
Capturing points with a rotating polygon

(and a 3D extension)
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Abstract

We study the problem of rotating a simple polygon to contain the
maximum number of elements from a given point set in the plane. We
consider variations of this problem where the rotation center is a given
point or lies on a segment or a line. We also solve an extension to
3D where we rotate a polyhedron around a given point to contain the
maximum number of elements from a set of points in the space.

Keywords: Points covering, rotation, geometric optimization, polygon,
polyhedron.

1 Introduction1

Given a simple polygon P on the plane, the Polygon Placement Problem2

consists of finding a function τ, usually consisting of the composition of3

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sk lodowska-
Curie grant agreement No 734922.
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a rotation and a translation, such that τpP q satisfies some geometric con-4

straints. In the literature, τpP q is known as a placement of P . The oldest5

problem of this family was studied in the early eighties by Chazelle [7] who,6

given two polygons P and Q, explored the problem of finding, if it exists,7

a placement of P that contains Q. The most recent contribution to these8

problems, in 2014, can be found in [5] (see Section 1.4 there for a summary9

of previous work). Among other results, for a point set S and a simple poly-10

gon P , the authors show how to compute a placement of P that contains as11

many points of S as possible. If n and m are the sizes of S and P respectively,12

their algorithm runs in Opn3m3 logpnmqq time and Opnmq space.13

Although translation-only problems have also been considered [2, 4], sur-14

prisingly enough there are no previous results with τ being only a rotation. It15

is important to note that existing results with τ being a composition of a16

rotation, a translation, and even a scaling, cannot be adapted to solve the17

rotation-only problem considered here: All those previous results reduce18

the search space complexity by considering only placements where a con-19

stant number of points from S lie on the boundary of P (see for example20

references [5] and [8] for algorithms based respectively, on two-point and21

one-point placements). Rotation-only adaptations of these results would not22

allow the rotation center to be fixed or restricted to lie on a given curve and23

therefore, cannot be applied to the problems we deal with in this paper. This24

is why the following Maximum Cover under Rotation (MCR) problems are25

considered in this paper:26

Problem 1 (Fixed MCR). Given a point r, a polygon P , and a point set S in27

the plane, compute an angle θ P r0, 2πq such that, after a clockwise rotation28

of P around r by θ, the number of points of S contained in P is maximized.29

Problem 2 (Segment-restricted MCR). Given a line segment `, a poly-30

gon P , and a point set S in the plane, find a point r on ` and an an-31

gle θ P r0, 2πq such that, after a clockwise rotation of P around r by θ, the32

number of points of S contained in P is maximized.33

In addition, we complete the scene opening a path towards the study of34

these problems in 3D, by presenting a three-dimensional version of Prob-35

lem 1:36

Problem 3 (3D Fixed MCR). Given a point r, a polyhedron P , and a point37

set S in R3, compute the azimuth and altitude pθ, ϕq P r0, 2πq ˆ p´π, πs38

giving the direction in the unit sphere such that, after having rotated the39

polyhedron P by taking the z-axis to that direction, the number of points40

of S contained in P is maximized.41

Applications of polygon placement problems include global localization42

of mobile robots, pattern matching, and geometric tolerance; see the refer-43

ences in [5]. Rotation-only problems arise, e.g., in robot localization using a44
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rotating camera [11], with applications to quality control of objects manu-45

factured around an axis [15].46

We first show that Problem 1 is 3SUM-hard, i.e., solving it in sub-47

quadratic time would imply a subquadratic time algorithm for 3SUM. Al-48

though 3SUM was originally conjectured to require Ωpn2q time [9], now there49

are algorithms in Opn2{polylogpnqq both for integer [3] and real [10] inputs.50

Currently, the conjecture [14] is that 3SUM is in Ωpn2´op1qq, even in expecta-51

tion [12]. Then, we present two algorithms to solve Problem 1: the first one52

requires Opnm logpnmqq time and Opnmq space, for n and m being the sizes53

of S and P , respectively; the second one takes Oppn`kq log n`m logmq time54

and Opn`m`kq space, for k in Opnmq being the number of certain events.55

We also describe an algorithm that solves Problem 2 in Opn2m2 logpnmqq56

time and Opn2m2q space. We also show how this algorithm can be easily57

extended to solve the variation of Problem 2 where r lies on a line. Fur-58

thermore, our techniques for Problem 1 can be extended to 3D to solve59

Problem 3 within the same time and space complexities as Problem 2.60

2 Fixed MCR (Problem 1)61

Given a point r on the plane and a point p P S, let Cpprq be the circle62

with center r and radius |rp|. If we rotate S in the counterclockwise direc-63

tion around r, Cpprq is the curve described by p during a 2π rotation of S64

around r. The endpoints of the circular arcs resulting from intersecting P65

and Cpprq determine the rotation angles where p enters (in-event) and leaves66

(out-event) the polygon P . In the worst case, the number of such events per67

element of S is Opmq, see Figure 1. If we consider all the points in S we68

could get Opnmq events.69

p

Figure 1: A comb-shaped simple polygon can generate Ωpmq in- and out-
events per point in S.

2.1 A 3SUM-hard reduction70

We show next that Problem 1 is 3SUM-hard, by a reduction from the71

Segments Containing Points Problem that was proved to be 3SUM-hard72

in [6]: Given a set A of n real numbers and a set B of m “ Opnq pairwise-73

disjoint intervals on the real line, is there a real number u such that A`u Ď74

B?75
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Theorem 4. The Fixed MCR problem is 3SUM-hard.76

Proof. Let I be an interval of the real line that contains the set A of points,77

and the set B of intervals of an instance of the Segments Containing Points78

Problem. Wrap I on a circle C whose perimeter has length at least twice79

the length of I. This effectively maps the points in A and the intervals in B80

into a set A1 of points and a set B1 of intervals on C.81

Clearly, finding a translation (if it exists) of the elements of A such that82

A` u Ď B, is equivalent to finding a rotation of the set of points A1 around83

the center of C such that all of the elements of A1 are mapped to points84

contained in the intervals of B1.

