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Abstract

Convective heat loads onto the plasma facing components of magnetic confinement devices
contain information about edge magnetic field properties which are not yet fully exploited. Machine
learning approaches are a promising technique to automatically extract information about such
properties from heat load images. In this study, we present the successful reconstruction of proxies
for two independent, important edge magnetic field properties given simulated heat load images on
the Wendelstein 7-X divertor target plates.

Six different artificial neural network architectures from shallow and simple feed-forward fully-
connected neural network to deep Inception ResNets with 24 223 to 804 804 free parameters are
investigated. The relative reconstruction error is between 1 and 2% with calculation times on the
order of milliseconds. A competing benchmark method without machine learning reaches slightly
smaller errors but exceeds the calculation time by three orders of magnitude. The experiments
demonstrate that machine learning is also a powerful tool in this particular field of nuclear fusion
research and deep convolutional neural networks are identified as favorable algorithms for the stated
problem. The findings of this paper build a basis for future real time discharge optimization and

control by means of machine learning methods.

1 Introduction

In recent time artificial neural networks (NNs)
have become a popular tool in data-driven scien-
tific practice. Most NN tasks are classification
problems, from the classic machine learning set
of the MNIST database [1], to handwritten text
recognition [2] and machine translation [3]. The
NNs described in this study, on the other hand,
solve regression problems. The general form [4]
uses feed-forward fully-connected neural networks
(FF-FCs), but more recent research on regres-
sion also considers convolutional neural networks
(CNNs) when dealing with images [5|. Pioneer-
ing approaches with fusion relevance investigated
the reconstruction of plasma equilibrium param-
eters |6] and plasma shape parameters |7], both
considering tokamaks. More recent studies dealt

with neoclassical transport [§8|, real-time disrup-
tion predictions in tokamaks [9] or modelling tur-
bulent transport [10]. While these NNs are all
FF-FCs, the positive impact of CNNs on magnetic
topology reconstruction performance is analyzed
in [11]. With a new approach to unravel the
complex 3D geometry of the plasma facing com-
ponents (PFCs) monitored by the Infra-Red (IR)
cameras onto a 2D picture-like input format [12],
it is possible to investigate the performance of var-
ious NN architectures that have been optimized
for 2D-input and proven good.

Wendelstein 7-X (W7-X) is the most advanced
stellarator type nuclear fusion experiment opti-
mized for nested magnetic surfaces with small
islands, a small shafranov shift (8 ~ 5%), small
neoclassical transport, magneto hydro dynamics
(MHD) stability, fast « particle confinement and



small bootstrap current I, with feasible modular
coils |13H16]. W7-X has already accomplished
several major goals|17, 18|, demonstrating the fu-
sion relevance and high performance of the W7-X
magnetic confinement concept.

One major advantage over the Tokamak confine-
ment concept [19] is the steady state capability
inherent to stellarators. With respect to technical
restraints though, it is yet to be demonstrated
that W7-X is capable of arbitrarily long opera-
tions at fusion-relevant plasma parameters (tem-
peratures of the order of 100 x 10° K at densities
of 1 x 10%2° /m3). Approaching such parameters,
heat loads to the PFCs occur on the order of the
critical heat loads of the components. Usually,
experiments are planned such that actuator be-
haviour is determined in advance. However, going
towards a minute and beyond in the discharge
duration, a real time control system becomes cru-
cial. Although, as mentioned before, W7-X is
optimized for small I,,5 as well as small Shafranov
shift the impact of both quantities on machine
performance and safety must not be neglected. I
is the origin of a toroidal current Ii,, establishing
itself on time scales of minutes. The Shafranov
shift, caused by the Pfirsch-Schliiter current, fol-
lows the time evolution of plasma pressure |20].
The rotational transform ¢ and the radial plasma
shift AR are linearly dependent on Ii,, and the
plasma pressure respectively. Since the PFC heat
load pattern is heavily influenced by + and AR,
significant changes of the pattern can occur dur-
ing a discharge which are potentially critical |12,
21]. Thus, it is crucial to monitor and control the
heat load onto the PFCs.

The heat load can be calculated from tem-
perature data recorded by infra-red cameras [22].
Information about equilibrium properties such as
¢+ and shift contained within the heat load pattern
by means of proxy measures can be extracted by
NNs in real-time. The relations between the mag-
netic edge properties, and the heat load pattern
on the PFCs are highly complex. The heat load
patterns move in a non-trivial, non-linear way
with the underlying parameters and may appear
or disappear on certain divertor parts depending
on the respective magnetic configuration (see the
later introduced Figure . This is another reason
to apply NNs.

Feature reconstruction with NNs is relevant for
the following reasons: The main purpose of the
application of NNs to evaluate the infra-red di-
agnostic data is to identify heat load patterns
in real-time for safety reasons. The applied fea-
ture reconstruction can, however, also connect
heat load distributions to plasma parameters also
known from other diagnostics, e.g. strike-line
movements to toroidal current measurements with
Rogowski-coils. Thus the applied feature recon-
struction NN may be able to combine safety and
control issues and help to steer divertor and dis-
charge performance by safely controlling the heat
load pattern on the divertor. The approach would
be to relate the plasma parameters, which change
the heat deposition patterns, i.e. the edge mag-
netic field topology (mainly the toroidal current
and the plasma beta), to the heat deposition pat-
terns in terms of proxies. These proxies could
then be provided to classical control systems
or even to a trained reinforcement learning [23,
24] control system H In order to determine how
successful a NN-based reinforcement agent can
handle W7-X divertor heat load images, a first
step would be to show the capability of NNs to
reconstruct the aforementioned proxies for edge
magnetic field properties. At this point we aim at
testing and identifying which NN-setup is most
suitable to our task in terms of its capabilities
and its performance. We are therefore not using
MHD-equilibrium fields but use the simpler ap-
proach of using certain variations of the vacuum
fields allowed by the coil system of W7-X which
can be somehow related to the previously men-
tioned plasma parameters. As said, the details of
the relation is of no concern in the context of the
present work.

In preceding work |11}, 28], it has been demon-
strated that the one-dimensional reconstruction
of a proxy ¢ for the rotational transform from heat
load patterns is feasible. These experimental data
and according simulations are heat load patterns
on the graphite limiters which were the main PFC
during the first operational phase. Since 2017 ten
island divertors (see Figure [1)) are installed, spa-
tially separating the core plasma from the plasma
edge and thus making W7-X suitable for high
performance discharges [29-31]. For geometri-

!Either way, further direct diagnostics would be additional inputs for such systems. For example Iio, is directly

measured by continuous Rogowski coils [25H27].
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cal reasonsEL the limiter heat load patterns are
much less diverse as compared to the heat load
distribution on the divertor.

