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Abstract We assume that an insurance undertaking models its risk by a ran-
dom variable X = X(θ) with a fixed parameter (vector) θ. If the undertaking
does not know θ, it faces parameter uncertainty (see e.g. [1,2,4,5,10]). It is
well-known that neglecting parameter uncertainty can lead to an underesti-
mation of the true risk capital requirement.

In this contribution we address some practical questions. A risk capital re-
quirement not taking into account parameter uncertainty can imply a prob-
ability of solvency significantly below the required confidence level. However,
the underestimation of the confidence level depends on the distribution, the
size of the sample and, in general, on the true parameters of the distribution.
We determine the probability of solvency for different distributions and sam-
ples sizes.
We then follow the “inversion method” introduced in [4], which is known to
model an appropriate risk capital requirement respecting parameter uncer-
tainty for a wide class of distributions and common estimation methods. We
extend the idea to distribution families and estimation methods that have
not been considered so far but are frequently used to model the losses of an
insurance undertaking: the lognormal distribution together with the method
of moments and the two-parameter gamma distribution. Experimental data
demonstrate that the inversion method also succeeds for these cases in mod-
elling a risk capital requirement that achieves the required probability of sol-
vency in good approximation.
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1 Introduction

The first pillar of the Solvency II project (cf. [11]) requires the quantification
of all material risks of an insurance undertaking. Mathematically, the potential
losses of the next business year can be described by a random variable X. The
required risk capital is then given as the 99.5%-quantile of X.

Throughout this contribution, we assume that X is equal to X(θ0) for a fixed
parameter (vector) θ0. We concentrate on the parameter risk, that means, we
assume thatX is a member of a parametric distribution family F = {X(θ)|θ ∈
I ⊆ R.} and that the entity knows F , but can only estimate θ0 ∈ I ⊆ Rd with
X = X(θ0) resp. FX = FX(θ0) from historical data x1, . . . , xn, drawn from the
random variable X = (X1, . . . ,Xn) where Xi ∼X and (X1, . . . ,Xn) are in-
dependent ofX. In this setting, the undertaking faces a parameter uncertainty.

We demonstrate the problem of parameter uncertainty from the undertaking’s
perspective by an example.

Example 1 Consider a set of historical data given as a sample of size n = 10
drawn from a normally distributed loss variable X:

{98.56; 105.66; 104.80; 109.04; 125.43; 108.50; 105.48; 98.07; 93.99; 107.92}.

The true parameters (µ, σ) are unknown to the undertaking. It estimates the
parameters of the distribution using the maximum likelihood method and finds
(µ̂, σ̂) = (105.75, 8.13). The 99.5%-quantile of the normally distributed random
variable with parameters (µ̂, σ̂) is equal to 126.68. Is this an appropriate risk
capital taking the parameter uncertainty with respect to µ and σ into account?
If not, how should we calculate the risk capital?

If the undertaking does not know the true parameter θ0, it has to estimate
the risk capital. In case the size n of the sample is small, this underestimation
can not be avoided in any situation. However, Solvency II does not require
to hold an adequate risk capital in any case but only in 99.5% of the cases.
More precisely, to apply article 101 of the Solvency II regulation guidelines
[11] we need to model the risk capital requirement SCR such that it will not
be exceeded by the loss X of the next business year with probability 99.5% -
taking into account the randomness of X and the randomness of the historical
sample X1, . . . ,Xn (cf. [4], Definition 1).

In this article, we investigate the practical aspects of parameter uncertainty.
In Section 2 we recall the definition of the probability of solvency (see also [5],
Section 2.1). It measures the underestimation of the risk capital requirement.
We explicitly state the probability of solvency for different confidence levels,
different distributions and different sample sizes. This helps to assess the im-
pact of the parameter risk in practice.
The inversion method introduced in [4] is an approach to model the risk cap-
ital requirement taking parameter uncertainty into account (cf. Subsection
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2.3. If F is a transformed location-scale family and the parameter θ0 is esti-
mated using either the maximum likelihood method, percentile matching or
the Bayesian estimate, the inversion method has been proven to lead to a risk
capital meeting the required confidence level. The same holds if F is location-
scale and the parameter (vector) is estimated using the method of moments.
However, not all parametric distribution families used in practice are trans-
formed location-scale and in some situations estimation methods different from
the ones mentioned above a more popular.
In this contribution, we apply the inversion method to the lognormal distri-
bution (which is not a location-scale family) in the case where the estimation
method is the method of moments. Moreover, we consider the two-parameter
Gamma distribution (which is not a transformed location-scale family) to-
gether with the method of moments and the maximum likelihood method. Our
experimental data demonstrate that the inversion method leads to a modelled
risk capital achieving the required confidence level in good approximation.

