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Key Points: 

 Developed a hydrodynamic model for the plasmasphere refilling problem following 
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 The model is based on the well-known flux-corrected transport method. 

 The model is applied to the plasmasphere refilling problem for three ion species and two 
neutrals along the L = 4 line.  
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Abstract 

The objective of this paper is the application of a newly-developed Flux-Corrected Transport 
(FCT) based hydrodynamic solution methodology to the plasmasphere refilling problem following 
a geomagnetic storm. The FCT method is extremely well-suited to the solution of nonlinear partial 
differential equations with shocks and discontinuities. In this solution methodology, every ion 
species is modeled as two separate fluids originating from the northern and southern hemispheres. 
We present refilling results that includes three ion (H+, He+ and O+) species and two neutrals (H 
and O). We believe that with additional modifications, the model can be adapted to the solution of 
other ionosphere-magnetosphere coupling problems. 

Plain Language Summary 

The paper applies a newly-developed multi-species hydrodynamic model to the plasmasphere 
refilling problem following geomagnetic storms. We believe that with additional development, the 
model can be applied to other ionosphere-magnetosphere problems. 

 

1 Introduction 

A geomagnetic storm [Gonzalez et al., 1994] is a temporary disturbance of the Earth's 
magnetosphere caused by a solar wind shock wave that interacts with the Earth's magnetic field. 
Several space weather related phenomena are linked to geomagnetic storms, including but not 
restricted, to solar energetic particle (SEP) events [Reames, 2017], geomagnetically induced 
currents [Pirjola, 2000] and ionospheric disturbances that lead to radio and radar scintillation 
[Edde, 1992]. Consequently, geomagnetic storms affect high-frequency radio communication, 
satellite navigation and power grids, and thus, a very active area of research. 
 
The plasmasphere [Gringauz, 1963; Goldstein et al., 2002; Sandel et al., 2003; Millian & Thorne, 
2007; Darrouzet et al., 2009] is the lowermost region of the magnetosphere and lies just above the 
ionosphere. It has been traditionally described [Rasmussen & Schunk, 1988] as a toroidal-shaped 
mass of cold plasma (about 1 ev in energy), co-rotating with the earth. Following a geomagnetic 
storm [Singh et al., 1986; Rasmussen & Schunk, 1988], the flux tubes linked to the outer layers of 
the plasmasphere are peeled away from the region. These flux tubes are then convected to the 
magnetopause in the sunward direction, where they lose the plasma contained within them. The 
removal of plasma from the outer layers of the plasmasphere in turn, causes the plasmapause to 
shift to lower magnitude latitudes. As the geomagnetic storm subsides, magnetospheric convection  
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Figure 1. A depleted flux tube: The ionosphere is shown in hatched lines. The ionosphere is embedded in the neutral 
atmosphere and above the ionosphere is the depleted flux tube immediately after a geomagnetic storm [Rasmussen 
& Schunk, 1988]. 
 

returns to its pre-storm level, leaving the plasma density in the outer layers of the plasmasphere 
significantly depleted. The resultant pressure gradient causes the ionospheric plasma to flow 
upward along the flux tube, which initiates the process of refilling of the outer layers of the 
plasmasphere. A schematic diagram of the flux tube is shown in Figure 1. 
 
The plasmasphere plays a critical role in space weather [Toth et al., 2005] as it mediates the wave-
particle interactions [Gendrin, 1975] in the inner magnetosphere which is crucial to understanding 
spacecraft charging [Garrett, 1981]. Additionally, cold, dense plasmaspheric plumes are expected 
to substantially impact dayside magnetic reconnection [Scholer, 1989]. As a broader point, there 
is a general understanding [Rasmussen & Schunk, 1988] within the community of space physicists 
and model developers, that the spatial variation of the geomagnetic field within the plasmaspheric 
flux tubes is relatively well-behaved compared to other locations within the Ionosphere-
Magnetosphere system, and as a result, the physical insights gleaned from these modeling studies 
can indeed prove to be useful in the study of other space plasma transport problems. As a result, 
the modeling of plasmaspheric refilling after a storm is an important problem. 
 