Target plates
Plasma contour

Figure 1: Ten divertor units surrounding the last
closed flux surface (orange)

A synthetic data set based on a scan in the
proxies AR and # of the “plasma shift” and “ro-
tational transform” respectively was introduced
in [12]. In Section [2| we will give a brief overview
of the training data, followed by an introduction
of various NN architectures for the reconstruction
of i and AR. The results in Section [3focus on the
NN regression capability, differences for AR and
¢ reconstruction and dependencies on the region
within the ¢ -AR field for regression.

2 Methods

The recent W7-X operational phases provided ex-
perimental time for multiple proposals. Only a
few of them focused on exploring the configura-
tion space in detail, so for initial NN analysis with
the divertor geometry, simulations are necessary
to provide sufficient training data. Simulations
allow to focus on the two most dynamic and thus
most important parameters, the radial shift AR
and the edge rotational transform #. As men-
tioned before, a Shafranov shift ARg, induced
by the Pfirsch-Schliiter current, corresponds to a
radial shift and an establishing toroidal current
Iior influences the rotational transform. The two
parameters AR and ¢ are proxies for the real ra-
dial shift and edge rotational transform assuming
a superposition principle, i.e. AR and ¢ are linear

combinations

AR =c¢; - AR(Iz, Ig) + 3 - ARg
t=c3 - #(Ia, IB) + 4 1,0, (Ltor)+ t0

with constants c1, ¢, c3, ¢4 and ¢y. In the case
of + this superposition principle is supported by
theory . The dimensionless proxies are based
on a linear transformation with

()= A G

resulting in a rotation of %’N with the W7-X pla-
nar coil currents I and Ig which are defined
relative to the coil current of non-planar coil 1,
11 true . The simulation assumes a simplified
vacuum configuration and therefore plasma pres-
sure and [io, are both zero, which reduces the
simulation time by orders of magnitude. The
planar coil currents are adjustable parameters
of the field line diffusion (FLD) simulation [33]
which is employed to compute the heat loads onto
the W7-X PFCs by random diffusion processes
which start sufficiently close to the plasma core.
The non-planar coil currents I 5 are all set to
11 true- With this normalization the actual value
of I true is only a parameter for the magnetic
field strenght and does not influence the outcome
of the simulation. The simulation is performed
with a diffusion coefficient D, = 1 m?s~! based
on the predecessor experiment Wendelstein 7-AS
(W7-AS) [34], an estimated particle velocity of
v=1.4x10°ms~! and a mean free path length
of A =0.1m. A detailed discussion of the choice
of these parameters in the FLD simulation can
be found in . The local heat loads are formed
at the intersection of magnetic fluxes and PFCs
as shown in Figure

The # value range is twice as high as the AR
value range. Because of the different scaling, nor-
malized radial shift and rotational transform are
introduced as

AR=2E
g AR (o

2 The heat load pattern shape and relative intensity on the PFCs are in first order the result of the interaction between
magnetic field geometry and PFC shape. The poloidaly elongated limiter was installed on the inboard side of the center
of each module and adjusted to limit the plasma radially. Each of the ten divertors on the other hand spans a toroidal
angle of 47° with an approximately 20 times larger surface area as compared to the limiter. The divertors are designed to
intersect the large magnetic resonances called magnetic islands which are highly sensitive to changes in the edge rotational
transform. Thus, the limiter heat load pattern is a much weaker function of varying plasma properties and magnetic
configurations as compared to the divertor heat load pattern (compare limiter heat load pattern variations with

Figure [5).
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where 0, 5 and o; represent the standard devia-
tion of AR and # respectively. The data points
grid is hexagon-shaped as shown in Figure [2] with
spacing in the AR-axis between 1 and 121 points
and in ¢-axis between 151 and 301 points, so the
data resolution in ¢ is higher.

Figure 2: The area enclosed by the red dotted lines
represents 36421 grid points, with 121
evenly spaced in AR and 301 evenly spaced
in t. The simulated data set is reduced
to 27181 points within the grey hexagon.
This reflects technical limitations of the coil
system, indicated by the blue dashed lines.

A distinction is made between two different
pre-processings defined as extracted characteris-
tics input (ECI) and pixel-based input (PBI). The
result of a single FLD simulation is a set of points
in 3D-space representing the impact location of
particles onto terminating PFCs.

ECI The simulation generates a 3D hit point
cloud of size 25000 describing the heat load. In
order to reduce the input dimensionality for ECI
these points are clustered using DBSCAN |[35|
as shown in Figure Three characteristics are
extracted from each of the n. clusters, namely the
number of points, the center of mass and eigenvec-
tors of the covariance matrix. This leads to the
number of extracted characteristics within each

cluster me = 13. In this case the input vector
upcr € R™ with n' = 195 is initialized with zeros
and filled with n. - m. entries, where n. is the
variable number of clusters found by DBSCAN
and realized values are between 2 and 15.

PBI An approach to partition the complicated
3D shaped divertor heat flux onto a 2D array like
structure, addressing the physics as well as the
engineering constraints of the divertor presented
in [12], can be utilized to generate the PBI with
uppr € R™*", where m = 113 and n = 29. The
geometric mapping as well as an exemplary PBI
for a high iota reference magnetic configuration
is depicted in Figure 4] with the heat load given
in arbitrary units. In comparison with Figure
differences in the heat load patterns seem to ap-
pear. However, these discrepancies are artifacts
of the misleading impact points representation
in Figure [3] as it highly overrates very low point
densities. Four exemplary PBI images at different
plasma configurations are shown in Figure

An advantage of ECI is, that features are already
separated by the clustering and characteristic
extraction. However, there are two important
drawbacks. Each array entry within one ECI is
of a different quantity (scalar intensity, vector
direction), limiting the choice of NNs to FF-FCs.
More importantly, an equivalent representation
based on experimental data is not possible, so
the performance of a trained NN on real data
is not measurable and training sets cannot be
mixed as shown in |11]. Although this study only
considers simulated heat loads, it is of interest,
whether the actual experimentally observed heat
loads are roughly similar such that the results
of this paper (concerning the optimized input
and architecture) can be applied to experimental
data. A comparison of the simulation with the
experimentally found heat loads in the PBI repre-
sentation is shown in Figure[6] Most importantly,
the main heat load patterns are similar and the
significant heat load is present on target modules
1h-4h. Deviations from the idealized simulated
heat load pattern can be seen for example in
the occurrence of increased heat load on target
module 7h in the experiment as compared to the
simulation. Furthermore the simulation assumes
stellarator symmetry and error fields are not
considered. However, experimental observations

