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1. Introduction

In stochastic thermodynamics standard concepts of macroscopic thermodynamics are

generalized to cover the non-equilibrium properties of small systems [1, 2]. Instead of

being obtained as ensemble averages, thermodynamic quantities such as heat, work,

and entropy changes are defined on the level of individual trajectories [3], allowing for

a refined formulation of the thermodynamic laws. For instance, in an overdamped,

d-dimensional Langevin system [4–6] with coordinate xt at time t,

γẋt = −∇xt
U(xt, t) + fnc(xt, t) +

√

2kBTγ ξt , (1)

the first law for a trajectory x = {xt}tft=0 evolving from x0 at time t = 0 to xf at time

t = tf reads

∆U [x] = Q[x] +W [x] , (2)

with the definitions

∆U [x] = U(xf , tf)− U(x0, 0) , (3a)

Q[x] =

∫ tf

0

(

−γẋt +
√

2kBTγ ξt

)

◦ dxt

=

∫ tf

0

(

∇xt
U(xt, t)− fnc(xt, t)

)

◦ dxt , (3b)

W [x] =

∫ tf

0

(

∂U(xt, t)

∂t
dt + fnc(xt, t) ◦ dxt

)

. (3c)

In (1), the deterministic force exerted on the system has a conservative component

−∇xU(x, t) due to an external potential U(x, t), and a non-conservative component

fnc(x, t). The dot in ẋt denotes the total time derivative, γ is the friction coefficient,

kB Boltzmann’s constant, and T the temperature of the thermal bath. The thermal

fluctuations ξt are modeled by Gaussian white noise sources, which are unbiased,

mutually independent and delta-correlated in time. The ◦ symbol in (3b) and (3c)

denotes the Stratonovich product, which implies mid-point discretization. The second

line in (3b) is simply obtained by exploiting the equation of motion (1). A generic

example for a physical system described by the Langevin equation (1) is a colloidal

Brownian particle suspended in an aqueous solution at room temperature.

The definitions in (3a), (3b) and (3c) are physically motivated. The change in

internal energy ∆U [x] is given by the difference of the system’s potential energy at

the beginning and the end of the trajectory x, and thus is dependent only on initial

and final state. The heat Q[x] absorbed by the system results from the energy

exchange due to the frictional force −γẋt and fluctuating force
√
2kBTγ ξt exerted

by the heat bath on the system [7], integrated over all displacements dxt along the

trajectory x. The work W [x] performed on the system by an “external agent” [7]

results from externally controlled changes of the potential energy ∂U(xt,t)
∂t

dt and from

non-conservative forces fnc(xt, t) ◦ dxt, acting during the motion along x. Therefore,
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both heat and work are functionals along the trajectory x. As argued in [7], the

consistency of these physical interpretations with the energy balance (2) is based on

interpreting the products in (3b) and (3c) in the Stratonovich sense (marked by ◦),
because then the usual rules of calculus can be applied when computing differentials,

such as dU(xt, t) = ∇xt
U(xt, t)◦dxt+

∂U(xt,t)
∂t

dt for the infinitesimal change in internal

energy.

With similar reasoning functionals along the trajectory x, which are not directly

obtained from energy balance arguments, are defined employing standard rules of

calculus. The most prominent example is the entropy production in the thermal bath [1,2]

∆Senv[x] = −
∫ tf

0

dQt

T
(4a)

Using the definition dQt =
(

−γẋt +
√
2kBTγ ξt

)

◦dxt for the infinitesimal heat exchange

over a displacement dxt in accordance with (3b), and replacing −γẋt+
√
2kBTγ ξt with

the balancing external forces from the Langevin equation (1), we find

∆Senv[x] =

∫ tf

0

1

T

(

−∇U(xt, t) + fnc(xt, t)
)

◦ dxt . (4b)

Following this common wisdom we thus end up with a Stratonovich interpretation of the

stochastic integral in (4b). Another strong indication for the Stratonovich interpretation

in (4b) being adequate comes from the fact that then ∆Senv[x] can be interpreted as

a measure for the (ir-)reversibility of the path x. It has been shown [2, 8, 9] that the

log-ratio of probabilities for the trajectory x being generated by (1) in forward time

versus the same trajectory being traced out backwards under a time-reversed dynamics

is exactly given by (4b) as a Stratonovich integral.

From a more mathematical viewpoint the above arguments may not be sufficiently

convincing to resolve the fundamental ambiguity of how to “correctly” define the

integrals in (3b), (3c) along the stochastic trajectory x: Itô interpretation, Stratonovich

or even something else? This problem becomes even more apparent if the friction γ or the

temperature T are functions of the position x, because then the associated multiplicative

noise term in the Langevin equation may have to be interpreted in either Itô or anti-

Itô (also called Hänggi-Klimontovich [10, 11]) convention, depending on which of the

physical quantities, γ or T , actually varies in space [12–17] (see also our derivation in

Section 4 below). The identification of the force contributions to heat and work is then

far less obvious already on the level of the equation of motion [7]. Put differently, it is of

fundamental interest to verify, via a systematic approach, whether the definitions (3a),

(3b), (3c) and (4b) are indeed the correct ones or whether they need modifications, in

particular for more general cases than the simple Langevin equation (1) with additive

noise.

We provide such a mathematical analysis with the present contribution, treating

dynamics and thermodynamics under a common approach along the lines we have

employed, together with collaborators, in earlier works [18–24]. In addition to deriving

new results concerning functionals, we recover and systematize a number of related
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findings known from the literature, as we point out throughout the paper in connection

with the relevant results. From this perspective our present work can also be seen as

being of review-like nature, though certainly not exhaustive (e.g. not covering the most

general cases).

The ambiguity in interpreting products and integrals involving the stochastic

process xt generated by the Langevin equation (1) is related to two asymptotic limits

that have implicitly been performed before writing down (1): (i) the limit of vanishing

correlation time of the thermal noise (white-noise limit), and (ii) the limit of vanishing

equilibration time for the velocity degrees of freedom (small-mass limit [25]). We

therefore start our analysis from the so-called generalized Langevin equation (GLE)

[26], i.e. a generalized form of the Langevin equation which possesses finite memory

times and noise correlation times, and includes velocity degrees of freedom with finite

relaxation time (see Sec. 2.1). We then perform the aforementioned asymptotic limits

in a systematic way not only for the Langevin equation of motion itself, but also for

general functionals along trajectories generated by the GLE.

Much has been written about the noise interpretation related to the white-

noise limit and the small-mass limit in stochastic differential equations (SDEs),

with the two limits usually studied separately [12–17, 19, 27–31], and, more recently,

about the behavior of stochastic thermodynamic quantities in the small-mass limit

[18, 20, 22, 23, 32–41]. As mentioned above, we will recover several of these previous

results along our analysis, and present them in a single framework.

2. Model

2.1. The generalized Langevin equation (GLE)

The generalized form of the Langevin equation which we take as a starting point of our

analysis reads [24]

mẍt = f(xt, t)− γ̄ g(xt)

∫ t

0

ds κ(t− s)h(xs)ẋs

+
√

2kBT (xt, t)γ̄ σ(xt)ηt . (5)

It describes the dynamics of a Brownian particle (with mass m) with position xt

and velocity vt = ẋt (in d = 1, 2 or 3 dimensions) at time t, which starts out from

x0 with velocity v0 at time t = 0. The particle moves in a force field f (x, t) =

−∇xU(x, t) + fnc(x, t) and interacts with its environment. This interaction leads to

frictional and fluctuating forces, which are modeled by the second and third term,

respectively, on the right-hand side of the generalized Langevin equation (5).

The functions g(x), h(x), and σ(x) are all matrix-valued, i.e. they are functions

from R
d to R

d×d. The viscous friction term (second term on the right-hand side in (5)),

involving an integral over the particle’s past velocities with the kernel κ(t−s), describes

state-dependent dissipation and comprises the back-action effects of the environment
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up to the current time t. For the memory function κ(t) we here consider the case

κ(t) =
1

τb
e−t/τb , (6)

with τb being the characteristic time scale of memory effects induced by the thermal

bath. The typical magnitude of the viscous friction forces is specified by the factor γ̄,

i.e. g, h and σ are chosen to be dimensionless.

The noise term
√

2kBT (xt, t)γ̄ σ(xt)ηt in (5) also accounts for past and present

interactions of the particle with the environment, where ηt is a mean-zero, stationary

colored noise process. Note that even though they depend on position, xt, there is

no ambiguity related to the interpretation of these products because xt is the second

integral of the noise process and therefore is sufficiently regular §. We choose the ηt to

be Gaussian with time-exponential correlations

〈ηitηjs〉 =
δij
2τb

e−|t−s|/τb , (7)

where the correlation time scale τb is identical to the characteristic time scale of the

memory kernel (6) of the viscous friction, because both memory and colored noise effects

are governed by the intrinsic time scale of the bath. This is equivalent to generating the

ηt by the stationary Ornstein-Uhlenbeck process, which is the solution to the SDE:

η̇t = − 1

τb
ηt +

1

τb
ξt , (8)

where ξt is a mean-zero Gaussian white noise source with covariance 〈ξitξjs〉 = δijδ(t−s).

