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Structural System Identification by Measurement 
Error-Minimizing Observability Method

Jun LEI, Jose Antonio Lozano-Galant, Dong XU, Jose Turmo

Abstract: 

This paper proposes a method for the finite element model updating using static load tests under the 
framework of observability analysis. Previous works included measurement errors in the coefficient 
matrix of the observability equations. This impeded the obtainment of accurate estimations. To deal 
with this issue, the proposed method relocates the errors and incorporates an optimization procedure 
to minimize the square sum of these errors. This method is able to identify the structural parameters 
of complex structures where the axial and the bending behaviors are coupled, such as inclined beams 
or frame structures. Its application is illustrated by three structures. First, the method was validated 
in a beam-like structure by comparing it with other methods in the literature. Then the effects of 
different factors were investigated in a multi-story frame and a rigid frame bridge with inclined piers. 
These factors include the curvatures, the inclusion of rotation measurements and the constraints on 
the range of unidentifiable parameters. The importance of rotation measurements is demonstrated in 
static SSI.

1 Introduction

Structural health monitoring has become a powerful tool to help decision making during life cycle of 
civil and infrastructure systems1. As a key component of structural health monitoring, Structural 
System Identification (SSI) aims to identify the parameters of a mathematical model that links the 
measured response and the external excitation of a structure. It is commonly assumed that the 
degradation of structures is reflected in the change of these parameters2.

According to the intrinsic characteristics of the structural response, SSI can be classified as static 
SSI3–14 or dynamic SSI15–20. Compared with static SSI, dynamic SSI has been developed more 
extensively in the past decades. Depending on the source of excitation, dynamic methods can be 
classified as input-output19 and output-only15,17,18 methods. In the output-only methods, the response 
due to operational load (wind or traffic) is measured and interruption of traffic or normal operation is 
not necessary. On the contrary, the static methods or the input-output dynamic methods require the 
excitation information, such as the magnitude and location of the static forces or shakers. Different 
dynamic SSI methods have been proposed and studied for the purpose of damage detection and 
quantification. Numerous algorithms using different indices have been developed, such as natural 
frequencies16, mode shapes17, modal curvature20, and high-order mode shape derivative19. 

Despite the wide application of dynamic SSI methods, this research is going to focus on static SSI for 
the following reasons: (1) the physical equations involved with static SSI are only related to the 
structural stiffnesses while those involved with dynamic SSI are also related to the mass and the 
damping of the structure21. The damping information is commonly obtained by analyzing the 
vibration test data. Meanwhile, the mass information is estimated from the drawings. The difficulties 
involved with obtaining accurate damping and mass information may well introduce more 
uncertainties and modelling errors in the dynamic based structural health monitoring. (2) The solution 
for measuring static displacements is easier, cheaper and have higher accuracy than those for dynamic 
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SSI22. (3) Dynamic characteristics (e.g. frequencies) are insensitive to local structure damages due to 
the fact that they mainly reflect the global and distributed phenomenon of the structure23. Static 
methods might have higher sensitivity to local damages.

Static SSI methods have attracted notable consideration recently. Sheena obtained the stiffness matrix 
using measured displacements and minimized the deviation between the estimated stiffness matrix 
and the analytical one5. Sanayei and Onipede presented an iterative optimization-based algorithm to 
displacement equation error function for the parameter estimations using static measurements. 
Bakhtiari-Nejad presented a method to describe changes in static displacements with certain degrees 
of freedom by minimizing the difference between the load vectors of damaged and undamaged 
structures3. Banan proposed an optimization method to estimate member constitutive properties of 
the Finite Element Model (FEM), from measured displacements under static loading6. Sanayei 
updated the FEM of a 47-m bridge using 100 strain gauges with static truck loads10. A new direction 
in static SSI method arises from using static or quasi-static displacement influence lines. Choi used 
the elastic damage load theorem for statically determinate beam to locate the damage by checking the 
deflection variations11. This method is limited to statically determinate structures and cannot quantify 
the extent of the damage. Abdo combined the grey relation coefficient and the changes in static 
deflections curvature to locate the damage12. Using the influence line principle with a static moving 
load, Nadir approximated the stiffness matrix with Neumann series13. This method is able to locate 
the damage and evaluate the damage extent when the noise level is low. Sun used curvature changes 
from the static component of displacement measurements under a moving vehicle to detect damage 
in bridges during field test14. However, these methods mainly use the sudden change of the influence 
lines to locate the damages and the relevant quantification of damage extent is lacking. Also, it should 
be pointed out that in the majority of static SSI, the adopted measurements mainly contain strains or 
deflections while rotations are rarely measured. However, wide applications of inclinometers can be 
found in civil engineering practice, such as stadiums Design Plaza Building24, high-rise buildings25, 
and bridges26,27. In the study of the effect of measurement types on the estimation accuracy in a 4-
node simply-supported beam, it was found that the rotations were much less sensitive to errors than 
the vertical deflections28. However, systematic investigation on the effect of including rotation 
measurements on the estimation accuracy in static SSI is lacking. 

In the SSI or state estimation literature, observability is a measure for how well internal states of a 
system can be inferred by knowledge of its external outputs. In the case of dynamic SSI using state-
space form, this can be done by checking the rank of the observability matrix29. Lately, the technique 
to address observability in static SSI under controlled loads was proposed by Lozano4. Regarding a 
given measurement set, the stiffness matrix method and the observability method (OM) with the null 
space approach30 were combined to determine the existence and uniqueness of the structural 
parameters symbolically. The method was applied to identify plane beam element models loaded in 
its plane4. The observability of the structural system depends on the number and the location of 
measurements. Specially, measurement sets are defined as essential sets7 when: (1) they have exactly 
as many measurements as the number of structural parameters to be estimated; (2) they are able to 
identify all target parameters and the drop of any measurement fails to do so. These essential sets can 
be found via SSI by Constrained OM7. In previous study, the estimation accuracy using essential sets 
are not satisfactory when measurement error exists28. Hence, redundant sets (essential sets plus 
redundant measurements) are used to reduce estimation errors. In beam-like structures, the 
compatibility conditions (the geometrical relations that the displacements should satisfy) can be 
obtained symbolically via SSI by compatible OM31. These conditions can be used to improve 
estimation accuracy. However, the current formulation of SSI by OM cannot be applied in structures 
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where bending behaviors and axial behaviors are coupled. This limits the application of the method 
in frame structures.

In this paper, a different formulation of the observability equations is proposed to deal with 
measurement errors in the static SSI of structures where the axial and the bending behaviors are 
coupled. In the new formulation, the measurement errors are separated from the coefficient matrix 
and moved to the unknowns, forming a new system of observability equations. Then the square sum 
of all error terms is minimized by an optimization procedure while nonlinear relations among the 
unknowns are imposed. To fill the gap in the study on measurement types, this paper will also 
investigate the effect of including rotation measurements in static SSI using the proposed method. 
The effects of the parameterization of FEM, the curvature and the bounds imposed on the parameters 
are also analyzed and discussed.

In the remainder of this paper, section 2 briefly introduces the static SSI by constrained OM. Then 
the procedure for the proposed measurement error-minimizing observability method (MEMOM) is 
illustrated by an academic example. The sensor placement is determined by the Fisher Information 
matrix together with a genetic algorithm. In section 3, the performance of the proposed method is 
validated in a beam-like structure. The estimations obtained from essential sets and redundant sets 
are compared with those obtained by the numerical OM32 and the compatible OM31, respectively. In 
addition, a table summarizing the characteristics of these methods is provided at the end of this section. 
In section 4, the effectiveness of the proposed method is verified in a large frame and a rigid frame 
bridge. The last section summarizes the key findings and concludes the paper.

2 Methodology 

2.1 Structural system identification by constrained observability method

Static SSI by Constrained OM imposes constraints on variables when no more parameters can be 
observed using SSI by OM. The identical part between these two methods is introduced first and their 
difference is pointed out at the end of this section.

In static SSI by OM, a FEM has to be defined first. The equilibrium equations Eq. (1) are then 
established. For 2D beam element models, due to the equilibrium of forces on each node in horizontal, 
vertical and rotational directions, the number of equations Neq is three times the number of nodes Nn, 
i.e. Neq=3Nn,. 

