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Abstract 

 

Water pollution is an alarming problem that endangers the health of all living beings. The 

textile industry is listed as one of the most contaminating industries, since in order to carry 

out its dyeing and finishing processes, it requires a large amount of water resources; by 

decades, this industry has used Advanced Oxidation Processes (AOPs), since they have 

several advantages (e. g. destruction of toxic substances, reduction of heavy metals, allowing 

their use in conjunction with other processes, among others). Among the AOPs, 

heterogeneous photocatalysis stands out for its high efficiency for the removal of 

contaminants, including azo dyes. 

In order to perform a photocatalytic process, it is necessary to have a photoreactor, which 

will require a photocatalyst and at least one light source that activates the catalyst. This type 

of photoreactors can present several problems, such as the use of high cost photocatalysts, 

the generation of toxic byproducts in some low photocatalysts, the high electrical 

consumption caused by the use of traditional lighting sources and even difficulties with the 

geometry of the photoreactors. 

Hence the scientific community has tried to optimize the photocatalytic processes, some 

scientists have worked in the generation of new photocatalysts to be able to use them in 

wavelengths generated by low cost lighting sources (e. g. visible light), nevertheless, which in 

many times it increases the price of the photocatalyst. Another approach is to reduce 

electricity consumption by opting for the replacement of traditional lamps with low 

consumption lighting, for example, LED lighting; However, this substitution is currently 

done arbitrarily, so sometimes some authors doubt the ability to use these sources in this 

type of process. Moreover, when trying to improve the lighting sources, the photoreactor 

can be altered, so it is important to take into account its characteristics in order to achieve a 

significant improvement. 

This thesis focuses on an optoelectronic optimization to improve the efficiency of the 

lighting sources used in photocatalytic reactors. For this, a methodology has been generated 

to calculate LED arrays using uniform irradiance models, this irradiance must be 

homogeneous, with enough energy to photoactivate the catalyst with the aim to replace the 

traditional lamps, avoiding the chemical alteration of the photocatalysts; Likewise, a 

photocatalytic reactor has been designed and implemented on a laboratory scale with 

ultraviolet illumination adjusted to its characteristics (i.e. geometry, dimensions, among 

others) to work with a low cost photocatalyst (TiO2) in the decolorization of wastewater with 

textile dyes. Finally, in-situ monitoring has been designed and implemented in order to 

analyze the decolorization of textile water, this type of monitoring avoids the collection of 

water samples during the process, without altering the geometry of the reactor or reducing 

the volume of treated water in the reactor. 
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Chapter 1. INTRODUCTION 

1.1 Research topic 

Water is essential for living beings, although three quarters of the surface of the Earth are 

considered covered with water, not all can be used for human consumption. 

Since 2010, the United Nations General Assembly (UNGA) recognized the human right to 

have sufficient, clean and accessible water for its use. The increasing volume of population 

and industrial development during the last decades has caused a high consumption of water 

resources that negatively affect the environment, since they generate large amounts of 

contaminants and waste, which end up contaminating rivers, lakes, and oceans[1]. 

The wastewater comprises different inorganic and organic contaminants, at the industrial 

level, some of the waste are an excess of production of dangerous chemical substances[2]. 

Some solutions to this important environmental problem have been aimed at making an 

intelligent consumption of resources, as well as developing methodologies that help eliminate 

water pollution; therefore, the scientific community is continuously working on the creation 

of separation techniques and methods for the destruction of pollutants. 

In order for these techniques to be used, the chemistry of the water to be treated must be 

taken into consideration, since the processes for their purification are different and depend 

on the type of contaminant they contain. Water contaminated by human activity generally 

responds to biological treatment plants, activated carbon methods or traditional disinfection 

treatments (e.g. chlorination, oxidation, ozonation, among others); however, some of these 

procedures are not adequate according to regulations for subsequent discharge to the 

drainage or collectors[2]. 

Several countries are using wastewater for their irrigation systems (in some countries they 

represent approximately 7%), but this requires regulation in these waters, which is why the 

European Union has stipulated the directive 2000/60/CE, where the maximum and 

minimum values for the content of minerals, ions, and pathogens in water are established to 

be considered potable[3]. 
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1.1.1 Water Pollution: Textile Industry 

The United Nations Economic Commission for Europe (UNECE) has indicated that 20% 

of wastewater comes from the fashion industry, it is the second CO2 emitter, and generates 

more than 21,000 million waste and garbage annually. Since this industry requires 150 - 300L 

of water to produce one kilogram of textile products[4–6]. 

The textile industry is a sector that most influences the production of wastewater[7,8].Textile 

wastewater is commonly intensely dyed and contains high concentrations of organic 

substances derived from various residues of dyes and different chemical additives[8,9]. 

