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Abstract We review and explain an infinite-dimensional
counterpart of the Hurwitz theory realization (Alexeevski
and Natanzon, Math. Russ. Izv. 72:3–24, 2008) of algebraic
open–closed-string model à la Moore and Lazaroiu, where
the closed and open sectors are represented by conjugation
classes of permutations and the pairs of permutations, i.e. by
the algebra of Young diagrams and bipartite graphs, respec-
tively. An intriguing feature of this Hurwitz string model is
the coexistence of two different multiplications, reflecting
the deep interrelation between the theory of symmetric and
linear groups, S∞ and GL(∞).

1 Introduction

It is an old idea to formulate the open–closed-string theory in
purely algebraic terms (see Sect. 2 for details). This allows
one to consider much simpler examples of string phenomena
and involve basic mathematical constructions into the string
theory framework. The idea is to formulate a set of axioms
which has to be satisfied by the algebra of operators creating
states, both on the boundary and in the bulk (world-sheet), in
any two-dimensional open–closed topological field theory.
This set of axioms was formulated and described in [2–5].

Having this axiomatic description in hands, one can look
for simple examples that satisfy these axioms and, hence,
could serve as simpler models for string theory, where some
of its phenomena can be studied in detail.

One of the simplest examples of an appropriate theory
was proposed in [1, 6] where the authors considered the the-
ory of closed and open Hurwitz numbers which is actually
the representation theory of symmetric (permutation) groups
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b e-mail: morozov@itep.ru
c e-mail: natanzon@mccme.ru

Sn. In this theory the boundary states (open strings) are enu-
merated by the bipartite graphs, while the bulk states (closed
strings) are enumerated by the Young diagrams. However,
the theory turns out to be oversimplified, since it is consid-
ered at fixed order of the symmetric group so that the num-
ber of states is finite.

On the other hand, if one considers the case of only
closed (classical) Hurwitz numbers, i.e. closed strings, it
turns out to be possible to glue together the theories at dif-
ferent orders (we denote the corresponding algebras An) of
the symmetric groups and to embed them into the theory A

corresponding to the infinite symmetric group, S∞ so that
the number of states becomes infinite and, moreover, the
operators creating the states can be realized as differential
operators from GL(∞) [7, 8]. This makes the theory much
richer.

In this paper we repeat the same procedure for the open–
closed case. As a first step, we reformulate the results of
[7, 8] in terms of a map from A = ⊕An (as a vector space)
into the semi-infinite sequences of elements from An’s,
which induces a new product in the algebra A. Its non-trivial
property is that the product of finite sums of elements from
A remains a finite sum, and this product can be realized by
differential operators [7, 8]. In the case of open–closed the-
ory we are able to repeat this procedure and to construct a
product with finiteness property, the map to semi-infinite se-
quences being borrowed from the Hurwitz theory. However,
we were yet unable to realize this product by differential op-
erators.

The paper is organized in the following way. In Sect. 2,
we formulate the necessary set of axioms following [2–5, 9].
In Sect. 3, we briefly review the results of [1, 6] for con-
structing the open–closed theory corresponding to the sym-
metric group of fixed order. Finally, in Sect. 4 we construct
the infinite-dimensional case and propose a map leading to
the product with the finiteness property. This is our main re-
sult in this paper.
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2 Open–closed duality in terms of Cardy–Frobenius
algebras

In this section we follow [2–5, 9].
In string theory, the multiplication in the algebra of fields

is associated with the sewing operation and with pant dia-
grams

Here Ψ ’s are the fields in the closed sector and ψab are
those in the open one, we denote their algebras A and B

correspondingly. The principal difference between the open
and closed sectors is that in the former case the fields carry
a pair of additional indices from the set of “boundary con-
ditions” (or “D-branes”). In result B = ⊕Oab splits into a
combination of spaces corresponding to different boundary
conditions. The sewing in the picture determines the algebra
multiplication Oab ⊗ Obc which belongs to Oac (no sum
over b). Multiplications of all other elements are zero (e.g.
Oab ⊗ Occ → 0). Diagonal subspaces Oaa are subalgebras
of B , naturally associated with particular D-branes. They
can be labeled both by a pair of indices aa or by single index
a (very much like Cartan elements of the Lie algebras SL).