[𝐾] ⋅ {𝛿} = {𝑓} (1)

In this system, the global stiffness matrix [K] includes both the geometrical and the mechanical 
properties of element j (i.e. length Lj, elastic moduli Ej, area Aj and inertia Ij, j=1, 2, …, Ne; where Ne 

is the number of elements). The displacement vector {δ} includes horizontal displacements ui, vertical 
deflections vi, rotations wi of node i (i=1, 2, …, Nn; where Nn is the number of nodes). The right-hand 
side vector {f} includes horizontal forces Hi, vertical forces Vi, and moments Mi on node i. Hence, all 
the variables appearing in the equations are (Ej, Aj, Ij, Lj, ui, vi, wi, Hi, Vi and Mi). The objective of SSI 
is to identify structural parameters θ (such as axial stiffness EjAj or bending stiffness EjIj) so as to 
assess the condition of the structure by the values of θ. To reduce unknowns, these stiffnesses, EjAj 

and EjIj are treated as linearized unknowns, EAj and EIj, and Lj is usually assumed as known. In 
addition, during the static test, the controlled static loads are known and some resulting increments 
of the displacements  have to be measured.𝛿
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These parameters appear in matrix [K] as monomial ratios, such as ,  or . As some elements 
𝐸𝐴𝑗

𝐿𝑗

𝐸𝐼𝑗

𝐿2
𝑗

𝐸𝐼𝑗

𝐿3
𝑗

of vector {f} are also unknowns, nonlinearity arises in the system of equations. Hence, the system is 
linearized by a series of algebraic operations4, as shown in Eq. (2).

[𝐾 ∗ ] ⋅ {𝛿 ∗ } = [𝐾 ∗
10 𝐾 ∗

11
𝐾 ∗

00 𝐾 ∗
01]{𝛿 ∗

0
𝛿 ∗

1 } = {𝑓1
𝑓0} = {𝑓} (2)

The remaining coefficient matrix [K*] are composed of constants that are either zero or the powers of 
the inverse of Lj. Once the loads and the measurements from the static test as well as the boundary 
conditions of the structure have been defined, it is assumed that a subset  of  and a subset {𝛿 ∗

1 } {𝛿 ∗ }
{f1} of {f} are known while remaining subset {  of {  and {f0} of {f} are not. To cluster the 𝛿 ∗

0 } 𝛿 ∗ }
unknowns together, Eq. (2) is transformed to Eq. (3) by static condensation.

[𝐵] ⋅ {𝑧} = [𝐾 ∗
10 0

𝐾 ∗
00 ―𝐼]{𝛿 ∗

0
𝑓0 } = {𝑓1 ― 𝐾 ∗  

11𝛿 ∗
1

― 𝐾 ∗
01𝛿 ∗

1 } = {𝐷}  (3)

In Eq. (3), both the coefficient matrix [B] and the right-hand side vector {D} are completely known. 
The coefficient matrix [B] is composed of either zero or monomial ratios of knowns (measured 
displacements, known stiffnesses and element lengths). Meanwhile, the right-hand side vector {D} is 
composed of the external loads {f1} and the equivalent nodal forces (  or ). On the other 𝐾 ∗

11𝛿 ∗
1 𝐾 ∗

01𝛿 ∗
1

hand, the unknowns {z} are of two types: (1) node displacements, (ui, vi or wi), or parameters θ, (EAj 
or EIj), or the products of both, (EAjui, EAjvi, EAjwi, EIjui, EIjvi or EIjwi); (2) unknown reactions, (Hi, 
Vi and Mi), at the boundary conditions. When Eq. (3) has at least one solution, the solution is the sum 
of a particular solution {zp}, and the product of a vector of arbitrary values, {ρ}, and the null space 
[N] of the coefficient matrix [B] in Eq. (3).

{𝑧𝑔} = {𝑧𝑝} + [𝑁] ⋅ {𝜌} = {𝛿 ∗
0

𝑓0 }
𝑝

+ [𝑁] ⋅ {𝜌} (4)

The particular solution {zp} is the pseudo inverse solution of Eq. (3). [N]∙{ρ} is the set of all solutions 
of the associated homogeneous system of equations (a linear space of solutions, wherein the columns 
of N are vectorial bases, and the entries of the vector {ρ} are arbitrary values functioning as the 
coefficients of all possible linear combinations). If any row of the null space [N] is composed of only 
zeros, then the scalar in the same row of the product [N]∙{ρ}will be zero, and thereby the particular 
solution specifies the unique solution for that parameter. Namely, any unknown associated with a 
zero row in the null space [N] is observable, i.e. it exists and it is determined and unique. All these 
observable unknowns are introduced as known in the next step to obtain updated observability 
equations and thus new parameters might be observed. To obtain the values of these observable 
parameters, it is necessary to append the  numerical approach  proposed by Nogal32. 

It should be pointed out that all unknowns are treated as linear when applying the algebraic operations. 
This is essential for observability analysis. However, it leads to the loss of information because the 
equality between coupled unknowns and the product of the associated components, for instance, 
EI2w2=EI2∙w2, is missing due to the linearization of the variable EI2w2. To deal with this issue, SSI by 
Constrained OM imposes these lacking constraints by an optimization procedure. In the numerical 
optimization, the objective function is to minimize the square sum of the residuals (equilibrium forces) 
of the observability equations from the last recursive step in SSI by OM while forcing the equality 
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between the coupled variable and the product of its components7. This method is used to find the 
essential sets in static SSI7,8.

2.2 Formulation of the system of observability equations by separating the errors 

The coefficient matrix of the observability equations (Eq. (3)) takes in the measurements together 
with the errors, which is a perturbation to the accurate matrix. Previous study shows that the least 
square solution of observability equations is greatly biased even with redundant sets31. This section 
proposes a measurement error-minimizing observability method (MEMOM). For the very first time, 
measurement errors are separated from the coefficient matrix and then included in the unknown vector 
so as to eliminate the adverse effect of errors in the coefficient matrix. 

For illustrative purpose, the necessary procedures to implement the proposed method are 
demonstrated below by an academic example. Consider a 10-m simply supported beam. Its FEM has 
two elements of length L=5m. The boundary conditions are that u1=v1=v3=0. The FEM is 
parameterized by two bending stiffnesses, EI1 and EI2, and two axial stiffnesses, EA1 and EA2, as 
depicted in Fig. 1. 

Without loss of generality, it is assumed that a vertical load V2 is applied at midspan (Node 2) and the 
increments of displacements (w1, v2, and w3) are measured. The necessary steps to implement the 
MEMOM are presented below.

Step 1. Introduce the geometry, as well as the known mechanical and geometrical properties 
and external forces to establish an FEM for the structure. Build the equilibrium equations for 
this FEM.

The equilibrium equations for this FEM are given in Eq. (5).

(
EA1

L 0 0 ―
EA1

L 0 0 0 0 0

0
12EI1

L3

6EI1

L2 0 ―
12EI1

L3

6EI1

L2 0 0 0

0
6EI1

L2

4EI1

L 0 ―
6EI1

L2

2EI1

L 0 0 0

―
EA1

L 0 0
EA1 + EA2

L 0 0 ―
EA2

L 0 0

0 ―
12EI1

L3 ―
6EI1

L2 0
12EI1

L3 +
12EI2

L3

6EI2

L2 ―
6EI1

L2 0 ―
12EI2

L3

6EI2

L2

0
6EI1

L2

2EI1

L 0
6EI2

L2 ―
6EI1

L2

4EI1

L +
4EI2

L 0 ―
6EI2

L2

2EI2

L

0 0 0 ―
EA2

L 0 0
EA2

L 0 0

0 0 0 0 ―
12EI2

L3 ―
6EI2

L2 0
12EI2

L3 ―
6EI2

L2

0 0 0 0
6EI2

L2

2EI2

L 0 ―
6EI2

L2

4EI2

L

)(
u1
v1
w1
u2
v2
w2
u3
v3
w3

) = (
H1
V1
M1
H2
V2
M2
H3
V3
M3

)
(5)

Step 2: Obtain the observability equations .[𝑩] ⋅ {𝒛} = {𝑫}
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Introduce the boundary conditions into Eq. (5) and rearrange the equations such that all the unknowns 
are collected in the new unknown vector {z}, and both the coefficient matrix [B] and right-hand side 
vector {D} are known, as shown in Eq. (3).