(a)

(b)

Figure 2: Wrapping I from (a) the real line to (b) a circle C. Intervals
forming B and B1 are highlighted with blue. Elements of A and A1 are
represented by white points. Additional vertices forming the polygon are
the intersection points between the tangents to C at the endpoints of each
interval in B1.

85

To finish our reduction, construct a polygon as shown in Figure 2.86

2.2 An Opnm logpnmqq algorithm87

Here we present an Opnm logpnmqq algorithm for Problem 1 (note that,88

by Theorem 4 and the discussion in the last paragraph of Section 1, this89

complexity is not far from being optimal):90

1. Intersect rotation circles. Given a fixed point r, compute the in-91

tersection points of Cpj prq and P , for all pj P S. Each of these points92

determines an angle of rotation of pj around r when pj enters or93

leaves P , see Figure 3. These angles, in turn, determine a set of in-94

tervals Ij “ tIj,1, . . . , Ij,mju whose endpoints correspond to the ro-95

tation angles (with respect to the ray emanating from r and passing96

through pj) in which pj enters or leaves P and, hence, specify the97

rotation angles for which pj belongs to P , see again Figure 3. Let98
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x
y

Figure 3: An in-event at x (right turn), and an out-event at y (left turn).

I “ I1 Y ¨ ¨ ¨ Y In. The set of endpoints of the intervals in I can be99

sorted in Opmn logpmnqq time.100

2. Compute the angle of maximum coverage. Using standard tech-101

niques, we can now perform a sweep on the set I “ I1 Y ¨ ¨ ¨ Y In as102

depicted in Figure 4. During the sweeping process, we maintain the

0 2π

p1

pn

`

...

pj

... Ij,1 Ij,ij· · ·

Figure 4: The events sequence and the sweeping line at angle θ. Highlighted
with a red circle, the intersection of line ` with an interval corresponding
to p1 (where p1 is inside P ). Highlighted with a blue circle, the intersection
of line ` with one of the endpoints of an interval corresponding to pn (an
in-event).

103

number of points of S lying in P . If an in-event or an out-event occurs,104

that number is increased or decreased by one, respectively. At the end105

of the sweeping process, we report the angular interval(s) where the106

number is maximized.107

Since the complexity of our algorithm is dominated by Step 1, which108

takes Opnm logpnmqq time, we conclude the following result.109

Theorem 5. The Fixed MCR problem can be solved in Opnm logpnmqq time110

and Opnmq space.111
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2.3 An output-sensitive algorithm112

We now show that, performing a plane sweep using a sweeping circle centered113

at r whose diameter increases continuously, it is possible to intersect P and114

the set of rotation circles in a more efficient way. The idea is to maintain115

a list of the edges intersecting the sweeping-circle, ordered by appearance116

along the sweeping-circle. Using the same technique shown in Figure 3, the117

edges are labeled as defining in- or out-events. The algorithm is outlined118

next.119

1. Normalize P . In the following steps, we consider P to have no edges120

intersecting any circle centered at r more than once. This can be guar-121

anteed by performing a preprocessing step on P : For every edge e “ uv122

of P , let pe be the intersection point between the line ` containing e123

and the line perpendicular to ` passing through r. If pe belongs to the124

relative interior of e, subdivide this edge into the edges upe and pev. In125

the worst case, each edge of P gets subdivided into two parts. See Fig-126

ure 5.127

u

r
v

Figure 5: Splitting an edge of P .

2. Process a vertex of P . Sort first the vertices of P and S according128

to their distance from r. This is the order in which an expanding129

sweeping circle centered at r will reach them.130

As the sweeping-circle increases in size, we stop at each vertex pj131

of P . Each time this happens, the number of intersections of Cpj prq132

with the boundary of P will increase or decrease by two. We can main-133

tain and update the ordered list of edges intersected by Cpj prq, using134

a red-black tree, in logarithmic time. This enables us to calculate the135

intersections of Cpj prq in time proportional to their number. It suffices136

to walk along the ordered list of edges intersected by the sweeping-137

circle. Each time the sweeping circle reaches an element of S, the num-138

ber and order of intersections of the sweeping circle with the edges of P139
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remains unchanged. However, since the points of intersection change,140

we need to recalculate them each time we reach a point of P or S.141

3. Compute the intervals sequence for each element of S. We can142

now compute, within the same time complexity, the intervals in which143

Cpj prq intersects the interior of P . Note that these intervals are not144

the elements of Ij , they have to be rotated according to the position145

of pj with respect to r.146

4. Construct the events sequence. Since for each point pj in S we147

have computed the corresponding sequence of sorted intervals Ij , all148

we need to do is to merge these (at most n) sequences into a complete149

sequence of events.150

The normalization process takes Opmq time. Sorting the points in S and151

the vertices of P by distance from r takes Opn log nq and Opm logmq time,152

respectively. The ordered list of edges intersecting the sweeping circle is153

maintained in an Opmq-size red-black tree, so we can process all the vertices154

of P in Opm logmq time. On the other hand, processing all the points in155

S takes Opkq time, where k P Opnmq denotes the total number of in- and156

out-events in a Fixed MCR problem. Finally, merging the Opnq sequences of157

sorted intervals in a balanced fashion takes Opk log nq time. We then sweep158

the merged list of I1 Y ¨ ¨ ¨ Y In in Opkq time to obtain a solution to our159

problem. The total time complexity is Opn log n `m logm ` k log nq. The160

space complexity is Opn`m` kq. We have thus proved:161

Theorem 6. The Fixed MCR problem can be solved in Oppn ` kq log n `162

m logmq time and Opn`m` kq space, where k P Opnmq denotes the total163

number of in- and out-events in a Fixed MCR problem.164

3 Segment-restricted MCR (Problem 2)165

Our approach to solve Problem 2 is to characterize, for each p in S, the166

intersection between the polygon P and the rotation circle Cpprq while the167

center r of Cpprq moves along a line segment ` “ ab from a to b. For simplic-168

ity, we assume that a lies on the origin p0, 0q and b on the positive x-axis.169

For each edge e “ uv of P , we parameterize the intersection between Cpprq170

and e using a function ω “ fpxq, where x is the x-coordinate of r (ranging171

from 0 to the x-coordinate b.x of b) and ω is the counterclockwise angle172

swept by the ray ÝÑrp until it coincides with the ray emanating from r and173

passing through the current point of intersection q of Cpprq and e (assume174

for the moment that there exists exactly one such point of intersection). See175

Figure 12.176
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Leaving the details for Section 3.4, we obtain the following expression177

