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ABSTRACT

Bayesian model averaging (BMA) was applied to improve the prediction skill of 1–15-day, 24-h accumu-

lated precipitation over East Asia based on the ensemble prediction system (EPS) outputs of ECMWF,

NCEP, andUKMO from the TIGGEdatasets. StandardBMAdeterministic forecasts were accurate for light-

precipitation events but with limited ability for moderate- and heavy-precipitation events. The categorized

BMAmodel based on precipitation categories was proposed to improve the BMA capacity for moderate and

heavy precipitation in this study. Results showed that the categorized BMA deterministic forecasts were

superior to the standard one, especially for moderate and heavy precipitation. The categorized BMA also

provided a better calibrated probability of precipitation and a sharper prediction probability density function

than the standard one and the raw ensembles. Moreover, BMA forecasts based on multimodel EPSs out-

performed those based on a single-model EPS for all lead times. Comparisons between the two BMAmodels,

logistic regression, and raw ensemble forecasts for probabilistic precipitation forecasts illustrated that the

categorized BMA method performed best. For 10–15-day extended-range probabilistic forecasts, the initial

BMA performances were inferior to the climatology forecasts, while they became much better after pre-

processing the initial data with the running mean method. With increasing running steps, the BMA model

generally had better performance for light to moderate precipitation but had limited ability for heavy pre-

cipitation. In general, the categorizedBMAmethodology combinedwith the runningmeanmethod improved

the prediction skill of 1–15-day, 24-h accumulated precipitation over East Asia.

1. Introduction

Precipitation forecasts have significant impacts on our

daily life (L. Zhang et al. 2015; Surcel et al. 2017).

However, it is difficult for deterministic forecasts to re-

produce the future atmospheric reality due to the cha-

otic characteristics of the atmospheric dynamics and the
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uncertainties associated with models and initial condi-

tions (Lorenz 1963, 1969; Thompson 1957; Smagorinsky

1969). Thus, probabilistic precipitation forecasts are

becoming inevitable for weather forecast systems, es-

pecially for extended-range (10–30 days) precipitation

forecasting. Since 1995 the Meteorological Develop-

ment Laboratory of the U.S. National Weather Service

has produced an extended-range forecasting guidance

for probability of precipitation (PoP) using model out-

put statistics (MOS; Carrol and Maloney 2004).

Developing extended-range weather forecasts is nec-

essary to fill the gap between short- to medium-range

weather forecasts (1–9 days) and short-term climate

predictions (above 30 days), which is also important for

disaster prevention and mitigation (Xie et al. 2007;

Zeng and Wang 2009; Zhuang et al. 2010). Numerical

weather prediction (e.g., ensemble forecasts; Barnett

and Preisendorfer 1987; Miyakoda et al. 1983; Yang

et al. 2001) and prediction methods using low-frequency

atmospheric oscillation signals (Waliser et al. 1999;

Plaut and Vautard 1994; Jones et al. 2000; Goswami and

Xavier 2003) are considered as efficient and essential

methods for extended-range forecasts. In recent de-

cades, multimodel ensemble forecasting methodologies

have been developed by many researchers (Chen et al.

2010; Hagedorn et al. 2012; Zhi et al. 2012, 2013; Zhang

and Zhi 2015; H. B. Zhang, et al. 2015; Slater et al. 2017)

and may play an important role for improving extended-

range weather forecasts.

Recently, ensemble forecasting has been one of the

key technical concepts for the transition from determinis-

tic to probabilistic forecasts (Räisänen and Ruokolainen

2006; Majumdar and Torn 2014; Scheuerer et al. 2017).

The WMO established a 10-yr international research

program—The Observing System Research and Predict-

ability Experiment (THORPEX)—in order to further

improve the accuracy of 1–15-day weather forecasts

(Shapiro and Thorpe 2004). The THORPEX Interactive

Grand Global Ensemble (TIGGE) is a key component

of the program, which collects ensemble forecasting

products from several weather centers such as the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF), the National Centers for Environment

Prediction (NCEP), the Met Office (UKMO), etc. Dif-

ferent centers use different models, initial perturba-

tion schemes, and ensemble sizes to generate ensemble

forecasts (Herrera et al. 2016). In fact, the TIGGE da-

tasets have provided an important basis for the pro-

duction of probabilistic precipitation forecasts (Park

et al. 2008; Bougeault et al. 2010).

Several methods are currently used to derive proba-

bilistic precipitation forecasts such as linear regression

(Bermowitz 1975), binning techniques (Yussouf and

Stensrud 2006), analog methods (Hamill et al. 2004,

2015), extended logistic regression (Walker and Duncan

1967; Roulin and Vannitsem 2012), and neural networks

(Koizumi 1999; Hall et al. 1999). However, some of them

are not able to take advantage of the complete in-

formation available in the ensemble and only give

probabilities for specific events instead of the full pre-

dictive probability density function (PDF; Sloughter

et al. 2007), and some of them are unable to provide

quantitative forecast uncertainties. The main task of

ensemble forecasts is to quantitatively describe forecast

uncertainty and provide a reliable PDF rather than a

better deterministic forecast (Fraedrich et al. 2003;

Langmack et al. 2012).

Bayesian model averaging (BMA; Raftery et al. 2005;

Sloughter et al. 2007, 2010; Fraley et al. 2010; Liu and

Xie 2014) and ensemble MOS (EMOS; Gneiting et al.

2005; Scheuerer 2014; Scheuerer and Hamill 2015) are

two state-of-the-art approaches developed for ensemble-

based probabilistic precipitation forecasts. EMOS uses

a single parametric PDF and effectively calibrates

precipitation forecasts (Hemri et al. 2014; Baran and

Nemoda 2016; Vogel et al. 2018). BMA can provide

weighted average prediction PDFs based on the relative

prediction skills of the individual ensemble members

(Sloughter et al. 2007; Fraley et al. 2010) and then pro-

duce corresponding probabilistic forecasts. Raftery et al.

(2005) originally applied BMA to the prediction of

temperature and sea level pressure, whose PDFs were

approximately normal, yielding well-calibrated and

sharp PDFs. However, precipitation is a discontinuous

variable, whose PDF does not follow the normal distri-

bution and has a nonnegligible probability of being

equal to zero. The BMAmethod was further developed

by Sloughter et al. (2007) and applied to skewedweather

variables [e.g., precipitation and wind; Sloughter et al.

(2010, 2013)]. Fraley et al. (2010) successfully extended

the BMA approach to postprocess multimodel ensem-

bles of any composition. Subsequently, BMA was em-

ployed in more studies on daily weather forecasts and

climate predictions (Min andHense 2007; Casanova and

Ahrens 2009; Schmeits and Kok 2010; Wang et al. 2012;

Erickson et al. 2012; Kim and Suh 2013; Ji et al. 2017).

Many analyses demonstrated that the BMA method

performed superior to unprocessed forecasts, but with

limited capacity for heavy precipitation (Sloughter et al.

2007; Liu and Xie 2014).

So far, relatively few studies appliedBMA toextended-

range weather forecasts, particularly to forecasts of mod-

erate and heavy precipitation. In our study, we analyze the

performance of the BMA method for probabilistic pre-

cipitation forecasts, especially for the extended-range

forecasts and for heavy precipitation. We apply the
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BMA method to three single-model ensemble pre-

diction systems (EPSs) (ECMWF, NCEP, andUKMO)

and the multimodel ensemble system comprising all

three EPSs, and venture to improve the BMA capacity

for moderate- and heavy-precipitation forecasts and

for forecasts at longer lead times.