The typical scale of the colored noise strength is set by the space- and time-dependent

parameter T (x, t).

Note that we allow the functions g(x), h(x), and σ(x) to be unrelated to each other

in general. Such a general setting does not necessarily fulfill the fluctuation-dissipation

relation (in current notation) [42],

2kBT γ̄
〈

[σ(xt)ηt]i [σ(xs)ηs]j

〉

= kBT γ̄ [g(xt)κ(t− s)h(xs)]ij , (9)

and thus corresponds to the Brownian particle being in contact with an inherently non-

equilibrium environment. We immediately see, however, that the fluctuation-dissipation

relation (9) is valid when g = hT = σ. Then, the latter tensors are typically the “square

root” γ1/2 of the (symmetric) hydrodynamic friction tensor γ (here measured in units of

γ̄). Furthermore, the parameter T corresponds to the temperature of the environment.

In the case T = T (x, t), this environment is locally “around position x” and at any

given time t an equilibrium heat bath at definite temperature.

We finally point out that in introducing the factors γ̄ and
√
2kBT γ̄ in (5) we use

a somewhat untypical representation of the GLE, compare for instance with [24, 26].

However, this form (5) makes the connection to the overdamped Langevin equation (1)

more explicit and thus the generalization of the functionals (3b), (3c) to the GLE case

§ Note that the noise process here happens to be colored so that in effect xt is the third integral of a

white noise.
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more evident, see Sec. 2.2. We also remark that the form (5) of the GLE is more general

than the generic GLE which is typically obtained from microscopic Hamiltonian models

for a small system interacting with a heat bath [26, 43] (see, for instance, Appendix

A in [24] for a derivation). In particular, in these systems temperature would be a

space- and time-homogenous constant. While space-dependent friction coefficients are

known to be related to nonlinear system-bath couplings [26], the space- (and time-)

dependent temperature is a generalization we introduce “by hand” under the following

assumption: the temperature field T (x, t) varies sufficiently slowly such that the particle

at position x and time t is in contact with a locally well-defined thermal bath, which is

homogeneous on mesoscopic scales, and that any memory effects from that local bath

on time scales τb die out before the particle changes position into an “adjacent bath” at

(slightly) different temperature, or before the bath-temperature changes significantly in

time. The latter assumption is justified because we consider τb to be the (by far) fastest

time scale in the system (see discussion in Sec. 3).

2.2. The generalized functionals in stochastic thermodynamics

With the physical interpretation of the various terms in (5) as external force,

(generalized) viscous friction and thermal fluctuations, we can now define heat and

work ‖ along the trajectory (x, v) = {(xt, vt)}tft=0 generated by (5) in complete analogy

to our discussion in Sec. 1,

Q[x, v] =

∫ tf

0

(

− γ̄ g(xt)

∫ t

0

ds κ(t− s)h(xs)xs

+
√

2kBT (xt, t)γ̄ σ(xt)ηt

)

· dxt

=
m

2

(

v2
f − v2

0

)

−
∫ tf

0

f (xt, t) · dxt , (10a)

W [x, v] =

∫ tf

0

(

∂U(xt, t)

∂t
dt+ fnc(xt, t) · dxt

)

. (10b)

Similarly, the total internal energy for the GLE (5) is given as the sum of kinetic and

potential energy,

E(x, v, t) =
m

2
v2 + U(x, t) . (11)

We can now verify easily that heat and work together with the change in internal energy

∆E[x, v] = E(xf , vf , tf)−E(x0, v0, 0) fulfill a first law

∆E[x, v] = Q[x, v] +W [x, v] , (12)

‖ Note that we here use heat and work as names for the functionals (10a) and (10b) even in the general

case in which the fluctuation-dissipation relation (9) is violated. From a strict physical viewpoint this

is not completely precise, in particular for the heat dissipated in the environment, which is a physically

reasonable concept only if that environment is an actual “heat bath” at thermal equilibrium, i.e. if the

fluctuation-dissipation theorem is valid.
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in correspondence to (2). A generalized definition of entropy production on the level of

the GLE is far less obvious; we thus discuss entropy production separately in Section 5.

The crucial mathematical difference between the functionals (10a), (10b) along the

trajectory (x, v) = {(xt, vt)}tft=0 generated by (5) and those functionals in (3b), (3c) is

that now the stochastic processes (xt, vt) are sufficiently regular such that the integrals

(10a), (10b) are independent of the discretization chosen to evaluate them. In other

words, we do not need to prescribe any discretization scheme to render the quantities

Q[x, v] or W [x, v] uniquely defined, and there is no ambiguity in their definition related

to the interpretation of stochastic integrals. Hence, we take these unique representations

of heat and work as our starting point to perform the same asymptotic analysis which

turns the GLE (5) into the overdamped Langevin equation (1). As the main result we

will obtain the asymptotic limits of the functionals (10a), (10b) and “automatically” get

delivered the correct discretization.

In order to streamline the computation of the asymptotic limits and, at the same

time, allow for similar functionals to be analyzed in the same way, we subsume the heat

and work functionals under the general form

F [x, v] =

∫ tf

0

r(xt, vt, t) dt+

∫ tf

0

q(xt, t) · dxt , (13)

where r(x, v, t) and q(x, t) are arbitrary (but “well-behaved”) functions of the indicated

arguments, the latter vector-valued. The allocations necessary to obtain (10a) and

(10b) as special cases of (13) are rather immediate. For the heat Q[x, v] we have

r(x, v, t) ≡ 0 and q(x, t) = −f (x, t) and for the work W [x, v]: r(x, v, t) ≡ ∂U(x,t)
∂t

and

q(x, t) = −fnc(x, t).

3. Formulation of the mathematical approach

The main mathematical difficulty in handling the GLE (5) comes from the fact that it is

a stochastic integro-differential equation driven by a non-Markovian noise. However, by

extending its phase space and introducing, in addition to the velocity degrees of freedom

vt = ẋt , (14a)

the auxiliary variables

yt =

∫ t

0

ds κ(t− s)h(xs)ẋs , (14b)

we can transform (5) to a system of Markovian SDEs [24]. We here write this Markovian

system in the differential form:

dxt = vtdt , (15a)

τvdvt = − g(xt)ytdt +
1

γ̄
f(xt, t)dt+

√

2kBT (xt, t)/γ̄ σ(xt)ηtdt , (15b)

τbdyt = − ytdt+ h(xt)vtdt , (15c)

τbdηt = − ηtdt+ dW t . (15d)
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The first equation (15a) is a transcription of (14a). In the last equation (15d), W t is a d-

dimensional Wiener process, whose (formal) derivative in time is the white noise ξt from

(8), i.e. (15d) is a representation equivalent to (8) of the dynamical equation generating

the Ornstein-Uhlenbeck process ηt. The third equation (15c) results from differentiating

(14b) with respect to time and using the specific form (6) of κ(t). Note that also the more

general case of a memory kernel κ(t) which consists of a sum of different exponentials can

be recast into a Markovian system by introducing a corresponding number of auxiliary

variables like yt [44], and likewise one would introduce a suitable number of ηt-like

variables to represent a combination of different Ornstein-Uhlenbeck processes driving

the system of interest. Finally, equation (15b) corresponds to the original GLE (5)

after all the auxiliary variables have been plugged in; moreover, we use the abbreviation

τv = m/γ̄ for the characteristic equilibration time of the velocity degrees of freedom.

These “equations of motion” (15b)-(15d), generating the Markov process (xt, vt,yt,ηt)

together with the SDE for the functional (13),

dFt = r(xt, vt, t) dt+ q(xt, t) · dxt

= r(xt, vt, t) dt+ q(xt, t) · vt dt , (16)

constitute the basic set of equations for our asymptotic analysis. In the second line of

Eq. (16) we have introduced dxt = vtdt from (15a) in order to turn the dxt differentials

into dt differentials as this will simplify the analysis. We should nevertheless keep in

mind that the q(x, t) term originated from a spatial differential, so that we might expect

to get back, from the asymptotic analysis, a contribution of the form qdxt with some

specific interpretation rule of the product.

We are interested in two different types of limiting procedures, namely the white-

noise limit and the small-mass limit. In these asymptotic limits the time scales τb
and τv, appearing in (15a)-(15d), are “much faster” than the characteristic time scale

τx of the diffusive motion in x. Accordingly, we want to calculate the asymptotic

equations resulting from (15a)-(15d) and (16) in the limits τb/τx → 0 and τv/τx → 0.