Multiplication operations satisfy a number of obvious re-
lations [5]:

• Closed-string sector (algebra A): associativity, commu-
tativity

• Open-string sector (algebra B): associativity

In the closed-string sector there are also an identity ele-
ment 1A and a non-degenerate linear form 〈· · ·〉A. Similarly,
in the open sector in each space Oaa there are an identity
element 1a and a non-degenerate linear form 〈· · ·〉a , the lat-
ter providing at the same time the pairings of two elements
ψab ∈ Oab and ψ ′

ba ∈ Oba : 〈ψab · ψ ′
ba〉a = 〈ψ ′

ba · ψab〉b .
Note that the identity element of the whole algebra B is
given by the sum 1B = ∑

a 1a .
There is also the third crucial ingredient in the construc-

tion: the open–closed duality which comes from the possi-
bility to interpret the annulus diagram in two dual ways. To
this end, one needs to somehow relate the closed and open
sectors. This is achieved by treating D-branes as states in
the closed sector A via the diagram:

Algebraically, the requirement is that there are the homo-
morphisms

φa : A −→ Oaa, (1)

one per each D-brane, and the dual maps

φa : Oaa −→ A (2)

such that 〈φa(ψaa)Ψ 〉A = 〈ψaaφa(Ψ )〉a . The homomor-
phism φa preserves the identity: φa(1A) = 1a and is central:
φa(Ψ )ψab = ψabφb(Ψ ).

In terms of this homomorphisms one can write the open–
closed duality in the form of the Cardy condition:
∑

i

ψi
baψaaψ̄

i
ab = φb

(
φa(ψaa)

)
(3)

where ψi
ba is a basis in Oba and ψ̄ i

ab is its conjugated under
the pairing.

The l.h.s. of this equation produces from the element ψaa

an element of Obb via the double twist diagram

which can be obtained in the closed-string channel (the r.h.s.
of (3)) as

The pair of just described algebras A and B with a given
homomorphism satisfying the Cardy condition is called
Cardy–Frobenius (CF) algebra.

The Cardy condition can be also rewritten in the “con-
verted form” (as an identity between combinations of corre-
lation functions). To do this, first of all, we adjust our nota-
tion for the needs of Hurwitz theory and denote the elements
of A and B through Δ and Γ . We also extend in the evident
way the action of homomorphism to the whole diagonal part
Bd = ∑

a Oaa of B: φ ≡ ∑
a φa and similarly extend the

linear form 〈ψab〉B = δab〈ψab〉a which immediately allows
one to define the pairing for any two elements of B .

Then the Cardy relation can be rewritten as follows:
∑

Γ ∈B

〈Γaa · Γ · Γbb · Γ̄ 〉B =
∑

Δ∈A

〈
Γaa · φ(Δ)

〉
B

〈
φ(Δ̄) · Γbb

〉
B
.

(4)

The bars denote the duals: 〈Γ · Γ̄ 〉B = 1 and 〈Δ · Δ̄〉A = 1.
Below we use the Cardy relation exactly in this form, only
we omit the indices A and B in the linear forms.
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3 Hurwitz theory

In Hurwitz theory the closed-string algebra is that of the
Young diagrams (conjugation classes of permutations). This
implies that the open-string fields will be labeled by pairs of
Young diagrams with some additional data. Following [4]
we identify them with bipartite graphs, conjugation classes
of pairs of permutations.

A special feature of Hurwitz theory is additional decom-
positions of algebras A = ⊕nAn and B = ⊕nBn. Homomor-
phisms An −→ Bn and Cardy relations are straightforward
only for particular values of n, while the entire algebra has a
more sophisticated structure, which is only partly exposed in
the present paper and deserves further investigation. In this
section we describe the theory at fixed n following [1, 6].