Notation (cf. [4]): Throughout the article all random variables are printed in
bold. We define ζ and ξ as uniformly distributed random variables on [0; 1]n

resp. [0; 1]. By ζ and ξ we denote fixed realizations of these random variables.
Let I ⊆ Rd be a set of parameters and let {X(θ)| θ ∈ I} and {FX(θ)| θ ∈ I}
be the corresponding set of random variables resp. the set of corresponding
distribution functions. We assume that the inverse F−1X(θ) of the cumulative

distribution function of X exists. We define the function X : [0; 1]× I → R by
X(ξ; θ) := F−1X(θ)(ξ) and use X(ξ; θ) to denote the random variable X(θ).

2 The probability of solvency and the inversion method

2.1 The probability of solvency

We recall the approach chosen in [4], Section 2.
Given the historical data (x1, . . . , xn) drawn from the random variable X =
(X1, . . . ,Xn), whose cumulative distribution function FX = FX(θ) is known

except for the true, but unknown parameter θ0 ∈ I ⊆ Rd, we assume that the
undertaking determines its risk capital by the following two step procedure:

1. Using some method M , the undertaking generates a probability distribu-
tion P = P(x1, . . . , xn;M) for the parameter θsim depending on the sample
(x1, . . . , xn).

2. The modelled risk Y is defined by

Y (θ̂) := X(ξ,θsim),

where ξ is a [0;1]-uniformly distributed random variable and the modelled
risk capital requirement with confidence level α is set to

SCR(α;x1, . . . , xn;M) = F−1
Y (θ̂)

(α). (1)
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We define the probability of solvency given a method M resp. the probability
distribution P:

Definition 1 Let M be a method to generate a probability distribution P =
P(θ̂;M) for the simulated parameter θsim. The probability

P (X ≤ SCR(α;X1, . . . ,Xn;M)) (2)

is called the probability of solvency for α ∈ [0; 1]. We say that M resp.
θsim are appropriate with respect to α if the probability of solvency for
α equals the required confidence level α.
A method M resp. a probability distribution θsim is called appropriate if it
is appropriate for every α ∈ (0; 1).

2.2 Neglecting parameter uncertainty

The most common way of generating a probability distribution for the simu-
lated parameter θsim is to set θsim ≡ θ̂. This approach ignores the parameter
uncertainty. For Example 1 in Section 1, it yields

SCR(α;x1, . . . , xn;without) := F−1X(µ̂,σ̂)(99.5%) = 126.68.

We determine the probability of solvency

P (X ≤ SCR(α;X1, . . . ,Xn;without))

where both X and X1, . . . ,Xn are random using a Monte-Carlo simulation
for different confidence levels, different distributions and estimation methods
for the case where the sample size n is equal to n (see Table 1 on p. 5). Note
that this extends Table 1 in [5].
The results for sample sizes n = 20, 50 and 100 are given in the appendix.

Remark 1 In all cases considered the probability of solvency is significantly
lower than the required confidence level. The 99.5%-quantile can be inter-
preted as the event which occurs at most once in 1 out of 200 years. For the
normal distribution together with the maximum likelihood estimation insol-
vency would actually be expected in less than 46 years, for the two-parameter
Gamma distribution it is even more likely.
For Example 1 in Section 1 we conclude that a risk capital of 126.68 is not
sufficient to cover the 200-year event.
The figures are only slightly better for n = 20 (see Table 8 to Table 9 in the
appendix). For n = 20 almost all distributions have a probability of solvency
of less than 99% for the required confidence level of 99.5%. Only for samples
of size n = 50 the probability of solvency lies above 99%.
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Distribution
Estimation

95% 99% 99.5%method
True parameter

Gamma

ML
91.21% 96.40% 97.40%

k = 0.5, β = 1
ML

91.41% 96.70% 97.70%
k = 2, β = 1

MM
90.42% 95.70% 96.79%

k = 0.5, β = 1
MM

91.59% 96.79% 97.76%
k = 2, β = 1

Normal/
ML* 91.45% 96.77% 97.76%Lognormal

(two parameter)
MM

91.41% 96.74% 97.74%
µ = 0.1, σ = 0.1

Normal/ MM
91.41% 96.74% 97.74%

Lognormal µ = 1, σ = 0.1
MM

89.37% 95.17% 96.44%
µ = 1, σ = 1

Exponential
ML* 92.75% 97.74% 98.58%

(one parameter)
Pareto

ML* 91.40% 96.99% 98.02%
(two parameter)

Table 1 Solvency probabilities in the case that the risk capital is calculated without tak-
ing parameter uncertainty into account for n = 10 for different confidence levels, differ-
ent continuous distributions and different methods of estimation, ML=maximum likelihood,
MM=method of moments. For the distributions and estimation methods with * the probabil-
ity of solvency can be proven to be independent of the chosen parameter (see [5]). The figures
have been determined using a Monte-Carlo simulation with 10.000.000 realizations of X and
10.000.000 different samples {x1, . . . , xn} of size n to determining SCR(α; {x1, . . . , xn};M).