The main idea is to exploit this scale separation by applying a systematic multiscale

or homogenization method [29, 45] to the Fokker-Planck equation for the full density

comprising fast and slow variables, i.e. to the Fokker-Planck equation for the density

ρ(t;x, v,y,η,F) which is equivalent to the Langevin equations (15a)-(15d) and (16).

The result is an “effective” Fokker-Planck equation for the homogenized density of the

slow variables alone.

It is, however, not obvious how the above two limits relate to each other, i.e. if

they are joint limits or if there is a specific order in which they have to be taken. To

answer this question we have to consider the specific physical system we intend to model

with (15a)-(15d). Having in mind a colloidal particle (the system) suspended in aqueous

solution at room temperature (the thermal bath), the time scale τb of the bath-intrinsic

correlations is related to the molecular collision time of the water molecules, which is

of order τb ≈ 10−13 s. The velocity relaxation time is given by the ratio of inertia and

friction effects and amounts to τv ≈ 0.5 × 10−8 s for a colloid of 0.1µm radius, while
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the colloid’s diffusive time scale is of the order τx ≈ 0.5× 10−2 s [6]. In other words, all

three time scales are in fact well-separated, τb ≪ τv ≪ τx, and are governed by different

physical processes. Hence, we should perform the limits separately in two steps:

1) τb/τx → 0, where τv/τx remains constant and finite,

2) τv/τx → 0.

We summarize the results for the first limit (white-noise or Markovian limit) in Section

4.1. The second limit (small-mass limit) is treated in Section 4.2. For both cases, the

technical details are given in Appendix A.

In order to perform the homogenization procedure we need to know how the various

terms in (15a)-(15d) and (16) scale with the relevant time- and length scales. We

therefore rewrite (15a)-(15d) and (16) by introducing dimensionless quantities which

are all of order one, so that the dependencies on scales show up as dimensionless (pre-)

factors which we expect to contain τb, τv and τx. Marking dimensionless quantities by

a tilde, we define

t = τxt̃ , (17a)

x = Lx̃ , (17b)

v =

√

kBT̄

m
ṽ =

L√
τxτv

ṽ , (17c)

y =
L√
τxτb

ỹ , (17d)

η =
1√
τb
η̃ , (17e)

f =
kBT̄

L
f̃ ⇒ f

γ̄
=

L

τx
f̃ . (17f)

We measure the variables of interest t and x on the slowest scale of the system, namely

the diffusive time scale τx and an associated “large” length-scale L, such that

τx =
L2

D̄
=

γ̄L2

kBT̄
, (18)

where T̄ quantifies the typical temperature of the bath according to T (x, t) = T̄Θ(x, t),

with a dimensionless temperature profile Θ(x, t). The velocity degrees of freedom are of

the order of the thermal velocity, since they equilibrate on the scale τv much faster than

τx. The typical magnitude of the auxiliary variable η is obtained from its definition

(14b) by rewriting the integral in a form which is independent of all scales involved.

The order of magnitude for η follows directly from its correlations (7). We assume the

external force f to vary on slow scales only and to correspond to energies comparable to

the typical thermal energy of the bath. The tensors g, h, σ are already dimensionless,

because of the prefactor γ̄ in (5).

Plugging (17a)-(17f) into the GLE (15a)-(15d), we find (omitting arguments):

dx̃t̃ =

√

τx
τv
ṽt̃ dt̃ , (19a)
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dṽt̃ = − τx√
τbτv

gỹ t̃ dt̃ +

√

τx
τv
f̃dt̃ +

√
2Θ

τx√
τbτv

ση̃t̃ dt̃ , (19b)

dỹt̃ = − τx
τb
ỹ t̃ dt̃ +

τx√
τbτv

hṽt̃ dt̃ , (19c)

dη̃t̃ = − τx
τb
η̃ t̃ dt̃ +

√

τx
τb

dW̃ t̃ . (19d)

Similarly, we find the dimensionless form of the general functional (16), which includes

the dimensionless representations of heat and work from (10a), (10b), to be

dF̃t̃ = r̃ dt̃+

√

τx
τv

q̃ · ṽt̃ dt̃ , (20)

with the dimensionless counterparts r̃ = r̃(x̃t̃, ṽt̃, t̃), q̃ = q̃(x̃t̃, t̃) of the functions

r(xt, vt, t), q(xt, t) from (16).

The Fokker-Planck equation associated to the SDEs (19a)-(20) is:

∂ρ

∂t̃
= −∇̃ · J̃ , (21a)

for the density ρ = ρ(t̃; x̃, ṽ, ỹ, η̃, F̃) with

∇̃ =















∇x̃

∇ṽ

∇ỹ

∇η̃

∂/∂F̃















(21b)

and

J̃ =

















√ τx
τv
ṽ

− τx√
τbτv

gỹ +
√

τx
τv
f̃ +

√
2Θ τx√

τbτv
ση̃

− τx
τb
ỹ + τx√

τbτv
hṽ

− τx
τb
η̃ − τx

2τb
∇η̃

r̃ +
√ τx

τv
q̃ · ṽ

















ρ . (21c)

In the following, we apply the two-step limiting procedure as described above to this

Fokker-Planck equation. The technical details are given in Appendix A.

4. The homogenized Fokker-Planck and Langevin equation

4.1. The white-noise limit

In the white-noise limit we have τb/τx → 0 while τv/τx stays finite. Defining the small

parameter

ǫ =

√

τb
τx

(22)
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we can write the Fokker-Planck equation (21a)-(21c) in the form

∂ρ

∂t̃
= −

(

L†
2 +

1

ǫ
L†

1 +
1

ǫ2
L†

0

)

ρ (23)

with the operators

L†
2 =

√

τx
τv

ṽi
∂

∂x̃i
+

√

τx
τv

f̃i
∂

∂ṽi
+

(

r̃ +

√

τx
τv

q̃ · ṽ
)

∂

∂F̃
, (24a)

L†
1 = −

√

τx
τv

gij ỹj
∂

∂ṽi
+

√

τx
τv

√
2Θσij η̃j

∂

∂ṽi
+

√

τx
τv

hij ṽj
∂

∂ỹi
, (24b)

L†
0 = − ∂

∂ỹi
ỹi −

∂

∂η̃i
η̃i −

1

2

∂2

∂η̃2i
, (24c)

where we use Einstein’s summation convention over repeated indices. Performing the

multi-scale procedure outlined in Appendix A we find the “effective” Fokker-Planck

equation

∂ρ

∂t̃
= −

[√

τx
τv

ṽi
∂

∂x̃i
− τx

τv
gijhjk

∂

∂ṽi
ṽk +

√

τx
τv

f̃i
∂

∂ṽi

− τx
τv

Θ σij(σ
T)jk

∂

∂ṽi

∂

∂ṽk
+

(

r̃ +

√

τx
τv

q̃ · ṽ
)

∂

∂F̃

]

ρ (25)

which governs the dynamics of the reduced density ρ = ρ(t̃, x̃, ṽ, F̃) for the slow variables

(x̃, ṽ) in the asymptotic limit ǫ → 0. It is equivalent to the Langevin equations

dx̃t̃ =

√

τx
τv
ṽt̃ dt̃ , (26a)

dṽt̃ = − τx
τv
ghṽt̃ dt̃+

√

τx
τv
f̃ dt̃ +

√

τx
τv

√
2Θσ dW̃ t̃ , (26b)

dF̃t̃ =

(

r̃ +

√

τx
τv

q̃ · ṽt̃

)

dt̃ . (26c)

For g = hT = σ = γ1/2 these are exactly the standard Langevin-Kramers equations (see

e.g. [5]) describing underdamped Brownian motion, together with the same equation for

the functional as we had it in the very beginning. Since none of the functions appearing

in the Langevin-Kramers equation or in the functional depend on the (auxiliary)

variables (y,η), which have been “integrated out” during the homogenization procedure,

the Markovian limit τb/τx → 0 is basically trivial in the current context. As we will see

in the next Section, however, the small-mass limit τv/τx → 0 is much more interesting,

in particular in our case in which g, h, σ, and Θ depend on the particle position.