This industry uses more than 100,000 different dyes, of which it is estimated that almost 

280,000 tons are lost in the textile effluents every year[7,9,10]. Approximately 70 % of these 

dyes are synthetic azo dyes, and it is estimated that about 800,000 tons are produced 

annually[9,11]. Azo dyes are widely used because of their high reactivity and color 

resilience[12,13]. The azo dyes are characterized by nitrogen-nitrogen double bonds the so-

called azo bonds (-N=N-)[14]. 

The biggest danger of textile wastewater is that it ends up spilling into rivers, lakes, 

mangroves or any other aquifer, causing severe damage to these ecosystems, as has happened 

with places like Bangladesh[4].  

Nowadays a greater amount of clothing is produced at low price, since demand has increased; 

between 2000 and 2014, the volume of clothing dyed doubled and this phenomenon will 

continue to occur in coming years[15]. 

The National Institute of Statistics (INE) in conjunction with the Spanish Intertextile 

Council of the year 2000, estimates that Catalonia has 65% of the textile activity in Spain, 

Valencia with 25% and 10% is distributed throughout the rest of the country. The dyeing 

and finishing sectors have great relevance in Catalonia and the Valencian Community, due 

to the fact that the greater amount of textile activity is concentrated in these two zones[16]. 

According to the data provided in 2001 by the Catalan Water Agency, extracted from the 

Declarations of Water Use and Consumption presented by companies annually, 30% of 

textile companies discharge 60% of their wastewater when they have been treated; the 

remaining 70% declared that 36% of wastewater does not have any treatment system, but 

their waste is discharged to the sanitation system to be treated by the municipal wastewater 
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treatment plant. Therefore, only 10% of companies dump their waste without any treatment, 

which would represent 18% of the wastewater generated by the Catalan textile industry[16]. 

The textile industry has two major problems, its high water consumption, and the complexity 

to treat wastewater. As this sector performs primary, secondary and advanced treatments to 

eliminate organic matter, solids that have not been eliminated during the process chain[17]. 
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1.2 Research problem 

1.2.1 Techniques for the treatment of textile wastewater 

There are different techniques for the treatment of textile wastewater, and they can be 

classified as shown in Fig. 1-1 [18]: 

 

Fig. 1-1. Conventional methods for textile wastewater treatment. 

 

Each of these methods have their advantages and disadvantages. There are some 

disadvantages that are common in these techniques, for example, the generation of sludge 

and the high cost of the process, either because of the cost of the chemical agent or because 

of the electrical cost[18], For this reason during the last years different techniques have been 

generated for the treatment of textile effluents, focusing mainly on the elimination of dyes, 

since this process entails greater difficulty. 

 

1.2.2 Advanced Oxidation Processes 

There are methods of low cost and high removal of contaminants, which minimize the use 

of chemicals improving the environmental impact; this type of techniques stand out for their 

effectiveness and are called Advanced Oxidation Processes (AOPs), they are especially useful 

before a biological treatment (pretreatment), for the treatment of pollutants resistant to 

biodegradation or as after-treatment to improve water characteristics[19–22]. 

Conventional 
methods for 

textile 
wastewater 
treatment

Chemical Methods

• Oxidation Process
•Fentons agents

•Ozonation

•Photochemical

•Electrochemical destruction

Physical Treatment

• Adsorption
•Activated Carbon

•Membrane filtration

•Ion exchange

•Electrokinetic coagulation

•Irradiation

Biological Treatment

• Adsorption by microbial 
biomass

• Bioremediation systems
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The Advanced Oxidation Processes are based on the generation of strongly oxidizing species, 

the most successful are those that originate hydroxyl radicals (OH•), since they have a high 

oxidation potential (2.8V)[23]. 

In order to classify the AOPs can be from the use or not of sources of lighting in the process, 

resulting in photochemical and non-photochemical processes, in Fig. 1-2 some of the most 

commonly used are indicated[24]. 

 

 

Fig. 1-2. AOPs Classification. 

 

The photochemical processes established for the degradation of pollutants in aqueous media 

are based on providing enough energy (photons) to the compounds to reach excited states 

for the time necessary to form reactions. These photons are absorbed by molecules, excite 

electrons forming free radicals and create other reactions. According to the Planck equation 

traditional methods that use ultraviolet (UV) radiation have more energetic photons. 

For the mineralization and degradation of azo dyes AOPs are commonly used[20–22]. In 

order to investigate the effectiveness of a photochemical AOP, it is important to consider 

the following points[25,26]. 

1. The ability to absorb ultraviolet radiation by the compounds to be degraded. 

2. The quantum yield of degradable compounds. 

3. Stability and easy photodegradation of degradable products. 
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The advantages and disadvantages of the AOPs, can be summarized in Table 1-1 [27]: 

 

Table 1-1. Advantages and disadvantages of AOPs. 