of ω as a function of x:178

ω “ arccos

˜

γpxq ˘
a

δpxq

εpxq

¸

, (1)

where γpxq, δpxq, and εpxq are polynomials of degrees 2, 4, and 2, respec-179

tively. The motion of r along ` thus corresponds to a set of points px, ωq for180

which p hits the boundary of P . For each point p P S, these points form181

Opmq curves bounding a collection of simple regions in the x-ω plane; each182

point px, ωq of any such region corresponds to a rotation of p, by a coun-183

terclockwise angle of size ω with respect to a rotation center at px, 0q, for184

which p belongs to P . Note that, for each point p, any pair of such regions185

have disjoint interiors, whereas their boundaries may intersect at most once186

at a common vertex due to the simplicity of P .187

3.1 Subdividing the edges of the polygon188

We mentioned earlier that, for convenience, we subdivide the edges of the189

polygon P about their points of intersection (if any) with the x-axis; so, in190

the following, we assume that each edge has no points on both sides of the191

x-axis. We further subdivide the edges in order to simplify the computation192

of the angle ω in terms of the x-coordinate of the rotation center r as it193

moves along the segment ab.194

Theoretical framework. Let us consider that we process the point p P195

S, and denote by Dpprq the closed disk bounded by Cpprq, where r is a196

point in ab. In Figure 7, p is taken to lie above the x-axis where either197

a.x ď p.x ď b.x (top figure) or b.x ă p.x (bottom figure). The cases where198

p.x ă a.x or where p lies below the x-axis are symmetric, whereas the case199

where p lies on the x-axis is similar (see Figures 9 and 10). Moreover, let p1 be200

the mirror image of p with respect to the x-axis; clearly, p1 coincides with p201

if p lies on the x-axis. Finally, let HL
p (resp., HR

p ) be the open halfplane202

to the left (resp., right) of the line perpendicular to the x-axis that passes203

through p.204

Then, it is useful to observe the following properties.205

Lemma 7. Let p be a point, and let HL
p , HR

p , Cpprq, and Dpprq, for r P ab,206

be as defined above.207

(i) Consider any two points r, r1 P ab with r ‰ r1. If the point p lies on the208

x-axis, then the circles Cpprq, Cppr
1q intersect only at p. If the point p209

does not lie on the x-axis, the circles Cpprq, Cppr
1q intersect at p and at210

p’s mirror image p1 about the x-axis, and the line segment pp1 belongs211

to both Dpprq, Dppr
1q.212
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(ii) Ź For every point s in the interior of HL
p X Dpprq, there exists a213

unique circle centered on the x-axis that passes from p and s and214

its center lies to the right of r;215

Ź for every point t in HL
p ´Dpprq, there exists a unique circle cen-216

tered on the x-axis that passes from p and t and its center lies to217

the left of r.218

Symmetrically,219

Ź for every point s1 in the interior of HR
p X Dpprq, there exists a220

unique circle centered on the x-axis that passes from p and s1 and221

its center lies to the left of r;222

Ź for every point t1 in HR
p ´ Dpprq, there exists a unique circle223

centered on the x-axis that passes from p and t1 and its center224

lies to the right of r.225

Proof.226

(i) From the definition of the circles Cpprq for all r P ab, p belongs to each227

such circle.228

Next, assume that p lies on the x-axis and suppose for contradiction229

that two circles Cpprq, Cppr
1q with r ‰ r1 intersect at a point p1 ‰ p as230

well. Then, both r, r1 would belong to the perpendicular bisector of the line231

segment pp1; thus, the perpendicular bisector should coincide with the x-axis.232

Then, since p lies on the x-axis, p1 would coincide with p, in contradiction233

to the assumption that p1 ‰ p. Therefore, if p lies on the x-axis, any two234

circles Cpprq, Cppr
1q with r ‰ r1 intersect only at p.235

Now, assume that p does not lie on the x-axis. Then, since p1 is the236

mirror image of p with respect to the x-axis, the x-axis is the perpendicular237

bisector of the segment pp1. Thus, p1 belongs to all the circles centered238

on the x-axis that pass from p. The fact that pp1 belongs to each of the239

disks Dpprq, for all r P ab, follows from the fact that each disk Dpprq is a240

convex set containing p and p1.241

(ii) Let q be the point of intersection of Cpprq with the line L through p242

and s; see Figure 6(left). The line L is well defined since s ‰ p. In fact,243

s.x ă p.x (because s belongs to HL
p ), and thus L is not perpendicular to244

the x-axis, which implies that the perpendicular bisector Bqp of the line245

segment qp intersects the x-axis at a single point; this point of intersection246

is precisely the center r of Cpprq. Since the perpendicular bisector of the247

line segment sp is parallel to Bqp and lies to the right of Bqp (because s is an248

interior point of qp), it intersects the x-axis at a single point r1 to the right249

of r; r1 is the center of the circle centered on the x-axis that passes from p250

and s.251
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Figure 1: For the proof of Lemma ??. (left) The perpendi
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tors Bsp,

Bqp, Btp interse
t the x-axis at points r′, r, r′′, respe
tively. (right) The lines

through p that are perpendi
ular to the tangent at p and to tp interse
t the

x-axis at points r, r′′, respe
tively.

Figure 6: For the proof of Lemma 7. (left) The perpendicular bisectors Bsp,
Bqp, Btp intersect the x-axis at points r1, r, r2, respectively. (right) The lines
through p that are perpendicular to the tangent at p and to tp intersect the
x-axis at points r, r2, respectively.