4.2. The small-mass limit

For the small-mass limit the small parameter is

ǫ =

√

τv
τx

. (27)
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Using this definition, we can bring the Fokker-Planck equation (25) for the underdamped

motion into the form (23) with the operators

L†
2 = r̃

∂

∂F̃
, (28a)

L†
1 = ṽi

∂

∂x̃i
+ f̃i

∂

∂ṽi
+ q̃ · ṽ ∂

∂F̃
, (28b)

L†
0 = −(gh)ij

∂

∂ṽi
ṽj −Θ (σσT)ij

∂

∂ṽi

∂

∂ṽj
. (28c)

The homogenization procedure from Appendix A then yields the “effective” Fokker-

Planck equation

∂ρ

∂t̃
= −

[

∂

∂x̃i
[(gh)−1]ij f̃j −

∂

∂x̃i
[(gh)−1]ij

∂

∂x̃k
ΣjkΘ

+ r̃
∂

∂F̃
+ q̃i[(gh)

−1]ij f̃j
∂

∂F̃
+Θ

∂q̃i[(gh)
−1]ij

∂x̃k
Σjk

∂

∂F̃
− ∂

∂x̃i
Θ[(gh)−1]ijΣjkq̃k

∂

∂F̃
− ∂

∂x̃k
Θq̃i[(gh)

−1]ijΣjk
∂

∂F̃
−q̃i[(gh)

−1]ijΣjkq̃kΘ
∂2

∂F̃2

]

ρ , (29)

where it is understood that a derivative with a function being included in the numerator

of the derivative’s fraction acts only on that function, but not on anything else that

appears further to the right. The symmetric d × d matrix Σ is proportional to the

covariance of the Gaussian distribution, which is the stationary distribution of the “fast

process” (28c) (at a given x̃) and solves the Lyapunov equation

(gh)Σ+ Σ(gh)T = 2σσT . (30)

In the above, we have implicitly assumed that gh is positive definite (and therefore

symmetric and invertible) so that the Lyapunov equation has a unique solution, which

can be written as [46]

Σ = 2

∫ ∞

0

e−ghzσσTe−(gh)Tz dz. (31)

Note that this assumption is satisfied for the physically relevant case in which gh is a

friction tensor, since it then must be positive definite. If, in addition, gh commutes with

σσT (i.e., if the fast process governed by (28c) satisfies detailed balance), then we have

Σ = (gh)−1σσT. It is easy to see that the fluctuation-dissipation relation (g = hT = σ)

implies detailed balance but the converse is generally not true.

The Fokker-Planck equation (29) describes the time evolution of the density

ρ = ρ(t̃, x̃, F̃) for the slow variables x̃ and F̃ . The first line represents the x̃-dynamics.

The space-dependent terms involving the strength of thermal fluctuations, i.e., the

temperature Θ and Σ appear in Itô position, i.e. to the right of both derivatives in

the diffusion term, meaning that with a constant friction the correct interpretation of

the multiplicative noise would be the Itô one (start-point rule). The space-dependent

(inverse) friction coefficient (gh)−1 appears in between these two derivatives and thus
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as an anti-Itô or Hänggi-Klimontovich term. Such splitting of friction and temperature

into anti-Itô and Itô contributions is well known [12,13,15–17] for a locally equilibrium

bath with the fluctuation-dissipation relation being valid at each position x, for which

hg = σσT = γ̃ are identical to the (dimensionless) friction tensor γ̃, and for which

Σ = 1 (see Eq. (30)). The second to fourth line in (29) characterize the dynamics of

the functional F̃ . If (gh)−1Σ is symmetric, which is guaranteed if the fast process obeys

detailed balance, these terms are consistent with a contribution q̃ ◦ dx̃ to the drift of

the functional F̃ , interpreted in the Stratonovich sense, see Appendix C. In fact, the

third term in the second line contains both, the spurious drift Θq̃i
∂[(gh)−1]ij

∂x̃k
Σjk which

appears in dx̃ when writing its thermal noise term in Itô-form, as well as the correction

Θ ∂q̃i
∂x̃k

[(gh)−1]ijΣjk that changes q̃ ◦ dx̃ from Stratonovich form to q̃ · dx̃ in Itô form.

The set of Langevin equations equivalent to (29) therefore reads

dxt =
1

γ̄
(g(xt)h(xt))

−1f (xt, t) dt+ s(xt, t) dt

+
√

2kBT (xt, t)/γ̄ [(g(xt)h(xt))
−1Σ(xt)]

1/2 dW t , (32a)

dFt = r(xt, t) dt+ q(xt, t) ◦ dxt , (32b)

where we switched back to dimensionful quantities. The term s(x, t) represents a noise-

induced drift corresponding to an Itô-interpreted multiplicative noise in dxt. Its i-th

component is given by

si(x, t) =
kBT (x, t)

γ̄

∂[(g(x)h(x))−1]ij
∂xk

Σjk (32c)

with Σ being the solution of the Lyapunov equation (30). These equations are the main

result of the present contribution. Our systematic and general approach considering the

white-noise and small-mass limit for the dynamics and for thermodynamical functionals

simultaneously also recovers some of the results obtained in a series of related works,

both for the dynamics [12–17,19,27–31], and the stochastic thermodynamics for entropy

[18, 20, 22, 32, 34, 36, 37, 39–41], heat [33, 35], work [38] or general functionals [23]. The

most important observation is that a functional of the underdamped dynamics (x, v)

with a differential of the form q(xt, t) · dxt = q(xt, t) · vtdt (q being independent

of v) in the small-mass limit always reduces to q(xt, t) ◦ dxt with a Stratonovich

product. This behavior occurs completely independent of spatial dependencies of the

friction tensors or the temperature field, but rests on two important conditions: i) the

processes which generate the colored noise to be equilibrium ones, ii) in the small-mass

limit the velocity degrees of freedom reach an equilibrium distribution with the local

temperature (this is always guaranteed if the system obeys the fluctuation-dissipation

relation g = hT = σ) [19, 29].

As a specific example of (32a)-(32c), we consider the heat and work functionals (10a)

and (10b) for a Langevin equation, which fulfills the fluctuation-dissipation relation,

γ̄hg = γ̄σσT = γ̄γ̃ = γ:

dxt = γ−1(xt)f (xt, t) dt+ kBT (xt, t)[∇xt
γ−1(xt)] dt
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+
√

2kBT (xt, t) γ
−1/2(xt) dW t , (33a)

dQt = −f (xt, t) ◦ dxt =
(

∇xt
U(xt, t)− fnc(xt, t)

)

◦ dxt , (33b)

dWt =
∂U(xt, t)

∂t
dt + fnc(xt, t) ◦ dxt , (33c)

where the multiplicative noise in dxt is an Itô product. The Stratonovich product in dQt

and dWt confirms our physically motivated arguments from the Introduction, based on

viewing heat, work etc. as transformations of the dynamical variables [7]. The original

definition of heat was based on the identification with the energy exchanges due to

the frictional and fluctuating force exerted by the heat bath on the system [7]. This

interpretation is preserved also in the case of space-dependent friction or temperature

with the additional condition that any spurious (noise-induced) drift term in the

Langevin equation, which might result from a certain representation of the multiplicative

noise term, always has to be interpreted to contribute to heat (and not to work). This

is testified by the fact that the limiting expression (33b) is identical to (3b) and there is

no correction to f due to space-dependent friction or temperature. In other words, the

specific interpretation of the multiplicative noise in the overdamped Langevin equation

with space-dependent friction or temperature is irrelevant for the identification of the

contributions of the various drift terms to heat and work, a quite comforting finding

from a physical perspective.

5. Entropy production

For the sake of completeness, we here discuss homogenization of entropy production. It

has been shown [18] that, in presence of temperature gradients, the homogenized Fokker-

Planck equation for entropy production acquires non-trivial terms which describe a so-

called “entropic anomaly” of the small-mass limit, see also [20, 22, 23, 32–35, 39–41]. In

the following, we briefly summarize the calculation and main results from [18], treating

explicitly the case in which the friction tensor is not simply proportional to the identity,

see also [22].

In stochastic thermodynamics the entropy production (in the thermal environment)

is usually defined [2,8,9] as a measure of irreversibility via the log-ratio of probabilities

for observing a specific trajectory (x, v) = {(xt, vt)}tft=0 in forward time versus observing

the same trajectory traced out backwards when advancing time. For the overdamped

Langevin equation, the explicit expression (4b) for the resulting functional is obtained

from path-integral techniques [2,8,9]. The designation entropy production in the thermal

environment for this irreversibility measure originates from the central observation that

it is equivalent to the heat dissipated into the bath along the trajectory divided by the

bath temperature, see our discussion of (4b).

However, for the GLE (5) a direct calculation using path integrals of path

probabilities involving only (x, v) (without explicit knowledge of the auxiliary variables

(y,η)), is much more challenging due to the GLE’s non-Markovian character, and has
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not been achieved yet to the best of our knowledge. To analyze entropy production, we

therefore start from its well-known expression for the Langevin-Kramers equation,

∆Senv[x, v] =

∫ tf

0

1

T (xt, t)

(

f(xt, t)−mv̇t

)

◦ dxt

=

∫ tf

0

1

T (xt, t)

(

f(xt, t) · dxt −mvt ◦ dvt

)

, (34)

and assume that this expression is the asymptotic limit of a (unknown) “generalized

entropy production” for vanishing noise correlation time τb/τx → 0.