Without loss of generality, the observability equations related with the measurement set (w1, v2 and 
w3) are obtained from Eq. (5) by a series of algebraic operations. In this system of equations, the 
measurements are absorbed in the coefficient matrix. Provided that error-free measurements are used, 
this system of equations holds stringently. Denote the error-free displacements by a hat, ^. This 
relation is demonstrated by Eq. (6).

(
0 0 ―

6v2

L2

4w1

L
2
L 0 0 0 0 0 0

2
L ―

1
L 0 0 0 0 0 0 0 0 0

0 0
12v2

L3 ―
6w1

L2 ―
6

L2

12v2

L3

6

L2

6w3

L2 0 0 0

0 0 ―
6v2

L2

2w1

L
4
L

6v2

L2

4
L

2w3

L 0 0 0

―
1
L

1
L 0 0 0 0 0 0 0 0 0

0 0 0 0 0
6v2

L2

2
L

4w3

L 0 0 0

―
1
L 0 0 0 0 0 0 0 ―1 0 0

0 0 ―
12v2

L3

6w1

L2

6

L2 0 0 0 0 ―1 0

0 0 0 0 0 ―
12v2

L3 ―
6

L2 ―
6w3

L2 0 0 ―1

)(
EA1𝑢2
EA2u3

EI1
EI1

EI1w2
EI2

EI2w2
EI2
H1
V1
V3

) = (
M1
H2
V2
M2
H3
M3
0
0
0

)
(6)

Step 3: Include the error terms in the coefficient matrix [B].

In real life, the measurements are always contaminated by errors. These measurements  comprise of 𝛿
the error-free displacements  and the errors . This relation can be rearranged as Eq. (7).𝛿 𝜖𝛿

𝛿 = 𝛿 ― 𝜖𝛿 (7)

Replace the error-free displacements  in the coefficient matrix [B] of Eq. (6) by the difference of the 𝛿
measured displacements  and the measurement errors , Eq. (7). The resulting system of equations 𝛿 𝜖𝛿
is given in Eq. (8)
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(

0 0 ―
6(v2 ― ϵv2)

L2

4(w1 ― ϵw1)
L

2
L 0 0 0 0 0 0

2
L ―

1
L 0 0 0 0 0 0 0 0 0

0 0
12(v2 ― ϵv2)

L3 ―
6(w1 ― ϵw1)

L2 ―
6

L2

12(v2 ― ϵv2)
L3

6

L2

6(w3 ― ϵw3)
L2 0 0 0

0 0 ―
6(v2 ― ϵv2)

L2

2(w1 ― ϵw1)
L

4
L

6(v2 ― ϵv2)
L2

4
L

2(w3 ― ϵw3)
L 0 0 0

―
1
L

1
L 0 0 0 0 0 0 0 0 0

0 0 0 0 0
6(v2 ― ϵv2)

L2

2
L

4(w3 ― ϵw3)
L 0 0 0

―
1
L 0 0 0 0 0 0 0 ―1 0 0

0 0 ―
12(v2 ― ϵv2)

L3

6(w1 ― ϵw1)
L2

6

L2 0 0 0 0 ―1 0

0 0 0 0 0 ―
12(v2 ― ϵv2)

L3 ―
6

L2 ―
6(w3 ― ϵw3)

L2 0 0 ―1

)(
EA1u2
EA2u3

EI1
EI1

EI1w2
EI2

EI2w2
EI2
H1
V1
V3

) = (
M1
H2
V2
M2
H3
M3
0
0
0

)
(8)

Step 4: Obtain the new system of equations including error terms,  (Eq. (9)).𝑩𝐞 ⋅ 𝒛𝒆 = 𝑫

This step is similar to the algebraic techniques used for the linearization of the observability equations. 
Each column containing  is separated into two columns, where one is related to the error-free 𝛿 ― 𝜖𝛿

displacement  and the other is related to the error term . Subsequently, all the error terms are 𝛿 𝜖𝛿
extracted from the respective columns and are included in the unknown vector. Duplication of 
unknowns might occur due to these extractions. In the case of duplicated unknowns, the associated 
columns are merged to compact the system. The final system of equations is presented in Eq. (9). 

(
0 0

4w1

L ―
6v2

L2

6

L2

2
L ―

4
L 0 0 0 0 0 0 0

2
L ―

1
L 0 0 0 0 0 0 0 0 0 0 0

0 0
12v2

L3 ―
6w1

L2 ―
12

L3 ―
6

L2

6

L2

12v2

L3 +
6w3

L2 ―
12

L3

6

L2 ―
6

L2 0 0 0

0 0
2w1

L ―
6v2

L2

6

L2

4
L ―

2
L

6v2

L2 +
2w3

L ―
6

L2

4
L ―

2
L 0 0 0

―
1
L

1
L 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
6v2

L2 +
4w3

L ―
6

L2

2
L ―

4
L 0 0 0

―
1
L 0 0 0 0 0 0 0 0 0 ―1 0 0

0 0
6w1

L2 ―
12v2

L3

12

L3

6

L2 ―
6

L2 0 0 0 0 0 ―1 0

0 0 0 0 0 0 ―
12v2

L3 ―
6w3

L2

12

L3 ―
6

L2

6

L2 0 0 ―1

)(
𝐸𝐴1𝑢2
𝐸𝐴2𝑢3

𝐸𝐼1
𝐸𝐼1𝜖𝑣2
𝐸𝐼1𝑤2
𝐸𝐼1𝜖𝑤1

𝐸𝐼2
𝐸𝐼2𝜖𝑣2
𝐸𝐼2𝑤2
𝐸𝐼2𝜖𝑤3

𝐻1
𝑉1
𝑉3

) = (
𝑀1
𝐻2
𝑉2
𝑀2
𝐻3
𝑀3
0
0
0

)
(9)
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Step 5: Generate all single unknowns and establish the constraints among coupled unknowns. 
Identify all single unknowns in the new unknowns {ze}, and the nonlinear constraints among them.

The existing unknown in Eq. (9) can be divided into two groups: (1) the coupled unknowns are in the 
form of the products of structural parameters and unknown displacements or error terms, such as 
{EA1u2, EA2u3, EI1w2, EI2w2, EI1εv2, EI1εw1, EI2εv2 and EI2εw3}; (2) the existing single unknowns 
include reactions {H1, V1, V3} and structural parameters θ (bending stiffnesses EI1, EI2). Apart from 
these two types of unknowns, the new unknown {ze} also includes single unknowns that are acquired 
from the coupled unknowns. These additional single unknowns contain the unmeasured 
displacements, (e.g. u2, u3 and w2), the measurement errors, (e.g. ,  and ) and structural ϵw1  ϵv2 ϵw3

parameters (EA1, EA2). Once different types of unknowns are determined, the equations that the 
coupled unknowns should equal the products of their relevant single unknowns (e.g. EA1u2=EA1∙u2) 

are imposed as constraints during the optimization in Step 6. 

Step 6: Obtain the final estimation by minimizing Eq. (10). Solve the optimization problem with 
the objective function Eq. (10) and the nonlinear constraints obtained in step 5. 