Over the last several decades, a multitude of studies have been undertaken to model and quantify 
plasma transport between the ionosphere and the plasmasphere and these studies have led to the 
development of several ionosphere-plasmasphere coupling models. These models, based on the 
numerical solution of the plasma transport equations, fall within two broad categories. In the first 
category (known as the ‘diffusion model’), the nonlinear inertial terms in the plasma transport 
equations are neglected and thus only low-speed, diffusion-dominated flow can be modeled. 
Included in this category of models are the Sheffield University Plasmasphere Ionosphere Model 
(SUPIM) [Bailey, et al., 1997], the Ionosphere-Plasmasphere Model (IPM) [Schunk et al., 2004], 
and the Field-Line Interhemispheric Plasma (FLIP) model [Young et al., 1980]. The FLIP model 
has recently been assimilated into the Ionosphere Plasmasphere Electrodynamics (IPE) model 
[Maruyuma et al., 2016] developed at National Oceanic and Atmospheric Administration/Space 
Weather Prediction Center (NOAA/SWPC) to facilitate an improved understanding of the relation 
between terrestrial and space weather.  
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The second category of models that exists in the literature is the so-called ‘hydrodynamic model,’ 
where the nonlinear inertial terms are retained in the plasma transport equations. The 
hydrodynamic model was first introduced by Banks et al. [1971] and has subsequently been used 
by many scientists and researchers working in the field, including Khazanov et al. [1984], Singh 
et al. [1986] and Rasmussen & Schunk [1988]. The most well-developed hydrodynamic model of 
the low-latitude ionosphere is SAMI2, developed by Huba & Joyce [2000]. Based on the SAMI2 
formulation, a 3D global ionosphere code SAMI3 has been developed and has been applied to the 
plasmasphere refilling [Krall & Huba, 2013] problem. 

 

 

Figure 2. Comparison of single stream (top) and two-stream (bottom) models. Figure 2a (Top panel): Formation of 
equatorial shock obtained from the “single-stream” model at the onset of refilling [Singh et al., 1986]. Figure 2b 
(Bottom panel): Absence of equatorial shock obtained from the “two-stream” model at the onset of refilling 
[Rasmussen & Schunk, 1988]. 

These theoretical models, along with experimental observations that went to validating these 
models, produced three basic features:  

A. Fast, supersonic outflow of H  ions from the conjugate ionospheres during the early hours 
of refilling. 

B. Counter-streaming of these H ions, also observed during these early hours. 
C. A state of diffusive equilibrium that is reached when the two ion streams are thermalized 

and there is a decrease from the supersonic velocities reached during the early stages.  

The fundamental objective of this paper is the development of a hydrodynamic plasmasphere 
refilling model, based on the well-known flux corrected transport (FCT) method of Boris & Book 
[1976], which is extremely well-suited to problems with shocks and discontinuities. The FCT 
method has previously been used (for the H+ species) in Singh et al. [1986] and Rasmussen & 
Schunk [1988]. In Singh et al. [1986], the plasma corresponding to a given species was modeled 
as a single stream of plasma, which led to the formation of unphysical shocks at the equator when 
plasma originating from the conjugate hemispheres first reached the equator. On the other hand, 
in Rasmussen & Schunk [1988], the same plasma was modeled as two separate streams originating 
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from the conjugate hemispheres, which led to the interpenetration of streams at the equator and 
remedied the problem of unphysical shock formation.  

This FCT-based two-stream solution methodology presented here is developed independently of 
Rasmussen & Schunk [1988], and it includes three ion species (H+, O+ and He+) and two neutral 
atoms (H and O). It should be borne in mind that the competing models and methodologies 
described previously [Bailey, et al., 1997; Schunk et al., 2004; Young et al., 1980; Singh et al., 
1986; Krall & Huba, 2013] are single-stream models. The model presented here is philosophically 
different on the issue of shock formation at the equator and thus likely to give different 
qualitatively different results in the early to middle stages of refilling. We now provide a brief 
description of the formulation of the refilling problem.  

2 The Plasmasphere Refilling Problem: A Brief Formulation 

We begin with the time-dependent continuity and momentum equations for a given ion species 
indicated by the suffix i [Rasmussen & Schunk, 1988; Schunk & Nagy, 2009], but we re-write the 
equations with the terms related to the cross-sectional area of flux tube on the right-hand side of 
the equations: 
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where t is time, s is the spatial coordinate along the magnetic field line, in  is the ion concentration 

with each species being represented by two streams, q is the ion charge, iu  is the ion drift velocity, 

A is the cross section of the flux tube [Schunk & Nagy, 2009], im  is the ion mass, kTnp ii   is the 

partial ion pressure, T is the constant temperature along the flux tube, k is the Boltzmann constant, 
E is the electric field, g(s) is the spatially-dependent gravitational force along the field line, ij  is 

the momentum transfer collision frequency and ij  is a velocity-dependent correction factor 

[Rasmussen & Schunk, 1988; Schunk & Nagy, 2009], where ‘j’ represents any other ion or neutral 
species, that is different from ‘i.’ 