3The two cluster parameters are chosen as eps = 0.065m and min samples = 40
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show, that the divertor heat loads are asymmetric
(the deviation in the total power reaching upper
and lower divertor in module 2 is approximately
a factor 2). It is not in the scope of this work, to
go into further detail about the differences. Such
considerations are covered in much detail in other

works [36-38|.
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(a) Poincare plot at & = 15° (indicated in @)
Adapted from [18]

No=15°

(b) Impact points of a stellarator-symmetric field line
diffusion simulation

Figure 3: Convective heat exhaust in the high iota
reference configuration. The plasma pop-
ulating the edge island, carrying heat to-
wards the intersecting divertor is shown
exemplarily in [@] for a cross section at
® = 15° which is a cut through divertor
target TM7h-9h (compare Figure , In
the divertor with the impact points of
a stellarator-symmetric field line diffusion
simulation in the same reference configu-
ration is shown. In blue, red and green,
three clusters resulting from a DBSCAN
clustering are color-coded. Based on these
clusters statistical properties are taken as
an input for the ECIL

\ @\\1\\")\\

/
\ TM1h-4p

Figure 4: Heat load pattern in arbitrary units re-
trieved from stellarator symmetric field line
diffusion simulation in the so called high
1ota reference magnetic configuration on
the divertor meshed model (top) and the
mapping to the 2D array (bottom) which
represents the PBI.
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Figure 5: An example of four PBI images repre-
senting a pair of (AR,%) with (0.0,0.0),
(—1.0,1.0), (1.0,1.0) and (0.0,—1.0) from
top to bottom respectively. To compare the
heat loads, a percentage with respect to the
highest heat load within all images is given.
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Figure 6: Comparison of three PBI images for stan-
dard reference case heat loads. From top to
bottom: simulated standard case (AR =0
and t = 0), experimental measurements of
the lower and upper divertor of module 2
for the same frame (t =t; + 130ms after
trigger 1) of the same experiment (Pro-
gram 20180927.034). It should be noted
that the measured total power reaching the
lower divertor is approximately twice the
power as compared to the upper divertor.
The experimental images show heat load
on the high iota tail (center of the picture)
whereas the simulation does not.

A brief introduction to the used NN archi-
tectures is given in the following, and a detailed
layer-for-layer description for the respective ar-
chitectures can be found in Appendix [Al The
FF-FC for both ECI and PBI consists of 3 layers
following the input layer with 80, 100 and 2 nodes
respectively. The performance with the PBI is
analyzed not only on FF-FCs but on CNNs, deep
convolutional neural networks (DCNNs), deep in-
ception neural networks (DINNs) and Inception-
ResNets (IRNNs). An increased depth of 8 ad-
ditional layers and batch normalization [39] are
the key differences between CNNs and DCNNS.
The DINN starts with three convolutional layers
followed by five inception blocks [40] to calculate
the regression. Based on |41] and [42], the IRNN
architecture is expanding the DINN by additional
twelve residual-inception blocks. These two archi-
tectures are adaptions of Inception-ResNet-v2 [42],
with changed reductions in the image width and
height induced by the rectangular input shape of
113 x 29, reduced repetitions of the residual blocks
and a regression loss function. Batch normaliza-
tion is applied to all convolutional layers within

DINN and IRNN architectures. To solve the re-
gression task all NNs end with a fully-connected
layer without an activation function. Unless other-
wise stated, the activation functions are Rectified
Linear Units (ReLU).

All input data is pre-processed such that the
mean is 0 and the standard deviation is 1, which
in our experience is necessary for convergence. In
case of PBI the sections not corresponding to di-
vertor parts are set to 0 afterwards (i.e. grey pix-
els in Figure[d). The desired NN outputs (targets)
are pairs of AR and é. The data set is shuffled
and separated into five parts of almost equal size.
By taking four parts as the training set and split-
ting the remaining part to validation and test set,
it is possible to create five cross-validation sets,
resulting in a training set size of 21745, validation
set size of 2718 and test set size of 2718. The
NNs are updated by the adam optimizer [43] with
learning rates and batch sizes given in Table
Those two hyperparameters are chosen based on
few trainings with learning rates of 0.001, 0.0005
and 0.0001 and batch sizes of 25 and 100 on cross-
validation set 1. Batches are sampled randomly
from the training set and every second training
epoch the PBI training data is augmented by a
Gaussian filter with a random Gaussian kernel
standard deviation between 0 and 1 to increase
the generalization of the NNs. The loss function
is the mean squared error (mse) defined as

| N
2
mse:Nzk:(yk—tk) 7

with reconstructions vy, targets ¢ and set size
N. The error estimation is visualized by the root-
mean-square error (rmse) defined as

rmse — /1mse.

A scalar reconstruction performance measure
rmse;ota 1S defined based on the reconstructed
values for ¢ and AR.

The total rmse is defined as

IMSEotal (AR, @) =0.5 (rmse <AR> + rmse (E)) .

The rmse on the validation set suits as an early-
stopping criteria if for 1000 consecutive NN weight
updates the rmse is not improving. For each cross-
validation distribution the NN training process
is performed 32 times with different weight ini-
tializations. The software core is based on the
TensorFlow library [44]. It runs on a workstation
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with two Intel Xeon CPU E5 — 2650 and four
NVIDIA GeForce GTX 1080 Ti. Each training is
performed on a single GPU.

NN Trainable | Learning | Batch
Parameters Rate Size
FF—-FCgcr 23983 0.0005 25
FF—-FCppr 270543 0.0010 25
CNN 63671 0.0005 25
DCNN 89073 0.0001 100
DINN 313071 0.0001 100
IRNN 804 804 0.0001 100

Table 1: Comparing the number of trainable parame-
ters as well as the chosen learning rate and
batch size for different NNs

It is not possible to determine if human-level
reconstruction ability is exceeded because an ex-
perimental setting to estimate the error of such a
reconstruction can hardly be realized. The ran-
dom noise of the Monte-Carlo simulation alone
makes an error-free reconstruction impossible. To
evaluate the NNs, the rmse for two additional
benchmarks is defined that serve as examples of
non-NN performance. The first one calculates the
structural similarity (SSIM) [45] between each
PBI of the test set with each of the training set
and is referred to as SSIM rmse. The estimated
AR and ¢ for the test set are those of the training
set with the highest SSIM. The neighbor-rmse
is the second benchmark which is the spacing
distance in AR and # direction. Note, that the
SSIM method requires a high calculation time
that depends on the size of the training set and
the grid spacing is not considering any input data
knowledge. However, the information that is ac-
tually asked for is required, so this method is
not applicable in practice and only introduced for
comparison purposes.