Despite the inclusion of the constraints (e.g. EA1u2=EA1 ∙ u2) among unknowns, the system of 
equations to be solved is always underdetermined. As a result, infinite solutions satisfy Eq. (9). To 
find the one with physical meaning from these solutions, it is always desirable to select the model 
minimizing the discrepancy between the measured and the predicted response. Hence, the objective 
function is to minimize the square sum of the ratios between the error term  and the associated 𝜖𝛿𝑖

measurements , as presented in Eq. (10). Nm is the number of measured displacements.𝛿𝑖

𝑓(𝑧𝑒) =
𝑁𝑚

∑
𝑖 = 1

(𝜖𝛿𝑖

𝛿𝑖
)

2

(10)
To improve the convergence and computation efficiency of the optimization, numerical scaling is 
applied such that the unknowns having widely varying orders of magnitude due to the physical nature 
are converted to be of similar orders. To do so, each column of the coefficient matrix Be is scaled by 
the associated nominal values of the unknowns. The initial values for the error terms are zeros while 
those for the others are ones. No bound is applied to the estimated parameters, unless otherwise stated. 
Final estimations are obtained by multiplying the scaling factors with the solution from the 
optimization. All the aforementioned steps to implement the algorithm are summarized in Fig. 2.

2.4 Sensor placement

Apart from ensuring the observability of target parameters, the sensor placement should also consider 
the estimation accuracy. In structures of simple geometry or small number of Degrees Of Freedom 
(DOFs), experience or trial and error methods might be able to handle the task of sensor placement. 
However, this could be very challenging in complicated structures with many DOFs. One of the most 
known and commonly adopted approach for the optimal sensor placement was developed by 
Kammer33. This approach maximizes the information extracted from the measurement. This is 
achieved by maximizing the norm of the Fisher Information matrix [F] that is constructed from the 
modal and measurement covariance matrix. Since then, many variants of this method in SSI were 
proposed. 
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One Fisher Information matrix for the sensor placement in static SSI can be constructed from the 
noise variance and the gradient of structural displacements with respect to different structural 
parameters3. The sensor placement strategy used in this paper is developed based on this Fisher 
Information matrix. For an efficient unbiased estimation of , the lower bound of the covariance of 𝜃
estimations is given by the inversed Fisher Information matrix [F-1]:

(11)𝐸[(𝜃 ― 𝜃)(𝜃 ― 𝜃)𝑇] ≥ 𝐹 ―1

The Fisher Information matrix  contains the information about the values of the parameters θ [𝐹(𝛩)]
based on the data from all measured locations34. Its formulation depends on the sensor location vector 

. The calculation of the matrix  is shown by Eq. (12){𝛩} [𝐹(𝛩)]

(12)𝐹(𝛩) = 𝑆(𝛩)𝑇𝛹2
0𝑆(𝛩)

To calculate the Fisher Information matrix [F ], the sensitivity matrix [S( )] for measured DOFs (𝛩) 𝛩
and the noise variance  are required. The matrix [ ] is the sensitivity matrix with respect to [𝛹2

0] 𝑆(𝛩)
the sensor location vector . The vector  is a 3Nn×1 Boolean vector . If the ith DOF of the {𝛩} {𝛩} {𝛩}
FEM is measured, the associated entry in { } is one, otherwise zero. 𝛩

Prior to obtain the sensitivity matrix [S( )] for the measured DOFs, the sensitivity matrix [Sa] for all 𝛩
DOFs is calculated by Eq. (13).

(13)[𝑆𝑎] =
∂𝛿
∂𝜃 =

∂[𝐾(𝜃) ―1𝑓]
∂𝜃 =

∂𝐾(𝜃) ―1

∂𝜃 𝑓 = ― 𝐾(𝜃) ―1∂𝐾(𝜃)
∂𝜃 𝐾(𝜃) ―1𝑓

The dimension of the sensitivity matrix [Sa] is 3Nn×Np. The element , in the ith row and jth column 𝑆𝑎
𝑖,𝑗

of the matrix [Sa], is the derivative of the ith DOF with respect to the jth parameter. The sensitivity 
matrix [S( )] for the measured DOF is the collection of all those rows of [Sa] where  equals one.𝛩 𝛩𝑖

In estimation theory, the minimum variance in the estimations is desired, which means the 
minimization or maximization of some measures of [F]. Different norms of the matrix [F] have been 
used as the criteria for measuring the goodness of a measurement set regarding the estimation 
accuracy. These norms include the determinant, the trace and the minimum singular value of the 
matrix [F]. In this paper, the problem of sensor placement is formulated as the maximization of the 
determinant, det([F]), of the Fisher information matrix [F]. The ith diagonal terms of the inversed 
matrix [F-1] gives the lower bound of the variance of the estimations of the ith

 parameter θi 
35. High 

values in the diagonal elements indicate that the estimations for the associated parameters have a high 
variation. Parameters of zones that are out of the load path cannot be identified accurately. This is 
manifested by the large diagonal elements related to these parameters in the inversed matrix [F-1]. In 
this study, the threshold of 0.1 is used to differentiate between the identifiable and the unidentifiable 
parameters. The parameters associated with diagonal elements of [F-1] that are less than 0.1 might be 
regarded as identifiable. 

The sensor placement is a combinatorial problem whose dimension increases exponentially with the 
number of possible sensor locations. It is intractable to find the optimal solution by global search. 
However, some classic metaheuristic algorithms are competent in finding a near-optimal solution for 
the sensor placement problem36. The genetic algorithm is featured by bio-inspired operators such as 
mutation and crossover and selection. The discrete optimization problem arising from the sensor 
placement problem here is solved by the Matlab function ga with the objective function (14) and 
constraints (15)-(17).
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Θopt = max
Θ

det (𝐹) 
(14)

Subjected to 

∑
𝑖 ∈ 𝑢

Θ𝑖 = 𝑁𝑚,𝑢 for any i related to horizontal deflections u (15)
 ∑
𝑖 ∈ 𝑣

Θ𝑖 = 𝑁𝑚,𝑣 for any i related to vertical deflections v (16)
∑
𝑖 ∈ 𝑤

Θ𝑖 = 𝑁𝑚,𝑤 for any i related to rotations w (17)

Nm,u, Nm,v and Nm,w are the numbers of measured horizontal/vertical deflections and rotations, 
respectively. 

3 Application in beam-like structures 

To verify the effectiveness of the proposed method, a simply supported bridge example is analyzed 
here. Two cases are considered depending on the relation between the number of measured 
displacements, Nm, and the number of unknown parameters, Np. In section 3.1, the performance of the 
MEMOM and the SSI by OM are compared when essential sets are used. In section 3.2, regarding 
the same structure, the performance of MEMOM and SSI by compatible OM 31 are compared when 
redundant sets are used. The considered factors include error levels, number of measurements, load 
cases.

3.1 Equivalence of MEMOM and SSI by OM in case of essential set

Assume an 18-m simply supported bridge with a concentrated load applied at one-third point, as 
shown in Fig. 3. The area and inertia of the girder are 0.1 m2 and 0.015 m4, respectively and the 
Young’s modulus E is 210GPa. This structure is discretized into 18 elements each with the length of 
1 m. Because the axial behavior of this structure is not excited under this load case, the identification 
of axial stiffness is not feasible. The parameterization of this model is shown in Fig. 3. 

The systematic tools to find essential sets were proposed elsewhere7,37. To identify three bending 
stiffnesses, the essential sets should have three distributed measurements. One displacement is 
measured for each bending stiffness. Specifically, one from {v2-v7, w1-w7}, {v7-v13, w7-w13} and {v13-
v18, w13-w19} for EI1, EI2 and EI3, respectively. All potential essential sets are enumerated by taking 
one measurement from these sets. If duplicated measurements, e.g. w7 or v7, are detected, then that set 
is rejected. This leads to 2314 essential sets. 50 samples are generated for each set with an error level 
of 5%. One sample for a given measurement set is the collection of associated measurements 
generated by Eq. (18).

 (18)𝛿 = 𝛿 ⋅ (1 + 𝐸𝑙𝑒𝑣𝑒𝑙 ⋅ 𝜉)

Here, the measurements, , are simulated by adding proportional errors to the theoretical values, , 𝛿 𝛿
that are obtained by direct analysis. Elevel is the error level in measurement and ξ is a random number 
following normal distribution with mean of zero and standard deviation of 0.5, same as in 31. 