In Equations (1a) and Eq. (1b), the curvature of the dipole magnetic [Schunk & Nagy, 2009] field 
line is accommodated by the two area-dependent source terms in the continuity and momentum 
conservation equations. The spatially-dependent gravitational force is a function of h (the altitude 
from the earth’s surface), R (the radius of the earth) and 𝜃 (the angle between the radial vector and 
the magnetic axis), and can be written as: 

𝑔(𝑠) = 9.8 ቀ
௛

ோା௛
ቁ

ଶ ଶ ୡ୭ୱ ఏ

(ଵାଷ ୡ୭ୱమ ఏ)భ మ⁄ 𝑚𝑠ିଶ.                                      (2) 

The expression given above is obtained by taking a scalar product of the gravity vector (which is 
directed radially) and a unit vector along the dipole magnetic field line given in Schunk & Nagy 
[2009].  Further, imposing quasi-neutrality gives rise to ,ei nn   and neglecting the electron 

mass in the electron momentum equation gives rise to an expression for the electric field given by  
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where e is the absolute value of the electronic charge. The expression for electric field provided in 
Eq. (3), is substituted in Eq. (1b) to obtain a form of the ion momentum equation, where 𝑛௜ and 𝑢௜ 
are the only two unknown variables. 

As mentioned before, the plasma transport equations were solved by a solution methodology 
developed using the well-known flux-corrected transport method pioneered by Boris & Book 
[1976] and developed over the years by several researchers working in the field [Kuzmin et al., 
2012; Otto., 2012]. In this paper, the refilling results for the L=4 magnetic field line, are presented, 
and these results involve three ions (H+, O+, He+) and two neutral (O, H) species. The model 
includes both long-range (ion-ion) and short-range (ion-neutral) collisions [Schunk & Nagy, 2009]. 
For ion-neutral collisions, both resonant and non-resonant collisions [Schunk & Nagy, 2009] are 
included in the model.  

The following ion concentrations are assumed at a base altitude of 500 km: 
3333 10)(,102)(   cmHNcmON  and N(He )  0.2cm3. An initial concentration of 

10ିସ 𝑐𝑚ିଷis assumed for the entirety of the flux tube for all three species and the initial drift 
velocity is assumed to be zero.  

The ion and electron temperatures were both assumed [Rasmussen & Schunk, 1988] to be 3560 K 
[0.3 ev] throughout the entirety of the field line. This allowed the validation of the solution 
methodology with an exact analytical solution [Rishbeth & Garriott, 1969] at steady-state, and the 
results will be provided in the following section. The neutral temperature was assumed to be 1463 
K [0.13 ev], a value reported in Schunk & Nagy [2009], obtained from the MSIS model [MSIS-E-
90 Atmosphere Model, 1990] of terrestrial neutral parameters (Noon, 45o N, 0o E, F10.7 = 220, 
Summer, Altitude - 500 km).  

3 Discussion of Results 

In this section, the refilling results are presented for time periods extending from 20 minutes to 40 
hours. In Figure 3a, we present the hydrogen concentration 20 minutes after the onset of refilling, 
normalized to the oxygen concentration (as oxygen is the dominant species at the onset of refilling) 
at the boundaries. The plasmasphere begins to fill up and we observe interpenetration of the 
streams originating from the northern and southern hemispheres, but no shocks are observed in the 
middle, consistent with Rasmussen & Schunk [1988].  

At the end-points reached by either stream, a discontinuity is observed, which is expected. A lot 
less obvious is a bump in each stream at the domain boundary it is headed to, which is a result of 
the coupling between the streams, stemming from the electric field term in the transport equations.  
The origin of these structures is electrostatic in nature. The electric field seen by each stream is 
affected by the concentration gradient in five other streams, as can be seen from Eq. (3). These 
discontinuities are realistic subject to the validity of the Maxwellian distribution function [Schunk 
& Nagy, 2009] and the resultant applicability of the plasma transport equations [Schunk & Nagy, 
2009]. However, in the early to the middle stages of refilling for the L = 4 line, because of the low 
number densities, the assumption of Maxwellian distribution function might not be valid, in which 
case the presence or absence of these discontinuities must be explored using a kinetic model [Wang 
et al., 2015].  
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In Figure 3b, the hydrogen ion drift velocity profile is presented at 20 minutes after the onset of 
refilling. High supersonic velocities (thermal velocity → ඥ𝑘𝑇 𝑚௜⁄ → 5.4 𝑘𝑚 𝑠⁄  ) are observed up 
to the endpoints reached by either stream. These supersonic beams are created as a result of the 
pressure gradient and the ambipolar electric field.  