3 Results

The stated reconstruction problem is far more
complex compared to the reconstruction of a sin-
gle value in the W7-X limiter configuration. Due
to non-linear effects between AR and & the number
of points in an equidistant grid of configurations
increases exponentially with the number of con-
sidered parameters. There are NNs that converge
to functions which solve the regression problem
appropriately among all presented architectures.

100 - - 20
cross validation set 1
cross validation set 2
cross validation set 3 15

] «  cross validation set 4 ‘

5 5)

cross validation set 5
4 Training Time

| R 5
\] A}' A ’

10-1 \ } ptt

10

rMSetotal
Training Time (10

{{ifi {{{{{ *{{{{

FF—FCgci FF—FCpgy  CNN DCNN DINN IRNN

Figure 7: Mean rmse with error bars and training
times for each cross-validation set and NN

type

An overview of all trained NN results is given

in Figure [7] It shows the mean rmsegya with
respect to all trainings and the 95% confidence
interval of the mean calculated with bootstrap-
ping [46] separately for the cross validation sets
and architectures.
It can be seen that some FF-FCs with ECI per-
form well. However, the performance is not con-
sistent across the five cross validation sets and
especially cross validation set 3 shows poor per-
formance. Although in [11] a similar concept
was outperformed by CNNs on PBI, some of the
trained FF-FCs with ECI behave surprisingly well.
The FF-FC architectures with PBI show a simi-
lar inconsistent behavior. Again, the mean NN
performance strongly varies when applied to the
different cross validation sets. The FF-FC archi-
tectures are thus not recommendable, neither for
ECI nor for PBI.

The mean performances of those NN architec-
tures with convolutional layers on PBI are stable
with respect to the cross-validation. Note that
this stability hints to a sufficient generalization
property, but because of the complex deep ar-
chitectures used, it cannot be guaranteed. The
three-layer CNN shows decent performance but
it is clearly outperformed by deeper architectures.
The first deeper structure we trained after the
CNN is the IRNN because of its good performance
on other image analysis problems [42]. The gain
from CNN to IRNN is impressive but the train-
ing time as well as the calculation time increase
approximately by a factor of 10, which is still real-
time capable. By investigating architectures with

Page 7 of



NN rmse(AR) (1072) | rmse(?) (1072) | tirain (10% ) | tcalculation (MS)
FF — FCgcr 7.3 4.6 0.90 0.32
FF — FCppi 9.5 15.8 1.61 1.06
CNN 10.2 7.1 1.20 1.74
DCNN 7.5 4.9 6.73 7.86
DINN 7.9 5.4 6.39 9.46
IRNN 6.7 5.3 13.55 18.39
SSIM 7.2 2.4 = 8489.27
Neighbor 3.1 1.5 = =
Table 2: Comparing the different NNs best rmse
depths in between the previously mentioned ones, 2.0 o Volidtion perormance et
such as DCNN and DINN, we pursue a trade-off e pﬁﬁ
between reconstruction performance and run-time. L5 3
As can be seen in Figure[7] the NN performance is 5 10
almost similar to the much deeper IRNN whereas 2
the training time is halved. In Table 2] we com- é 0.5
pare the NNs, SSIM rmse and neighbor rmse(#) g 00
and rmse(AR) based on the worst performing 4
cross-validation set and within those for the best }f,o;
converged NN. Additionally, the table lists the 2
training times for each NN architecture and the ;‘1‘0 1
necessary time to calculate the estimate for one s
input image. Note that these NNs are not opti- 42
mized with respect to run time. When comparing —20 1,7
the NN results with both benchmarks on the one 2 -1 0 A i 2
hand it can be noticed that ¢ can be reconstructed Target AR

a little better (rmse difference of 2.9-1072) by the
SSIM approach and clearly better by taking the
next neighbor (rmse difference of 3.8 - 1072). On
the other hand for AR the NNs perform equally
good or slightly better compared to the SSIM
benchmark (rmse difference of 0.5 - 1072) but the
neighbor rmse is still smaller (rmse difference of
3.6 -1072). Since the neighbor benchmark does
not depend on the input data but only on the
grid spacing, it is not a competitive method but
it shows that the errors of NNs are of the same
order of magnitude. Note that the SSIM value
between neighbors is not necessary the largest.
These results show that there is still potential
for better NN performance. The computation
time for SSIM however is not sufficient for real-
time applications while up to 18 ms for NNs are
acceptable.

Figure 8: AR reconstruction with best IRNN and a
rmse of 0.056

o Validation performance 4

s Test performance 4

Neural Network reconstructed &
(am)

-1 0 1
Target ¢

o=

Figure 9: ¢ reconstruction with best IRNN and a
rmse of 0.034
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The relative error in the AR reconstruction
is larger compared to that of the # reconstruc-
tion. This can be seen in Table 2 but also when
visualizing a single NN result in more detail. In
Figure [§] and Figure [9] the grey dashed lines mark
the identity and thus perfect reconstruction. The
points represent the estimated value for each tar-
get value and the distance to the grey dashed
line resembles the error. In this case, as an ex-
ample the performance of the best IRNN with a
total rmse of 0.045 is shown. When compari
the AR and # reconstruction (Figures @ and@
respectively), it can be seen that ¢ is estimated
better than AR. However, the NN calculation
is appropriately following the identity for both
values, indicating that a connection between heat
flux image and the respective property has been
found. The relative error with respect to the tar-
get range is 1.4% for the radial shift and 0.9%
for the rotational transform. The reconstruction
appears to be symmetric, so the targets are not
systematically over- or underestimated.