The paper is organized as follows. The datasets and

methods are described in section 2. In section 3, we

provide and compare the deterministic and probabilistic

precipitation forecasting results for lead times of 1–

15 days using the standard and modified BMAmethods.

Finally, a summary and discussion is given in section 4.

2. Data and methods

a. Data

We use the 24-h accumulated precipitation forecasts

from the ECMWF (51 members), NCEP (21 members),

and UKMO (24 members) EPSs with a resolution of

18 3 18 (Table 1) initialized at 1200 UTC for lead times

of 1–15 days. The multimodel ensemble [exchangeable

grand EPS (EGE)] includes all three EPSs and contains

96 members. The datasets are obtained from the

TIGGE–ECMWF portal.

The hourly precipitation products merged from the

precipitation analyses of the U.S. National Oceanic and

Atmospheric Administration Climate Prediction Center

morphing technique (CMORPH) and observed values

from automatic weather stations (AWS) are used for

the evaluation. This merged gauge–satellite precipitation

product with a resolution of 0.18 3 0.18 was produced by

combining probability density functions of both products

and optimal interpolation, which integrate the advantages

of gauge observed data and retrieved satellite precipita-

tion data (Janowiak and Xie 1999; Xie and Xiong 2011).

We analyzed the data for the time period from 1May to

31August 2013 over an area located inEastAsia covering

the region 15.058–58.958N, 70.158–139.958E. For both the

observed and predicted, 24-h accumulated precipitation

below 0.01mmday21 is defined as ‘‘no precipitation.’’

b. Bayesian model averaging

We followed Sloughter et al. (2007), who extended the

BMA method (which we explain in detail in the next

paragraphs) to 24-h accumulated precipitation, by using

the cube root of 24-h accumulated precipitation y as the

predictor variable. In the case of multimodel ensem-

bles usually two or more of the member forecasts from

the same EPS, which lack individually distinguishable

physical features, are exchangeable (Fraley et al. 2010).

Assuming that there are S EPSs and each EPS hasms

exchangeable members. The total number of members

is given by �S

s51ms 5m. The variable fs,t represents the

tth member of the sth EPS. Then the BMA prediction

PDF for exchangeable ensemble forecasts can be writ-

ten as

p yjff
s,t
g
s51, :::, S,t51, :::,ms

� �
5�

S

s51
�
ms

t51

v
s,t
[P(y5 0jf

s,t
)

I(y5 0)1P(y. 0jf
s,t
)g

s,t

(yjf
s,t
)I(y. 0)], (1)

where vs,t is the posterior probability of forecast fs,t. The

indicator function I[] is equal to 1 if the condition in

brackets is satisfied; otherwise, it is zero.

The first part P(y5 0jfs,t) is the probability of no

precipitation as a function of fs,t by a logistic regression

model:

log itP(y5 0jf
s,t
)5 log

P(y5 0jf
s,t
)

P(y. 0jf
s,t
)

5 a
0s,t

1 a
1s,t

f 1/3s,t 1 a
2s,t

d
s,t
, (2)

where ds,t is an indicator and is equal to 1 if fs,t 5 0; other-

wise, it is equal to 0. Here, P(y. 0jfs,t) is the probability of
nonzero precipitation given the forecast fs,t. The parame-

ters a0k, a1k, and a2k are estimated by using the Newton–

Rapson iterative method against the training period.

The second part is the gamma distribution PDF of the

precipitation amount gs,t(yjfs,t):

g
s,t
(yjf

s,t
)5

1

b
as,t
s,t G(as,t

)
yas,t21 exp(2y/b

s,t
), (3)

where the shape parameter as,t and scale parameter bs,t

of the gamma distribution depends on fs,t through the

following relationships:

TABLE 1. Ensemble forecast systems used in this study.

Prediction

center

Model spectral

resolution Initial perturbation scheme

Ensemble

members

ECMWF T399L62/T255L62 Singular vectors and ensemble of data assimilations (EDA) 51

NCEP T126L28 Ensemble transform and rescaling 21

UKMO Ensemble transform Kalman filter (ETKF) 24
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m
s,t
5 b

0s,t
1b

1s,t
f 1/3s,t 5a

s,t
b
s,t
, and (4)

s2
s,t 5 c

0s,t
1 c

1s,t
f
s,t
5a

s,t
b2
s,t, (5)

where ms,t and s2
s,t are the mean and variance of the

gamma distribution, respectively. The parameters b0s,t

and b1s,t are estimated by linear regression from the

training period. The parameters vs,t, c0s,t, and c1s,t are

estimated by the expectation maximization (EM) algo-

rithm based on the training data. The details of param-

eter estimations associated with the EM algorithm can

be found in Fraley et al. (2010) and are not repeated

here. Last but not least, members that are treated as

exchangeable will have equal BMA weight and equal

BMA parameter values.

As mentioned in the previous studies (Sloughter et al.

2007; Liu and Xie 2014), the BMA method, which is

called the standard BMA method in the following,

has a limited ability to successfully forecast heavy

precipitation, which could be associated with un-

certainties in the parameter estimation. The fewer

samples of the heavy-precipitation events than the

light to moderate ones may affect the bias correction

for heavy precipitation. To overcome this problem,

considering that the intensity of precipitation may af-

fect the parameter estimation, we construct different

BMA models based on different precipitation cate-

gories. In our study, the 24-h accumulated pre-

cipitation is separated into three categories based on

the ensemble mean [i.e., light precipitation (,10mm),

moderate precipitation (;10–24.9mm), and heavy

precipitation ($25mm)]. We call this extension in the

following the categorized BMAmodel. First, we select

samples of various categories of precipitation accord-

ing to the daily accumulative precipitation amount

during a training period. Then the BMA models for

different precipitation amounts are established, re-

spectively. Consequently, the most appropriate BMA

model can be determined for the forecast period based

on the ensemble mean. A spatial sliding window of

18 3 18 is used to increase the number of moderate- and

heavy-precipitation samples in order to decrease the

sampling variability of the BMA results. That is, within

the 18 3 18 spatial window centered at the target point,

grid points with the same precipitation magnitude are

also additionally taken as samples for the respective

precipitation category.

Parameter estimation for the BMA is obtained from a

training period. Thus, it is important to choose the op-

timal length of the BMA training period. Here we

adopt a sliding temporal window (following Raftery

et al. 2005), using a training sample period of the N

previous days, where N 5 10, 15, 20, . . . , 50. Then we

construct different BMA prediction models for a single-

model EPS (i.e., BMA model based on ECMWF,

NCEP, and UKMO EPS, hereafter abbreviated as

E-BMA, N-BMA and U-BMA, respectively) and mul-

timodel EGE (i.e., the standard BMA and the catego-

rized BMA model, hereafter abbreviated as s-BMA

and c-BMA, respectively). Evaluations for the perfor-

mances of different BMA models using different train-

ing lengths are also carried out. The certain time when

the verification metrics tend to be stable is taken as the

optimal sliding training period. As a result, a 30-day

sliding training period is selected for all BMA models

(not shown).

c. Running mean method

Previous studies (Lorenz 1982; Chou 1989) pointed

out the difficulty in producing daily forecasts for

extended-range periods due to the limited atmo-

spheric predictability. However, for extended-range

weather forecasting precipitation data averaged over

several days are very valuable, as they contain rele-

vant information for future precipitation. Therefore,

we apply also the multiday running mean of pre-

cipitation for the 10–15-day extended-range weather

forecasts with

y
j
5

1

k
�
k

i51

x
i1j21

(j5 1, 2, . . . , n2k1 1), (6)

where x is the observed daily precipitation or the daily

precipitation of the model forecasting, and k is the

running step. The index of x indicates the serial number

of time series. We use k 5 3, 5, and 7 to preprocess the

data for every lead time of the extended-range period

and then reconduct the BMA model.

d. Verification methods

The anomaly correlation coefficient (ACC), the mean

absolute error (MAE), and the equitable threat score

(ETS) are used to evaluate the BMA deterministic

forecasts (i.e., the median of the BMA prediction PDF).