2.3 Description of the inversion method

The inversion method proposed by Fröhlich and Weng (see [4]) leads to an
appropriate probability distribution θinvsim in the sense of Definition 1 for trans-
formed location-scale families together with the maximum likelihood method,
the percentile matching or the Bayesian estimation method with a certain prior
distribution and location-scale families together with the method of moments.
In particular, it works for the normal distribution. In the case of Example 1 in
Section 1, the inversion method yields an appropriate risk capital requirement
of 175.70, an increase by 38% compared to the risk capital requirement not
taking parameter uncertainty into account.

Given the random variable X with fixed, but unknown parameter θ, the in-
version method consists of two steps:

1. The historical data (x1, . . . , xn) are realizations of the independent, iden-
tically distributed random variables X1, . . . ,Xn, such that Xi ∼ X for
i = 1, . . . , n. We can write xi as F−1X (ζi), where (ζ1, . . . , ζn) is a realization
of a vector ζ = (ζ1, . . . , ζn) of independent, uniformly distributed ran-
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dom variables and F is the distribution function of X. Define the function
hζ(θ) := θ̂(ζ, θ) where θ̂(ζ, θ) is the estimate of θ depending on θ and the
fixed historic observation (ζ1, . . . , ζn). The inversion method defines the
probability distribution P (cf. Subsection 2.1) by

θinvsim = θinvsim(ζ, θ̂) := h−1ζ (θ̂) (3)

where ζ = (ζ1, . . . , ζn) is a vector of independent, uniformly distributed
random variables.

2. Let X be the true risk. We define the modelled risk (see Equation (1)) as

Y (θ̂) := X
(
ξ, h−1ζ (θ̂)

)
= F−1

X(θinv
sim)

(ξ). (4)

From the two-step procedure above, we define the following algorithm to get
realizations θinvsim of θinvsim:

1. Draw ζ = (ζ1, . . . , ζn) from ζ = (ζ1, . . . , ζn), where ζi are uniformly dis-
tributed on [0; 1].

2. Solve the equation
θ̂(ξ, ·) = θ̂0, (5)

where θ̂0 is the estimated parameter given the data (x1, . . . , xn), and set
θinvsim equal to the solution.

Depending on the distribution of X there are different methods to solve Equa-
tion (5):

1. In some cases, Equation (5) can be solved analytically. For example, if
X belongs to a transformed location-scale familie F = {h(µ + σZ)|µ ∈
R, σ > 0} for some fixed random variable Z and if the chosen estimation
method is the maximum likelihood method, then

µsim = µ̂0 −
µ̂(Z1, . . . ,Zn)

σ̂(Z1, . . . ,Zn)
· σ̂0 and σsim =

σ̂0
σ̂(Z1, . . . ,Zn)

where θ̂0 = (µ̂0, σ̂0) is the estimate of (µ, σ) for a given observation (x1, . . . , xn)
and µ̂(Z1, . . . ,Zn) resp. σ̂(Z1, . . . ,Zn) are the random variables depend-
ing on the vector (Z1, . . . ,Zn), with Zi ∼ Z, using the maximum likeli-
hood method (cf. [4], Corollary 2).

Example 2 The two-parameter Pareto distribution Par(β, k) with scale pa-
rameter β and shape parameter k given by the density function

f(x) = k · βk

xk+1
for x ≥ β.

is a transformed location-scale family derived via the function h(x) =
exp(x) from the generalized exponential distribution. It is very popular
for modelling extreme risks. The maximum likelihood estimates for the
parameters β and k given the sample {x1, . . . , xn} are (cf. [6], Section 5.3)

β̂ = min
i
xi and k̂ =

n∑
lnxi − ln β̂

.
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Note that β̂ and k̂ are independent random variables [8]. Moreover, β̂ is
Pareto distributed with scale parameter β and shape parameter n · k and
k̂ has an inverse gamma distribution with shape parameter n−1 and scale
parameter n · k.
Using the inversion method we get a realization (ksim, βsim) of (ksim,βsim)
by

ksim =
k̂

n
· F−1Γ (n−1,1)(ζ1) and βsim = β̂ ·

(
F−1Par(1,n·ksim)

(ζ2)
)−1

where F−1Γ (n−1,1) resp. F−1Par(1,n·ksim)
is the inverse cumulative distribution

function of the Gamma distribution with shape parameter n− 1 and scale
parameter 1 resp. of the Pareto distribution with shape parameter 1 and
scale parameter n · ksimW and ζ1, ζ2 are realizations of two independent,
uniformly distributed random variables ζ1, ζ2.
Let us consider two samples of different sizes n = 10 and n = 20 taken
from [7], Exercise 13.57.
The first sample is given by

S1 = {132; 149; 476; 147; 135; 110; 176; 107; 147; 165}

and the second sample is

S2 = S1 ∪ {135; 117; 110; 111; 226; 108; 102; 108; 227; 102}.