In the following, the uniformity of the recon-
struction error in the AR- i space is investigated.
When comparing the best-performing NN of each
architecture, there are two different types of er-
ror distributions, which are represented by the
CNN and IRNN results in Figure The four
sub-figures depict the difference in the NN per-
formance in a detailed 2D scatter, where the
absolute residuals of ¢ and AR separately are
color-coded. The first type, seen in Figures
and shows clear clusters of higher residuals,
especially along the boundary of available data.
This phenomenon occurs for AR and # reconstruc-
tion, however, the cluster of higher residuals are
not located at the same region for those two val-
ues. This is also the case for PBI FF-FCs. The
deeper structures DCNN, DINN and IRNN show
a homogeneous error distribution except for a few
outliers but no specific structure can be identified.
In Figures [10(c)| and [10(d)| this is shown for the
example of IRNN. Notably these residuals do not
increase when moving towards the boundary. The
ECI FF-FCs show error clusters for AR and a
more homogeneous error distribution for &.

4 Conclusion

The work presented in this article demonstrates
the capability of NNs to find a connection be-

tween simulated W7-X divertor heat flux images
and proxies for edge magnetic field properties.
Former experiments showed similar promising re-
sults for less complex limiter heat flux images
and a single plasma parameter. The choice of the
suiting NN architecture is a trade-off between per-
formance and calculation times. Deeper and more
branched NN architectures are associated with
decreased regression errors. When stable conver-
gence in combination with small regression errors
is the main focus, a customized IRNN can be
recommended. FF-FCs are not advisable due to
their unpredictable performance on various cross
validation sets. A benchmark approach without
using machine learning achieves slightly smaller
errors but fails to be real-time capable.

There are several possible future investigations
arising from the results of this first step. Since the
SSIM benchmark example is not outperformed by
a machine learning application, further architec-
ture and hyperparameter adjustments may reduce
the reconstruction errors. With NNs found feasi-
ble to reconstruct proxies for edge magnetic field
properties from simulated heat load patterns, it
would be the most interesting and consequent pur-
sue to apply the NN to experimental data, which
is ongoing work. The PBI allows effortless inter-
change of simulation and experimental data [12].
This opens the possibility to support experimen-
tal data with simulations with the aim to improve
the performance of the proxy reconstruction as
compared to the proxy reconstruction on NNs
trained on experimental data only. Such an ap-
proach is inspired by the results in [11] and can
be improved by techniques such as transfer learn-
ing and generative adversarial networks to reduce
necessary experimental data in the training set
as much as possible.

More advanced open problems are the con-
sideration of time-dependent effects and using
the safety criterion developed in [12| combined
with NN architectures from this study for a deep
Q-value estimator |24] in reinforcement learning
approaches to further approach the long-term
objective of real-time heat load control and per-
formance optimization.
learning, common control theory approaches are
candidates for a control loop which would directly
use inputs such as the features which have been
herein proven to be reconstructable from synthetic
heat load images in addition to more direct diag-

Besides reinforcement
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Figure 10: Absolute residuals color-coded depending on iota and shift position

nostic inputs such as Rogowski coils and further.
Beyond the scope of heat load control, the pos-
sibility to reconstruct proxies for the rotational
transform, radial axis shift or further edge mag-
netic field properties is a desirable goal in itself
since it can provide important status information
to the operators of W7-X in real-time.

5 Acknowledgments

This work has been carried out within the frame-
work of the EUROfusion Consortium and has
received funding from the Euratom research and
training program 2014-2018 and 2019-2020 under
grant agreement No 633053. The views and opin-
ions expressed herein do not necessarily reflect
those of the European Commision.

We wish to acknowledge the helpful discussions
with J. Geiger, T. Sunn Pedersen, R. Labahn, G.
Leifert, T. Griining, T. Strauss, M. Weidemann
and J. Michael. We are also thankful for the sup-
port from the CITlab (University of Rostock) and
Planet-Al teams.

Bibliography

1]
2l

3]

4]

5]

Yann LeCun. The MNIST database of hand-
written digits. 1998.

Gundram Leifert et al. “Cells in Multidi-
mensional Recurrent Neural Networks”. In:
The Journal of Machine Learning Research
17.1 (2016), pp. 3313-3349. arXiv: arXiv:
1412.2620v2.

Dzmitry Bahdanau, Kyunghyun Cho, and
Yoshua Bengio. “Neural Machine Transla-
tion by Jointly Learning to Align and Trans-
late”. In: Proceedings of 3rd International
Conference on Learning Representation. San
Diego, USA, 2015, pp. 1-15. arXiv: [arXiv:
1409.0473vT.

Donald F Specht. “A general regression
neural network”. In: IEEFE transactions on
neural networks 2.February 1991 (1991),
pp. 568-576. DOI: [10.1109/72.97934.

Philipp Fischer, Alexey Dosovitskiy, and
Thomas Brox. “Image Orientation Estima-
tion with Convolutional Networks”. In: Ger-
man Conference on Pattern Recognition.

Page 10 of


http://arxiv.org/abs/arXiv:1412.2620v2
http://arxiv.org/abs/arXiv:1412.2620v2
http://arxiv.org/abs/arXiv:1409.0473v7
http://arxiv.org/abs/arXiv:1409.0473v7
https://doi.org/10.1109/72.97934

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

Aachen, Germany: Springer, 2015, pp. 368
378.

J B Lister and H Schnurrenberger. “Fast
non-linear extraction of plasma equilib-
rium parameters using a neural network
mapping”. In: Nuclear Fusion 31.7 (1991),
pp. 1291-1300. poI: |10.1088/0029-5515/
31/7/005.

E Coccorese, C Morabito, and R Martone.
“Identification of noncircular plasma. equi-
libria using a neural network approach”. In:
Nuclear Fusion 34.10 (1994), pp. 1349-1363.
DOI: [10.1088/0029-5515/34/10/105.

Arimitsu Wakasa, Sadayoshi Murakami,
and Shun-ichi Oikawa. “Study of Neoclassi-
cal Transport in LHD Plasmas by Applying
the DCOM/NNW Neoclassical Transport
Database”. In: Plasma and Fusion Research
3 (2008), S1030. por: 10 . 1585/ pfr . 3.
S1030.

B. Cannas et al. “An adaptive real-time dis-
ruption predictor for ASDEX upgrade”. In:
Nuclear Fusion 50.7 (2010), p. 075004. DOI:
10.1088/0029-5515/50/7/075004.

J. Citrin et al. “Real-time capable first prin-
ciple based modelling of tokamak turbulent
transport”. In: Nuclear Fusion 55.9 (2015),
p- 092001. DOI: |10.1088/0029-5515/55/
9/092001. arXiv: |[1502.07402.

Marko Blatzheim et al. “Neural network
performance enhancement for limited nu-
clear fusion experiment observations sup-
ported by simulations”. In: Nuclear Fusion
59.1 (2019), p. 016012. DO1:|10.1088/1741+
4326/aaefaf.