Now, consider t P HL
p ´Dpprq, and let Tpprq be the open halfplane that252

is tangent to the circle Cpprq at p and contains r. If t P Tpprq, then the253

line L through p and t intersects Cpprq at p and at another point q, and254

q P tp. Then, as above, the perpendicular bisector Bqp of qp intersects the255

x-axis at r, whereas the perpendicular bisector of tp is parallel and to the256

left of Bqp (since q is an interior point of tp), and thus intersects the x-axis257

at a point r2 to the left of r; see Figure 6(left). It is important to observe258

that the proof so far applies no matter whether p lies on the x-axis or not.259

Next, let us consider the case in which t R Tpprq; this case is not possible260

if p lies on the x-axis since then Tpprq “ HL
p . Then, the line through p261

perpendicular to the tangent to the circle Cpprq at p intersects the x-axis262

at r. Since t R Tpprq, the line perpendicular to the line through t and p is263

not parallel to the x-axis and thus intersects the x-axis at a single point r2.264

In fact, since the angle xtpr of the triangle with t, p, r as vertices is larger265

than π{2, r2 is to the left of r; see Figure 6(right).266

The results for points s1 in the interior of HR
p XDpprq and t1 P HR

p ´Dpprq267

are obtained in a fashion left-to-right symmetric to the one we used in order268

to obtain the results for the points s in the interior of HL
p X Dpprq and269

t P HL
p ´Dpprq, respectively.270

Statement (ii) of Lemma 7 directly implies that the union of all the271

circles Cpprq forms precisely the closure of the symmetric difference Dppaq‘272

Dppbq of the disks Dppaq and Dppbq centered at a and b, respectively (see273

Figure 7); note that any point in the interior of274

´

`

Dppaq ´Dppbq
˘

XHL
p

¯

Y

´

`

Dppbq ´Dppaq
˘

XHR
p

¯
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lies on a circle Cpprq with r in the interior of ab, whereas no other point275

does so. Lemma 7(ii) also implies the following corollary.276

Corollary 8.277

(i) For any r, r1 P ab with r to the left of r1:278

Ź
`

CpprqXDppr
1q
˘

XHL
p “ H and Dppr

1qXHL
p Ă DpprqXH

L
p ;279

Ź
`

Cppr
1qXDpprq

˘

XHR
p “ H and DpprqXH

R
p Ă Dppr

1qXHR
p .280

(ii) Suppose that a line segment I intersects a circle Cpprq, where r P281

ab, at points w1, w2 such that the line segment w1w2 lies entirely in282

the closure of
`

Dppaq ´ Dppbq
˘

. Then, the segment I is tangent to283

a circle Cppr
1q for some r1 P ab and the point of tangency belongs to284

w1w2. Symmetrically, the same result holds if the segment w1w2 lies285

entirely in the closure of
`

Dppbq ´Dppaq
˘

.286

Proof.287

(i) We prove the propositions for the halfplane HL
p ; the proofs for HR

p are288

left-to-right symmetric.289

Since r is to the left of r1, Lemma 7(ii) implies that Cppr
1qXHL

p lies in the290

interior of DpprqXH
L
p . This in turn implies that (i)

`

CpprqXH
L
p

˘

X
`

Dppr
1qX291

HL
p

˘

“ H, i.e.,
`

Cpprq X Dppr
1q
˘

X HL
p “ H, and (ii)

`

Dppr
1q X HL

p

˘

Ă292
`

Dpprq X HL
p

˘

since the disk Dppr
1q is bounded by Cppr

1q and since each293

such disk is a convex set; we have a proper subset relation because the294

points in Cpprq XH
L
p do not belong to Dppr

1q XHL
p .295

(ii) Below, we prove the statement for the case that w1w2 lies entirely296

in the closure of
`

Dppaq ´ Dppbq
˘

; the proof for the case that w1w2 P297

closure
`

Dppbq ´Dppaq
˘

is left-to-right symmetric.298

Since w1 ‰ w2 and w1w2 P closure
`

Dppaq´Dppbq
˘

, then r ‰ b; let t P ab299

be a point infinitesimally to the right of r. Then, according to statement (i),300
`

CpprqXDpptq
˘

XHL
p “ H and

`

DpptqXH
L
p

˘

Ă
`

DpprqXH
L
p

˘

, which together301

imply that
`

Dpptq X I
˘

Ă w1w2; note that at least one of w1, w2 (which302

belong to Cpprq) belongs to HL
p , for otherwise, either w1w2 degenerates to a303

single point, in contradiction to the fact that w1 ‰ w2, or w1w2 “ pp1 with304

p ‰ p1, in contradiction to the fact that w1w2 lies entirely in the closure305

of
`

Dppaq ´Dppbq
˘

. Since the rotation center moves continuously along ab306

there exists a point r1 P rb such that Dppr
1qXI is a single point, i.e., the line307

segment I is tangent to the circle Cppr
1q; moreover, since Dppr

1qXI Ă w1w2,308

the point of tangency belongs to the line segment w1w2.309

The subdivision procedure. Our subdivision procedure for the poly-310

gon edges while processing point p P S works in two phases: in Phase 1, we311
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at most once by each of the circles Cpprq (white disks denote points of edge
subdivision).

ensure that each circle Cpprq intersects each resulting sub-edge in at most312

one point; in Phase 2, we ensure that for each sub-edge either 0 ď ω ď π or313

π ď ω ď 2π implying that the value of ω is uniquely determined from the314

value of its cosine.315

Phase 1: If an edge uv of the polygon P does not intersect Dppaq YDppbq316

or if at least one of its endpoints belongs to Dppaq X Dppbq, then we need317

not do anything, otherwise:318

• If uv does not intersect the interior of DppaqXDppbq, then uv is tangent319

to at most two of the circles Cpprq and we subdivide it at these points320

of tangency; see edges u1v1 and u2v2 in Figure 7.321

• If uv intersects the interior of Dppaq XDppbq, then it crosses Dppaq X322

Dppbq. If uv intersects the segment pp1, then we subdivide uv at its323

point of intersection with pp1 (see edge u3v3 in Figure 7); if not, then324

the points of intersection of uv with the boundary of Dppaq X Dppbq325

both belong to either Cppaq or Cppbq (see edge u4v4 in Figure 7), in326

which case we subdivide uv at its closest point to a or b, respectively.327
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either to r0, πs or to rπ, 2πs (white disks denote points of edge subdivision).