For analyzing the small-mass limit τv/τx → 0, it proves convenient to split off a

boundary term, because we then can rewrite the dvt integral in (34) as a sum of dt

and dxt integrals [18,22]. To do so, we first introduce the Maxwell-Boltzmann velocity

distribution at given position x and time t,

w =

(

m

2πkBT (x, t)

)d/2

exp

[

− mv2

2kBT (x, t)

]

. (35)

By observing that the total differential −d lnw = d( mv2

2kBT
+ d

2
ln 2πkBT

m
) indeed contains

the desired term mvt

kBT
· dvt, we can eliminate it from the integral in (34) and find

∆Senv[x, v]− kB ln
wf

w0

=

∫ tf

0

[

1

T (xt, t)
f (xt, t) · dxt

+
d kBT (xt, t)−mv2

t

2T (xt, t)2

(

∂T (xt, t)

∂t
dt +

∂T (xt, t)

∂x
· dxt

)]

, (36)

where w0 and wf denote the Maxwell-Boltzmann distribution (35) at initial and final

point of the trajectory.

The corresponding dimensionless differential of the functional reads (omitting

arguments)

dF̃ =

[

√

τx
τv

f̃ · ṽ
Θ

+
dΘ− ṽ2

2Θ2

(

∂Θ

∂t̃
+

√

τx
τv
∇x̃Θ · ṽ

)

]

dt̃ . (37)

Our goal is to perform the small mass asymptotic limit ǫ =
√

τv/τx → 0 of this functional

in conjunction with the Langevin-Kramers equation, exactly as we have done it in

Section 4.2 for heat- and work-like functionals. We will here, however, focus on the case

when hg = σσT = γ̃ is positive definite, such that the fluctuation-dissipation relation is

fulfilled (otherwise entropy production in the thermal bath would not be well-defined).

The operators L†
2, L†

1, L†
0 of the Fokker-Planck equation (23) now take the form

L†
2 =

dΘ− ṽ2

2Θ2

∂Θ

∂t̃

∂

∂F̃
, (38a)

L†
1 = ṽi

∂

∂x̃i

+ f̃i
∂

∂ṽi
+

(

f̃iṽi
Θ

+
dΘ− ṽ2

2Θ2

∂Θ

∂x̃i

ṽi

)

∂

∂F̃
, (38b)

L†
0 = −γ̃ij

∂

∂ṽi
ṽj −Θ γ̃ij

∂

∂ṽi

∂

∂ṽj
. (38c)



Functionals in stochastic thermodynamics: how to interpret stochastic integrals 16

They are completely analogous to (28a)-(28c), except that now the terms related to

the functional F̃ contain polynomials quadratic and cubic in ṽ, which complicate the

homogenization procedure considerably. Details of the corresponding calculation are

given in Appendix A.3, the resulting Fokker-Planck equation reads

−∂ρ̄

∂t̃
=

∂

∂x̃i
(γ̃−1)ij f̃jρ−

∂

∂x̃i
(γ̃−1)ij

∂

∂x̃j
Θ ρ

+
1

Θ

(

f̃i −
∂Θ

∂x̃i

)

(γ̃−1)ij f̃j
∂ρ̄

∂F̃

− ∂

∂x̃i
(γ̃−1)ij

(

f̃j −
∂Θ

∂x̃j

)

∂ρ

∂F̃

− 1

Θ

(

f̃i −
∂Θ

∂x̃i

)

(γ̃−1)ij
∂

∂x̃j
Θ

∂ρ

∂F̃

− 1

Θ

(

f̃i −
∂Θ

∂x̃i

)

(γ̃−1)ij
1

Θ

(

f̃j −
∂Θ

∂x̃j

)

Θ
∂2ρ

∂F̃2

+
1

2Θ

∂Θ

∂x̃i

[

2

3
γ̃−1 +

∑

l

(γ̃ + 2γ̃(l)1)−1

]

ij

∂Θ

∂x̃j

∂ρ

∂F̃

− 1

2Θ

∂Θ

∂x̃i

[

2

3
γ̃−1 +

∑

l

(γ̃ + 2γ̃(l)1)−1

]

ij

∂Θ

∂x̃j

∂2ρ

∂F̃2
, (39)

where the γ̃(i) are the eigenvalues of γ̃. To write the equivalent Langevin equation we

switch back to dimensionful quantities,

dxt = γ−1(xt)f (xt, t) dt+ kBT (xt, t)[∇xt
γ−1(xt)] dt

+
√

2kBT (xt, t) γ
−1/2(xt) dW t , (40a)

dSenv
t =

1

T (xt, t)
[f (xt, t)−∇xt

kBT (xt, t)] ◦ dxt

+
1

2T
(∇xt

T )

[

2

3
γ−1 +

∑

l

(γ + 2γ(l)1)−1

]

(∇xt
T ) dt

+
1√
T
(∇xt

T )

[

2

3
γ−1 +

∑

l

(γ + 2γ(l)1)−1

]1/2

dŴ t . (40b)

We recover the same dynamics in xt as before, see (33a), because we considered the

exactly identical dynamical process. The dynamics of entropy production, however,

looks quite differently from the one for heat (33b). In particular, entropy production

consists of two parts, a regular one (first line of dSenv
t ), and a so-called “anomalous”

contribution [18] (second and third line of dSenv
t ; note that the Wiener process Ŵ t in

(40b) is independent of the Wiener process W t appearing in the equation (40a) for

xt). The regular part is expressed as a differential in dxt, i.e. it is determined by the

statistical properties of the process xt. We point out that it is not simply heat divided

by temperature f ◦ dxt/T , but that for inhomogeneous temperature it contains an

additional term. This expression is consistent with the definition of entropy based on
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time reversal that one would obtain for the dynamics described by (33a). For a space-

dependent temperature there is also an additional “anomalous” entropy. Its essential

property is that it cannot be expressed exclusively as a functional over the trajectory x,

it rather has “its own” random fluctuations, which are completely independent of the

fluctuations in xt (third line of dSt). As a consequence of the coarse-graining associated

with the asymptotic limit τv/τx → 0, the trajectory x alone does not contain sufficient

information to fully specify entropy production in an inhomogeneous environment. The

average “anomalous” entropy production corresponds to the drift term in the second

line of dSenv
t , and is non-negative. Note that for γ = γ01, where 1 is the identity tensor,

with a scalar friction coefficient γ0, this term reads 1
T

d+2
6γ0

(∇xt
T )2. Its physical origin and

properties are discussed in detail in [18,20,22,33,40]. We emphasize that, if temperature

is constant in space, the limiting procedure is regular and one simply finds that entropy

is given by the usual (minus) heat divided by temperature recovering (4b) with the

expected Stratonovich product.

6. Discussion and Conclusions

The generalized Langevin equation (5) and the associated functionals along its

trajectories do not suffer from any ambiguity related to interpretation of stochastic

integrals, because the generated position and velocity processes are sufficiently regular.

Exploiting this uniqueness of integrals, we here applied a multiscale procedure to the

GLE and its functionals to find out which noise interpretations of the overdamped

Langevin equation and its thermodynamic functionals are consistent with the systematic

white-noise and small-mass limits. The most important finding is that heat- and work-

like functionals need to be interpreted in Stratonovich sense, no matter which kind of

multiplicative noise is present in the underlying overdamped Langevin equation. This

is in agreement with physical arguments based on consistency of the energy balance [7].

We remark that, before performing the limiting procedure on the heat functional (10a)

we have split off the boundary term corresponding to the changes in kinetic energy

of the particle. Its average contribution is proportional to the change in temperature

dkB∆T/2 (where d is the dimensionality of the system). As pointed out in [33] this

contribution plays a relevant role when temperature is changing in time and must be

kept into account to properly define adiabatic transformations, which have then been

experimentally realized [47, 48]. The average contribution of the boundary term has

been computed for two cases studies also in [49] and its probability distribution in [50]

In addition to heat and work, we also discussed the case of entropy production [18],

which, in presence of spatial temperature variations, cannot be expressed as a functional

over the overdamped stochastic trajectory only. It rather features an additional

“anomalous” contribution, which is related to dissipation due to heat transport

by the (hidden) velocity degrees of freedom exchanged with different thermostats

[18, 20, 22, 23, 32, 39, 41].

We here presented these calculations having specifically in mind a Brownian particle
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suspended in an aqueous solution. Generalizations to several (interacting) Brownian

particles are straightforward. In such systems, the intrinsic time scale of the thermal

bath is the fastest time scale in the system, followed by the relaxation time scale of

the velocity degrees of freedom of the Brownian particle. Accordingly, we performed

the white-noise limit first, and then the small-mass limit. However, the GLE, which in

its most basic form was first introduced by Mori in [51], has subsequently been used

to model many systems in statistical and biological physics [52, 53], including both

normal and anomalous diffusion, and the motion of active matter [54]. In general, the

separation of time scales might be different in other physical systems, distinct from a

(passive) Brownian particle, such that other orderings of the above limits might become

relevant. While it is known that the ordering of limits affects the limiting dynamics [28],

we are not aware of any results for functionals.