Regarding essential sets, it is always possible to find a set of parameters that exactly replicates any 
value of the measurement, either accurate or noisy measurements. In other words, the objective 
function (Eq. (10)) should be exactly zero. Regarding this simply supported bridge, 2314×50=115700 
estimations are carried out. For all these estimations, the estimations from the MEMOM are capable 
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of replicating the noisy measurements. Hence, it is concluded that the proposed method and SSI by 
OM lead to the same estimation when essential sets are used. However, estimations from essential 
sets are far from satisfactory28.

3.2 Comparison of the performance of different methods in a beam-like structure 

In order to improve the estimation accuracy, redundant sets are used. In beam-like structures, the 
explicit expression of the compatibility conditions can be found symbolically. In this section, the 
performance of the SSI by compatible OM and the MEMOM is compared for the structure depicted 
in Fig. 3 regarding different factors. The controlled factors are the number of measurements, Nm, and 
the error levels, Elevel, and the load cases while the parameterization is still the same

(1) Effect of curvatures

In the first comparison, the load case is a vertical load applied at node 7. Three measurement sets are 
used, including (1) Set 1 (v3, v5, v7, v9, v11, v13, v15 and v17); (2) Set 2 (v3-v5, v7, v9-v11, v13 and v15-v17) 
and (3) Set 3 (v2-v17). These sets are the same as those in previous study31. The error levels range from 
1% to 5%. 2000 samples are generated for each measurement set at all error levels using Eq. (17). In 
this paper, all the estimations are normalized by their real values, unless otherwise stated. To evaluate 
the performance of different algorithms, Eqs. (19)-(21) are used.

  (19)𝜃𝑚 =
∑𝑁𝑠

𝑖 = 1𝜃𝑖,𝑟 

𝑁𝑠

(20)𝜃𝑠𝑑 =
1

𝑁𝑠 ― 1 Σ
𝑁𝑠
𝑖 = 1(𝜃𝑖,𝑟 ― 𝜃𝑚)2

(21)𝜃𝐶𝑂𝑉 =
𝜃𝑠𝑑

𝜃𝑚

Here,  is the estimation (normalized by the real value) of parameter  using the ith sample. Ns is the 𝜃𝑖,𝑟 𝜃
number of samples.  is the mean of all the Ns estimations of . The closer the mean, , to one, the 𝜃𝑚 𝜃 𝜃𝑚

lower the bias. In addition,  describes the variability among all the Ns estimations of .The 𝜃𝐶𝑂𝑉 𝜃
smaller the , the less variation in the estimations of .𝜃𝐶𝑂𝑉 𝜃

In this example (Fig. 3), the target parameters are EI1-EI3. A careful examination shows that both 
methods lead to the same estimations for each measurement set and each error level. The results are 
presented as the bar graph with error bar in Fig. 4a. The bar graph shows the mean of the estimations 
while the error bar indicates one standard deviation of the estimations.

As the load is applied at node 7, the elements associated with EI1 and EI2 are more excited than those 
associated with EI3. From Fig. 4a, it is seen that the standard deviation, which is the length of the 
error bar, increases much faster in zones of less excited zones (EI3). The bias of the estimations of 
EI1-EI3 is small. The worst case is an overestimation of 1.45% in EI3 with an error level of 5%. 
However, it should be pointed out that the bias also increases faster in less excited zones.

(2) Effect of loading cases

The performance of the two methods is also compared using different load cases with set 1 (v3, v5, v7, 
v9, v11, v13, v15 and v17) and an error level of 5%. The load moves from V2 through V10, leading to 9 
load cases. Under each load case, the estimations produced by the proposed method are the same as 
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those obtained via SSI by compatible OM. The results are presented in Fig. 4b. When load changes 
from V2 to V10, the curvatures for areas associated with EI1 decreases and the standard deviation of 
the estimations of EI1 increase correspondingly. An opposite trend is observed for the parameter EI3. 
In addition, the estimations of EI1 and EI3 have the same mean and standard deviation when identical 
curvatures are excited in areas associated with these two parameters in the load case of V10. 

The same performance of the two methods might be due to the fact that the inclusion of the nonlinear 
constraints among the unknowns in the proposed method implicitly contains the compatibility 
conditions (the geometrical relations that the displacements should satisfy). Hence, it is concluded 
that: (1) the proposed method is applicable in beam-like structures and (2) its accuracy is as good as 
the SSI by compatible OM. For clarity, the difference of the mentioned methods is summarized in 
Table. 1.

4 Application of the proposed method in frame structures

Due to the coupling of the bending and the axial behaviors in frames or inclined beams, obtaining 
compatibility conditions in such structures is nontrivial. However, the proposed method does not 
suffer from this limitation. In this section, the effectiveness of the proposed method is verified in two 
examples. The first example corresponds to a floor beam (see dashed ellipse in Fig. 5a) in a 13-story 
frame building adapted from previous research4 while the second example corresponds to a rigid 
frame bridge with inclined piers.

4.1 Example 1: Floor beam in a frame

Damage in structural members that have insignificant contribution to the structural response under 
the given load case cannot be accurately identified3. Simultaneous identification of all parameters 
requires a well-designed loading scheme capable of exciting all structural members sufficiently. On 
the other hand, many sensors are required for data collection. These might not be feasible in real life 
for technical and economic reasons. Hence, it is more interesting to identify the parameters of a local 
area because only a small zone needs to be excited and the number of sensors is significantly reduced. 

In the following study, the focus is to identify the parameters of a floor beam on 3rd floor using noisy 
measurements. The elastic moduli is 3.5×104

 MPa. Geometrical properties for different elements are 
provided in Table 2. In previous study, the floor beams were assumed to have constant stiffness  and 
measurement errors were not included4. In this study, the real values of the parameters for the target 
floor beam are the same as those in element type VIII. However, different parameterizations are 
applied for this beam (Fig. 5b) and these parameters are assumed different and unknown. An error 
level of 5% is also included in the numerical analysis. The effect of curvatures in different zones of 
the floor beam is investigated first. Subsequently, the benefit of including rotations in the 
measurement set is illustrated. At the end of section 4.1, different constraints limiting the feasible 
values of the unidentifiable parameters are compared.

(1) Effect of curvatures 

The analyzed floor beam is evenly discretized into 42 elements. To show the effect of curvatures, 
four scenarios (Table 3 and Fig. 5b) are studied regarding two load cases and two parameterizations 
of this floor beam. The coarse parameterization models the structure with three bending stiffnesses, 
EI1c-EI3c. Each parameter is related to fourteen elements. The fine parameterization models the 
structure with seven bending stiffnesses, EI1f-EI7f. Each parameter is related to six elements. The load 
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case 1 (LC1) is a uniform load of 25kN/m applied along the entire span while the load case 2 (LC2) 
is of the same magnitude but only applied on the left four elements (2.667 m). The configuration and 
the associated moment diagrams are depicted in Fig. 5b. The bending behaviors for the zones of EI2f 

and EI6f are not quite excited under LC1 (scenario 3). Similar situation is observed for the zones of 
EI4f-EI7f under LC2 (scenario 4). In scenarios 1 and 2, though the inflection points are included in 
zones related to EI1c and EI3c, the bending behavior for these zones is still sufficiently excited due to 
the wide coverage of the zones associated with EI1c and EI3c. Note that the number, the location and 
the type of measurements affect the result of the estimations. Providing that the number of 
measurements is three times the number of parameters, Nm=3Np, and at least half of these 
measurements are composed of deflections, the near-optimal measurement set for each scenario is 
determined by the method in section 2.4. 

According to the diagonal terms in the associated inversed Fisher Information matrix, EI2f and EI6f in 
scenario 3 and EI5f -EI7f in scenario 4 cannot be accurately identified. Hence, they are excluded from 
the objective function and the absolute constraint of [0, 10] are applied to limit the feasible range of 
these unidentifiable parameters. 500 samples are generated for each scenario with an error level of 5% 
using Eq. (17). The mean and standard deviation are summarized as the bar graph with error bar in 
Fig. 6.