 

 

 

Figure 3a (Top panel). Hydrogen ion concentration profile after 20 minutes. Stream 1 is from the northern hemisphere 
and stream 2 is from the southern hemisphere. Figure 3b (Bottom panel). Hydrogen ion velocity profile after 20 
minutes. The thermal velocity of the hydrogen ions is shown by the horizontal line. Velocities from the northern to 
the southern hemisphere are taken to be positive. 

Based on Eq. (1b), the force due to the pressure gradient per unit volume on a given stream i can 
be seen to be equal to 

𝑓௣௜ = −𝑘𝑇
డ௡೔

డ௦
 .                                                           (4a) 

Based on Eq. (1b) and Eq. (3), the force due to the electric field per unit volume on the same stream 
is given by 
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Beyond the endpoints reached by either stream, the velocity profile is determined largely by the 
force of gravity, which on a given stream has accelerating effect in one hemisphere and retarding 
effect in the other.  The total plasma velocity averaged over the contributions of both the streams 
is also seen to reach supersonic velocities. The concentration bumps at domain boundaries in 
Figure 3a show corresponding velocity spikes in Figure 3b.  

 

Figure 4a (Top panel). Hydrogen ion concentration profile after 2 hours. Stream 1 is from the northern hemisphere 
and stream 2 is from the southern hemisphere. Figure 4b (Bottom panel). Hydrogen ion velocity profile after 2 hours. 
The thermal velocity of the hydrogen ions is shown by the horizontal line. Velocities from the northern to the southern 
hemisphere are taken to be positive. 

In Figure 4a, the hydrogen concentration profile 2 hours after the onset of refilling is presented. 
The discontinuities in the concentration profile move back and forth as the plasmasphere refills. A 
discontinuity in the concentration profile of any one stream belonging to a given species, changes 
the E-field [See Eq. (3)], and hence, brings changes in the concentration profile of any other stream, 
belonging to any other species. 
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In Figure 4b, the hydrogen velocity profile at 2 hours after the onset of refilling is presented. The 
individual stream velocities are still supersonic, but equally important is the fact that spatial 
gradients in the velocity profile are significant at some locations. Due to these discontinuities in 
the concentration profile, the individual stream velocities, as well as the overall velocity profile, 
exhibit oscillations throughout the refilling process. But the overall trend is towards subsonic 
profiles.  

 

Figure 5a (Top panel). Hydrogen ion concentration profile after 15 hours. Stream 1 is from the northern hemisphere 
and stream 2 is from the southern hemisphere. Figure 5b (Bottom panel). Hydrogen ion velocity profile after 15 hours. 
The thermal velocity of the hydrogen ions is shown by the horizontal line. Velocities from the northern to the southern 
hemisphere are taken to be positive. 

In Figure 5a, we present the hydrogen concentration profile at 15 hours after the onset of refilling. 
We see that the total hydrogen concentration has risen significantly, in that the equatorial 
concentration is one order of magnitude higher than that at 20 minutes. But the discontinuities are 
still present and diffusive equilibrium has not yet been reached.  

In Figure 5b, the hydrogen velocity profile at 15 hours after the onset of refilling is presented. The 
stream velocities and the overall plasma velocities are subsonic everywhere along the flux tube. 
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But it can also be noted that even though the drift velocity is subsonic everywhere, the gradient of 
the drift velocity is still significant at many points within the spatial domain. This clearly shows 
the need for hydrodynamic modeling as opposed to diffusion-based modeling after a long time 
following the onset of refilling. 

In Figure 6a, we present the hydrogen ion concentration profile after 40 hours of refilling. Steady-
state has almost been reached, and the north and south streams are seen to be close to their diffusive 
equilibrium states. More importantly, the total hydrogen ion concentration closely matches the 
analytical solution obtained assuming an infinite flux line [Rishbeth & Garriott, 1969].  

In Figure 6b, the hydrogen velocity profile after 40 hours of refilling is presented, and it is  
observed that the stream velocities, the overall velocities and velocity gradients are almost equal 
to zero, which again is a confirmation of the fact that at 40 hours the refilling process is close to 
reaching the steady-state. 