It is not difficult to see that if the edge uv has two points of intersection with328

a circle Cpprq, these two points of intersection end up belonging to different329

parts of the subdivided edge.330

After Phase 1 has been completed, we apply Phase 2 on the resulting331

sub-edges. Let a1 and b1 be points such that a and b are the midpoints of332

segments pa1 and pb1, respectively (see Figure 8); clearly, a1 P Cppaq and333

b1 P Cppbq. Then, Phase 2 involves the following subdivision steps.334

Phase 2:335

• If a sub-edge intersects a1b1, we subdivide it at this point of intersection336

(in Figure 8, see sub-edges u1v1 and sub-edge u2v2 in the top figure).337

• Additionally, if the sub-edge is tangent to two circles, we subdivide it338

at its point of intersection with the line through p perpendicular to339

the x-axis (see sub-edges u2v2 in Figure 8).340

By taking into account that each of Phase 1 and Phase 2 may introduce341

at most two subdivision points on a polygon edge, we conclude that each342

edge ends up subdivided into at most 5 sub-edges.343
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Finally, it is important to note that the above described edge subdivision344

is introduced precisely for the processing of the current point p P S being345

processed; that is, for the next element of S, we ignore the subdivision346

points introduced and start working again with the edges of the polygon P347

(subdivided only about the x-axis).348

Correctness. Before proving Theorem 10 which establishes the correct-349

ness of the subdivision procedure, we show the following useful lemma.350

Lemma 9. Let p be an element of the point set S and p1 be the mirror image351

of p with respect to the x-axis.352

(i) If the point p is such that 0 “ a.x ď p.x ď b.x, then p1 belongs to the353

line segment a1b1.354

(ii) For any point q P a1b1 such that q ‰ p1, there is a point r P ab for355

which Cpprq has the segment qp as its diameter.356

Proof.357

(i) First, assume that p lies on the x-axis. Then, p1 “ p. The assumption358

a.x ď p.x ď b.x implies that p P ab, which in turn implies that ab Ă a1b1; see359

Figure 10. Thus, p P a1b1, i.e., p1 “ p P a1b1. Now, consider the case that p360

does not lie on the x-axis. Let c be the (vertical) projection of p onto the x-361

axis. Since a.x ď p.x ď b.x, c P ab. The line defined by p, c (note that p ‰ c)362

is perpendicular to the x-axis and let d be its point of intersection with the363

line supporting a1b1. Since c P ab, we conclude that d P a1b1. Moreover, by364

its construction, the line segment a1b1 is parallel to the x-axis, and since365

|pa| “ |aa1|, the similarity of the triangles with vertices p, a, c and p, a1, d366

implies that |pc| “ |cd|. Thus, p1 “ d and hence p1 P a1b1.367

(ii) Assume that p lies on the x-axis. Let q P a1b1 with q ‰ p, and suppose368

without loss of generality that q is to the left of p (the case where q is to the369

right of p is symmetric). Then, the midpoint of qp lies in ap and it is the370

center of the unique circle Cpprq passing through q. Therefore, Cpprq has qp371

as its diameter.372

Now assume that p does not lie on the x-axis. Consider any point q P a1b1373

with q ‰ p1. Let z be the point of intersection of the line segment pq with the374

x-axis (z exists because p and a1b1, and hence p and q, lie on opposite sides375

of the x-axis). Note that z P ab since q P a1b1. Then, by the similarity of the376

triangles 4paz and 4pa1q we have that |pz| “ |zq|; i.e., the point z is the377

midpoint of pq. Therefore, z belongs to the perpendicular bisector of pq and378

in fact, it is the only point of intersection of this bisector and the x-axis. Note379

that, since q ‰ p1, the line passing through p and q (remember that p ‰ q)380

is not perpendicular to the x-axis. This implies that the center r of any381
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circle Cpprq passing through q coincides with z, that is, qp is a diameter of382

Cpprq.383

Lemma 9(ii) implies that for any point q ‰ p1 belonging to a1b1, the cor-384

responding angle ω “ yprq is equal to π, where r P ab is the center of the385

circle Cpprq passing from q.386

Now we are ready to prove Theorem 10 which establishes that the sub-387

division steps of Phases 1 and 2 achieve the set goals.388

Theorem 10.389

(i) After the completion of Phase 1, no resulting sub-edge intersects any390

circle Cpprq for some r P ab in more than one point.391

(ii) After the completion of Phase 2, for any two points q, q1 (lying on392

circles Cpprq and Cppr
1q, respectively) of each resulting sub-edge, the393

counterclockwise angles yprq and zpr1q1 either both belong to r0, πs or394

both belong to rπ, 2πs.395

Proof.396

(i) Suppose for contradiction that there exists a sub-edge cd and a cir-397

cle Cpprq with r P ab that intersect in two points w1 and w2. The point p398

and its mirror image p1 subdivide the circle Cpprq into two open arcs,399

AL
p “ Cpprq X HL

p and AR
p “ Cpprq X HR

p , the former to the left of the400

line through p perpendicular to the x-axis and the latter to the right (note401

that if p lies on the x-axis, one of these arcs vanishes). Then, w1, w2 should402

belong to the same arc; otherwise, p would not lie on the x-axis and the line403

segment w1w2 would intersect the line segment pp1, and thus the sub-edge cd404

would have been subdivided in Phase 1 about its point of intersection with405

pp1. Suppose without loss of generality that w1, w2 belong to the arc AL
p .406

But then, no matter whether the segment w1w2 intersects the interior of407

Dppaq X Dppbq or not, we have a contradiction. In the former case, the408

sub-edge cd would have been subdivided in Phase 1 about the perpendicu-409

lar projection of b onto cd; b’s projection onto cd belongs to Dppaq XDppbq410

and thus is an interior point of w1w2. In the latter case, the sub-edge cd411

would have been subdivided in Phase 1 about its point of tangency with a412

circle Cpptq with t P ab; this point of tangency belongs to w1w2 as shown413

in Corollary 8(ii). Therefore, after Phase 1, no resulting sub-edge intersects414

any circle Cpprq for some r P ab in more than one point.415

(ii) Suppose without loss of generality that the point p lies above or on416

the x-axis and it holds that p.x ě a.x; the case where it holds that p.x ă a.x417

is left-to-right symmetric (the corresponding angles are equal to 2π minus418

the corresponding angles when p.x ą b.x), whereas the case where p lies419
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Figure 9: The partition of the closure of the symmetric difference Dppaq ‘
Dppbq about the line segment a1b1 and the line defined by p, p1 into regions
R1, R2, R3, R4 when the point p does not lie on the x-axis. Note that the
line segments ps, ps1, pt, pt1 are diameters.