Using the maximum likelihood method for S1 (resp. S2) we obtain

β̂ = 107 (resp. β̂ = 102) and k̂ = 2.5908 (resp. k̂ = 3.0185).

The table below displays the impact of the consideration of parameter
uncertainty on the risk capital calculation for both samples. The risk cap-
ital with parameter uncertainty has been determined using a Monte-Carlo
simulation with 1,000,000 realizations.

Sample
Risk capital

Increase in %without with
param. risk param. risk

S1 827.03 2,144.73 +159%
S2 590.07 837.86 +42%

The Pareto distribution is a probability distribution with a heavy tail.
Therefore, it is not surprising that the parameter risk is even more relevant
than in the case of the normal distribution. Moreover, the result reflects
the fact that the parameter risk declines with the size of the sample.

2. In other cases, we have to solve Equation (5) numerically. We demon-
strate this approach in Section 3 and Section 4.
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3. In the case of an univariate distribution where the confidence interval
of the estimate is known we can use the one-sided confidence interval to
construct the distribution θinvsim.

If we determine the one-sided confidence interval I(α; θ̂) = [B(α; θ̂);∞) for

the parameter θ defined by P (θ ∈ I(α, θ̂)) = α, we can use the lower bound

B(·, θ̂) to simulate θinvsim setting θinvsim(θ̂) := B(ς; θ̂) (cf. [4], Proposition 1).

Example 3 (a) Let X be a N(µ, 1)-distributed random variable. The (1−
α)-confidence interval for the parameter µ is

[
µ̂− φ−1(α)√

n
,∞
)

, where

φ is the distribution function of a N(0; 1)-distributed random variable
(see e.g. [6]). Hence,

µsim ∼ µ̂−
φ−1(ς)√

n
∼ µ̂− Z√

n
,

where ς is uniformly distributed on [0; 1] and Z is N(0; 1)-distributed.
(b) The confidence interval approach is a tool that can also be applied to

discrete distributions. Let X be a Poisson-distributed random variable
with fixed but unknown parameter λ > 0. Given a sample x1, . . . , xn,
set λ̂ := 1

n

∑
xi.

Using the normal approximation we determine an one-sided (1 − α)-

confidence interval for λ by

[
λ̂− φ−1(α)

√
λ̂
n ,∞

)
, where φ is the dis-

tribution function of the standard normal distribution.
We set then

λsim := λ̂− φ−1(ς)

√
λ̂

n
,

where ς is uniformly distributed on [0; 1].

3 The lognormal distribution with the method of moments

The inversion method explained in Subsection 2.3 has been proved to be ap-
propriate for the lognormal distribution together with the maximum likelihood
method (cf. [4]). This estimation method has a drawback: it is biased. For some
applications like reserving we prefer an unbiased estimation method such as the
method of moments. However, it is not known whether the inversion method
is appropriate if we use the lognormal distribution together with the method
of moments.

3.1 Application of the inversion method

Lemma 1 Let x1, . . . , xn be a sample drawn from X1, . . . ,Xn, where Xi are
independent, identically distributed random variables such thatXi ∼ LN(µ, σ)
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for i = 1, . . . , n. The estimates µ̂ and σ̂ of the parameters µ and σ using the
method of moments are

µ̂ = ln

(
1

n

n∑
i=1

xi

)
− σ̂2

2
and (6)

σ̂2 = ln

(
1

n

n∑
i=1

x2i

)
− 2 ln

(
1

n

n∑
i=1

xi

)
. (7)

Proof The assertion follows from E[X] = eµ+σ
2/2 and E[X2] = e2(µ+σ

2) (see
[6], Chapter 14, Section 3).

�

Note that setting SCR(α;X1, . . . ,Xn;without)) := F−1
X(θ̂)

(α), that is, ignor-

ing parameter uncertainty, implies a probability of solvency below the required
confidence level (cf. Table 1 on p. 5).

We adapt the inversion method to the lognormal distribution together with
the method of moments.

Lemma 2 Let x1, . . . , xn be a sample drawn from X1, . . . ,Xn, where Di are
independent, identically distributed random variables such that Di ∼ LN(µ, σ)
for i = 1, . . . , n. Let (µ̂, σ̂) be the estimates of the true parameters (µ, σ)
using the method of methods. A realization (µsim, σsim) of the distribution
(µsim,σsim) is given as the simultaneous solution of the following two equa-
tions

σ̂2 = − ln

(
1

n

)
− 2 ln

(
n∑
i=1

F−1
LN(0,σsim)(ζi)

)
+ ln

(
n∑
i=1

F−1
LN(0,2σsim)(ζi)

)
,(8)

µsim = µ̂+
1

2
σ̂2 − ln

(
1

n

)
− ln

(
n∑
i=1

F−1
LN(0,σsim)(ζi)

)
, (9)

where ζ1, . . . , ζn are realizations of independent [0; 1]-uniformly distributed ran-
dom variables ζ1, . . . , ζn and F−1

LN(0,σ)(·) is the inverse cumulative distribution

function of a lognormal random variable with parameters µ = 0 and σ.