Daniel Bockenhoff and Marko Blatzheim.
“Application of improved analysis of convec-
tive heat loads on plasma facing components
to Wendelstein 7-X”. In: Nuclear Fusion
59.8 (2019), p. 086031. poI: [10.1088/1741
4326/ab201e.

J. Niithrenberg and R. Zille. “Stable stellara-
tors with medium S and aspect ratio”. In:
Physics Letters A 114.3 (1986), pp. 129-132.
DOI: 110.1016/0375-9601 (86) 90539-6.

Craig Beidler et al. “Physics and Engineer-
ing Design for Wendelstein VII-X”. In: Fu-
sion Technology 17.1 (1990), pp. 148-168.
DOI: [10.13182/FST90-A29178.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. Niihrenberg et al. “Overview on Wendel-
stein 7-X Theory”. In: Fusion Technology
27.3T (1995), pp. 71-78. DOI: 10.13182/
FST95-A11947048.

H.-S. Bosch et al. “Technical challenges in
the construction of the steady-state stel-
larator Wendelstein 7-X”. In: Nuclear Fu-
sion 53.12 (2013), p. 126001. DOI: |10.1088/
0029-5515/53/12/126001.

Thomas Sunn Pedersen et al. “Key re-
sults from the first plasma operation phase
and outlook for future performance in
Wendelstein 7-X”. In: Physics of Plasmas
24.5 (2017), p. 055503. pOIL: 10.1063/1 .
4983629.

Thomas Sunn Pedersen et al. “First results
from divertor operation in Wendelstein 7-X”.
In: Plasma Physics and Controlled Fusion
61.1 (2019), p. 014035. pOI: |10.1088/1361+
6587 /aaec25.

LA. Artsimovich. “Tokamak Devices”. In:
Nuclear Fusion 12.2 (1972), p. 215. DOIL:
10.1088/0029-5515/12/2/012.

Vitaly Dmitrijewitsch Shafranov. “Equi-
librium of a toroidal plasma in a mag-
netic field”. In: Journal of Nuclear Energy.
Part C, Plasma Physics, Accelerators, Ther-
monuclear Research 5.4 (1963), pp. 251-258.
DOI: |10.1088/0368-3281/5/4/307.

Arnold Lumsdaine et al. “Design and anal-
ysis of the W7-X divertor scraper element”.
In: Fusion Engineering and Design 88.9-10
(2013), pp. 1773-1777. poI: 10.1016/j .
fusengdes.2013.05.075|

M.W. Jakubowski et al. “Development of
infrared and visible endoscope as the safety
diagnostic for steady-state operation of
Wendelstein 7-X”. In: Proceedings of the
2014 International Conference on Quantita-
tive InfraRed Thermography. Vol. 100. Bor-
deaux, France: QIRT Council, 2014. DOTI:
10.21611/qirt.2014.100.

P.Read Montague. Reinforcement Learning:
An Introduction, by Sutton, R.S. and Barto,
A.G. 2nd ed. Vol. 1. MIT Press, 2017, p. 360.
DOI: 10.1016/S1364-6613(99) 01331 -5,
arXiv: 11603.02199.

Page 11 of


https://doi.org/10.1088/0029-5515/31/7/005
https://doi.org/10.1088/0029-5515/31/7/005
https://doi.org/10.1088/0029-5515/34/10/i05
https://doi.org/10.1585/pfr.3.S1030
https://doi.org/10.1585/pfr.3.S1030
https://doi.org/10.1088/0029-5515/50/7/075004
https://doi.org/10.1088/0029-5515/55/9/092001
https://doi.org/10.1088/0029-5515/55/9/092001
http://arxiv.org/abs/1502.07402
https://doi.org/10.1088/1741-4326/aaefaf
https://doi.org/10.1088/1741-4326/aaefaf
https://doi.org/10.1088/1741-4326/ab201e
https://doi.org/10.1088/1741-4326/ab201e
https://doi.org/10.1016/0375-9601(86)90539-6
https://doi.org/10.13182/FST90-A29178
https://doi.org/10.13182/FST95-A11947048
https://doi.org/10.13182/FST95-A11947048
https://doi.org/10.1088/0029-5515/53/12/126001
https://doi.org/10.1088/0029-5515/53/12/126001
https://doi.org/10.1063/1.4983629
https://doi.org/10.1063/1.4983629
https://doi.org/10.1088/1361-6587/aaec25
https://doi.org/10.1088/1361-6587/aaec25
https://doi.org/10.1088/0029-5515/12/2/012
https://doi.org/10.1088/0368-3281/5/4/307
https://doi.org/10.1016/j.fusengdes.2013.05.075
https://doi.org/10.1016/j.fusengdes.2013.05.075
https://doi.org/10.21611/qirt.2014.100
https://doi.org/10.1016/S1364-6613(99)01331-5
http://arxiv.org/abs/1603.02199

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

Volodymyr Mnih et al. “Human-level con-
trol through deep reinforcement learning”.
In: Nature 518.7540 (2015), pp. 529-533.
DOI: [10.1038/nature14236.

K. Rahbarnia et al. “Diamagnetic energy
measurement during the first operational
phase at the Wendelstein 7-X stellarator”.
In: Nuclear Fusion 58.9 (2018), p. 096010.
DOI: 110.1088/1741-4326/aacab0.

T. Andreeva et al. “Equilibrium evalua-
tion for Wendelstein 7-X experiment pro-
grams in the first divertor phase”. In: Fu-
sion Engineering and Design 146.0ctober

2018 (2019), pp. 299-302. DOI: [10.1016/3 |

fusengdes.2018.12.050.

Andreas Werner et al. “W7-X magnetic di-
agnostics: Rogowski coil performance for
very long pulses”. In: Review of Scientific

Instruments 79.10 (2008), 10F122. por: 10.

1063/1.2957933.

Daniel Bockenhoff et al. “Reconstruction of
Magnetic Configurations in W7-X using Ar-
tifical Neural Networks”. In: Nuclear Fusion
58.5 (2018), p. 056009. DOI: |10.1088/1741+
4326/aab22d.

Y Feng et al. “Impact of Island Geometry
on Island Divertor Performance”. In: 30th
EPS Conference on Plasma Physics and
Controlled Fusion. Ed. by M. Pick and P.
Helfenstein. St. Petersburg: European Phys-
ical Society, 2003.