For the probabilistic forecasts, the Brier score (BS) is

adopted to assess forecasts exceeding specific thresholds

and the continuous ranked probability score (CRPS) is

applied to measure the BMA forecast distributions.

Additionally, skill scores of some of these metrics are

also employed to verify the improvements in compari-

son with the reference forecasts.

1) ANOMALY CORRELATION COEFFICIENT AND

MEAN ABSOLUTE ERROR

The anomaly correlation coefficient and the mean

absolute error are defined by
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ACC5

1

N
�
N

i51

(f
i
2 f )(o

i
2 o)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
N

i51

(f
i
2 f )2

1

N
�
N

i51

(o
i
2 o)2

s , and (7)

MAE5
1

N
�
N

i51

jf
i
2 o

i
j , (8)

whereN is the total number of grid samples in the spatial

field; fimeans themedian forecast value of the ith sample;

oi represents the corresponding observation; and f and o

denote the averages of the fi (i 5 1, 2, . . . , N) and oi,

respectively. ACC and MAE can be used to assess the

correlations and differences betweenmodel forecasts and

observed values, respectively. Higher ACC and lower

MAE always demonstrate better model forecasts.

2) EQUITABLE THREAT SCORE

The ETS represents the forecasting skill of pre-

cipitation in a certain area relative to stochastic forecasts

and is specified as follows:

ETS5
N

A
2R(a)

N
A
1N

B
1N

C
2R(a)

, and (9)

R(a)5
(N

A
1N

B
)(N

A
1N

C
)

N
A
1N

B
1N

C
1N

D

. (10)

Variables in the formula are defined in Table 2. ETS, by

definition, has penalties for both inaccuracy and misses

and ranges from21/3 to 1. Larger ETS values represent

higher forecasting skills, and the forecast has no skill

relative to random forecasts if the ETS is less than 0.

3) BRIER SCORE AND CONTINUOUS RANKED

PROBABILITY SCORE

The BS (Brier 1950) is kind of a mean square proba-

bilistic error, which has been widely used in the assess-

ment of probabilistic precipitation forecasts of exceeding

specific thresholds (Ferro 2007):

BS5
1

n
�
n

i51

(f
i
2O

i
)2 , (11)

where fi is the forecasting probability, and Oi is the ac-

tual outcome of the event at instance i. If it is true,

Oi 5 1; otherwise, Oi 5 0, and n is the number of fore-

casting instances. The Brier score is negatively oriented

and has the range 0 # BS # 1.

For a predictive cumulative distribution function f(y)

and an observation o, the CRPS is defined as

CRPS5
1

n
�
n

i51

ð
f (y

i
)2H(y

i
2o

i
)

� �2
dx , (12)

where H(yi 2 oi) is the Heaviside function that

jumps from 0 to 1 at the observed value. If yi , oi,

H(yi 2 oi)5 0; otherwise, H(yi 2 oi)5 1: CRPS can be

considered as an integral over BS for all thresholds and

measures the overall probabilistic performance.

4) SKILL SCORE

To evaluate the prediction skill of the BMA model

compared to the reference forecasts, the skill score is

proposed:

SS5
Score(forecast)2 Score(reference)

Score(perfect)2 Score(reference)
, (13)

where Score(perfect) and Score(reference) are the skills

achieved by the perfect forecasts and reference fore-

casts, respectively. In our study, the raw ensemble and

climatology forecast will be used as references and

Score(forecast) represents the scores obtained from the

BMA forecasts. This metric is positively oriented. The

skill scores of ETS and BS will be calculated to detect

the BMA improvements in comparison with the raw

ensembles and climatology forecasts in the following

sections.

3. BMA probabilistic precipitation forecasting

a. BMA PDF

To illustrate how the BMA method works for prob-

abilistic precipitation forecasts, the 1-day lead time

TABLE 2. Precipitation test classification.

Forecast

Observation Yes No

Yes NA NC

No NB ND

TABLE 3. Results from logistic regression PoP, s-BMA, c-BMA,

and the corresponding observations for two example grids (mm1/3).

Ensemble member ECMWF NCEP UKMO

s-BMA model

BMA weight 0.55 0.22 0.23

Member PoP 0.86 0.81 0.76

BMA PoP 0.83

BMA forecast 2.35

c-BMA model

BMA weight 0.53 0.22 0.25

Member PoP 0.88 0.88 0.88

BMA PoP 0.88

BMA forecast 2.82

Observation 2.98
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forecast of the heavy-precipitation event on 29 June 2013

at grid 198N, 908E is taken as an instance. Table 3 shows

the results from the raw ensembles, the logistic regres-

sion, s-BMA, c-BMA, and the corresponding observa-

tions for this sample. The prediction PDFs obtained from

the two BMA methods are shown in Fig. 1. The proba-

bility of precipitation exceeding a certain threshold is the

proportion of the area under the BMA PDF to the right

of the given threshold, multiplied by the probability of

the nonzero precipitation. The deterministic forecast

FIG. 1. The prediction PDF of 24-h accumulated precipitation for 198N, 908E on 29 Jun 2013 obtained from the

(a) standard BMAmodel and (b) categorized BMAmodel with a lead time of 1 day. The blue vertical line at zero

represents the BMA estimation of the probability of precipitation, and the curve is the BMA PDF of the pre-

cipitation amount given that is nonzero. The dashed vertical line represents the BMA deterministic forecast

(median forecast), and the red dot represents the verifying observation.

FIG. 2. Spatial distributions of 24-h accumulated precipitation (mm) from (a) observations, (b) s-BMA de-

terministic forecasts, and (c) c-BMA deterministic forecasts for 29 Jun 2013.
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(i.e., the median of the BMA prediction PDF) ob-

tained from the s-BMAmodel is 2.35mm1/3, while it is

2.82mm1/3 for the c-BMAmodel, which is much closer

to the observation of 2.98mm1/3 (Table 3). The PDF

from the c-BMA model (Fig. 1b) also indicates that

the deterministic forecast (vertical dash line) of

c-BMA model is relatively close to the observation

(red dot).

The spatial distributions of 24-h accumulated pre-

cipitation from the observations and the two BMA

models on 29 June 2013 are shown in Fig. 2. The fore-

casts of the s-BMA model have more false alarms

and misses than the c-BMA model forecasts. Thus, the

c-BMA model can generate a more accurate determin-

istic forecast not only for moderate and heavy pre-

cipitation but also for light precipitation.

b. Comparisons between different BMA models and
raw ensembles

The assessments of different BMA models are de-

scribed in the following section based on an individual

EPS and a multimodel EGE for 24-h accumulated

precipitation with lead times of 1–15 days. The BMA

model, logistic regression, and raw ensemble forecasts

are evaluated. In addition, the calibration of the BMA

and raw ensemble is presented.

The verification metrics (i.e., MAE, ACC, CRPS,

and average width of the lower 90% prediction in-

tervals) are given in Fig. 3 for different BMA models.