Further very interesting generalizations of our analysis based on the model (5)-(8)

include the case of many particles subject to a matrix-valued friction kernel κ with

different relaxation times, and likewise for the correlations of the colored noise η. This

would allow for analyzing, e.g., the situation in which different particles are in contact

with heat baths of different physical character. The heat baths can even have different

temperatures by appropriate generalization of T or choice of σ. Other non-equilibrium

systems of great interest, in particular in the context of active matter, are Brownian

particles driven by colored noise processes η which are themselves out of equilibrium.

We expect non-trivial contributions to the dynamics [19] and thermodynamics (i.e.

functionals), resulting in implicit discretization rules which are more complicated than

just the common rules such as the Itô, Stratonovich and anti-Itô rule [29].

All these ideas are left for future explorations.
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Appendix A. Homogenization of the Fokker-Planck equation

In this Appendix we give the most relevant technical details for the homogenization

procedure used to calculate the white-noise and small-mass limits. We start from a

general form of the Langevin equation and its equivalent Fokker-Planck equation, which

includes both these cases from the main text, see Sections 4.1 and 4.2. Collecting all

slow variables in the vector X, all fast variables in Y , and denoting the functional as

F as before, the general form of the Langevin equation reads

dX t = U(X t, t) dt+
1

ǫ
S(X t, t)Y t dt , (1.1a)
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dY t =
1

ǫ
V (X t, t) dt−

1

ǫ2
G(X t, t)Y t dt+

1

ǫ

√
2D1/2(X t, t) · dW t , (1.1b)

dFt = R0(X t,Y t, t) dt+
1

ǫ
R1(X t,Y t, t) dt . (1.1c)

Here, R0, R1 are scalar functions, U , V are vector-valued functions and S, G, and D

are matrix-valued functions of the indicated arguments; their dimensions are fixed by

the number of slow and fast variables, respectively. The small parameter ǫ represents

the (square root of the) ratio between the fastest and slowest time scale in the system.

We assume that the explicit time dependencies in all the functions R0, R1, U , V , S, G,

and D occur on the slowest time scale only.

We can write the Fokker-Planck equation for the density ρ = ρ(t,X,Y ,F), which

is equivalent to the Langevin equations (1.1a)-(1.1c), in the form

∂ρ

∂t
= −

(

L†
2 +

1

ǫ
L†

1 +
1

ǫ2
L†

0

)

ρ (1.2)

with the operators

L†
2 =

∂

∂Xi
Ui +R0

∂

∂F , (1.3a)

L†
1 =

∂

∂Xi
SijYj + Vi

∂

∂Yi
+R1

∂

∂F , (1.3b)

L†
0 = −Gij

∂

∂Yi
Yj −Dij

∂

∂Yi

∂

∂Yj
, (1.3c)

where we skipped the arguments of the functions and switched to index notation with

summation over repeated indices being understood. The “translations” of this general

Fokker-Planck equation into the specific forms (24a)-(24c) and (28a)-(28c) used for the

white-noise and the small-mass limit, respectively, are provided in table A1.

Appendix A.1. The homogenization procedure

The homogenization procedure [23, 29] consists in a systematic perturbation expansion

in the small parameter ǫ, which characterizes the separation of time scales present in the

system ¶. Accordingly, we introduce time variables θ and τ on the fastest and slowest

scales, respectively, and an intermediate time scale ϑ,

θ = ǫ−2t , ϑ = ǫ−1t , τ = t . (1.4)

Then, we expand the density ρ in powers of ǫ,

ρ = ρ0 + ǫρ1 + ǫ2ρ2 + . . . , (1.5)

where all ρi = ρi(ϑ, τ,X,Y ,F) are a priori assumed to be functions of all variables and

the two slower time scales independently. Since we are not interested in the relaxation

¶ For a pedagogical introduction to the multiple time-scale approach in the context of Fokker-Planck

equations we recommend Ref. [45]. Bocquet uses an expansion procedure equivalent to ours, with some

(minor) technical differences on how the solutions of the higher-order equations (i.e. Eqs. (1.6b) and

(1.6c) in our case) are treated.
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Table A1. “Translation key” to map the general form (1.3a), (1.3b), (1.3c) to the

specific Fokker-Planck equations (24a), (24b), (24c) and (28a), (28b), (28c) from the

main text.

white-noise limit small-mass limit

eqs. (24a), (24b), (24c) eqs. (28a), (28b), (28c)

X (x̃, ṽ) x̃

Y (ỹ, η̃) ṽ

U(X, t)
(
√

τx

τv
ṽ,
√

τx

τv
f̃
)

0

V (X , t)
(
√

τx

τv
hṽ,0

)

f̃

S(X, t)

(

0 0

−
√

τx

τv
g
√

τx

τv

√
2Θσ

)

1

G(X, t)

(

1 0

0 1

)

gh

D(X, t) 1

2

(

0 0

0 1

)

Θ σσT

R0(X,Y , t) r̃ +
√

τx

τv
q̃ · ṽ r̃

R1(X,Y , t) 0 q̃ · ṽ

processes on the fastest time scale θ, but rather in the situation in which these fastest

scales reached their “equilibrated” stationary state, we assume the ρi to be independent

of θ. Plugging the expansion (1.5) into the Fokker-Planck equation (1.2), and using

that the time-derivative turns into ∂/∂t = ǫ−2∂/∂θ+ ǫ−1∂/∂ϑ+∂/∂τ according to (1.4)

(and the assumption of the three time scales to be independent), we collect together all

terms with the same power in ǫ to find the hierarchy of equations

L†
0ρ0 = 0 , (1.6a)

L†
0ρ1 = −∂ρ0

∂ϑ
− L†

1ρ0 , (1.6b)

L†
0ρ2 = −∂ρ0

∂τ
− ∂ρ1

∂ϑ
− L†

2ρ0 − L†
1ρ1 . (1.6c)

From (1.3c) we see that the solution to (1.6a) can be written as

ρ0 = w(Y |X, τ)ρ̄0(ϑ, τ,X,F) , (1.7)

where the density w(Y |X, τ) fulfills

L†
0w = 0 ,

∫

dY w = 1 , (1.8)

i.e. it is the stationary density of the fast variables Y conditioned on the slow variable

X and slow time τ . Due to the simple form of (1.3c), we can calculate w easily and

obtain the Gaussian

w(Y |X, τ) =
1

(2π)n/2
√
detΣ

e−
1

2
Yi(Σ

−1)ijYj , (1.9)
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where n is the dimension of the vector Y . The symmetric covariance matrix Σ is the

solution of the Lyapunov equation

GΣ+ ΣGT = 2D . (1.10)

Note that in general it depends on X and τ via the functional dependencies of G, D,

such that also the covariances

YiYj =

∫

dY YiYjw = Σij (1.11)

depend explicitly on the slow scales X and τ (the overline denotes the average over the

fast variables Y weighed with their stationary density w), justifying our notation of a

density w(Y |X, τ) conditioned on X and τ .

We proceed with the next equation (1.6b) by employing the so-called solvability

condition [29], which states that the right-hand side inhomogeneity has to be orthogonal

to the nullspace of the operator L0 adjoint to L†
0, otherwise there is no non-trivial

solution. From (1.3c) we see that the constant functions are contained in the nullspace of

L0, such that the solvability condition reads
∫

dY
(

∂ρ0
∂ϑ

+ L†
1ρ0

)

= 0. Using the explicit

form (1.3b) and the solution (1.7), it is straightforward to show that the solvability

condition reduces to ∂ρ̄0
∂ϑ

= −R1
∂ρ̄0
∂F . Since the equation (1.6b) represents contribution

of order ǫ−1 we require them to vanish to guarantee a well-defined ǫ → 0 limit (so-called

centering condition). In our case, we therefore have to restrict the function R1 to be

odd in the fast variables Y . Then, we have R1 = 0, and we find that also ∂ρ̄0
∂ϑ

= 0, i.e.

that the reduced density ρ̄0 is independent on the intermediate time scale ϑ.