below the x-axis is top-down symmetric (in this case too, the corresponding420

angles are equal to 2π minus the corresponding angles when p lies above the421

x-axis).422

Let R1 (resp., R3) be the subsets of points in the closure of the dif-423

ference DP paqzDppbq that are on or above (resp., on or below) a1b1; sym-424

metrically, let R2 (resp., R4) be the subsets of points in the closure of the425

difference DP pbqzDppaq that are on or above (resp., on or below) a1b1; see426

Figure 9 and Figure 10. Consider a point w lying on a circle Cpptq with427

t P ab. Since according to Lemma 9(ii), for any point q P a1b1, the seg-428

ment qp is a diameter of the circle centered on the x-axis and passing from429

p, q, if w P R1, the counterclockwise angle yptw belongs to r0, πs. Similarly,430

if w P R2 then yptw P rπ, 2πs, if w P R3 then yptw P rπ, 2πs, and if w P R4431

then yptw P r0, πs. Since no sub-edge resulting after Phase 2 contains points432

in more than one of the regions R1, R2, R3, R4, the statement of the theorem433

follows.434
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Figure 10: The partition of the closure of the symmetric difference Dppaq ‘
Dppbq about the line segment a1b1 and the line that is perpendicular to the
x-axis at p into regions R1, R2, R3, R4 when the point p lies on the x-axis.
Note that the line segments ps, ps1, pt, pt1 are diameters.

3.2 The algorithm435

We are now ready to outline our algorithm for Problem 2, which might436

remind the reader to the algorithm of computing the Minkowski sum of two437

polygons [1]:438

1. Subdivide the edges of polygon P about the x-axis.439

2. Process each point p P S. For each point p, we subdivide each440

edge of polygon P (resulting from the previous step) into sub-edges441

(see the edge subdivision process described in Section 3.1). Next, for442

each sub-edge, we compute the curve of the angle ω with respect to443

the x-coordinate x of the rotation center as it moves along ab (see444

Equation 1), and finally we form the regions bounded by these curves.445

3. Construct and traverse the arrangement of all the regions.446

Using standard techniques, we construct the arrangement of all the447

regions for all the elements of S. Next, we traverse the dual graph of448

the resulting arrangement looking for a sub-region of maximum depth449

(or, analogously, of minimum depth, if we are interested in the mini-450

mization version of Problem 2); any point in this sub-region determines451

a position px, 0q of r and a rotation angle ω that constitute a solution452

to the problem.453
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3.3 Time and space complexity454

Step 1 clearly takes Opmq time and space, resulting into at most 2m sub-455

edges. The edge subdivision while processing a point p P S in Step 2 takes456

Opmq time and space, producing Opmq sub-edges: For each sub-edge uv,457

Op1q time suffices to determine whether its endpoints belong to the disks458

Dppaq and Dppbq, and whether uv intersects the circles Cppaq, Cppbq, the459

segment pp1, or the line supporting pp1, as well as to compute any points460

of intersection. Moreover, the centers of the circles Cpprq, for r P ab, to461

which uv is tangent are precisely the points of intersection of the segment ab462

with the parabola that is equidistant from point p and the line supporting463

uv. Then, processing p yields Opmq curves bounding Opmq regions. Thus,464

processing all the points in S in Step 2 takes a total of Opnmq time and465

produces a set of Opnmq regions bounded by Opnmq curves in the x-ω466

plane. From Step 1, we can show the following lemma:467

Lemma 11. Any two (ω-x)-curves as in Equation 1 have at most 32 points468

of intersection.469

Proof. The idea is based on the fact that a polynomial of constant degree has470

a constant number of roots. In our case, we have a square root which needs471

to be squared in order to be removed. Let us consider the two (ω-x)-curves472

ω “ arccos

˜

γ1pxq ˘
a

δ1pxq

ε1pxq

¸

and ω “ arccos

˜

γ2pxq ˘
a

δ2pxq

ε2pxq

¸

.

Since a point of intersection of these curves belongs to both of them, we473

have:474

ω “ arccos

˜

γ1pxq ˘
a

δ1pxq

ε1pxq

¸

“ arccos

˜

γ2pxq ˘
a

δ2pxq

ε2pxq

¸

475

ùñ γ1pxq ε2pxq ´ γ2pxq ε1pxq “ ˘

´

ε1pxq
a

δ2pxq ´ ε2pxq
a

δ1pxq
¯

(2)

from which, by squaring twice to get rid of the square roots, we get476

´

γ1pxq ε2pxq ´ γ2pxq ε1pxq
¯2

“

´

ε1pxq
a

δ2pxq ´ ε2pxq
a

δ1pxq
¯2

ùñ

´

γ1pxq ε2pxq ´ γ2pxq ε1pxq
¯2
´ ε21pxq δ2pxq ´ ε

2
2pxq δ1pxq

“ ´2 ε1pxq ε2pxq
a

δ1pxq δ2pxq

ùñ

ˆ

´

γ1pxq ε2pxq ´ γ2pxq ε1pxq
¯2
´ ε21pxq δ2pxq ´ ε

2
2pxq δ1pxq

˙2

“ 4 ε21pxq ε
2
2pxq δ1pxq δ2pxq. (3)
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The last equality is a polynomial of degree at most 16 and, thus, it has477

at most 16 real roots for x (it is important to note that the value of x in478

any pair pω, xq satisfying Equation 2 satisfies the polynomial in Equation 3,479

although the reverse does not necessarily hold, i.e., not every root of the480

polynomial satisfies Equation 2). Thus, if we substitute the real roots of the481