The average width of the lower 90% prediction in-

tervals assesses the sharpness of the BMA prediction

PDF. The c-BMA model performs better than the

s-BMA especially for longer lead times. The EGE

BMA (i.e., s-BMA and c-BMA) models outperform

the single EPS BMA models (i.e., E-BMA, N-BMA,

and U-BMA), with smaller MAEs, CRPSs, average

width of the lower 90% prediction intervals, and higher

ACCs. In addition, the EPS prediction skill decreases

with increasing lead times.

The comparison between the c-BMA model and the

raw ensemble is presented in Fig. 4. The BMA model

performs much better than the raw ensemble for all lead

times, in terms of not only deterministic but also prob-

abilistic forecasts. Noticeably, there is a ‘‘mutation’’ at

FIG. 3. Mean verification metrics for different BMAmodels of 24-h accumulated precipitation with lead times of

1–15 days on different EPSs. (a)MAEs of BMAdeterministic forecasts, (b) ACCs of BMA deterministic forecasts,

(c) CRPSs, and (d) average widths of lower 90% prediction intervals.
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day 11 of E-BMA (Fig. 3), raw ECMWF EPS, and raw

grand EPS (Fig. 4), which is due to the coarser reso-

lution of the ECMWF EPS and the atmosphere–ocean

model coupling from day 10 onward (Andersson

2015). To avoid a too significant mutation, there exists

a 24-h overlap period between days 9 and 10, especially

for large-scale precipitation. The raw grand EPS con-

tains the ensemble members from the ECMWF EPS

without bias correction. As a result, the BMA model

of ECMWF EPS, raw ECMWF EPS, and raw grand

EPS all have relatively poor performances at the lead

time of 11 days. But for the EGE BMA (i.e., s-BMA

and c-BMA) models, the abrupt phenomenon is not as

obvious as in the BMA model of ECMWF EPS, which

can be attributed to the bias correction and the dif-

ferent weights of different ensemble members from

different EPSs.

Taking the raw ensemble as the reference, the ETS

skill scores for four-category precipitation forecasts

are presented in Fig. 5. The performances of the s-BMA

deterministic forecasts for moderate and heavy rainfall

are even inferior to the raw ensembles for all lead times.

The skill scores for moderate and heavy precipitation are

improved after the categorization, but the improvements

for moderate and heavy precipitation decrease with in-

creasing lead time. The c-BMA model also improves the

capacity of deterministic forecast for light precipitation at

longer lead times.

Further assessments are carried out for the nine-

category precipitation forecasts from the c-BMA pre-

dicted PDF, s-BMA predicted PDF, logistic regression,

ensemble consensus voting, and climatology forecasts,

as shown in Table 4. The EGE BMA models, including

the s-BMA and c-BMA models, generally outperform

the logistic regression, raw ensemble, and climatology

forecasts. However the performance of the s-BMA

model at the threshold of 0mm is not as good as the

logistic regression. Furthermore, the c-BMA model

performs better than the s-BMA, especially at higher

thresholds, indicating that the categorization signifi-

cantly improves the BMA capacity for moderate and

heavy precipitation. Besides, climatology forecasts

are inferior to the logistic regression forecasts, but

superior to the raw ensemble forecasts. Similar re-

sults are obtained for other lead times (not shown),

but the advantages of the BMA models to the cli-

matology forecasts do not always persist for longer

lead times.

FIG. 4. Mean verification metrics for the categorized BMAmodel and raw ensembles with lead times of 1–15 days.

(a) MAEs of BMA deterministic forecasts, (b) ACCs of BMA deterministic forecasts, and (c) CRPSs.
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Probabilistic forecasting is always applied with the

advantage of maximizing the sharpness of the predic-

tion subject to calibration (Raftery et al. 2005; Gneiting

et al. 2007). We use the verification rank histogram

(Talagrand et al. 1997) and the probability integral

transform (PIT) histogram (Raftery et al. 2005; Gneiting

et al. 2007) to evaluate the calibration of an original

EPS and the BMA forecast distributions, respectively.

In both cases, a more uniform histogram characterizes

the better calibration. The verification rank histogram

for the raw ECMWF ensemble forecasts is displayed

in Fig. 6 for the 1-day lead time, as well as the PIT

FIG. 5. Skill scores of ETS for four-category precipitation forecasts obtained from the categorized BMA model

and standard BMAmodel with respect to the raw ensemble with lead times of 1–15 days: (a).0.01, (b);0.01–9.9,

(c) ;10–24.9, and (d) $25mm.

TABLE 4. Mean BS values for probabilistic precipitation forecasts exceeding some specific thresholds using different ensemble methods

with lead time of 1 day.

Threshold (mm) c-BMA s-BMA Logistic Ensemble Climatology

0 0.2523 0.2797 0.2695 0.3196 0.2809

5 0.1037 0.1130 0.1174 0.2118 0.1227

10 0.0590 0.0789 0.0883 0.1429 0.0857

15 0.0360 0.0572 0.0654 0.0986 0.0624

25 0.0158 0.0330 0.0435 0.0517 0.0357

30 0.0112 0.0260 0.0373 0.0392 0.0278

50 0.0035 0.0108 0.0237 0.0149 0.0116

100 0.0006 0.0019 0.0158 0.0022 0.0021
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histogram of the c-BMA forecasts. The raw ensemble

exhibits an L shape, indicating that the original EPS

has a positive deviation. By contrast, the c-BMA

forecast distributions are well calibrated. The cali-

bration of PoP forecasts in the form of the reliability

diagram is shown in Fig. 7. The reliability diagram

also indicates that c-BMA performs better in pre-

dicting the probability of nonzero precipitation than

the s-BMA model and the raw ensemble. Similar re-

sults hold for the other EPSs and other lead times

(not shown).

c. Extended-range probabilistic precipitation
forecasting

In this section, we focus on precipitation forecasts

for extended-range lead times of 10–15 days. As men-

tioned in section 2c, more attention will be paid to the

averaged accumulated precipitation over several days

during the extend-range period instead of the daily

forecast. To this goal the running mean method is ap-

plied to preprocess the data for every lead time of the

extended-range period. The BMAmodel is reconducted

for extended-range precipitation forecasts with pre-

processed data resulting from different running steps

(e.g., 3 days, 5 days, and 7 days). Then the BMA per-

formances for different running steps are evaluated via

the MAE, ACC, CRPS, and Brier skill score (BSS) to

find the optimal running step.

Figure 8 displays the performance of the BMAmodels

for extended-range probabilistic precipitation forecasts

based on different preprocessed data. The BMA pre-

diction using running mean data shows lower MAE and

CRPS as well as higher ACC than the initial BMA

prediction, indicating the enhanced forecast capability

induced by the running mean preprocessing. Addition-

ally, it is indicated by the BS for the six-category pre-

cipitation forecasts obtained from the four models

(Fig. 9), that the BMA model based on running mean

data is consistently more skillful than the BMA

model on original data for extended-range probabi-

listic precipitation forecasts. Moreover, the BMA

model performs better as the running step increases

while the forecast skills decrease with increasing

lead times. The improvements of forecast skills com-

pared to the reference forecast (i.e., climatology

forecast hereby) are shown in Fig. 10. Considering the

differences between the climatological event frequen-

cies for different regions within East Asia, the calcula-

tions of BSS values are referred by Hamill and Juras

(2006). The sample climatology probability is deter-

mined by each month and each grid point, and then the

reference Brier scores of the climatology are calcu-

lated separately for subsets with different climatologies.

