shown to be due to a
higher rate of sequencing errors in the chimpanzee genome [18].

4.4 Example

Analysis 4:

Coordinates

Translation from One

Species to Another

Many evolutionary analyses require inter-specific comparisons.
When the compared species are closely related enough, it is possible
to perform a joint genome alignment in order to work with a single,
common reference genome. This may not always be the preferable
option, however, in particular when species are divergent and/or
have undergone substantial structural variation and the patterns
under study are intrinsically dependent on the genome position
(e.g., linkage disequilibrium [9]). In such cases, analyses are con-
ducted independently in each species, and coordinates are then
converted into a common reference for comparison.

The LiftOver utility, available at UCSC, can be used to con-
vert genome coordinates from one genome assembly to another, but
should not be used tomap genomes of distinct species. MafFilter,
however, has a function allowing to perform such task, providing a
genome alignment of the two species is available. Such an alignment
can be obtained with software like BlastZ and LastZ [24], TBA
[4], or Mummer [25]. The following example shows how to convert
human gene coordinates into their gorilla homologs using MafFil-
ter and the 20-way genome alignment from UCSC:

1 DATA=chr9
2 SPECIES=(hg38, gorGor3)
3
4 input.file=../Primates/$(DATA).maf.gz
5 input.file.compression=gzip
6 input.format=Maf
7 output.log=$(DATA).maffilter-liftover.log
8 maf.filter \=
9 Subset \(
10 species \,)SEICEPS($=
11 strict=yes, keep \,on=
12 remove_duplicates \,)sey=
13 XFullGap(species=$(SPECIES), verbose=no), \
14 Merge(species \,))SEICEPS($=
15 LiftOver \(
16 ref_species \,83gh=
17 target_species \,3roGrog=
18 target_closest_position \,sey=
19 feature.file=../Primates/chr9.CDS1kb.gtf, \
20 feature.file.compression \,enon=
21 feature.format \,FTG=
22 file \,nlt.3roGrog_ot_83gh=
23 compression \)enon=

44 Julien Y. Dutheil



The option-file starts by reading the genome alignment and speci-
fying the path to the log file (lines 4–7). It then selects the two
species to compare, as shown in Subheading 3.1. The LiftOver

filter specifies the path towards the feature file to translate (lines
19–21), here in GTF format (MafFilter currently supports
translation form GFF, GTF, and BedGraph files, eventually com-
pressed). Lines 16 and 17 allow setting the reference and target
species, respectively. Argument target_closest_position
set the behavior in case the matching position in the target genome
is a gap. If set to yes, the closest non-gap position will be returned.
Original and translated positions will be returned in a tabular file,
specified at lines 22 and 23. Note that for the LiftOver filter to
work correctly, the alignment should be projected on the reference
genome (in this case hg38), for instance using the maf_project
program from the TBA package. Besides, feature coordinates will
only be translated if they are wholly contained in an alignment
block, that is if the feature does not overlap with a synteny break.
It is therefore essential, for optimal efficiency, that the alignment
blocks reflect the synteny structure of the reference and target
species only, which will be the case if the two species have been
pairwise aligned. When the two species are from a multiple genome
alignment, the Subset and Merge filters should be used to combine
syntenic blocks.

The output file recalls the query coordinates and their transla-
tion, for the features that could be translated. It is often convenient
to merge this translation file with the original query, which can be
done in R:

1 anno <- read.table("../Primates/chr9.CDS1kb.gtf",
2 sep = "\t")
3 tln <- read.table("hg38_to_gorGor3.tln", header = TRUE)
4 tln$begin.ref <- tln$begin.ref + 1
5 tln$begin.target <- tln$begin.target + 1
6 anno2 <- merge(anno, tln, by.x = c(1,4,5),
7 by.y = c(1,3,4), all = TRUE)

The first 5 lines read the original GTF file as a table. GTF annota-
tions are 1-based, inclusive [a, b], while MafFilter uses 0-based,
exclusive coordinates [a, b[. GTF coordinates are automatically
converted when reading the file, but MafFilter outputs results
in its coordinate system. We convert them back at lines 4 and
5, before merging the two tables, lines 6 and 7. Furthermore, the
strand column in the translation table does not match the strand
column in the input GTF file. In the feature file, this column
indicates on which strand the feature is to be found, information
that is not used in the translation step. The “strand” column in the
translation file indicates which strand of the sequence was present in
the genome alignment. Since the alignment was projected on the
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reference genome, the corresponding value is always positive. In
the target genome, the value will be positive if the genomes are
colinear, and negative in the case of a genomic inversion.

5 Other Useful Tools

MafFilter provides tools to analyze a MAF file sequentially.
These tools primarily focus on processing data for statistical ana-
lyses. It has a limited formatting capacity, in particular when long-
range operations are involved, such as reordering alignment blocks.
The TBA [4] and Last [6] packages contain several useful tools for
that purpose, which can be used in combination with MafFilter.

From the TBA package:

l The maf_order program permits to select and order sequence
according to their species names.

l The maf_project program order alignment blocks according
to a reference genome. Blocks where the reference genome is on
the negative strand will be reversed. All blocks that do not
contain the reference species will be discarded.

From the Last package:

l The maf-join program allows combining several (sorted)
multiple alignments.

l The maf-sort program permits to sort alignments according
to sequence names.

6 Conclusion

The MafFilter program allows to efficiently process multiple
genome alignment files, by sequentially analyzing synteny blocks.
It features a flexible and extensible syntax permitting the design of
reproducible pipelines for the post-processing of genome data.
Beyond filtering and quality assessment, MafFilter can be used
to analyze patterns of diversity along genomes, within and between
species.

7 Note

Note 1: pseudo-genomes

1. Pseudo-genomes are obtained by applying a set of inferred
variants to the corresponding reference genome. All positions
for which a variant could not be called (whether there is one or
not) will, therefore, be identical to the reference genome in the
resulting pseudo-genome.
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