3.1 Closed sector (algebra An)

Each permutation from the symmetric group Sn is a compo-
sition of cycles: for example, 6(34)(1527) ∈ S7 is the per-
mutation

The lengths of cycles form an integer partition of n, and the
ordered set of lengths is the Young diagram Δ = {δ1 ≥ δ2 ≥
· · · ≥ δl(Δ) > 0} of the size (number of boxes) |Δ| = δ1 +
δ2 + · · · + δl(Δ) = n. The above-mentioned permutation is
associated in this way with the Young diagram [421].

Conversely, given a Young diagram Δ, one can associate
with it a direct sum of all permutations of the type Δ from
the symmetric group S|Δ|, e.g.

[421] = ⊕i(jk)(lmnp)

where the sum goes over all i, . . . , p = 1, . . . ,7, which are
all different, i �= · · · �= p. In other words, the Young dia-
grams label the elements of the center of the group algebra
of the symmetric group Sn. The multiplication (composi-
tion) of permutations induce a multiplication of Young di-

agrams of the same size, which we denote through ∗. For
example,

A∗
1 : [1] ∗ [1] = [1],

A∗
2 [11] [2]

[11] [11] [2]
[2] [2] [11]

A∗
3 [111] [21] [3]

[111] [111] [21] [3]
[21] [21] 3 · [111] + 3 · [3] 2 · [21]
[3] [3] 2 · [21] 2 · [111] + [3]

. . .

(5)

This multiplication is associative and commutative, and all
the structure constants are positive integers, reflecting the
combinatorial nature of this algebra A∗

n. It describes the
closed sector of the Hurwitz model of string theory. Actu-
ally, at the next stage Δ plays the role of index a in the open
sector.

One can also say that the Young diagrams label the con-
jugation classes of permutations: μ ∼ gμg−1.

We also define the linear form on the algebra An:

〈Δ〉n =
{

0 at Δ �= [1n],
1
n! at Δ = [1n]. (6)

3.2 Open sector (algebra B)

One can similarly consider the common conjugation classes
of pairs of permutations of the same size:

[μ,ν] ∼ [
gμg−1, gνg−1], μ, ν, g ∈ Sn.

Note that conjugation g is the same for μ and ν. Such
classes are labeled by the bipartite graphs. For example,
take two permutations from S6, say, i(jk)(lmn) ∈ [321]
and i(jklmn) ∈ [51]. Represent the two Young diagrams
by two columns of vertices, each vertex corresponds to a
cycle and has a valence, equal to the length of the cycle:



Page 4 of 10 Eur. Phys. J. C (2013) 73:2324

After that a conjugation class gets associated with a graph
obtained by connecting the vertices. Clearly, in our example
there are three different bipartite graphs, i.e. three different
conjugation classes: Γ,Γ ′,Γ ′′ ∈ O[321],[51].

Note that the sizes of Young diagrams are equal to the
numbers of edges in the graph: |Γ | = #(edges in Γ ).

Bipartite graphs of the same size can be multiplied: the
product Γ1 ∗ Γ2 is non-vanishing, when the right Young di-
agram of Γ1 coincides with the left Young diagram of Γ2:

Δr(Γ1) = Δl(Γ2).

The product is then a sum of graphs with

Δl(Γ1 ∗ Γ2) = Δl(Γ1), Δr(Γ1 ∗ Γ2) = Δr(Γ2),

obtained by connecting the edges entering the same vertex
in all possible ways. Formally,

[μ,ν] ∗ [
μ′ν′] =

∑

g

[
μ,gν′g−1] · δ(ν, gμ′g−1). (7)

This multiplication is still associative, but no longer com-
mutative.

Technically one can label a bipartite graph by two cyclic
representations with appropriately identified indices. For ex-
ample, the three graphs from O[321],[51] in the above exam-
ple are

Γ = [
i(jk)(lmn), i(jklmn)

]
,

Γ ′ = [
i(jk)(lmn), j (iklmn)

]
,

Γ ′′ = [
i(jk)(lmn), l(ijkmn)

]
.