polynomial in Equation 3 into Equation 1, we get at most 32 possible points482

of intersection, due to the ˘ operand.483

Hence, the total number of intersection points of all the curves isOpn2m2q.484

Using standard techniques, in Opn2m2 logpnmqq time the arrangement of all485

these regions can be computed, and the dual graph of the resulting arrange-486

ment can be traversed looking for a sub-region of maximum depth. Any487

point in this sub-region determines a position of the rotation center r and488

a rotation angle ω that constitute a possible solution to the problem. The489

space complexity is Opn2m2q. Then:490

Theorem 12. The Segment-restricted MCR problem can be solved in491

Opn2m2 logpnmqq time and Opn2m2q space.492

Note that the methods provided are also valid to solve the variant of com-493

puting an angle for which the number of points of S contained in P is mini-494

mized. Note as well that Problem 2 can also be solved in Opn2m2 logpnmqq495

time even when the rotation center is restricted to lie on a line L: Compute496

the Voronoi diagram of P YS, and apply the algorithm we just described to497

a segment of L containing all the intersection points of L and the Voronoi498

edges. Finally, if we restrict the rotation center to lie on a set of h line seg-499

ments, either unrelated or forming a polygonal chain, we can trivially obtain500

the optimal placement of P using Ophn2m2 logpnmqq time. In both cases,501

the space complexity is Opn2m2q.502

3.4 Equation 1: Expressing w as a function of x503

In order to simplify the exposition leading to Equation 1, for each point s in504

the plane other than the current rotation center r, we define a corresponding505

angle ϑs with respect to r. In particular, let H è be the set of points above506

the x-axis or on the x-axis and to the right of r and let H
è

be the set of507

points below the x-axis or on the x-axis and to the left of r (clearly, the sets508

H è and H
è

partition R2 ´ tru). Then,509

• if s P H è , ϑs is the angle swept by the rightward horizontal ray ema-510

nating from r as it moves in counterclockwise direction around r until511

it coincides with the ray ÝÑrs (see Figure 11, left);512

• if s P H
è

, ϑs is the angle swept by the leftward horizontal ray ema-513

nating from r as it moves in counterclockwise direction around r until514

it coincides with the ray ÝÑrs (see Figure 11, right).515

19



PSfrag repla
ements

s

s

r

r

x

x

ϑs

ϑs

Figure 1: The de�nition of the angle ϑs for any point s 6= r.
Figure 11: The definition of the angle ϑs for any point s ‰ r.

(Note that for all points s on the x-axis, ϑs “ 0.) From the definition of ϑs,516

it follows that in all cases517

0 ď ϑs ă π (4)

(we consider counterclockwise and clockwise angles being, respectively, pos-518

itive and negative) and519

cosϑs “
s.x´ r.x

dps, rq
sgnps.yq sinϑs “

|s.y|

dps, rq
“

s.y

dps, rq
sgnps.yq (5)

where dps, rq denotes the distance of point s from the rotation center r, p.x520

and p.y are respectively the x- and y-coordinates of a point p, and sgnps.yq521

is the sign of s.y.522

Now, we distinguish two main cases:523

• Point p and the intersection point q of the circle Cpprq and the edge e “524

uv of P both belong to either H è or H
è

(see Figure 12(a)): if ϑp ď ϑq525

then526

ω “ ϑq ´ ϑp (6)

otherwise527

ω “ pπ ´ ϑpq ` π ` ϑq “ 2π ` ϑq ´ ϑp. (7)

• Point p and the intersection point q of the circle Cpprq and the edge e “528

uv of P do not both belong to either H è or H
è

(see Figure 12(b)): in529

this case,530

ω “ pπ ´ ϑpq ` ϑq “ π ` ϑq ´ ϑp. (8)

It is important to observe that the definition of H è and H
è

ensures that531

the above expressions for ω hold for all special cases in which at least one532

of p, q lies on the x-axis, as summarized in Table 1.533

In all cases, cospωq “ cospϑq´ϑpq “ cospϑqq cospϑpq` sinpϑqq sinpϑpq534

which, due to Equation 5 and to the fact that dpq, rq “ dpp, rq, implies that535
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p P H è p P H
è

p on x-axis p above x-axis p on x-axis p below x-axis

ϑp “ 0 0 ă ϑp ă π ϑp “ 0 0 ă ϑp ă π

q P H è

q on x-axis
ω “ 0 ω “ 2π ´ ϑp ω “ π ω “ π ´ ϑpϑq “ 0

q above x-axis
ω “ ϑq Eq. (6), (7) ω “ π ` ϑq Eq. (8)

0 ă ϑq ă π

q P H
è

q on x-axis
ω “ π ω “ π ´ ϑp ω “ 0 ω “ 2π ´ ϑpϑq “ 0

q below x-axis
ω “ π ` ϑq Eq. (8) ω “ ϑq Eq. (6), (7)

0 ă ϑq ă π

Table 1: The value of the angle ω for the different positions of point p and
the point q of intersection of Cpprq with the edge uv.

cospωq “
pq.x´ xq pp.x´ xq ` q.y p.y

d2pp, rq
sgnpq.yq sgnpp.yq

“
pq.x´ xq pp.x´ xq ` q.y p.y

pp.x´ xq2 ` pp.yq2
sgnpq.yq sgnpp.yq

“
x2 ´ pq.x` p.xqx` q.x p.x` q.y p.y

x2 ´ 2 p.x x` pp.xq2 ` pp.yq2
sgnpq.yq sgnpp.yq. (9)

For convenience, we subdivide each edge that intersects the x-axis at this536

point of intersection so that the value of sgnpq.yq is fixed at each sub-edge537

no matter where q is.538

The coordinates q.x, q.y of intersection point q can be expressed in terms539

of x by taking into account that q belongs to the line supporting the edge uv540

and that r is equidistant from q and p. The former implies that there exists541

a real number λ with 0 ď λ ď 1 such that the vector ÝÑuq is λ times the542

vector ÝÑuv, which yields543

pq.x´ u.xq “ λ pv.x´ u.xq ðñ q.x “ λ pv.x´ u.xq ` u.x (10)

and544

pq.y ´ u.yq “ λ pv.y ´ u.yq ðñ q.y “ λ pv.y ´ u.yq ` u.y, (11)

whereas the latter implies545

d2pq, rq “ d2pp, rq

ðñ pq.x´ xq2 ` pq.yq2 “ pp.x´ xq2 ` pp.yq2

ðñ pq.xq2 ´ 2x q.x` pq.yq2 ´ pp.xq2 ` 2x p.x´ pp.yq2 “ 0. (12)
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edge uv while r moves along segment ab when point p and the intersection q
of Cpprq and uv are (a) in the same halfplane and (b) in opposite halfplanes
(with respect to the x-axis).