Proof The function hζ(µ, σ) := (µ̂, σ̂) on p. 6 is given by

hζ(θ) =

(
ln

(
1

n

n∑
i=1

F−1
LN(µ,σ)(ζi)

)
− σ̂2

2
,

(
ln

(
1

n

n∑
i=1

F−1
LN(µ,σ)(ζi)

2
i

)
− 2 ln

(
1

n

n∑
i=1

F−1
LN(µ,σ)(ζi)i

)) 1
2

 .

Solving for µ and σ yields

µ = µ̂+
1

2
σ̂2 − ln

(
1

n

)
− ln

(
n∑
i=1

F−1
LN(0,σ)(ζi)

)
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and

µ = µ̂+ σ̂2 − 1

2
ln

(
1

n

)
− 1

2
ln

(
n∑
i=1

F−1
LN(0,2σ)(ζi)

)
,

which, after some algebraic transformations, can be seen to be equivalent to
Equations (8) and (9).

�

Note that Equation (8) can easily be solved using Newton’s iterative method.

We set Y (θ̂) := X(ξ, (µsim,σsim)) and

SCR(α;X1, . . . , Xn; inv) = F−1
Y (θ̂)

(α).

Table 2 displays the probability of solvency P (X ≤ SCR(α;X1, . . . ,Xn; inv)).
The experimental results support the hypothesis that the inversion method
leads to a probability of solvency that achieves the required confidence level
in good approximation.

n µ σ α = 95% α = 99% α = 99.5%

10
0.1

0.1 94.98% 99.01% 99.50%
1 95.17% 98.99% 99.51%

1
0.1 94.92% 99.01% 99.49%
1 95.22% 99.07% 99.52%

20
0.1

0.1 94.95% 99.02% 99.50%
1 95.27% 99.04% 99.53%

1
0.1 95.05% 99.01% 99.50%
1 95.11% 99.05% 99.55%

Table 2 P (X ≤ SCR(α;X1, . . . ,Xn; inv)) for the lognormal distribution using the inver-
sion method and considering different sample sizes n, confidence levels α and values of the
true parameters µ and σ determined using a Monte-Carlo simulation with 100, 000 samples
of size n of a lognormal random variable LN(µ, σ) and performing 10, 000 realizations of
the distribution of (µsim,σsim) given a fixed sample.

3.2 Example of the impact on risk capital calculation

We investigate the impact of the inversion method on the modelled risk cap-
ital considering the sample used in [4], Section 5, drawn from a lognormally
distributed loss variable X:

S1 = {150.01; 152.33; 120.47; 131.87; 139.07;

157.97; 128.37; 122.89; 166.47; 133.18}.

In Table 3 we compare the risk capital requirements using the inversion method
with those not taking parameter uncertainty into account.
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Estimation method
Estimated parameters Risk capital

µ̂ σ̂
without with

param. risk param. risk

MM 4.9380 0.1054 182.92 204.07
ML (cf. [4], Sect. 5) 4.9380 0.1047 182.65 203.06

Table 3 Comparison of the two estimation methods for sample S1 using a Monte-Carlo
simulation with 1,000,000 realiziations of the distribution of (µsim,σsim)

Table 4 displays the results for the more volatile sample

S2 = {150.01; 182.10; 120.47; 211.50; 139.07;

157.97; 199.35; 122.89; 166.47; 133.18}.

Estimation method
Estimated parameters Risk capital

µ̂ σ̂
without with

param. risk param. risk

MM 5.0470 0.1868 251.84 307.97
ML (cf. [4], Sect. 5) 5.0471 0.1856 250.93 302.90

Table 4 Comparison of the two estimation methods for sample S2 using a Monte-Carlo
simulation with 1,000,000 realiziations of the distribution of (µsim,σsim)

In both cases, the risk capital reflecting parameter uncertainty is significantly
higher than the one calculated without taking parameter uncertainty into ac-
count. The results obtained using each of the two estimation methods are of
the same magnitude, but we observe that the maximum likelihood method
leads to a slightly lower risk capital requirement.

4 The gamma distribution

Let X be a gamma distributed random variable with shape parameter k and
scale parameter β with density function

f(x; k, β) =

(
1
β

)k
· xk−1 exp(− x

β )

Γ (k)
.