To multiply the so represented graphs one simply needs to
appropriately rename the indices. For example, multiplying
Γ ′′ ∈ O[321],[51] with a graph from O[51],[2211], one does the
following:
[
i(jk)(lmn), l(ijkmn)

] ∗ [
i(jklmn), ij (kl)(mn)

]

= [
i(jk)(lmn), l(ijkmn)

] ∗ [
l(ijkmn), lj (ik)(mn)

]

= [
i(jk)(lmn), lj (ik)(mn)

]

This algebra of bipartite graphs is the open-sector algebra
B∗

n of the Hurwitz theory. The linear form on it is non-zero
only on the simple graph, i.e. the graph with all connected
components having two vertices:

〈Γ 〉n =
{

0 Γ is not simple
1

|Aut(Γ )| Γ is simple
(8)

The simplest pieces of multiplication table are:

(9)

(10)

. . .
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and, a little more complicated:

This table coincides with the combinatorial multiplication Table 1 from [4] (with misprint corrected in the right lowest
corner). It can be also represented as the sum of the matrix algebras M3 ⊕ M1:

(11)

3.3 Relation between An and Bn

The ∗-homomorphism φ∗
n : A∗

n −→ B∗
n converts the Young diagrams from A∗

n into a certain linear combination of graphs
from ⊕ΔOΔ,Δ (but not Δ into OΔ,Δ with the same Δ). The existence and manifest description of the homomorphism is
done geometrically through association of graphs with the Hurwitz theory [1]. Here we just describe the answer.
The identity element of A∗

n, i.e. [1n] = [1, . . . ,1
︸ ︷︷ ︸

n

] is mapped into the identity element of B∗
n which is given by the formal

series:
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(12)

More generally:

. . .

(13)

Remarkably, the homomorphism φ∗
n has a non-trivial ker-

nel (coinciding with the non-trivial ideal in A∗
n). In particu-

lar,

kerφ1 = ∅,

kerφ2 = [2] − [11],
kerφ3 = [3] − [21] + [111],
. . .

(14)

For each n the Cardy relation (4) is satisfied [1], provided
all the sums are over elements from A∗

n and B∗
n with the

same n:
∑

Δ,Δ′

〈
Γ1 ∗ φ(Δ)

〉
B

(〈
Δ ∗ Δ′〉

A

)−1〈
φ
(
Δ′) ∗ Γ2

〉
B

=
∑

Γ,Γ ′

〈
Γ1 ∗ Γ ∗ Γ2 ∗ Γ ′〉

B

(〈
Γ ∗ Γ ′〉

B

)−1 (15)

For example:

(16)

(17)

etc.

4 Unification of all An’s and Bn’s

4.1 ◦- versus ∗-multiplications and Universal CF Hurwitz
algebra

For unification purpose one can consider the linear spaces
A and B spanned by semi-infinite sequences of Young di-
agrams and bipartite graphs, respectively, containing ex-
actly one element (perhaps, vanishing) of each size. The ∗-
multiplication is then done termwise:

⎛

⎜
⎜
⎜
⎜
⎝

Δ1 ∈ A∗
1

Δ2 ∈ A∗
2

Δ3 ∈ A∗
3

Δ4 ∈ A∗
4

. . .

⎞

⎟
⎟
⎟
⎟
⎠

∗

⎛

⎜
⎜
⎜
⎜
⎝

Δ′
1

Δ′
2

Δ′
3

Δ′
4

. . .

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

Δ1 ∗ Δ′
1

Δ2 ∗ Δ′
2

Δ3 ∗ Δ′
3

Δ4 ∗ Δ′
4

. . .

⎞

⎟
⎟
⎟
⎟
⎠

and

⎛

⎜
⎜
⎜
⎜
⎝

Γ1 ∈ B∗
1

Γ2 ∈ B∗
2

Γ3 ∈ B∗
3

Γ4 ∈ B∗
4

. . .

⎞

⎟
⎟
⎟
⎟
⎠

∗

⎛

⎜
⎜
⎜
⎜
⎝

Γ ′
1

Γ ′
2

Γ ′
3

Γ ′
4

. . .

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

Γ1 ∗ Γ ′
1

Γ2 ∗ Γ ′
2

Γ3 ∗ Γ ′
3

Γ4 ∗ Γ ′
4

. . .

⎞

⎟
⎟
⎟
⎟
⎠

(18)
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thus making the infinite algebras A∗ and B∗ of the linear
spaces A and B. The ∗-homomorphism φ∗ : A∗ −→ B∗
is also defined termwise, and the Cardy relation also holds
termwise, i.e. in the operator form (3) rather than in the con-
verted one (4).