FIG. 6. (a) Verification rank histogram for ECMWF EPS raw ensemble forecasts and (b) PIT histogram for the

categorized BMA model forecast distributions of precipitation accumulation with lead time of 1 day.

FIG. 7. Reliability diagram of binned PoP forecast vs observed

relative frequency of precipitation, for consensus voting of the raw

ensemble, the standard BMA model, and the categorized BMA

modelwith a lead time of 1 day. The dotted line refers to the perfect

forecast.
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The results show that the BMAmodel based on running

mean data performs better than that based on the orig-

inal data for light to moderate precipitation. However,

for heavy precipitation, the running mean method does

not work as expected and is even inferior for extended-

range forecast in terms of the BSS values, which is

mainly due to the fact that the sample size of heavy

precipitation decreases rapidly after using the running

mean method, especially for longer running steps. In

addition, because of the often limited duration of a

weather process, the running step should not be too

long.

4. Summary and discussion

In this study, the BMA method was applied to im-

prove the ensemble forecasts of 24-h accumulated pre-

cipitation with lead times of 1–15 days based on the

TIGGE multimodel ensembles. The BMA prediction

models were established for different EPSs, including

single-model EPSs (ECMWF, NCEP, and UKMO) and

the multimodel EGE.

The standard BMA (s-BMA) deterministic forecasts

were relatively accurate for light-precipitation events,

but became inaccurate for moderate- and heavy-

precipitation events. We proposed the categorized

BMA (c-BMA) model, which separated the 24-h

accumulated precipitation into three categories accord-

ing to the ensemble mean forecast (i.e., light pre-

cipitation below 10mm, moderate precipitation from 10

to 24.9mm, and heavy precipitation above 25mm).

Samples of these precipitation categories were se-

lected to establish different BMA models and esti-

mate their respective BMA parameters from the

training period. Thus, themost appropriate BMAmodel

can be chosen for the forecast period based on the

forecast ensemble mean.

The c-BMA forecasts showed larger ACCs between

forecasts and observations and smaller MAEs and

CRPSs than those of the s-BMA models. Besides, the

ETS values of the c-BMA models for all precipitation

categories were improved. There were differences be-

tween model forecast skills for different categories of

precipitation. Thus, the c-BMA method can take all

ensemble information into full use to achieve better

forecasts. Generally, the c-BMA forecasts were clearly

superior to the s-BMA not only for deterministic fore-

casts but also for probabilistic forecasts. Additionally,

FIG. 8. Mean verification metrics of BMA models based on initial data and 3-, 5-, and 7-day running mean data

for lead times of 10–15 days. (a) MAEs of BMA deterministic forecasts, (b) ACCs of BMA deterministic forecasts,

and (c) CRPSs.
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the BMAmodels for the EGE (i.e., s-BMAand c-BMA)

outperformed those of any other single-model EPS (i.e.,

E-BMA, N-BMA, and U-BMA) for all lead times. The

probabilistic forecasts of the BMA models performed

better than the raw ensemble forecasts and the logistic

regression results. As a statistical postprocessing

method, BMA yields a full prediction PDF, which

comprises two parts: the probability of zero precipita-

tion and the PDF for the accumulated precipitation

above zero. Furthermore, the BMA PDF is better cali-

brated than the raw ensemble.

As expected, the probabilistic precipitation forecasts

became less skillful with increasing lead time. To

achieve better performance, the BMA model for

extended-range probabilistic precipitation forecasts was

reoperated with the running mean data for a precipita-

tion process during the extended-range period. As a

result, the obtained BMA probabilistic precipitation

FIG. 9. Mean Brier scores of the six-category precipitation forecasts obtained from BMA models on initial

data and 3-, 5-, and 7-day running mean data with lead times of 10–15 days: (a) 0, (b) 5, (c)10, (d) 15, (e) 25,

and (f) 50 mm.
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forecasts became more skillful then and performed

better than the climatology forecasts for light to mod-

erate precipitation, but had limited or lower skill for

heavy precipitation.

In conclusion, the categorized BMA probabilistic

precipitation forecasts based on multi-EPSs with lead

times of 1–15 days greatly improved the quality of

probabilistic precipitation forecasts. On the other hand,

with the development of probabilistic forecasts and

multimodel ensemble forecasts, both short- to medium-

range and extended-range precipitation forecasts will be

further advanced.

In our experiment, we used three EPSs, which provided

extended-range forecasts and already had relatively high

prediction skills. As more centers provide extended-range

numerical weather predictions in the future, more EPSs

can be used to conduct the experiment, which may further

improve theBMAperformance.But it should benoted the

FIG. 10. As in Fig. 9, but for mean Brier skill scores.
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EPSs devoted to the BMA model need to be selected

further, not following ‘‘the more the better’’ paradigm as,

apparently, not all EPSs are sufficiently efficient. In addi-

tion, the EMOSmethod (Scheuerer 2014) and the optimal

weight method (Wanders and Wood 2016) can also be

employed for extended-range precipitation forecasts and

further compared to the BMA method, which will be in-

vestigated in the near future.

Acknowledgments. We are very grateful to Prof. Dr.

Clemens Simmer (Meteorological Institute, University

of Bonn) for proofreading this manuscript, which helped

to improve the paper. This study was supported by the

National Natural Science Foundation of China (Grant

41575104), the NJCAR key project (Grant 2016ZD04),

the Postgraduate Research and Practice Innovation

Program of Jiangsu Province (Grant KYCX17_0875),

and the Priority Academic Program Development of

Jiangsu Higher Education Institutions (PAPD).

REFERENCES

Andersson, E., 2015: Availability and interpolation of the NWP

output: Interpolation techniques. User guide to ECMWF

forecast products, 32–33, https://confluence.ecmwf.int/display/

FUG/Forecast1User1Guide.

Baran, S., and D. Nemoda, 2016: Censored and shifted gamma

distribution based EMOSmodel for probabilistic quantitative

precipitation forecasting. Environmetrics, 27, 280–292, https://

doi.org/10.1002/env.2391.

Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of

monthly and seasonal forecast skill for United States surface

air temperatures determined by canonical correlation anal-

ysis.Mon.Wea. Rev., 115, 1825–1850, https://doi.org/10.1175/

1520-0493(1987)115,1825:OALOMA.2.0.CO;2.

Bermowitz, R. J., 1975: An application of model output statistics

to forecasting quantitative precipitation.Mon. Wea. Rev., 103,

149–153, https://doi.org/10.1175/1520-0493(1975)103,0149:

AAOMOS.2.0.CO;2.

Bougeault, P., and Coauthors, 2010: The THORPEX Interactive

Grand Global Ensemble. Bull. Amer. Meteor. Soc., 91, 1059–

1072, https://doi.org/10.1175/2010BAMS2853.1.

Brier, G. W., 1950: Verification of forecasts expressed in terms of

probability. Mon. Wea. Rev., 78, 1–3, https://doi.org/10.1175/

1520-0493(1950)078,0001:VOFEIT.2.0.CO;2.

Carrol, K. L., and J. C. Maloney, 2004: Improvements in extended-

range temperature and probability of precipitation guidance.

Symp. 50th Anniversary of Operational Numerical Weather

Prediction, College Park, MD, NWS/Amer. Meteor. Soc.,

P4.6.

Casanova, S., and B. Ahrens, 2009: On the weighting of multi-model

ensembles in seasonal and short-range weather fore-

casting.Mon.Wea. Rev., 137, 3811–3822, https://doi.org/10.1175/

2009MWR2893.1.