When the number of measurements, Nm, is three times the number of parameters, Np: (1) Nm=9 
measurements are sufficient to provide unbiased and robust estimations of EI1c-EI3c in both load cases. 
However, larger variations in EI2c and EI3c are observed for LC2 than those for LC1. This is due to 
the fact that the curvature in zones of EI2c and EI3c is much less excited in LC2 than that in LC1. A 
slight underestimation of EI3c is also observed in LC2. (2) This phenomenon is more noticeable in 
Fig. 6b. Nm=21 measurements are used to estimate 7 parameters in the fine parameterization. As 
expected, the estimations of EI2f and EI6f from LC1 have large bias and variations. Note that the 
bending behavior for zones of EI2f in LC2 are well excited. Comparing the estimations of EI2f from 
LC1 and LC2, the latter one is more consistent and less variable. As expected, the estimations of EI5f-
EI7f from LC2 are not reliable. (3) Comparing Figs. 6a and 6b, it is seen that the estimations of bending 
stiffnesses for the coarse parameterization is much better than those for the fine parameterization 
regarding the unbiasedness and variation under the same load case.

In order to improve the estimations of the parameters associated with null curvature zones, two more 
sets with numerous measurements are investigated for the case of fine parameterization. The first set 
is to measure the deflection and the rotation every 2 nodes, leading to 42(=6Np) measurements with 
the deflections at the joint excluded. The second one is to measure the deflection and the rotation of 
each node, leading to 84(=12Np) measurements with the deflection at the joint excluded. The results 
are also summarized in Fig. 6b. Despite the improvement in all estimations, the standard deviations 
in the estimations of parameters associated with null curvature zones are still large and thus unreliable. 

(2) Type of measurements

It was shown that using rotations had theoretical advantages when estimating the parameters. Wide 
applications of inclinometers in real engineering practice are also provided. The effect of including 
different number of rotations with a fixed number of measurements on the estimations is studied here. 
The load case is LC1 and the parameterization is the fine one, as seen in the scenario 3 in Fig. 5b. 
The number of measurements Nm is 25. The number of rotations varies from 0 to 25, adding up to 26 
measurement sets. For each set, the near-optimal measurement set is found by Fisher Information 
matrix. 500 estimations are obtained for each set using the same setting in section 4.1. The result is 
summarized in Fig. 7. It is found that using rotations cannot improve the estimations of parameters 
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associated with null curvature zones in this structure. Hence, the results for EI2f and EI6f are not 
presented. 

When no rotation is used, the bias in EI3f and EI5f is 32.0% and 64.3%, respectively. The extent of the 
bias in EI3f and EI5f decreases with the number of rotations. It should be noted that the inclusion of 
one rotation in the measurements reduces the bias significantly. In addition, the deviations of the 
mean of the estimations for all parameters are always within 1.0% when the number of rotations 
exceeds 8. Regarding the COV of the estimations, a gradual decrease is observed when the number 
of rotations increases from 0 to 17. However, the COVs of the estimations for all parameters do not 
improve noticeably when more rotations are used.

From this analysis, it is seen that: (1) Compared with using only deflections, the inclusion of rotations 
in the measurements improves the estimations remarkably with respect to the unbiasedness and the 
extent of variation; (2) The rate of improvement due to the inclusion of rotations is drastic initially. 
When the number of rotations reach a certain number, this rate becomes slow, as indicated by the 
plateau in Fig. 7b.

(3) Effect of different constraints to limit the value of the estimates in the null curvature zones

The load path by one load case can hardly cover each part of a local region, as depicted by the moment 
diagrams in Fig. 5b. The parameters for unexcited members may not be accurately identified without 
using multiple load cases. This is justified by the observation that either increasing the number of 
measurements or including rotations cannot improve the estimations for parameters associated with 
null curvature zones using only one load case. However, multiple load cases might be costly, 
cumbersome and hence not desirable for engineers. Providing that only one load case is used, it is 
interesting to limit the feasible ranges of those unidentifiable parameters by imposing different types 
of constraints during the estimation process. In this section, the effect of these constraints on the 
unbiasedness and the variation of the estimations for those identifiable parameters are investigated. 

In previous study, the absolute constraint that [0, 10] is imposed on unidentifiable parameters, 𝐸𝐼𝑖 ∈
for instance, EI2f and EI6f in LC1. Two types of constraints are studied here. The first type is related 
to a tight absolute constraint of [0.5, 1.5] on those unidentifiable parameters. The second type is a 
relative constraint that the parameters for the null curvature zones are between those for adjacent 
zones. This is to say, (EI2f-EI1f) (EI2f-EI3f)≤0 and (EI6f-EI5f) (EI6f-EI7f)≤0. The load case, the 
parameterization and the measurement sets are the same as scenario 3 in Fig. 5b. It should be pointed 
out that the following discussions will focus on the results of those identifiable parameters (EI1f, EI3f- 
EI5f, EI7f) in this scenario. 

Under both types of constraints, 500 estimations are carried out for each measurement set using the 
identical data in section 4.2. For both types of constraints, the mean and the COVs are summarized 
in Fig.8a and 8b, respectively.

Regarding the tight absolute constraint, the bias and the COVs for EI3f and EI5f are not always 
satisfactory when the number of rotations used is less than 5. For instance, when 4 rotations are used, 
the bias in EI3f is 3.5% and the COVs is 0.11. Hence, the results of using less than 5 rotations are not 
included in this figure. When the number of rotations is equal to or greater than 5: (1) the bias in all 
identifiable parameters is always less than 1.0%. (2) The bias decreases with the number of rotations. 
(3) The bias in EI3f is the lowest among the bias for all parameters because the bending behavior of 
the local zone associated with EI3f is fully excited.
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In the case of relative constraints, the bias in EI3f is also the lowest one. However, bias of around 1-
2% exists in those estimations for parameters associated with regions adjacent to null curvature zones. 
In Fig.8a, it is observed that the bias in EI1f and EI3f are very close in magnitude but different in sign. 
This might be due to the fact that introducing the relative constraints averages the estimations of EI1f, 
EI2f and EI3f. Similar phenomenon is observed for parameters EI5f and EI7f.

Regarding the variation of the estimations, the COVs for those identifiable parameters can be reduced 
by both types of constraints. The COVs for EI1f, EI3f-EI5f, EI7f obtained from the tight absolute 
constraint [0.5, 1.5] are always lower than those respective ones obtained from the constraint [0, 10] 
for all measurement sets. These COVs drop more significantly when the relative constraint is imposed. 
The comparison of COVs obtained from the tight absolute constraint and the relative one is depicted 
in Fig. 8b.

The analysis of the comparison between the results obtained from the absolute constraint and the 
relative constraint shows that: (1) when insufficient rotations are introduced in the measurement set, 
biased estimations can be obtained despite of the constraints imposed on the parameters of 
insufficiently excited zones. (2) When sufficient rotations are introduced, both the tight and the 
relative constraints can reduce the variations of the estimations for those identifiable parameters 
where the bending behavior are sufficiently excited. (3) The relative constraint reduces the variations 
more than the tight absolute constraint at the cost of slight bias.

4.2 Example 2: A rigid frame bridge with inclined piers

The effect of including rotation measurements is studied in the rigid frame bridge with inclined piers. 
The decks of this bridge are subjected to a uniform load of 24kN/m. The FEM of this structure and 
its parameterization is depicted in Fig.9a. The elastic modulus is same as in the previous example. 
The area and the inertia of the deck are 4m2 and 2.6m4 while those for the deck are 3m2 and 0.88m4. 
Under this loading case, the axial stiffnesses EA1-EA6 cannot be identified due to the fact that the 
axial behaviors of the decks are not excited. Hence, the target parameters include the bending 
stiffnesses (EI1-EI6) of the decks, the bending stiffnesses (EI7-EI10) and the axial stiffnesses (EA7-
EA10) of the inclined piers. It should be noted that both the axial behaviors and the bending behaviors 
of the piers lead to horizontal and vertical movement of the whole structure. 

To study the effect of including rotations on the estimation accuracy of these 14 parameters, the 
results of 20 measurement sets are compared. Each set has 24 measurements in total when the number 
of horizontal deflections is five and the number of rotations varies from 0 to 19. The measurement 
configuration for the case of 9 rotations is depicted in Fig. 9b. 