The original spaces of Young diagrams and graphs, A =
⊕nAn and B = ⊕nBn can be embedded into A∗ and B∗ with
the maps

ρ : A = ⊕nAn −→ A,

σ : B = ⊕nBn −→ B.
(19)

These embeddings have a triangular structure: ρ maps the
element Δ ∈ An to the column with first n − 1 entries zero,
and similarly does σ . However, the embeddings are not ∗-
homomorphisms. Still, because of the triangular form of
the mappings, the images ρ(A) ⊂ A and σ(B) ⊂ B are ∗-
subalgebras, i.e. ρ(A) ∗ ρ(A) ⊂ ρ(A) and σ(B) ∗ σ(B) ⊂
σ(B), so that one can define a new operation on A and B ,
which we call ◦-multiplication:

ρ
(
Δ ◦ Δ′) = ρ(Δ) ∗ ρ

(
Δ′) and

σ
(
Γ ◦ Γ ′) = σ(Γ ) ∗ σ

(
Γ ′).

(20)

One can fix ρ and σ by giving their action on all the ele-
ments of An and Bn, respectively, and then continuing their
action onto the whole A and B . If one admits infinite sums
of elements to belong to A and B , respectively, σ and ρ can
be continued to the isomorphisms A∗ ∼= A◦, B∗ ∼= B◦, i.e.
every such a pair of embeddings determines a pair of alge-
bras A◦ and B◦ with a homomorphism one to the other and
with the Cardy relation satisfied (yet in the operator form
(3)).

However, interesting embeddings are those giving rise to
◦-multiplication such that the products of finite sums of ele-
ments in A◦ and B◦ are also finite sums. We call such a pair
of CF algebras A◦ and B◦ Universal CF Algebra (UCFA).1

In fact, one such pair can be manifestly constructed in
the following way inherited from the open Hurwitz numbers
(this is why we call this concrete UCFA Universal Hurwitz
algebra).

The first embedding, ρ maps the element Δ ∈ An to the
column with the (n + k)th entry of the form

ρn+k[Δ] = (rΔ+ k)!
k! rΔ! [Δ,1, . . . ,1

︸ ︷︷ ︸
k

] (21)

where rΔ is the number of lines of the unit length in Δ.
Similarly, the σ -embedding maps the element Γ ∈ Bn to

the column whose entries σn(Γ ) are

1Note that originally the CF algebra was defined for finite-dimensional
algebras. The subtlety of the infinite-dimensional case is discussed in
[11, 12].

σn(Γ )

=
{∑

Γn∈En(Γ )
|Aut(Γn)

|Aut(Γn\Γ )||Aut(Γ )| · Γn, n ≥ |Γ |,
0, n < |Γ |. (22)

We call the graph with all connected components having two
vertices as simple graph, and call the standard extension of
the graph the graph obtained by adding simple connected
components. Then, En(Γ ) in (22) denotes the set of all de-
gree n standard extensions of Γ .

4.2 Universal Hurwitz algebra: A◦

In the simplest examples, these maps are

(23)

and the ◦-products are [11, 12]

ρ
([1] ◦ [1]) = ρ

([1]) ∗ ρ
([1])

=

⎛

⎜
⎜
⎜
⎜
⎝

[1]
2 [11]
3 [111]

4 [1111]
. . .

⎞

⎟
⎟
⎟
⎟
⎠

∗

⎛

⎜
⎜
⎜
⎜
⎝

[1]
2 [11]
3 [111]
4 [1111]

. . .

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

[1] ∗ [1]
4 [11] ∗ [11]

9 [111] ∗ [111]
16 [1111] ∗ [1111]

. . .

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

[1]
4 [11]
9 [111]

16 [1111]
. . .

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

[1]
2 [11]
3 [111]

4 [1111]
. . .

⎞

⎟
⎟
⎟
⎟
⎠

+ 2

⎛

⎜
⎜
⎜
⎜
⎝

0
[11]

3 [111]
6 [1111]

. . .