Chen, C. H., C. Y. Li, Y. K. Tan, and T. Wang, 2010: Research of

the multi-model super-ensemble prediction based on cross-

validation. J. Meteor. Res., 68, 464–476.
Chou, J. F., 1989: Predictability of the atmosphere. Adv. Atmos.

Sci., 6, 335–346, https://doi.org/10.1007/BF02661539.

Erickson, M. J., B. A. Colle, and J. J. Charney, 2012: Impact of

bias-correction type and conditional training on Bayesian

model averaging over the northeast United States. Wea.

Forecasting, 27, 1449–1469, https://doi.org/10.1175/WAF-D-

11-00149.1.

Ferro, C. A. T., 2007: Comparing probabilistic forecasting systems

with the Brier score. Wea. Forecasting, 22, 1076–1088, https://

doi.org/10.1175/WAF1034.1.

Fraedrich, K., C. C. Raible, and F. Sielmann, 2003: Analog en-

semble forecasts of tropical cyclone tracks in the Australian

region. Wea. Forecasting, 18, 3–11, https://doi.org/10.1175/

1520-0434(2003)018,0003:AEFOTC.2.0.CO;2.

Fraley, C., A. E. Raftery, and T. Gneiting, 2010: Calibrating mul-

timodel forecast ensembles with exchangeable and missing

members using Bayesian model averaging. Mon. Wea. Rev.,

138, 190–202, https://doi.org/10.1175/2009MWR3046.1.

Gneiting, T., A. E. Raftery, A. H. Westveld III, and T.Goldman,

2005: Calibrated probabilistic forecasting using ensemble

model output statistics and minimum CRPS estimation.

Mon. Wea. Rev., 133, 1098–1118, https://doi.org/10.1175/

MWR2904.1.

——, F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic fore-

casts, calibration and sharpness. J. Roy. Stat. Soc. B, 69, 243–

268, https://doi.org/10.1111/j.1467-9868.2007.00587.x.

Goswami, B. N., and P. K. Xavier, 2003: Potential predictability

and extended range prediction of Indian summer monsoon

breaks. Geophys. Res. Lett., 30, 1966, https://doi.org/101029/

2003GL017810.

Hagedorn, R., R. Buizza, T. M. Hamill, M. Leutbecher, and T. N.

Palmer, 2012: Comparing TIGGE multipmodel foreasts with

reforecast-calibrated ECMWF ensemble forecasts. Quart.

J. Roy. Meteor. Soc., 138, 1814–1827, https://doi.org/10.1002/

qj.1895.

Hall, T., H. E. Brooks, and C. A. Doswell III, 1999: Precipitation

forecasting using a neural network.Wea. Forecasting, 14, 338–

345, https://doi.org/10.1175/1520-0434(1999)014,0338:PFUANN.
2.0.CO;2.

Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: Is it real

skill or is it the varying climatology? Quart. J. Roy. Meteor.

Soc., 132, 2905–2923, https://doi.org/10.1256/qj.06.25.

——, J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting:

Improving medium-range forecast skill using retrospective

forecasts. Mon. Wea. Rev., 132, 1434–1447, https://doi.org/

10.1175/1520-0493(2004)132,1434:ERIMFS.2.0.CO;2.

——, M. Scheuerer, and G. T. Bates, 2015: Analog probabilistic

precipitation forecasts usingGEFS reforecasts and climatology-

calibrated precipitation analyses. Mon. Wea. Rev., 143, 3300–

3309, https://doi.org/10.1175/MWR-D-15-0004.1.

Hemri, S., M. Scheuerer, F. Pappenberger, K. Bogner, and

T. Haiden, 2014: Trends in the predictive performance of raw

ensemble weather forecasts. Geophys. Res. Lett., 41, 9197–

9205, https://doi.org/10.1002/2014GL062472.

Herrera, M. A., I. Szunyogh, and J. Tribbia, 2016: Forecast un-

certainty dynamics in the THORPEX Interactive Grand

Global Ensemble (TIGGE).Mon. Wea. Rev., 144, 2739–2766,

https://doi.org/10.1175/MWR-D-15-0293.1.

Janowiak, J. E., and P. P. Xie, 1999: CAMS-OPI: A global satellite-

rain gauge merged product for real-time precipitation moni-

toring applications. J. Climate, 12, 3335–3342, https://doi.org/

10.1175/1520-0442(1999)012,3335:COAGSR.2.0.CO;2.

Ji, L. Y., X. F. Zhi, and S. P. Zhu, 2017: Extended-range probabilistic

forecasts of surface air temperature over East Asia during bo-

real winter (in Chinese). Trans. Atmos. Sci., 40, 346–355.

390 WEATHER AND FORECAST ING VOLUME 34

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/34/2/377/4865581/w

af-d-18-0093_1.pdf by M
AX-PLAN

C
K-IN

STITU
TE FO

R
 M

ETEO
R

O
LO

G
Y user on 28 August 2020

https://confluence.ecmwf.int/display/FUG/Forecast+User+Guide
https://confluence.ecmwf.int/display/FUG/Forecast+User+Guide
https://confluence.ecmwf.int/display/FUG/Forecast+User+Guide
https://confluence.ecmwf.int/display/FUG/Forecast+User+Guide
https://doi.org/10.1002/env.2391
https://doi.org/10.1002/env.2391
https://doi.org/10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1975)103<0149:AAOMOS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1975)103<0149:AAOMOS>2.0.CO;2
https://doi.org/10.1175/2010BAMS2853.1
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/2009MWR2893.1
https://doi.org/10.1175/2009MWR2893.1
https://doi.org/10.1007/BF02661539
https://doi.org/10.1175/WAF-D-11-00149.1
https://doi.org/10.1175/WAF-D-11-00149.1
https://doi.org/10.1175/WAF1034.1
https://doi.org/10.1175/WAF1034.1
https://doi.org/10.1175/1520-0434(2003)018<0003:AEFOTC>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<0003:AEFOTC>2.0.CO;2
https://doi.org/10.1175/2009MWR3046.1
https://doi.org/10.1175/MWR2904.1
https://doi.org/10.1175/MWR2904.1
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/101029/2003GL017810
https://doi.org/101029/2003GL017810
https://doi.org/10.1002/qj.1895
https://doi.org/10.1002/qj.1895
https://doi.org/10.1175/1520-0434(1999)014<0338:PFUANN>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0338:PFUANN>2.0.CO;2
https://doi.org/10.1256/qj.06.25
https://doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
https://doi.org/10.1175/MWR-D-15-0004.1
https://doi.org/10.1002/2014GL062472
https://doi.org/10.1175/MWR-D-15-0293.1
https://doi.org/10.1175/1520-0442(1999)012<3335:COAGSR>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<3335:COAGSR>2.0.CO;2


Jones, C., D. E. Waliser, J. K. E. Schemm, andW. K. M. Lau, 2000:

Prediction skill of the Madden and Julian oscillation in

dynamical extended range forecasts. Climate Dyn., 16, 273–

289, https://doi.org/10.1007/s003820050327.

Kim, C., and M. S. Suh, 2013: Prospects of using Bayesian model

averaging for the calibration of one-month forecasts of surface

air temperature over SouthKorea.Asia-Pac. J. Atmos. Sci., 49,

301–311.

Koizumi, K., 1999: An objective method to modify numerical model

forecastswith newly givenweather data using an artificial neural

network.Wea. Forecasting, 14, 109–118, https://doi.org/10.1175/

1520-0434(1999)014,0109:AOMTMN.2.0.CO;2.