For each measurement set, 500 samples are generated and an error level of 5% is included. The mean 
and the COV of the estimations for different measurement sets are calculated. Despite the coupling 
of bending and axial stiffnesses of the piers, all parameters are well identified with a maximum 
deviation of less than 1% in each measurement set. The COVs of the estimations of parameters for 
the decks and the piers are presented in Fig. 10a and 10b, respectively. 

From Fig.10a and 10b, it is seen that when no rotation is used, large variations are observed for both 
bending stiffnesses of decks and piers. When the number of rotations increases, the variations of the 
bending stiffnesses for both the decks and the piers get smaller and becomes stable when the number 
of rotations is more than 9, which is similar to the conclusion in section 4.2. In Figure 10b, it is 
observed that the COVs for the estimations for the axial stiffnesses (EA7-EA10) of the piers are not 
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sensitive to the number of rotations. The COVs for EA8 and EA9 are around 0.040 while those for 
EA7 and EA10 are around 0.017.

From this analysis, it is seen that: (1) The inclusion of rotations in the measurements improves the 
estimations remarkably with respect to the extent of variation; (2) The rate of improvement due to the 
inclusion of rotations is drastic initially. When the number of rotations reach a certain number, this 
rate becomes slow; (3) The axial stiffnesses of the piers are not sensitive to the number of rotations.

5 Conclusion

This paper proposes a measurement error-minimizing observability method for the static structure 
system identification. For the first time in the literature, to deal with the biasedness in the estimations, 
those error terms in the coefficient matrix of the observability equations are separated and moved into 
the unknowns. The resulting equations are solved by minimizing the square sum of the ratios between 
the error terms and the associated measurements subjected to the nonlinear constraints among the 
unknowns.

The proposed method is first validated in a beam-like structure with previous methods using essential 
sets and redundant sets. The method leads to identical results in all cases. This might be due to the 
fact that the geometrical relations among displacements are implicitly imposed by the nonlinear 
constraints in the proposed method. 

In structures where axial and bending behaviors are coupled, the SSI by compatible OM cannot be 
applied. The applicability of MEMOM is shown by a frame structure and a rigid frame bridge. In the 
frame structure, the identification of a floor beam is investigated regarding the effect of curvatures, 
the measurement types and the constraint on those unidentifiable parameters. The results indicate that 
the accuracy of the estimation of a given parameter θ highly depends on the curvature of the zones of 
parameter θ, which is related to the parameterization and the load case of the structure. In the case of 
coarse parameterization, the bending behavior for all zones are sufficiently excited in both load cases, 
hence the estimations for all parameters are satisfactory. In the case of fine parameterization, the 
parameters for more excited zones are estimated much more accurately than those for less excited 
zones. The estimations of the parameters for null curvature zones are greatly biased and variable. 
Including plentiful measurements cannot improve the estimation accuracy for parameters associated 
with null curvature zones. To investigate the effect of measurement type, the estimations from 26 
measurement sets are evaluated regarding different number of rotations. The analysis of these 
simulations shows that the inclusion of rotations in measurements is critical for accurate estimations. 
As the number of rotations increases, the improvement in the estimations is significant initially but 
reaches a plateau at a given moment. The inclusion of rotations cannot solve the issue of bad 
estimations of parameters associated with null curvature zones in frame structures. Providing only 
one load case is used, the effect of limiting the feasible range of the estimations for parameters of null 
curvature zones is studied in the frame example. It is found that: (1) To obtain unbiased and robust 
estimations, the inclusion of rotations in the measurement set is necessary despite different types of 
constraints. (2) The variations for parameters for zones whose curvatures are well excited can be 
reduced when tight absolute constraints or relative constraints are imposed on the estimations of 
parameters associated with null curvature zones. (3) The relative constraint reduces the variations 
more than the tight absolute constraint at the cost of slight bias.

The rigid frame bridge example proves the applicability of the proposed method in identifying 
parameters for inclined elements. The importance of the inclusion of rotation measurements is also 
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demonstrated. When the number of rotations increases, significant improvement of the estimations is 
observed for most of the parameters.  The importance of rotation measurements should be emphasized 
in the static SSI.

Acknowledgement

This work was partially funded by the Spanish Ministry of Economy and Competitiveness and the 
FEDER fund through the grant project (BIA2013-47290-R) directed by Jose Turmo. It is also to be 
noted that part of this work was done through a collaborative agreement between Tongji University 
(China) and Technical University of Catalonia, UPC, BarcelonaTech. This included an exchange of 
faculty financed by the High-End Foreign Experts program (GDW20143100115) from Chinese 
Government. Funding for this research has been provided to Mr. Lei Jun by the Chinese Scholarship 
Council through its program (201506260116) and by the Spanish Ministry of Economy and 
Competitiveness through its program (BES-2014-07022) for his PhD stays.

Reference

1. Castillo E, Lozano-Galant JA, Nogal M, Turmo J. New tool to help decision making in civil 
engineering. J Civ Eng Manag. 2015;21(6):689–97. 

2. Shahsavari V, Chouinard L, Bastien J. Wavelet-based analysis of mode shapes for statistical 
detection and localization of damage in beams using likelihood ratio test. Eng Struct. 
2017;132:494–507. 

3. Bakhtiari-Nejad F, Rahai A, Esfandiari A. A structural damage detection method using static 
noisy data. Eng Struct. 2005;27(12 SPEC. ISS.):1784–93. 

4. Lozano-Galant JA, Nogal M, Castillo E, Turmo J. Application of observability techniques to 
structural system identification. Comput Civ Infrastruct Eng. 2013;28(6):434–50. 

5. Sheena Z, Unger A, Zalmanovich A. Theoretical stiffness matrix correction by using static 
test results. Isr J Technol. 1982;20:245–53. 

6. Banan MR, Banan MR, Hjelmstad KD. Parameter Estimation of Structures from Static 
Response. I. Computational Aspects. J Struct Eng. 1994;120(11):3243–58. 

7. Lei J, Nogal M, Lozano-Galant JA, Xu D, Turmo J. Constrained observability method in static 
structural system identification. Struct Control Heal Monit. 2018;25(1):2040e. 

8. Tomàs D, Lozano-Galant JA, Ramos G, Turmo J. Structural system identification of thin web 
bridges by observability techniques considering shear deformation. Thin-Walled Struct. 
2018;123:282–93. 

9. Ghrib F, Li L, Wilbur P. Damage Identification of Euler –Bernoulli Beams using static 
response. J Eng Mech. 2012;138(5):405–15. 

10. Sanayei M, Phelps JE, Sipple JD, Bell ES, Brenner BR. Instrumentation, Nondestructive 
Testing, and Finite-Element Model Updating for Bridge Evaluation Using Strain 
Measurements. J Bridg Eng. 2012;17(2):130–8. 

11. Choi I-Y, Lee JS, Choi E, Cho H-N. Development of elastic damage load theorem for damage 
detection in a statically determinate beam. Comput Struct. 2004;82(29):2483–92. 

12. Abdo MA-B. Parametric study of using only static response in structural damage detection. 
Eng Struct. 2012;34:124–31. 

13. Boumechra N. Damage detection in beam and truss structures by the inverse analysis of the 
static response due to moving loads. Struct Control Heal Monit. 2017;24(10):1–10. 

14. Sun Z, Nagayama T, Nishio M, Fujino Y. Investigation on a curvature-based damage detection 
method using displacement under moving vehicle. Struct Control Heal Monit. 2017;e2044. 

Page 18 of 34

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15. Li Z, Park HS, Adeli H. New method for modal identification of super high-rise building 
structures using discretized synchrosqueezed wavelet and Hilbert transforms. Struct Des Tall 
Spec Build. 2017;26(3):e1312. 

16. Jin SS, Jung HJ. Sequential surrogate modeling for efficient finite element model updating. 
Comput Struct. 2016;168:30–45. 

17. Astroza R, Nguyen LT, Nestorović T. Finite element model updating using simulated 
annealing hybridized with unscented Kalman filter. Comput Struct. 2016;177:176–91. 

18. Al-Hussein A, Haldar A. Unscented Kalman filter with unknown input and weighted global 
iteration for health assessment of large structural systems. Struct Control Heal Monit. 
2016;23(1):156–75. 