⎞

⎟
⎟
⎟
⎟
⎠

= ρ
([1]) + 2ρ

([11])

ρ
([1] ◦ [2]) = ρ

([1]) ∗ ρ
([2])

=

⎛

⎜
⎜
⎜
⎜
⎝

[1]
2 [11]
3 [111]

4 [1111]
. . .

⎞

⎟
⎟
⎟
⎟
⎠

∗

⎛

⎜
⎜
⎜
⎜
⎝

0
[2]
[21]
[211]
. . .

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
2 [11] ∗ [2]

3 [111] ∗ [21]
4 [1111] ∗ [211]

. . .

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
2 [2]
3 [21]
4 [211]

. . .

⎞

⎟
⎟
⎟
⎟
⎠
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= 2

⎛

⎜
⎜
⎜
⎜
⎝

0
[2]
[21]
[211]
. . .

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

0
0

[21]
2 [211]

. . .

⎞

⎟
⎟
⎟
⎟
⎠

= 2ρ
([2]) + ρ

([21])

The ◦-multiplication is evidently defined for any pair of
Young diagrams or of bipartite graphs, without requir-
ing them to have equal sizes (underlined are the diagrams
of the same size, i.e. coming directly from the ∗-product):

A◦ [1] [11] [2] . . .

[1] [1] + 2 · [11] 2[11] + 3[111] 2[2] + [21]
[11] 2[11] + 3[111] [11] + 6 · [111] + 6 · [1111] [2] + 2 · [21] + [211]
[2] 2[2] + [21] [2] + 2 · [21] + [211] [11] + 3 · [3] + 2 · [22]
. . .

(24)

Note that even in UCFA the unit element is an infinite sum.
For instance, in A◦ given by (23) it is

∞∑

k=1

(−1)k+1[1k
]

and similarly in B◦.
One more representation of the ◦-multiplication is in

terms of the generating functions

JΔ(u) =
∑

k≥0

(rΔ + k)!
k! rΔ! u|Δ|+k [Δ,1, . . . ,1

︸ ︷︷ ︸
k

]. (25)

In these terms

JΔ1 ◦Δ2(v) =
∮

JΔ1(u) ∗ JΔ2

(
v

u

)
du

u
=

∑

Δ

CΔ
Δ1Δ2

JΔ(v).(26)

In [7, 8] the algebra A◦ was identified with the associative
and commutative algebra of the cut-and-join operators,

Ŵ (Δ1)Ŵ (Δ2) =
∑

Δ

CΔ
Δ1Δ2

ŴΔ (27)

and for Δ = [δ1 ≥ δ2 ≥ · · · ≥ δl(Δ) > 0] = [. . . , k + 1,

k, . . . , k
︸ ︷︷ ︸

mk

, k − 1, . . .]

ŴΔ = 1
∏

k mk! kmk
:
∏

i

Tr D̂δi : (28)

familiar also in the theory of matrix models. Here D̂μν is the
generator of the regular representation of GL(∞), which is
manifestly realized as the differential operator on the space
of functions of infinitely many matrix variables Xμν

Dμν =
∑

ρ

Xμρ

∂

∂Xνρ

(29)

its degree is just the matrix multiplication (i.e. (D̂2)μν =
∑

ρ D̂μρD̂ρν etc.) and the normal ordering implies that all
Xμν are placed to the left of all derivatives, see details in
[7, 8]. This algebra is isomorphic also to the Ivanov–Kerov
algebra [10].

4.3 Universal Hurwitz algebra: B◦

An operator representation of the associative but non-
commutative B◦ is an open question, to be discussed in the
forthcoming paper [11, 12]. Here we just give a few exam-
ples of the ◦-product in this case.

Example 1 Let Γk,k denote a graph with two vertices and
k lines between them. Let VR,R be an element of B which
is a collection of rk copies of Γk,k with various k, R is the
corresponding Young diagram R = {krk }.