Langmack, H., K. Fraedrich, and F. Sielmann, 2012: Tropical cy-

clone track analog ensemble forecasting in the extended

Australian basin: NWP combinations. Quart. J. Roy. Meteor.

Soc., 138, 1828–1838, https://doi.org/10.1002/qj.1915.

Liu, J. G., and Z. H. Xie, 2014: BMA probabilistic quantitative

precipitation forecasting over the Huaihe basin using TIGGE

multimodel ensemble forecasts. Mon. Wea. Rev., 142, 1542–

1555, https://doi.org/10.1175/MWR-D-13-00031.1.

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci.,

20, 130–141, https://doi.org/10.1175/1520-0469(1963)020,0130:

DNF.2.0.CO;2.

——, 1969: Atmospheric predictability as revealed by naturally oc-

curring analogues. J. Atmos. Sci., 26, 636–646, https://doi.org/

10.1175/1520-0469(1969)26,636:APARBN.2.0.CO;2.

——, 1982: Atmospheric predictability experiments with a large

numerical model. Tellus, 34, 505–513, https://doi.org/10.3402/

tellusa.v34i6.10836.

Majumdar, S. J., and R. D. Torn, 2014: Probabilistic verification of

global and mesoscale ensemble forecasts of tropical cyclo-

genesis.Wea. Forecasting, 29, 1181–1198, https://doi.org/10.1175/

WAF-D-14-00028.1.

Min, S. K., and A. Hense, 2007: Hierarchical evaluation of IPCC

AR4 coupled climate models with systematic consideration of

model uncertainties. Climate Dyn., 29, 853–868, https://doi.org/

10.1007/s00382-007-0269-2.

Miyakoda, K., T. Gordon, R. Caverly, W. Stern, J. Sirutis, and

W. Bourke, 1983: Simulation of a blocking event in January

1977. Mon. Wea. Rev., 111, 846–869, https://doi.org/10.1175/

1520-0493(1983)111,0846:SOABEI.2.0.CO;2.

Park, Y.Y., R. Buizza, andM. Leutbecher, 2008: TIGGE: Preliminary

results on comparing and combining ensembles.Quart. J. Roy.

Meteor. Soc., 134, 2029–2050, https://doi.org/10.1002/qj.334.
Plaut, G., and R. Vautard, 1994: Spells of low-frequency oscillations

and weather regimes in the Northern Hemisphere. J. Atmos.

Sci., 51, 210–236, https://doi.org/10.1175/1520-0469(1994)

051,0210:SOLFOA.2.0.CO;2.

Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski,

2005: Using Bayesian model averaging to calibrate forecast

ensembles. Mon. Wea. Rev., 133, 1155–1174, https://doi.org/

10.1175/MWR2906.1.

Räisänen, J., and L. Ruokolainen, 2006: Probabilistic forecasts

of near-term climate change based on a resampling ensem-

ble technique. Tellus, 58A, 461–472, https://doi.org/10.1111/

j.1600-0870.2006.00189.x.

Roulin, E., and S. Vannitsem, 2012: Postprocessing of ensemble

precipitation predictions with extended logistic regression

based on hindcasts. Mon. Wea. Rev., 140, 874–888, https://

doi.org/10.1175/MWR-D-11-00062.1.

Scheuerer, M., 2014: Probabilistic quantitative precipitation

forecasting using ensemble model output statistics. Quart.

J. Roy. Meteor. Soc., 140, 1086–1096, https://doi.org/10.1002/

qj.2183.

——, and T. M. Hamill, 2015: Statistical postprocessing of en-

semble precipitation forecasts by fitting censored, shifted

gamma distributions.Mon. Wea. Rev., 143, 4578–4596, https://

doi.org/10.1175/MWR-D-15-0061.1.

——, S. Gregory, T. M. Hamill, and P. E. Shafer, 2017: Proba-

bilistic precipitation-type forecasting based on GEFS en-

semble forecasts of vertical temperature profiles. Mon. Wea.

Rev., 145, 1401–1412, https://doi.org/10.1175/MWR-D-16-0321.1.

Schmeits, M. J., and K. J. Kok, 2010: A comparison between raw

ensemble output, (modified) Bayesian model averaging, and

extended logistic regression using ECMWF ensemble pre-

cipitation reforecasts.Mon.Wea. Rev., 138, 4199–4211, https://

doi.org/10.1175/2010MWR3285.1.

Shapiro, M. A., and A. J. Thorpe, 2004: THORPEX international

science plan. WMO/TD-1246, WWRP/THORPEX 2, 57 pp.,

https://www.wmo.int/pages/prog/arep/wwrp/new/documents/

CD_ROM_international_science_plan_v3.pdf.

Slater, L. J., G. Villarini, and A. A. Bradley, 2017: Weighting of

NMME temperature and precipitation forecasts across

Europe. J. Hydrol., 552, 646–659, https://doi.org/10.1016/

j.jhydrol.2017.07.029.

Sloughter, J. M., A. E. Raftery, T. Gneiting, and C. Fraley, 2007:

Probabilistic quantitative precipitation forecasting using

Bayesian model averaging. Mon. Wea. Rev., 135, 3209–3220,

https://doi.org/10.1175/MWR3441.1.

——, T. Gneiting, and A. E. Raftery, 2010: Probabilistic wind

speed forecasting using ensembles and Bayesian model aver-

aging. J. Amer. Stat. Assoc., 105, 25–35, https://doi.org/10.1198/

jasa.2009.ap08615.

——, ——, and ——, 2013: Probabilistic wind vector fore-

casting using ensembles and Bayesian model averaging.

Mon. Wea. Rev., 141, 2107–2119, https://doi.org/10.1175/

MWR-D-12-00002.1.

Smagorinsky, J., 1969: Problems and promises of deterministic

extended range forecasting.Bull. Amer. Meteor. Soc., 50, 286–

311, https://doi.org/10.1175/1520-0477-50.5.286.

Surcel, M., I. Zawadzki, M. K. Yau, M. Xue, and F. Kong, 2017:

More on the scale dependence of the predictability of pre-

cipitation patterns: Extension to the 2009–13 CAPS Spring

Experiment ensemble forecasts. Mon. Wea. Rev., 145, 3625–

3646, https://doi.org/10.1175/MWR-D-16-0362.1.

Talagrand, O., R. Vautard, and B. Strauss, 1997: Evaluation of

probabilistic prediction systems. Proc. Workshop on Pre-

dictability, Reading, United Kingdom, European Centre for

Medium-Range Weather Forecasts, 1–25.

Thompson, P. D., 1957: Uncertainty of initial state as a factor in the

predictability of large scale atmospheric flow patterns. Tellus, 9,

275–295, https://doi.org/10.1111/j.2153-3490.1957.tb01885.x.

Vogel, P., P. Knippertz, A. H. Fink, A. Schlueter, and T. Gneiting,

2018: Skill of global raw and postprocessed ensemble predic-

tions of rainfall over northern tropical Africa.Wea. Forecasting,

33, 369–388, https://doi.org/10.1175/WAF-D-17-0127.1.

Waliser, D. E., C. Jones, J. K. E. Schemm, and N. E. Graham, 1999:

A statistical extended-range tropical forecast model based

on the slow evolution of the Madden–Julian oscillation.

J. Climate, 12, 1918–1939, https://doi.org/10.1175/1520-0442

(1999)012,1918:ASERTF.2.0.CO;2.