As mentioned before, the two-parameter gamma distribution is not a trans-
formed location-scale family. It is therefore not known whether the inversion
method is appropriate in this case.
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Lemma 3 Let x1, . . . , xn be a sample drawn from X1, . . . ,Xn, where the
Xi are independent, identically distributed random variables such that Xi ∼
Γ (k, β) for i = 1, . . . , n. The estimates (k̂, β̂) of the true parameters (k, β)
using the method of moments are given by

k̂ =
d
2

n

S2
n

and β̂ =
S2
n

dn
=
dn

k̂
, (10)

where dn is the sample mean and S2
n is the sample variance.

Proof This follows from E[X] = k ·β and Var[X] = k ·β2 (cf. [6], Chapter 17).
�

The maximum likelihood estimation is more complicated: For a random
sample x1, . . . , xn taking the derivative of the logarithm of the likelihood func-
tion yields

ln(k̂)− ψ(k̂) = y and k̂ · β̂ = A

with y = ln(A/G) where A = 1
n

∑
xi is the arithmetic and G = n

√∏
xi the

geometric mean (cf. [3], Chapter 2) and ψ is the digamma function. Note that
y is always strictly positive, unless x1 = . . . = xn = 0. Since y is independent
of the scale factor β, the distribution of k̂ depends only on k and the sample
size.
for y 6= 0, the solution of the equation for k̂ can be found using an iteration
(cf. [3], Chapter 2)

km =
km−1 (ln(km−1)− ψ(km−1))

y

seeded with

k0 =
1 +

√
1 + 4y/8

4y
.

4.1 Inversion method with the method of moments

We apply the inversion method to the two-parameter gamma distribution to-
gether with the method of moments.

Lemma 4 Let x1, . . . , xn be a sample drawn from X1, . . . ,Xn, where Xi are
independent, identically distributed random variables such that Xi ∼ Γ (k, β)

for i = 1, . . . , n. Let (k̂, β̂) be the estimates of the true parameters (k, β) using
the method of methods. A realization (ksim, βsim) of the parameter distribution
(ksim,βsim) can be constructed as follows: Choose realizations ζ1, . . . , ζn of
independent, on [0; 1]-uniformly distributed random variables ζ1, . . . , ζn and
determine a zero ksim of the function

f(x) = k̂ − X
2

n(ζ1, . . . , ζn;x)

1
n−1

∑n
i=1

(
F−1Γ (x,1)(ζi)−Xn(ζ1, . . . , ζn;x)

)2 ,
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where Xn(ζ1, . . . , ζn;x) := 1
n

∑n
i=1 F

−1
Γ (x,1)(ζi). Then set

βsim =
n · k̂ · β̂∑n

i=1 F
−1
Γ (ksim,1)

(ζi)
.

Proof The function hζ(k, β) := (k̂, β̂) on p. 6 is given by

hζ(k, β) := (k̂, β̂) =

 X
2

n(ζ1, . . . , ζn; k;β)

1
n−1

∑n
i=1

(
F−1Γ (k,β)(ζi)−Xn(ζ1, . . . , ζn; k;β)

)2 ,
1

n−1
∑n
i=1

(
F−1Γ (k,β)(ζi)−Xn(ζ1, . . . , ζn; k;β)

)2
Xn(ζ1, . . . , ζn; k;β)

 .

where Xn(ζ1, . . . , ζn; k;β) := 1
n

∑n
i=1 F

−1
Γ (k,β)(ζi). Using

X
2

n(ζ1, . . . , ζn; k;β)∑n
i=1

(
F−1Γ (k,β)(ζi)−Xn(ζ1, . . . , ζn; k;β)

)2 =
X

2

n(ζ1, . . . , ζn; k; 1)∑n
i=1

(
F−1Γ (k,1)(ζi)−Xn(ζ1, . . . , ζn; k; 1)

)2

and

β̂ =
Xn(ζ1, . . . , ζn; k;β)

k̂
=
β ·
∑n
i=1 F

−1
Γ (k,1)(ζi)

n · k̂

the assertion follows.

�

Consequently, we can now set

SCR(α;x1, . . . , xn; inv) := F−1
Y (k̂,β̂)

(α),

where Y (k̂, β̂) = X(ξ, (ksim,βsim)). Table 6 displays the solvency probabili-
ties P (X ≤ SCR(α;X1, . . . ,Xn; inv)).
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n β k α = 95% α = 99% α = 99.5%

10

1
1 95.21% 90.00% 99.53%
2 95.11% 99.00% 99.49%
4 95.03% 99.03% 99.52%

5
1 95.16% 90.05% 99.51%
2 95.13% 99.01% 99.51%
4 95.04% 99.02% 99.53%

10
1 94.92% 90.00% 99.50%
2 95.08% 99.06% 99.52%
4 95.06% 99.02% 99.51%

20

1
1 95.12% 90.03% 99.52%
2 95.09% 99.05% 99.54%
4 95.10% 99.04% 99.51%

5
1 95.15% 90.09% 99.56%
2 95.00% 99.00% 99.50%
4 95.00% 99.05% 99.52%

10
1 95.08% 90.06% 99.50%
2 95.16% 99.05% 99.55%
4 95.07% 99.00% 99.49%

Table 5 P (X ≤ SCR(α;X1, . . . ,Xn; inv)) for the two-parameter gamma distribution us-
ing the inversion method and considering different sample sizes n, confidence levels α and
values of the true parameters k and β determined using a Monte-Carlo simulations with
100, 000 samples of size n of a gamma-distributed random variable Γ (k, β) and performing
10, 000 realizations of the distribution of (ksim,βsim).