Hermann Renner et al. “Physical Aspects
And Design of the Wendelstein 7-X Diver-
tor”. In: Fusion Science and Technology 46.2
(2004), pp. 318-326. DOI: [10.13182/FST04-
A570L

Y. Gao et al. “Approaches for quantita-
tive study of divertor heat loads on W7-X".
In: Proceedings of the 2018 International
Conference on Quantitative InfraRed Ther-
mography. Berlin, Germany: QIRT Council,

2018, pp. 6-7. DOI: [10.21611/qirt.2018|

p23.

Yu Turkin. “Current Control by ECCD for
W7-X”. In: Fusion Science and Technology
50.3 (2006), pp. 387-394. DOI: 10.13182/
FSTO6-5.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

S.A. Bozhenkov et al. “Service oriented
architecture for scientific analysis at W7-
X. An example of a field line tracer”.
In: Fusion Engineering and Design 88.11
(2013), pp. 2997-3006. DOI: 10.1016/j |
fusengdes.2013.07.003|

F. Wagner et al. Overview on W7-AS Re-
sults with Relevance for Wendelstein 7-X
and the Low-Shear Stellarator Line. Tech.
rep. 1998, p. 33029492.

Martin Ester et al. “Density-Based Clus-
tering Algorithms for Discovering Clus-
ters”. In: Comprehensive Chemometrics 2
(2010), pp. 635-654. pDOI: 10.1016/B978-
044452701-1.00067-3. arXiv: 10.1.1.71.
1980.

Samuel A. Lazerson et al. “First measure-
ments of error fields on W7-X using flux
surface mapping”. In: Nuclear Fusion 56.10
(2016), p. 106005. po1: 10 . 1088 /0029 -
5515/56/10/106005.

Y. Gao et al. “Methods for quantitative
study of divertor heat loads on W7-X”. In:
Nuclear Fusion 59.6 (2019), p. 066007. DOI:
10.1088/1741-4326/ab0f49.

Samuel A Lazerson et al. “Error fields in
the Wendelstein 7-X stellarator”. In: Plasma
Physics and Controlled Fusion 60.12 (2018),
p. 124002. por: 10 . 1088 / 1361 - 6587 /
aae96b.

Sergey loffe and Christian Szegedy. “Batch
Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate
Shift”. In: Proceedings of the 32nd Inter-
national Conference on Machine Learning.
Lille, France, 2015. DOI: [10.1007/s13398-
014-0173-7.2. arXiv: |1502.03167.

Christian Szegedy et al. “Rethinking the In-
ception Architecture for Computer Vision”.
In: Proceedings of the IEEE conference on
computer vision and pattern recognition. Las
Vegas USA, 2016, pp. 2818-2826. DOT: |10
1109/CVPR.2016.308. arXiv: |[1512.00567.

K He et al. “Deep residual learning for image
recognition”. In: IEEFE conference on com-
puter vision and pattern recognition. Las
Vegas USA, 2016, pp. 770-778. DOI: 10|
1109/CVPR.2016.90. arXiv: |1512.03385.

Page 12 of


https://doi.org/10.1038/nature14236
https://doi.org/10.1088/1741-4326/aacab0
https://doi.org/10.1016/j.fusengdes.2018.12.050
https://doi.org/10.1016/j.fusengdes.2018.12.050
https://doi.org/10.1063/1.2957933
https://doi.org/10.1063/1.2957933
https://doi.org/10.1088/1741-4326/aab22d
https://doi.org/10.1088/1741-4326/aab22d
https://doi.org/10.13182/FST04-A570
https://doi.org/10.13182/FST04-A570
https://doi.org/10.21611/qirt.2018.p23
https://doi.org/10.21611/qirt.2018.p23
https://doi.org/10.13182/FST06-5
https://doi.org/10.13182/FST06-5
https://doi.org/10.1016/j.fusengdes.2013.07.003
https://doi.org/10.1016/j.fusengdes.2013.07.003
https://doi.org/10.1016/B978-044452701-1.00067-3
https://doi.org/10.1016/B978-044452701-1.00067-3
http://arxiv.org/abs/10.1.1.71.1980
http://arxiv.org/abs/10.1.1.71.1980
https://doi.org/10.1088/0029-5515/56/10/106005
https://doi.org/10.1088/0029-5515/56/10/106005
https://doi.org/10.1088/1741-4326/ab0f49
https://doi.org/10.1088/1361-6587/aae96b
https://doi.org/10.1088/1361-6587/aae96b
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.1007/s13398-014-0173-7.2
http://arxiv.org/abs/1502.03167
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
http://arxiv.org/abs/1512.00567
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1512.03385

[42] Christian Szegedy et al. “Inception-v4,
Inception-ResNet and the Impact of Resid-
ual Connections on Learning”. In: AAAL
San Francisco, USA, 2017, p. 12. poOI1: [10}
1016/ j . patrec . 2014 . 01 . 008. arXiv:
1602.07261.

[43] Diederik P. Kingma and Jimmy Lei Ba.
“Adam: A Method for Stochastic Opti-
mization”. In: International Conference on
Learning Representations 2015. San Diego,
USA, 2015, pp. 1-15. por: 10 . 1145 /
1830483.1830503. arXiv: [1412.6980.

[44] Martin Abadi et al. “TensorFlow: A Sys-
tem for Large-Scale Machine Learning”. In:
USENIX Symposium on OSDI. Savannah,
USA, 2016, pp. 265—283.

[45] Zhou Wang et al. “Image Quality Assess-
ment: From Error Visibility to Structural
Similarity”. In: IEEE Transactions on Im-
age Processing 13.4 (2004), pp. 600-612.
DOI: [10.1109/TIP.2003.819861.

[46] Thomas J Diciccio and Bradley Efron.
“Bootstrap Confidence Intervals”. In: Statis-
tical Science 11.3 (1996), pp. 189-228. DOL:
10.1214/ss/1032280214.

A Neural Network Architec-

tures

There are many types of NNs and by combining
them and modifying parameters the number is
infinite. The analysis done in "Neural Network
Regression Approaches to Reconstruct Plasma
Properties from Wendelstein 7-X Heat Load Im-
ages" is limited to five different types introducted
in detail in the following. The hyperparameter of
a convolutional layer are shown

A.1 Feed-Forward
Network

Fully-Connected

The first hidden layer consists of 80 neurons, the
second layer consists of 100 neurons leading to the
output of 2 values. The hidden layer activation
functions are ReLLU, the last layer activations are
the identity.