By substituting q.x, q.y from equations 10 and 11 into Equation 12, we
get

“

λ pv.x´ u.xq ` u.x
‰2
´ 2x

“

λ pv.x´ u.xq ` u.x
‰

`
“

λ pv.y ´ u.yq ` u.y
‰2
´ pp.xq2 ` 2x p.x´ pp.yq2 “ 0

ðñ λ2
“

pv.x´ u.xq2 ` pv.y ´ u.yq2
‰

´ 2λ
“

x pv.x´ u.xq ´ u.x pv.x´ u.xq ´ u.y pv.y ´ u.yq
‰

´ 2x pu.x´ p.xq ` pu.xq2 ` pu.yq2 ´ pp.xq2 ´ pp.yq2 “ 0,

which has at most 2 roots for λ in terms of x of the form546

λ “ αpxq ˘
a

βpxq, (13)

where αpxq and βpxq are polynomials of degrees 1 and 2, respectively.547
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Then, by substituting q.x, q.y, and λ from Equations 10, 11 and 13 re-548

spectively, into Equation 9, we get:549

cospωq “
γpxq ˘

a

δpxq

εpxq
ùñ ω “ arccos

˜

γpxq ˘
a

δpxq

εpxq

¸

, (14)

where γpxq, δpxq, and εpxq are polynomials of degrees 2, 4, and 2, respec-550

tively.551

4 3D Fixed MCR (Problem 3)552

In this section we extend our techniques to the 3D-equivalent of Problem 1.553

We consider a set S of n points in 3D, a rotation center r, and a simple554

(not self-intersecting) polyhedron P with complexity m, i.e., with m facets.555

We identify rotations around r with points in a sphere with center r. The556

following shows how to extend the algorithm we used to solve the Fixed557

MCR problem:558

1. Compute the inclusion regions. For each pj P S, the intersection559

of the sphere Cpj prq with center at r and radius |rpj | with the polyhe-560

dron P results in a set of regions on the boundary of the sphere. These561

regions consist of the rotated copies of pj that lie in the interior of P .562

• Regardless of P being convex or not, each facet can contribute563

to these regions a constant number of times. Hence, the over-564

all complexity is Opmq. Moreover, notice that a region can have565

many holes, even in the case that P is convex.566

• The sides of these regions on the sphere Cpj prq are arcs of circles,567

since they are the intersection of the sphere with a planar facet of568

the polyhedron. Then, these sides can be computed in constant569

time each, as the intersection of the planes containing the faces570

of the polyhedron with Cpj prq.571

• Thus the total time and space complexities of computing all the572

Opnmq regions is Opnmq.573

2. Normalize inclusion regions. Let Rpj be the set of inclusion regions574

of pj P S. Consider the unit sphere S2 centered at r and project the575

regions to S2. Then, rotate S2 along with pj and its inclusion regions576

around the z-axis until pj belongs to the yz-plane and then around577

the x-axis until pj coincides with the north pole N . Let us denote this578

rotation as τj .579

3. Computing the depth of N . For later use, we need to compute580

how many of the above regions contain the north pole N (in its interior581
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or boundary), what we call the depth of N . In order to compute it,582

we perform point location in the planar subdivision on the sphere, i.e.,583

we check whether the point N belongs to each of the Opnmq regions584

with a cost of Oplogmq per region, for a total time complexity of585

Opnm logmq.586

4. Stereographic projection. We use the well-known stereographic587

projection from the north pole N to the tangent plane at the antipo-588

dal south pole. The fact that this projection is conformal implies that589

circles in the sphere are mapped to circles in the plane [13]. There-590

fore, the projections of the inclusion regions τjpRpj q have boundaries591

composed by circular arcs. Because any two sides (arcs of circles) of592

the regions can intersect at most two times, the arrangement A of593

projected regions can be computed in Opn2m2q time and space, since594

the total number of intersection points between arcs is Opn2m2q. No-595

tice that for computing the projected arc we proceed as follows: We596

compute the projection of the two endpoints of the arc, and also the597

projection of a third point of the arc (for example the correspond-598

ing to the midpoint of the arc); with these three projected points, we599

compute the circle containing the projected arc and the projected arc600

itself.601

5. Computing the region in A with largest depth. To do this602

computation we work on the dual graph of the arrangement A, just603

knowing that the exterior (unbounded) face of A is the face which was604

containing the point N , and hence we know its depth. Starting in this605

face, we perform a traversal of the dual graph, computing the depth606

of each region and maintaining the region with maximum depth, in a607

total Opn2m2q time.608

Computing an interior point of the region with maximum depth, we609

compute its corresponding point in the unit sphere and then we know610

the two parameters θ, ϕ giving such direction, which is the solution of611

our problem.612

Theorem 13. The 3D Fixed MCR problem can be solved in Opn2m2 logpnmqq613

time and Opn2m2q space.614

5 Concluding remarks615

We studied the problem of finding a rotation of a simple polygon that covers616

the maximum number of points from a given point set. We described algo-617

rithms to solve the problem when the rotation center is fixed, or lies on a line618

segment, a line, or a polygonal chain. Without much effort, our algorithms619

can also be applied when the polygon has holes, and can be easily modified620

24



to solve minimization versions of the same problems. We also solved the621

problem with a fixed rotation center in 3D, leaving as open problem the622

3D-analogue of Problem 2.623
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