The empirical results support the hypothesis that the inversion method leads
to a probability of solvency close to the desired confidence level.

4.2 Inversion method with the maximum likelihood method

We now consider the more popular maximum likelihood method.
Unfortunately, the parameter estimation using the maximum likelihood method
is rather complicated. For the application of the inversion method we use a
simple approximation by Thom [12] which gives good results in practice:

Consider the equation for k̂

ln(k̂)− ψ(k̂) = y. (11)

Using the asymptotic expansion

ψ(x) = log x− 1/(2x)−
m∑
k=1

(−1)k−1Bk/(2kγ
2k) +Rm
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where Bk are the Bernoulli numbers with B1 = 1/6 and B2 = 1/30 etc. and
Rm is the remainder after m terms, we derive the approximation

ψ(x) ≈ ln(x)− 1/(2x)− 1/(12x3).

Substituting in (11) yields the quadratic equation

16yk̂2 − 6k̂ − 1 ≈ 0

whose only relevant root is

k̂ =
1 +

√
1 + 4y/3

4y
.

Note that y depends on the real parameter k.
For the application of the inversion method we first determine realizations
ζ1, . . . , ζn of independent, on [0; 1] uniformly distributed random variables
ζn, . . . , ζn. A realization ksim of ksim is then given by a root of the func-
tion

f(x) =
1 +

√
1 + 4y(x)/3

4y(x)
− k̂

where

y(x) = A/G with A =
1

n

∑
xi, G = n

√∏
xi, xi = F−1Γ (x,1)(ζi).

Given ksim a realization βsim of βsim is determined by

βsim =
n · k̂ · β̂∑n

i=1 F
−1
Γ (ksim,1)

(ζi)
.

Finally, we set

SCR(α;x1, . . . , xn; inv) := F−1
Y (k̂,β̂)

(α) where Y (k̂, β̂) = X(ξ, (ksim,βsim)).

Table 6 displays probability of solvency P (X ≤ SCR(α;X1, . . . ,Xn; inv)).
The empirical results support the hypothesis that the inversion method to-
gether with the maximum likelihood method leads to a risk capital requirement
that achieves the desired confidence level in good approximation.

4.3 Example of the impact on the risk capital calculation

Let us consider the following sample of size n = 10 taken from [7], Exercise
13.14:

{1, 500; 6, 000; 3, 500; 3, 800; 1, 800; 5, 500; 4, 800; 4, 200; 3, 900; 3, 000}. (12)

Using the method of moments we obtain

k̂ = 6.86 and β̂ = 553.22

Table 7 displays the impact of the consideration of parameter uncertainty on
the risk capital calculation. The risk capital with parameter uncertainty has
been determined using a Monte-Carlo simulation with 1,000,000 realizations.
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n β k α = 95% α = 99% α = 99.5%

10

1
1 95.07% 99.04% 99.55%
2 95.00% 99.01% 99.53%
4 95.13% 99.06% 99.52%

5
1 95.05% 98.97% 99.49%
2 95.09% 99.04% 99.52%
4 95.00% 99.01% 99.52%

10
1 94.95% 99.00% 99.48%
2 94.91% 99.01% 99.53%
4 95.04% 99.02% 99.52%

20

1
1 95.01% 89.99% 99.50%
2 95.00% 99.02% 99.51%
4 95.07% 99.01% 99.56%

5
1 95.05% 99.00% 99.48%
2 94.98% 98.97% 99.49%
4 95.05% 98.98% 99.50%

10
1 95.05% 99.07% 99.55%
2 94.95% 99.03% 99.50%
4 94.87% 98.97% 99.50%

Table 6 P (X ≤ SCR(α;X1, . . . ,Xn; inv)) for the two-parameter gamma distribution
using the inversion method and considering different sample sizes n, confidence levels α
and values of the true parameters k and β taking 100, 000 samples of size n of a gamma-
distributed random variable Γ (k, β) and performing 10, 000 realizations of the distribution
of (ksim,βsim) given a fixed sample.