A.2 Convolutional Network

The convolutional layer hyperparameter are given
as shown in Figure A visual representation of
the three layers CNN is given in Figure The
architecture starts with a convolutional layer with
5 x 5 kernel followed by one with a 3 x 3 kernel.
The dimension is reduced by a 2 x 2 Max-Pooling
with stride 2 x 2. The last convolutional layer
has a 3 x 3 kernel and is again followed by 2 x 2
Max-Pooling with stride 2 x 2. The last two layers
are fully-connected, the first one has 24 neurons
and the last one leads to the two output values.
All activation functions are ReLU, except for the
last layer, where activations are the identity.

Output Dimension

[ Stride

TlZ X11x72
Conv
[2,2]
TZS X 23 x 48

Kernel Dimension \ _
Input Dimension

Figure 11: The hyperparameter for convolutional
layer are given as shown here. The
padding is given indirectly by the input
and output dimension. If the width and
height stay the same, padding is applied,
otherwise, it is not applied.

2

!

Fully Connected

|

Fully Connected

T 28 x7x16
Pool
[2, 2]

55x 13 x 16

Conv

I 55x 13 x 12
Pool
[2,2]

109 x 25 x 12
Conv

I 109x25x8
Conv

113 x29x1

Figure 12: Owverview of the CNN
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A.3 Deep Convolutional Network

2

I

Fully Connected

12 x 11 x 42

26 x 23 x 30

TlxlxlOB

Avg Pool
3x2

3x2x108

26 x 23 x 30

26 x23x18

56 x 27 x 12

5x4x48
Pool
2x2,[2, 2]

56 x 27 x 12

10 x 9 x 48

113 x29x6

113x29x6

113x29x1

Figure 13: Overview of the DCNN.

The DCNN with 11 convolutional layers is shown
in Figure [[3] It starts with 2 convolutional layers
and a 3 x 3 kernel. A third 3 x 3 kernel with 2 x 1
dimension reduction follows. The next two layers
consists of a 5 x 5 kernel with the latter reducing
the dimension again by 2 x 1. The next four ker-
nels are 7 x 5, 1 x 7, 3 x 3 and 3 x 3 respectively
leading to a total dimensionality of 10 x 9 x 48.
A Max-Pooling with 2 x 2 kernel reduces it to
5 x 4 x 48. Two more convolutional layers with
3 x 3 and 1 x 1 kernel followed by average pooling
lead to a dimensionality of 1 x 1 x 108. Batch nor-
malization is applied to each convolutional layer
and up to here all activation functions are ReLU.
The last layer is fully-connected and without an
activation function.

A.4 Inception Residual Network

The basic structure of the residual inception re-
gression network is shown in Figure It begins
with a block called stem, continues with an alter-
nating structure of repeated blocks and a reduc-
tion block and ends with a regression block. The
number of repititions depends on the parameter i,
which is set to 3 in the IRNN. The stem (see Fig-

ure consists of three convolutional layers and
two consecutive inception modules. The input
picture dimensionality is reduced from 113 x 29
to 25 x 23 while the number of channels increases
from 1 to 36. In the classic Inception-ResNet v2
the dimension reduction is done on both dimen-
sions but there the input image dimensions are
larger. Block A (see Figure [16) is the first incep-
tion residual block. In each of the blocks A—C
the block input is processed along different paths
and concatenated along the channel dimension.
Afterwards a 1 x 1 convolution without an activa-
tion function is applied. In block A the result is
scaled by the factor 0.17 and added to the block
input followed by the ReLLU activation. The out-
put dimension does not change so stacking these
blocks is possible.

After block A the following reduce block is
shown in Figure [I7, which is an inception mod-
ule. The last layer has a stride of [2,2] which
reduces the dimension from 25 x 23 to 12 x 11
while increasing the channel size from 36 to 180.

Despite the different input size to block B (see
Figure and varied convolutions within the
inception module, the overall structure is simi-
lar to block A. Here the scaling factor after the
inception is 0.2.
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6 x5 x 366
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2i - times (™
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i-times (™
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113 x29x1

Figure 14: Owverview of the IRNN. The parameter
1 determines the NN depth by giving the
numbers of repetitions of each block. The
individual blocks are described in Fig-

ures @ to @

25x 23 x 36

Concatenate

25x23x18 25x23x 18

27 x25x12

27 x25x 12

27 x25x12

27 x25x12

27 x 25 x 30
Concatenate

27 x25x12

27 x25x18

56 x 27 x 12

56 x 27 x 12

56 x 27 x 6

56 x 27 x 6

113 x29x1

Figure 15: Stem of IRNN which structure overview
is given in Figure[T])
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Add & RelLU

25 x 23 x36

No Activation

25x23x24
Concatenate

25x23x12

25x23x9

25x23x6 25x23x6

25x 23 x 36

Figure 16: Residual block A of residual-inception NN
which structure overview is given in Fig-

ure |7_Z|

12 x 11 x 180

12 x11x 180
Concatenate

12x11x72

25x 23 x48

12x11x72 25x23 x48 12 x 11 x 36

25x 23 x 36

Figure 17: Reduce 1 module of IRNN which structure
overview 1s given in F' z'gure

12 x11 x 168

Add & RelU

12x11x168

No Activation

12x11x72
Concatenate

12 x11x 36

12 x11x 30

12 x 11 x 36 12 x11x24

Split

12 x11 x 168

Figure 18: Residual block B of IRNN which structure
0VETVIEW 1S given in Fz‘gurelT_Zl
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12 x 11 x 180
Concatenate

6 x5 x 180

6x5x72
12 x11 x 54

12x11x48 12x11x48

12 x 11 x 48

12 x 11 x 180

Figure 19: Reduce 2 module of IRNN which structure
overview 18 gien in F igure|7_2|
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Fully Connected

Add & RelU
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. . 1x1x252
No Activation

6 x5 x84

Concatenate 6 x 5 x 252
6 x5x48
6 x5x42
= 6 x5 X 366

Figure 21: Reduce 3 module and regression of IRNN
which structure overview is given in Fig-

ure |7_Z|

6 x5x36 6x5x36

Split

A.5 Deep Inception Network

The DINN is a special case of the IRNN, where
the residual parameter ¢ is equal to 0 which can be
Figure 20: Residual block C of IRNN which structure seen as skipping block A — C in Figure Even

overview is given in Figure|[1]] without the residual blocks this NN has a deep
and complex structure with multiple inception
modules.

6 x5 x 366
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