Then,

VR,R ∗ VR′,R′ = δR,R′VR,R (30)

(with coefficient 1). The homomorphism acts on these ele-
ments as

σn(VR,R) =
∑

Δ: |Δ|=n

∏

k

(rk + δk)!
rk!δk! VR+Δ,R+Δ (31)

(the sum of Young diagrams is simply R + Δ = {krk+δk }).
Then

σ(VR,R) ∗ σ(VR,R) =
∑

Y

CY
RRσ(VR+Y,R+Y ) (32)

induces the ◦-product

VR,R ◦ VR′,R′ =
∑

Y

CY
RRVR+Y,R+Y (33)
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with the structure constants

C
[n]
RR = rn(rn + 1),

C
[1n]
RR = (r1 + n)!

(n!)2(r1 − n)! ,

C
[21]
RR = r1(r1 + 1)r2(r2 + 1) = c[1]RRc[2]RR,

. . .

Important is appearance of factors r1, r1 − 1, r1 − 2 etc.:
they guarantee that the sum is finite.

Example 2 Similarly for k > l

σ (V1k ) ∗ σ(V1l )

= k!
l!(k − l)!σ(V1k ) + (k + 1)!

(l − 1)!(k + l − 1)!σ(V1k+1)

+ (k + 2)!
2(l − 2)!(k + 2 − l)!σ(V1k+2)

+ (k + 3)!
3(l − 3)!(k + 3 − l)!σ(V1k+2) + · · · (34)

i.e.

V1k ◦ V1l =
l∑

i=0

(k + i)!
i!(l − i)!(k + i − l)!V1k+i . (35)

The sum is finite.

Example 3 Another extension is to arbitrary pair of VR,R .
Take VR+P,R+P and VR+Q,R+Q, i.e. the two diagrams

have a common part R. Then for any k either pk or qk van-
ish, i.e. pkqk = 0 and

σ(VR+P,R+P ) ∗ σ(VR+Q,R+Q)

=
∑

Y

CY
R+P.R+Qσ(VR+P+Q+Y,R+P+Q+Y ). (36)

Then

C∅
R+P,R+Q =

∏

k

((rk + pk + qk)!)2

(rk + pk)!(rk + qk)!pk!qk! ,

C[n] = C∅ (rn + pn + qn + 1)(rn − pnqn)

(pn + 1)(qn + 1)

= C∅ rn(rn + pn + 1)rn

pn + 1

(37)

where in the last formula we assumed that qn = 0, and pn is
arbitrary (though for other n the situation can be the oppo-
site). Under the same assumption

C[n2] = C∅ (rn − 1)rn(rn + pn + 1)(rn + pn + 2)

2(pn + 1)(pn + 2)
,

C[m,n]

= C∅ rmrn(rm + pm + qm + 1)(rn + pn + qn + 1)

(pm + 1)(qm + 1)(pn + 1)(qn + 1)
,

m �= n,

. . .

(38)

In the last formula one can have either qm = qn = 0, or qm =
pn = 0, or pm = qn = 0, or pm = pn = 0.

In all these examples, one can see that the products of VR

are indeed finite sums, i.e. B◦ is a Universal algebra.

5 Summary

In this paper we formulated a procedure which allows
one to glue together a set of finite-dimensional Cardy–
Frobenius algebras (An,Bn) into an infinite-dimensional
one. To this end, one fixes a map from the direct sum (A =
⊕nAn,B = ⊕nBn) to the space of semi-infinite sequences
(A = {a1, a2, . . .}, B = {b1, b2, . . .}), ai ∈ Ai , bi ∈ Bi , con-
sidered as the isomorphism of vector spaces. The product in
the algebras An and Bn induces a componentwise product ∗
in A and B making a Cardy–Frobenius algebra of these vec-
tor spaces. Then, the fixed isomorphism induces a product ◦
in (A,B), in its turn making a Cardy–Frobenius algebra of
it.

This procedure works equally well for any map, though
non-trivial is the finiteness property of ◦-product which
means that the product of finite sums of elements is a fi-
nite sum. We proposed a map with such a property inherited
from the Hurwitz theory though the complete proof of the
finiteness property would be achieved by constructing a re-
alization of the constructed ◦-product in terms of differential
operators (or infinite-dimensional matrices) from the univer-
sal enveloping algebra U(GL(∞)), which is not available
yet.
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