 

 

Figure 6a (Top panel). Hydrogen ion concentration after 40 hours. Stream 1 is from the northern hemisphere and 
stream 2 is from the southern hemisphere. Figure 6b (Bottom panel).  Hydrogen ion velocity profile after 40 hours. 
The thermal velocity of the hydrogen ions is shown by the horizontal line. Velocities from the northern to the southern 
hemisphere are taken to be positive. 
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In Figure 7a, we show the helium concentration profile after 40 hours of refilling and in Figure 7b, 
we show the oxygen concentration profile after the same 40 hours. Comparing Figure 6a to Figure 
7b, it can be observed that as we go from the plasmasphere base to higher altitudes along the flux 
tube, there is an O+ to H+ transition. At the plasmasphere base altitude of 500 km at the onset of 
refilling, O+ dominates H+ by a factor of 2:1, which changes to a state of H+ dominance at the 
equatorial plane plane by orders of magnitude after 40 hours. Also, as observed from Figure 7a 
and Figure 7b, after 40 hours, He+ dominates O+ for almost the entire flux tube by virtue of its 
relatively lighter mass.  

 
 

 
Figure 7a (Top panel). Helium ion concentration profile after 40 hours. Figure 7b (Bottom panel). Oxygen ion 
concentration profile after 40 hours. Stream 1 is from the northern hemisphere and stream 2 is from the southern 
hemisphere.  

In Figure 8a, we present the equatorial concentration for all three ions as a function of time and 
we observe that at 40 hours, the plasmasphere is close to reaching a state of diffusive equilibrium. 
But it also must be borne in mind that our model did not accommodate diurnal ionospheric 
variations. If instead, we included the diurnal variations and simulated, for example, the boundary 
conditions for summer and winter solstices, we would expect to see an even more dynamic 
plasmasphere. 
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Figure 8a (Top panel). Ion concentrations at the equatoral crossing altitude of 19000 km versus time. Figure 8b 
(Bottom panel). Relative concentrations of the hydrogen, oxygen and helium ions versus time. Please note that the 
colors here represent the three different ions and not the streams of hydrogen as in Figures (3) – (7). 

In Figure 8b, we present simulation results that demonstrate the presence of heavier ions (helium 
and  oxygen) during the  early hours of refilling. The presence of helium [Wilford et al., 2003] and 
oxygen [Nose et al., 2018] has been experimentally observed. The helium peak density obtained 
from our model is larger than the oxygen peak density, which makes physical sense because of 
oxygen’s higher mass. Also, the introduction of time-dependent boundary conditions at the base 
altitude will keep the fluctuations alive in time and could enhance the presence of heavier ions 
even further in time. In spite of the simplistic time-independent boundary conditions assumed in 
this work, the boundary conditions assumed in this work were of the same order of magnitude as 
observed from the IMAGE satellite data in Wu et al. [2003] and Reinisch et al. [2004] and as a 
result, the simulated density profiles were also seen to be similar to the ones included in Wu et al. 
[2003] and Reinisch et al. [2004].  

Finally in figures (9a) to (9d), we plot the ambipolar electric field between 20 minutes and 40 
hours. Consistent with Eq.(3), the spikes in the electric field are a result of the discontinuities in 
the electron density profile, which is the aggregate of all the ion density profiles. Thus, as expected 
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in 40 hours, the electric field is seen to decrease significantly with diffusive equilibrium being 
reached. 

 

Figures 9a (Top left panel). Ambipolar electric field profile after 20 minutes. Figures 9b (Top right panel). Ambipolar 
electric field profile after 2 hours. Figures 9c (Bottom left panel). Ambipolar electric field profile after 15 hours. 
Figures 9d (Bottom right panel). Ambipolar electric field profile after 40 hours. 

4 Summary 

Summarizing, a multi-ion, two-stream hydrodynamic model has been developed for the 
plasmasphere refilling problem following a geomagnetic storm. The model predicts high 
supersonic velocities expected at the onset of refilling, the presence of heavier ions in its early 
hours, the transition from O+ to H+ dominance in the middle stages and correctly estimates the 
steady-state major ion density after the completion of refilling. The representation of each ion 
species as two separate streams makes this model philosophically different than other models in 
the field and remedies the problem of unphysical shock creation at the equator during the early 
hours of refilling. Our future work will involve the extension of this hydrodynamic model to two 
and three dimensions as well as the development of a kinetic model which is not predicated on the 
assumption of Maxwellian velocity distribution functions for the ions. 
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