Applying the solvability condition in an analogous way to the third equation (1.6c)

of our equation hierarchy, we find

−
(

∂ρ̄0
∂τ

+
∂ρ̄1
∂ϑ

)

=

∫

dY
(

L†
2ρ0 + L†

1ρ1

)

=
∂

∂Xi

Uiρ̄0 +R0
∂ρ̄0
∂F +

∂

∂Xi

SijJYj
+

∂

∂F JR1
. (1.12)

In the second equality, we have used the solution (1.7) for ρ0, the explicit expressions for

the operators L†
2 and L†

1 from (1.3a) and (1.3b), and we have introduced the definition

of the current-like quantity

Jπ(Y ) =

∫

dY π(Y )ρ1 (1.13)

for (polynomial) functions π(Y ) of the fast variables. It turns out that the result (1.12)

is sufficient to derive a Fokker-Planck equation for the reduced density ρ̄ =
∫

dY ρ in

slow variables only (being the reason that we do not need to go to higher orders in the

equation hierarchy (1.6a)-(1.6c)). Our goal is to identify the lowest order contributions

to the dynamics of ρ̄ which survive in the limit ǫ → 0. Indeed, from the definition (1.4)

of the three time scales and the expansion (1.5) we find ∂ρ̄
∂t

= ∂ρ̄0
∂τ

+ ∂ρ̄1
∂ϑ

+ O(ǫ) and

ρ̄ = ρ̄0 +O(ǫ). Hence, in the asymptotic limit ǫ → 0 we obtain from (1.12)

−∂ρ̄

∂t
=

∂

∂Xi

Uiρ̄+
∂

∂Xi

SijJYj
+R0

∂ρ̄

∂F +
∂

∂F JR1
. (1.14)
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As a Gaussian integral over w, the average R0 is straightforward to calculate if R0

contains polynomials in Y , as it is typically the case. The remaining task consists in

expressing JYi
and JR1

, which contain the a priori unknown solution ρ1 of the equation

(1.6b), in terms of ρ̄ = ρ̄0 +O(ǫ) in lowest order ǫ.

Appendix A.2. Heat- and work-like functionals linear in Y

For explicit results we first focus on the case, which is relevant for the heat and work

functionals, i.e.

R0 = R0(X, t) , (1.15a)

R1 = Qi(X, t)Yi , (1.15b)

with functions Qi depending on slow scales only. As demonstrated in Appendix B.1, we

find

JYi
= −(G−1)ij

[

∂

∂Xl
Σjk(S

T)kl − Vj + ΣjkQk
∂

∂F

]

ρ̄ , (1.16a)

JR1
= QiJYi

. (1.16b)

Hence, the final Fokker-Planck equation reads

−∂ρ̄

∂t
=

∂

∂Xi

[

Ui + Sij(G
−1)jkVk

]

ρ̄− ∂

∂Xi
Sij(G

−1)jk
∂

∂Xm
Σkl(S

T)lm ρ̄

+
[

R0 +Qi(G
−1)ijVj

] ∂ρ̄

∂F
− ∂

∂Xi

Sij(G
−1)jkΣklQl

∂ρ̄

∂F −Qi(G
−1)ij

∂

∂Xl

Σjk(S
T)kl

∂ρ̄

∂F

−Qi(G
−1)ijΣjkQk

∂2ρ̄

∂F2
. (1.17)

From this general result we can easily read off the two homogenized Fokker-Planck

equations (25) and (29) for the white-noise and small-mass limit, respectively, by

applying the mapping provided in Table A1.

Appendix A.3. Entropy production (quadratic and cubic in Y )

Our second explicit example is the entropy production from Section 5. We focus on

the physically relevant case when the fluctuation-dissipation relation holds, i.e. in the

general notation of this Appendix,

D = ΘG = ΘGT , (1.18)

where we split off the (in general space- and time-dependent) temperature Θ. As a

consequence, Σ = Θ1 (see (1.10)), such that the stationary density (1.9) for the fast

variables simplifies to

w =
1

(2πΘ)n/2
e−

Y
2

2Θ , (1.19a)
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with its variance at X and t being set by the local temperature,

YiYj = Θδij = Θ(X, t) δij . (1.19b)

Moreover, we restrict ourselves to the specific structure of linear, quadratic and cubic

terms in the fast variables as they appear in the functional for the entropy production

(37), keeping, in particular, the differences between Y 2 and their variance,

R0 =
(

nΘ− Y 2
)

R(X, t) , (1.20a)

R1 = Qi(X, t)Yi +
(

nΘ− Y 2
)

Yi Pi(X, t) . (1.20b)

In case of the entropy production, the functions R(X, t), Q(X, t) and P (X, t) read

R =
1

2Θ2

∂Θ

∂t
, Q =

f̃

Θ
, P =

1

2Θ2

∂Θ

∂X
. (1.21)

Note that all indicated explicit time dependencies are assumed to occur on the slowest

scale τ .

We have to use these expressions for R0 and R1 to evaluate the average R0 and the

integral JR1
appearing in (1.14). We first notice that (see (1.19b))

R0 = nΘ− YiYi = nΘ− nΘ = 0 , (1.22a)

and that we can write

JR1
= QiJYi

+ Pi

(

nΘJYi
− JYjYjYi

)

. (1.22b)

The integral JYi
is calculated in Appendix B.1 (see (2.5b)),

JYi
= (G−1)ij

[

Vj −
∂

∂Xk
Θ(ST)jk −Θ (Qj − 2ΘPj)

∂

∂F

]

ρ̄ . (1.23)

The calculation of JYjYjYi
is sketched in Appendix B.2. We find (cf. (2.12))

JYjYjYi
= Θ(n+ 2)JYi

−Mij

[

Θ
∂Θ

∂Xk

Skj − 2Θ3Pj
∂

∂F

]

ρ̄ , (1.24)

where M is defined in (2.14). Hence,

JR1
= (Qi − 2ΘPi)JYi

+ PiMij

[

Θ
∂Θ

∂Xk

Skj − 2Θ3Pj
∂

∂F

]

ρ̄ . (1.25)

Plugging all these results into (1.14) we finally obtain the homogenized Fokker-Planck

equation

−∂ρ̄

∂t
=

∂

∂Xi

[

Ui + Sij(G
−1)jkVk

]

ρ̄− ∂

∂Xi
Sij(G

−1)jk
∂

∂Xl
(ST)klΘ ρ̄

+ (Qi − 2ΘPi)(G
−1)ijVj

∂ρ̄

∂F
− ∂

∂Xi
Sij(G

−1)jk(Qk − 2ΘPk)Θ
∂ρ̄

∂F
− (Qi − 2ΘPi)(G

−1)ij
∂

∂Xk
(ST)jkΘ

∂ρ̄

∂F

−Θ(Qi − 2ΘPi)(G
−1)ij(Qj − 2ΘPj)

∂2ρ̄

∂F2
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+ PiMij(S
T)jk

∂Θ

∂Xk

Θ
∂ρ̄

∂F

− 2Θ3PiMijPj
∂2ρ̄

∂F2
. (1.26)

Applying the translation from Table A1 for the small-mass limit (with hg = σσT = γ),

the specifications (1.21) for entropy production and the definition (2.14), we obtain the

Fokker-Planck equation (39) given in the main text.

Appendix B. The integrals Jπ(Y )

We here briefly describe how to calculate the integrals (1.13),

Jπ(Y ) =

∫

dY π(Y )ρ1 , (2.1)

for a polynomial function π(Y ) in Y without explicitly solving for ρ1 [22] +. The

central idea is to multiply (1.6b) (remembering that ∂ρ0
∂ϑ

= 0) by a polynomial Π(Y )

in Y (usually different from π(Y ) and integrating the left-hand side according to
∫

dY Π(Y )L†
0ρ1 =

∫

dY [L0Π(Y )]ρ1 = JL0Π(Y ) (see (1.3c)), while evaluating the

corresponding integral
∫

dY Π(Y )L†
1ρ0 on the right-hand side using the known solution

(1.7) for ρ0. In this way, we obtain

JL0Π(Y ) = −
∫

dY Π(Y )L†
1ρ0 (2.2)

for yet another polynomial L0Π(Y ) in explicit form. The trick is to find an appropriate

ansatz for Π(Y ), such that L0Π(Y ) equals to or contains the desired function π(Y ).

In the following two Sections, we will sketch this calculation for π(Y ) = Yi and

π(Y ) = YjYjYi.

Appendix B.1. Calculation of JYi

In order to calculate JYi
we choose Π(Y ) = (G−1)ijYj, because then L0Π(Y ) = Yi, as

we find easily from (1.3c). Hence

JYi
= −

∫

dY (G−1)ijYjL†
1ρ0

= − (G−1)ij

[

∂

∂Xk
SklΣlj − Vj + YjR1

∂

∂F

]

ρ̄0 (2.3)

where the second line follows after direct integration using the explicit form (1.3b) of

the operator L†
1 and the solution (1.7) for ρ0. Using the general form (1.20b) for R1 we

obtain

YjR1 = ΣjkQk + (nΘΣjk − ΣiiΣjk − 2ΣijΣik)Pk . (2.4)

For heat- and work-like functionals we have Pi ≡ 0, i.e.