Walker, S. H., and D. B. Duncan, 1967: Estimation of the proba-

bility of an event as a function of several independent vari-

ables.Biometrika, 54, 167–179, https://doi.org/10.1093/biomet/

54.1-2.167.

APRIL 2019 J I E T AL . 391

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/34/2/377/4865581/w

af-d-18-0093_1.pdf by M
AX-PLAN

C
K-IN

STITU
TE FO

R
 M

ETEO
R

O
LO

G
Y user on 28 August 2020

https://doi.org/10.1007/s003820050327
https://doi.org/10.1175/1520-0434(1999)014<0109:AOMTMN>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0109:AOMTMN>2.0.CO;2
https://doi.org/10.1002/qj.1915
https://doi.org/10.1175/MWR-D-13-00031.1
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
https://doi.org/10.3402/tellusa.v34i6.10836
https://doi.org/10.3402/tellusa.v34i6.10836
https://doi.org/10.1175/WAF-D-14-00028.1
https://doi.org/10.1175/WAF-D-14-00028.1
https://doi.org/10.1007/s00382-007-0269-2
https://doi.org/10.1007/s00382-007-0269-2
https://doi.org/10.1175/1520-0493(1983)111<0846:SOABEI>2.0.CO;2
https://doi.org/10.1175/1520-0493(1983)111<0846:SOABEI>2.0.CO;2
https://doi.org/10.1002/qj.334
https://doi.org/10.1175/1520-0469(1994)051<0210:SOLFOA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1994)051<0210:SOLFOA>2.0.CO;2
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1111/j.1600-0870.2006.00189.x
https://doi.org/10.1111/j.1600-0870.2006.00189.x
https://doi.org/10.1175/MWR-D-11-00062.1
https://doi.org/10.1175/MWR-D-11-00062.1
https://doi.org/10.1002/qj.2183
https://doi.org/10.1002/qj.2183
https://doi.org/10.1175/MWR-D-15-0061.1
https://doi.org/10.1175/MWR-D-15-0061.1
https://doi.org/10.1175/MWR-D-16-0321.1
https://doi.org/10.1175/2010MWR3285.1
https://doi.org/10.1175/2010MWR3285.1
https://www.wmo.int/pages/prog/arep/wwrp/new/documents/CD_ROM_international_science_plan_v3.pdf
https://www.wmo.int/pages/prog/arep/wwrp/new/documents/CD_ROM_international_science_plan_v3.pdf
https://doi.org/10.1016/j.jhydrol.2017.07.029
https://doi.org/10.1016/j.jhydrol.2017.07.029
https://doi.org/10.1175/MWR3441.1
https://doi.org/10.1198/jasa.2009.ap08615
https://doi.org/10.1198/jasa.2009.ap08615
https://doi.org/10.1175/MWR-D-12-00002.1
https://doi.org/10.1175/MWR-D-12-00002.1
https://doi.org/10.1175/1520-0477-50.5.286
https://doi.org/10.1175/MWR-D-16-0362.1
https://doi.org/10.1111/j.2153-3490.1957.tb01885.x
https://doi.org/10.1175/WAF-D-17-0127.1
https://doi.org/10.1175/1520-0442(1999)012<1918:ASERTF>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<1918:ASERTF>2.0.CO;2
https://doi.org/10.1093/biomet/54.1-2.167
https://doi.org/10.1093/biomet/54.1-2.167


Wanders, N., and E. F. Wood, 2016: Improved sub-seasonal mete-

orological forecast skill using weighted multi-model ensemble

simulations. Environ. Res. Lett., 11, 94007, https://doi.org/

10.1088/1748-9326/11/9/094007.

Wang, Q. J., A. Schepen, and D. E. Robertson, 2012: Merging

seasonal rainfall forecasts from multiple statistical models

through Bayesian model averaging. J. Climate, 25, 5524–5537,

https://doi.org/10.1175/JCLI-D-11-00386.1.

Xie, P. P., and A. Y. Xiong, 2011: A conceptual model for

constructing high-resolution gauge-satellite merged precipi-

tation analyses. J. Geophys. Res., 116, D21106, https://doi.org/

10.1029/2011JD016118.

Xie, S. P., C. H. Chang, Q. Xie, and D. X. Wang, 2007: Intra-

seasonal variability in the summer south China sea: Wind

jet, cold filament, and recirculations. J. Geophys. Res., 112,
C10008, https://doi.org/10.1029/2007JC004238.

Yang, H., D. Zhang, and L. Ji, 2001: An approach to extract ef-

fective information of monthly dynamical prediction—The

use of ensemblemethod.Adv.Atmos. Sci., 18, 283–293, https://
doi.org/10.1007/s00376-001-0020-6.

Yussouf, N., and D. J. Stensrud, 2006: Prediction of near-surface

variables at independent locations from a bias-corrected

ensemble forecasting system. Mon. Wea. Rev., 134, 3415–

3424, https://doi.org/10.1175/MWR3258.1.

Zeng, L., and D. X.Wang, 2009: Intraseasonal variability of latent-

heat flux in the South China Sea. Theor. Appl. Climatol., 97,

53–64, https://doi.org/10.1007/s00704-009-0131-z.

Zhang, H. B., X. F. Zhi, J. Chen, Y. N. Wang, and Y. Wang,

2015: Study of the modification of multi-model ensemble

schemes for tropical cyclone forecasts. J. Trop. Meteor., 21,

389–399.

Zhang, L., F. Sielmann, K. Fraedrich, X. H. Zhu, and X. F. Zhi,

2015: Variability of winter extreme precipitation in Southeast

China: Contributions of SST anomalies. Climate Dyn., 45,

2557–2570, https://doi.org/10.1007/s00382-015-2492-6.

——, and X. F. Zhi, 2015: Multi-model consensus forecasting of

low temperature and icy weather over central and southern

China in early 2008. J. Trop. Meteor., 21, 67–75.

Zhi, X. F., andCoauthors, 2013:Multi-model ensemble forecasts of

surface air temperature and precipitation using TIGEE da-

tasets (in Chinese). Trans. Atmos. Sci., 36, 257–266.

——, H. X. Qi, Y. Q. Bai, and C. Z. Lin, 2012: A comparison of

three kinds of multi-model ensemble forecast techniques

based on the TIGGE data. J. Meteor. Res., 26, 41–51.

Zhuang, W., S. P. Xie, D. X. Wang, B. Taguchi, H. Aiki, and

H. Sasaki, 2010: Intraseasonal variability in sea surface height

over the South China Sea. J. Geophys. Res., 115, C04010,
https://doi.org/10.1029/2009JD013165.

392 WEATHER AND FORECAST ING VOLUME 34

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/34/2/377/4865581/w

af-d-18-0093_1.pdf by M
AX-PLAN

C
K-IN

STITU
TE FO

R
 M

ETEO
R

O
LO

G
Y user on 28 August 2020

https://doi.org/10.1088/1748-9326/11/9/094007
https://doi.org/10.1088/1748-9326/11/9/094007
https://doi.org/10.1175/JCLI-D-11-00386.1
https://doi.org/10.1029/2011JD016118
https://doi.org/10.1029/2011JD016118
https://doi.org/10.1029/2007JC004238
https://doi.org/10.1007/s00376-001-0020-6
https://doi.org/10.1007/s00376-001-0020-6
https://doi.org/10.1175/MWR3258.1
https://doi.org/10.1007/s00704-009-0131-z
https://doi.org/10.1007/s00382-015-2492-6
https://doi.org/10.1029/2009JD013165