Estimation without the with the
Increase in %method consideration of consideration of

parameter risk parameter risk

MM 8,554.93 11,113.24 +29,90%

ML 8,790.90 11,746.60 +33,62%

Table 7 Required risk capital for the sample given by Equation 12 using method of moments
(MM) and maximum likelihood (ML) with and without the consideration of parameter
uncertainty

5 Summary and Outlook

This article deals with practical aspects of parameter uncertainty in the con-
text of risk capital calculations.
For a practitioner it is first necessary to assess the impact of parameter uncer-
tainty. In Table 1 we give the probabilities of solvency for risk capital calcula-
tions ignoring parameter uncertainty for commonly used distribution families
and estimation methods. For all distributions and all estimation methods con-
sidered, the probability of solvency is significantly lower than the given con-
fidence level. In some cases, like e.g. for the Gamma distribution and sample
size n = 10, it leads to a probability of insolvency which is five times higher
than required.
Next we recall the inversion method introduced in [4] and explain its use for



Practical aspects of parameter uncertainty 17

different distributions (see Section 2).
We apply the inversion method in two relevant cases which have not been con-
sidered so far but are commonly used in practice: the lognormal distribution
together with the method of moments (Section 3) and the Gamma distribution
with both, the method of moments and maximum likelihood method (Section
4). For both distributions we give experimental results supporting the hypoth-
esis that the inversion method leads to probabilities of solvency achieving the
required confidence level in good approximation.
Together with the results derived in [4] the inversion method has proved to be
an appropriate and practical tool for modelling parameter uncertainty in risk
capital calculations.
In the future, the challenge lies in the consideration of aggregate distributions
where the overall risk can be written as the sum of random variables resp. de-
pends on the several random variables, but the historical data are given on a
more granular level. An example is the collective risk model where the overall
risk is given by S =

∑N
i=1Xi, Xi ∼X, and where we have historical data for

the number of claims (i.e. realizations of N) and for the amount of the claims
(i.e. realizations of X).
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7 Appendix

We give the solvency probabilities for risk capital calculations without taking
parameter uncertainty into account for sample sizes n = 20, n = 50 and
n = 100.

n Distribution
Estimation

95% 99% 99.5%method
True parameter

20

Gamma

ML
93.16% 97.86% 98.63%

k = 0.5, β = 1
ML

93.27% 98.00% 98.76%
k = 2, β = 1

MM
92.60% 97.41% 98.26%

k = 0.5, β = 1
MM

93.26% 97.96% 98.72%
k = 2, β = 1

Normal/
ML* 93.29% 98.03% 98.79%Lognormal

(two parameter)
MM

93.26% 98.02% 98.78%
µ = 0.1, σ = 0.1

Normal/ MM
93.26% 98.02% 98.78%

Lognormal µ = 1, σ = 0.1
MM

91.81% 97.00% 97.98%
µ = 1, σ = 1

Exponential
ML* 93.91% 98.42% 99.10%

(one parameter)
Pareto

ML* 93.29% 98.14% 98.90%
(two parameter)

Table 8 Solvency probabilities in the case that the risk capital is calculated without taking
parameter uncertainty into account for n = 20 and different confidence levels, different
continuous distributions and different methods of estimation.
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n Distribution
Estimation

95% 99% 99.5%method
True parameter

50

Gamma

ML
94.28% 98.58% 99.20%

k = 0.5, β = 1
ML

94.32% 98.64% 99.25%
k = 2, β = 1

MM
93.99% 98.37% 99.03%

k = 0.5, β = 1
MM

94.38% 98.59% 99.21%
k = 2, β = 1

Normal/
ML* 94.33% 98.65% 99.26%Lognormal

(two parameter)
MM

94.32% 98.64% 99.25%
µ = 0.1, σ = 0.1

Normal/ MM
94.32% 98.64% 99.25%

Lognormal µ = 1, σ = 0.1
MM

93.45% 98.09% 98.84%
µ = 1, σ = 1

Exponential
ML* 94.54% 98.79% 99.35%

(one parameter)
Pareto

ML* 94.34% 98.69% 99.30%
(two parameter)

100

Gamma

ML
94.64% 98.80% 99.36%

k = 0.5, β = 1
ML

94.66% 98.83% 99.38%
k = 2, β = 1

MM
94.48% 98.68% 99.27%

k = 0.5, β = 1
MM

94.64% 98.80% 99.36%
k = 2, β = 1

Normal/
ML* 94.67% 98.83% 99.39%Lognormal

(two parameter)
MM

94.66% 98.83% 99.38%
µ = 0.1, σ = 0.1

Normal/ MM
94.66% 98.83% 99.38%

Lognormal µ = 1, σ = 0.1
MM

94.10% 98.48% 99.13%
µ = 1, σ = 1

Exponential
ML* 94.74% 98.89% 99.42%

(one parameter)
Pareto

ML* 94.67% 98.85% 99.40%
(two parameter)

Table 9 Solvency probabilities in the case that the risk capital is calculated without taking
parameter uncertainty into account for n = 50 and n = 100 and different confidence levels,
different continuous distributions and different methods of estimation.
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