JYi
= −(G−1)ij

[

∂

∂Xk
SklΣlj − Vj + ΣjkQk

∂

∂F

]

ρ̄0 , (2.5a)

+ An alternative way consists in (formally) solving (1.6b) for ρ1 and then evaluating the integral [23].
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while Σij = Θδij for the entropy production functional, i.e.

JYi
= −(G−1)ij

[

∂

∂Xk
ΘSkj − Vj +

(

ΘQj − 2Θ2Pj

) ∂

∂F

]

ρ̄0 . (2.5b)

The first expression is the same one as given in (1.16a), the second expression agrees

with (1.23).

Appendix B.2. Calculation of JYjYjYi

We need the integral JYjYjYi
only for the entropy production. In the following, we thus

focus on the specification given by eqs. (1.18)-(1.19b). It turns out that the appropriate

ansatz for Π(Y ) is Π(Y ) = AijklYjYkYl with a fourth-order tensor Aijkl. Then, we

obtain from (1.3c) (with (1.18))

L0AijklYjYkYl = Aijkl (GjmYmYkYl +GkmYmYjYl +GlmYmYjYk)

− 2ΘAijkl (GjkYl +GjlYk +GklYj) , (2.6)

and construct Aijkl in a way that the combination of third-order polynomials in Y

reduces to YjYjYi, i.e. Aijkl (GjmYmYkYl +GkmYmYjYl +GlmYmYjYk) = YjYjYi. This is

achieved by

Aijkl =
OimOjmOknOln

G(m) + 2G(n)
, (2.7)

where O is an orthogonal tensor which diagonalizes G,

(OTGO)ij = G(i)δij , Oij(O
T)jk = OijOkj = δik , (2.8a)

such that

OijGik = OijGki = OkjG
(j) , (2.8b)

with the eigenvalues G(i) of G. Note that the sum in (2.7) is over m and n and that

Aijkl obeys the symmetry Aijkl = Ajikl = Aijlk. We then obtain

JL0AijklYjYkYl
= JYjYjYi

−ΘAijkl

(

4GjkJYl
+ 2GklJYj

)

. (2.9)

This result corresponds to the left-hand side of (2.2). For its right-hand side we obtain

(see (1.3b) and (1.20b))

−
∫

dY AijklYjYkYl L†
1ρ0 = (Ainjj + 2Aijnj)×

(

ΘGnmJYm
−Θ

∂Θ

∂Xm
Smnρ̄0 + 2Θ3Pn

∂ρ̄0
∂F

)

, (2.10)

where we have used the averages

∂

∂Yn
YjYkYl = Θ (δnjδkl + δnkδjl + δnlδjk) , (2.11a)

YnYjYkYl = Θ2 (δnjδkl + δnkδjl + δnlδjk) , (2.11b)

Y 2YnYjYkYl = (n+ 4)Θ3 (δnjδkl + δnkδjl + δnlδjk) , (2.11c)
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and where we have replaced ΘVnρ̄0, emerging from the middle term in the operator L†
1,

by ΘGnmJYm
+ Θ ∂

∂Xm
ΘSmnρ̄0 + (Θ2Qn − 2Θ3Pn)

∂ρ̄0
∂F according to (2.5b). Combining

(2.9) and (2.10) we finally find

JYjYjYi
= Θ(n+ 2)JYi

+Mij

(

2Θ3Pj
∂ρ̄0
∂F −Θ

∂Θ

∂Xk
Skjρ̄0

)

. (2.12)

To arrive at this result we have used

(Aikjj + 2Aijkj)Gkl + (4Aijkl + 2Ailjk)Gjk = (n+ 2)δil , (2.13)

which can be proven using (2.7) and (2.8a) (note that in all terms we sum over j and

k). Moreover, we have defined the tensor M as

Mij = Aijkk + 2Aikjk

=
2OikOjk

3G(k)
+
∑

l

OikOjk

G(k) + 2G(l)

=
2

3
(G−1)ij +

∑

l

[(G + 2G(l)1)−1]ij . (2.14)

We remark that in the case of an isotropic tensor G = g1 (relevant, e.g., for a spherical

Brownian particle) M simplifies to M = (n+2)
3g

1.

Appendix C. Joint generator for dynamics and functionals

We here briefly sketch how to obtain the Fokker-Planck equation describing the evolution

of the joint process X t,Ft involving the dynamics and the functional. Note that we do

not distinguish here between fast and slow variables, the vector X rather collects all

dynamical variables. Likewise, we consider a very general form of the Langevin equation

for X t and Ft, written component-wise:

dX i
t = ui(X t, , t) dt+ βij(X t, t) · dW j

t , (3.1a)

dFt = qi(X t, t) ◦ dX i
t + h(X t, t) dt

∼ qi(X t, t) · dX i
t + ĥ(X t, t) dt , (3.1b)

where Bij = βikβjk and ĥ = h+ 1
2

∂qi
∂Xj

Bij, and the symbols · and ◦, respectively, indicate
the Itô and Stratonovich product. In going from the first to the second line of (3.1b) we

have converted the Stratonovich integral into its statistically equivalent Itô counterpart.

Similarly to the derivation of Itô’s formula, we express the differential of a generic

function f(X t,Ft) as

df =

[

dXi
∂

∂Xi
+

1

2
dXidXj

∂2

∂Xi∂Xj

+ dF ∂

∂F +
1

2
dF2 ∂2

∂F2
+ dFdXi

∂2

∂F∂Xi

]

f . (3.2)

Upon taking the average and retaining only the contributions of order O(dt) we find

d〈f〉
dt

= 〈Lf〉 =
〈[

ui
∂

∂Xi
+

1

2
Bij

∂2

∂Xi∂Xj
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+
(

qiui + ĥ
) ∂

∂F +
1

2
Bijqiqj

∂2

∂F2
+Bijqi

∂2

∂F∂Xi

]

f

〉

, (3.3)

from which we can read off the expression for the joint generator L. Its adjoint is

L† = − ∂

∂Xi

ui +
1

2

∂2

∂Xi∂Xj

Bij

−
(

qiui + ĥ
) ∂

∂F +
1

2
Bijqiqj

∂2

∂F2
+

∂2

∂F∂Xi
Bijqi . (3.4)

We can now verify that the stochastic differential equations (32a)-(32c) given in the

main text correspond to the Fokker-Planck equation (29). Let us recall their expression

here to ease the procedure:

dxt =
1

γ̄
(g(xt)h(xt))

−1f (xt, t) dt+ s(xt, t) dt

+
√

2kBT (xt, t)/γ̄ [(g(xt)h(xt))
−1Σ(xt)]

1/2 · dW t , (3.5a)

dFt = r(xt, t) dt+ q(xt, t) ◦ dxt , (3.5b)

si(x, t) =
kBT (x, t)

γ̄

∂[(g(x)h(x))−1]ij
∂xk

Σjk , (3.5c)

By plugging the expressions from (3.5a)-(3.5c), which correspond to ui, qi, ĥ and Bij ,

into (3.4), dropping the explicit space and time dependence we obtain

∂ρ

∂t
= L†ρ = − ∂

∂xi

(

1

γ̄
[(gh)−1]ijfj +

kBT

γ̄
Σjk

∂[(gh)−1]ij
∂xk

)

ρ

+
1

2

∂2

∂xi∂xj

(

2kBT

γ̄
[(gh)−1Σ]ij

)

ρ

−
[

qi

(

1

γ̄
[(gh)−1]ijfj +

kBT

γ̄
Σjk

∂[(gh)−1]ij
∂xk

)

+
1

2

∂qi
∂xj

(

2kBT

γ̄
[(gh)−1Σ]ij

)

+ r

]

∂ρ

∂F

+
1

2

(

2kBT

γ̄
[(gh)−1Σ]ij

)

qiqj
∂2ρ

∂F2

+
∂

∂xi

(

2kBT

γ̄
[(gh)−1Σ]ij

)

qj
∂ρ

∂F . (3.6)

In dimensionless form, if (gh)−1Σ is symmetric, which is guaranteed if the fast process

obeys detailed balance, this is equivalent to

∂ρ

∂t̃
= −

[

∂

∂x̃i
[(gh)−1]ij f̃j −

∂

∂x̃i
[(gh)−1]ij

∂

∂x̃k
ΣjkΘ

+ r̃
∂

∂F̃
+ q̃i[(gh)

−1]ij f̃j
∂

∂F̃
+Θ

∂q̃i[(gh)
−1]ij

∂x̃k
Σjk

∂

∂F̃
− ∂

∂x̃i

Θ[(gh)−1]ijΣjkq̃k
∂

∂F̃
− ∂

∂x̃k

Θq̃i[(gh)
−1]ijΣjk

∂

∂F̃
−q̃i[(gh)

−1]ijΣjkq̃kΘ
∂2

∂F̃2

]

ρ , (3.7)
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which is exactly the Fokker-Planck equation given in (29).
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