19. Ismail Z, Abdul Razak H, Abdul Rahman AG. Determination of damage location in RC beams 
using mode shape derivatives. Eng Struct. 2006;28(11):1566–73. 

20. Ciambella J, Vestroni F. The use of modal curvatures for damage localizationin beam-type 
structures. J Sound Vib. 2015;340:126–37. 

21. Yang Q, Sun B. Structural damage localization and quantification using static test data. Struct 
Heal Monit. 2010;10(4):381–9. 

22. Andreaus U, Baragatti P, Casini P, Iacoviello D. Experimental damage evaluation of open and 
fatigue cracks of multi-cracked beams by using wavelet transform of static response via image 
analysis. Struct Control Heal Monit. 2017;24(4):1–16. 

23. Wei Z, Qin C, Cai L, Zhu S, Chen ZW, Cai QL, et al. Damage quantification of beam 
structures using deflection influence lines. Struct Control Heal Monit. 2018;25(June):1–17. 

24. Park HS, Shin Y, Choi SW, Kim Y. An integrative structural health monitoring system for the 
local/global responses of a large-scale irregular building under construction. Sensors. 
2013;13(7):9085–103. 

25. Liu T, Yang B, Zhang Q. Health Monitoring System Developed for Tianjin 117 High-Rise 
Building. J Aerosp Eng. 2017;30(2):1–13. 

26. Sousa H, Cavadas F, Henriques A, Bento J, Figueiras J. Bridge deflection evaluation using 
strain and rotation measurements. Smart Struct Syst. 2013;11(4):365–86. 

27. Zhang W, Sun LM, Sun SW. Bridge-Deflection Estimation through Inclinometer Data 
Considering Structural Damages. J Bridg Eng. 2017;22(2):04016117. 

28. Lei J, Lozano-Galant JA, Nogal M, Xu D, Turmo J. Analysis of measurement and simulation 
errors in structural system identification by observability techniques. Struct Control Heal 
Monit. 2017;24(6):1–21. 

29. M SF, Antonio V. Digital Control Engineering:Analysis and Design. 2nd ed. Academic Press; 
2013. 

30. Castillo E, Conejo AJ, Eva Pruneda R, Solares C. Observability in linear systems of equations 
and inequalities: Applications. Comput Oper Res. 2007;34(6 SPEC. ISS.):1708–20. 

31. Lei J, Xu D, Turmo J. Static structural system identification for beam-like structures using 
compatibility conditions. Struct Control Heal Monit. 2018;25(1):e2062. 

32. Nogal M, Lozano-Galant JA, Turmo J, Castillo E. Numerical damage identification of 
structures by observability techniques based on static loading tests. Struct Infrastruct Eng. 
2015;12(9):1216–27. 

33. Kammer DC. Sensor Placement for On-Orbit Modal Identification and Correlation of Large 
Space Structures. J Guid Control Dyn. 1991;14(2)(August):251–9. 

34. Guo YL, Ni YQ, Chen SK. Optimal sensor placement for damage detection of bridges subject 
to ship collision. Struct Control Heal Monit. 2017;24(9):1–16. 

35. Sanayei M, Dicarlo CJ, Rohela P, Miller EL, Kilmer ME. Sensor Placement using Fisher 
Information Matrix for Robust Finite Element Model Updating. Life Cycle Reliab Saf Eng. 
2015;4(2):28–39. 

36. Hou R, Xia Y, Xia Q, Zhou X. Genetic algorithm based optimal sensor placement for L1-
regularized damage detection. Struct Control Heal Monit. 2018;(September 2018):1–14. 

Page 19 of 34

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

37. Lozano-Galant JA, Nogal M, Turmo J, Castillo E. Selection of measurement sets in static 
structural identification of bridges using observability trees. Comput Concr. 2015;15(5):771–
94. 

Page 20 of 34

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Captions:

Fig. 1. A 3-node simply supported beam with measurement set (w1, v2 and w3)

Fig. 2. Flow chart of the proposed algorithm.

Fig. 3. A 19-node simply supported beam with three target parameters (bending stiffnesses EI1-EI3)

Fig. 4. Bar graph with error bar for the estimations of EI1-EI3: (a) under the load case of V7 with 
different error levels; (2) under different load cases (V2-V10) with an error level of 5%.

Fig. 5. (a) Finite element model for the 13-story frame (b) Four scenarios for the identification of the 
floor beam (different load cases, parameterizations and moment diagrams)

Fig. 6. The bar graph with error bar for the estimations of parameters in (a) scenarios 1 and 2; (b)
scenarios 3 and 4. (The legend indicates the load case and the number of measurements, respectively. 
Subscript f and c indicate fine and coarse parameterization, respectively. Np, number of parameters).

Fig.7. Using different number of rotations: (a) Mean (b) Coefficient Of Variation (COV)

Fig. 8. Estimations using different number of rotations with the absolute constraint of [0.5, 1.5] 
(triangle) and the relative constraint (dot): (a) Mean (b) Coefficient Of Variation (COV)

Fig.9 (a) Finite element model and the parameterization of the rigid frame bridge; (b) measurement
set of 5 horizontal deflections, 10 vertical deflection and 9 rotations.

Fig.10 The Coefficients of Variation for the parameters of (a) the decks (EI1-EI6); (b) the piers
(EA7-EA10，EI7-EI10).
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Table. 1 Characteristic of different observability method

Method Applicability Optimization
involved

Nonlinear 
constraints

Objective 
function

Sensitive 
to errors

SSI by OM32 Beam-like/ 
frame

No - - Yes

SSI by constrained 
OM7

Beam-like/ 
frame

Yes Yes Force 
Residues

Yes

SSI by compatible 
OM 31

Beam-like Yes No Displacement 
Residues

No

SSI by MEMOM Beam-like/ 
frame

Yes Yes Displacement 
Residues

No
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Table 2. Geometrical properties for different elements

Element type Area (m2) Inertia (m4)
I 0.563 0.026
II 0.360 0.011
III 0.250 0.005
IV 0.360 0.011
V 0.250 0.011
VI 0.160 0.002
VII 1.800 5.400
VIII 0.180 0.005
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Table 3. Description of different scenarios

Scenarios Parameterization Load case
1 Coarse, three parameters Uniform load over whole span
2 Coarse, three parameters Uniform load on the left
3 Fine, seven parameters Uniform load over whole span
4 Fine, seven parameters Uniform load on the left
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Fig. 1. A 3-node simply supported beam with measurement set (w1, v2 and w3). 

79x14mm (300 x 300 DPI) 

Page 25 of 34

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Fig. 2. Flow chart of the proposed algorithm. 
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Fig. 3. A 19-node simply supported beam with three target parameters (bending stiffnesses EI1-EI3). 
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Fig. 4. Bar graph with error bar for the estimations of EI1-EI3: (a) under the load case of V7 with different 
error levels; (2) under different load cases (V2-V10) with an error level of 5%. 
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Fig. 5. (a) Finite element model for the 13-story frame; (b) Four scenarios for the identification of the floor 
beam (different load cases, parameterizations and moment diagrams) 
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Fig. 6. The bar graph with error bar for the estimations of parameters in (a) scenarios 1 and 2; (b) scenarios 
3 and 4. (The legend indicates the load case and the number of measurements, respectively. Subscript f and 

c indicate fine and coarse parameterization, respectively. Np, number of parameters). 
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Fig.7. Using different number of rotations: (a) Mean (b) Coefficient Of Variation (COV) 
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Fig. 8. Estimations using different number of rotations with the absolute constraint of [0.5, 1.5] (triangle) 
and the relative constraint (dot): (a) Mean (b) Coefficient Of Variation (COV) 
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Fig.9 (a) Finite element model and the parameterization of the rigid frame bridge; (b) measurement set of 5 
horizontal deflections, 10 vertical deflection and 9 rotations. 
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Fig.10 The Coefficients of Variation for the parameters of (a) the decks (EI1-EI6); (b) the piers (EA7-
EA10,EI7-EI10). 
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