Advantages Disadvantages 

• Destruction of toxic substances forming 

harmless compounds. 

• Organic substances (simple or complex) are 

broken down into water, CO2 and inorganic 

acids. 

• Reduction of heavy metals (toxic). 

• Operate at room temperatures (25 – 80 ºC). 

• They can be used in conjunction with other 

processes. 

• The use high cost reagents. 

• The process can form intermediate 

byproducts. 

• The catalyst can be deactivated during the 

process. 

 

However, despite these limitations, techniques involving ozonation and UV irradiation are 

commercialized[19,25,28]. 

 

1.2.3 Heterogeneous Photocatalysis 

Amongst the AOPs, heterogeneous photocatalytic processes highlight due to their high 

efficiency in the removal of contaminants, including synthetic dyes[29,30]. In order to carry 

out photocatalytic processes, a reactor, ultraviolet light sources and photocatalyst are mainly 

required[31]. Nonetheless, each of these elements may present some drawback. 

 

1.2.3.1 Photocatalyst 

Several semiconductors have been used for the degradation of compounds, among them the 

photocatalyst with the best results is Titanium Dioxide (TiO2), while Zinc Oxide (ZnO), 

although it obtains degradations similar to those of TiO2, with lower cost it is less safe, 

because, it has a weak chemical stability. Semiconductors such as Cadmium Sulfide (CdS) or 

Gallium Phosphide (GaP) absorb large fractions of the solar spectrum, but in heterogeneous 

photocatalysis processes undergo degradation during different catalytic cycles. Finally, other 
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semiconductors have high cost or are toxic and therefore its use for water treatments is not 

recommended[25,27,32]. 

 

1.2.3.2 UV sources 

The conventional mercury lamps (low, or medium pressure) are the most popular lamps for 

the use of photocatalysis, nevertheless, they waste between 60 – 80 % of their electrical 

energy in heat and infrared radiation and their lifetime is typically 10,000 - 15,000 hours and 

they need a large amount of energy for their operation[33]. 

 

1.2.3.3 Reactor 

The design of photocatalytic reactors is related to two major difficulties, a) ensure the perfect 

contact between catalyst and water (i.e. the catalyst can be, immobilized or suspended), b) 

the lighting of the catalyst particles, since it is related to the catalyst bandgap and its position. 

Some of the intrinsic design parameters are flow distribution, reactor geometry, mass 

transfer, and catalyst interaction[34]. 

In conclusion, with the aim to optimize the efficiency and decrease the cost of treated water 

from heterogeneous photocatalysis processes it is necessary to generate modifications in the 

main elements involved in photocatalytic processes. In order to realize an optimized reactor, 

it is necessary to eliminate the traditional sources by sources with low consumption with the 

aim to decrement the energy consumption, besides, these new sources must provide the 

necessary energy to photoactivate the photocatalyst; it is also important to consider the type 

of catalyst used, to prevent the generation of toxic byproducts.  
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1.3 Hypotheses 

In order to solve the presented research problems, the following hypotheses were formulated 

for this research work: 

1. The reduction of the energy consumption of traditional sources can be done by 

replacing the low consumption sources adapted to the characteristics of the reactor. 

2. Using uniform irradiance models it is possible to generate enough ultraviolet 

radiation required to use with low cost photocatalysts. 

3. The decrease of the degradation time can be achieved by taking the lighting to the 

geometry of the photocatalytic reactor. 

4. Using the optical phenomena of photocatalytic processes it is possible to estimate 

the chemical state of the process. 
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1.4 Aim and objectives 

The aim of this thesis is to improve energy efficiency, as well as to optimize the 

ultraviolet illumination of photocatalytic processes. This objective is approached 

considering the structure of the reactor, the uniform UV-illumination and the 

photocatalyst. In addition, an optical setup will be implemented to obtain measurements to 

estimate the chemical status of the process. 

In order to successfully achieve this aim, the following specific objectives are proposed. 

• The research, and the characterization of efficient ultraviolet sources to perform 

photocatalysis. 

• Design and modeling of a system for the generation of uniform ultraviolet lighting 

with high energy efficiency.  

• Design and implementation of a photocatalytic photoreactor with optimized lighting. 

• The research, design and implement an optical system for the estimation of the textile 

dyes degradation in photocatalytic processes. 
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1.5 Outline of the chapters 

In order to cover the exposed objectives, this thesis is divided into different sections, ordered 

as it follows: 

Chapter 2 presents a brief review of the state of the art of heterogeneous photocatalytic 

processes, detailing different problems that nowadays have been tried to solve. 

Chapter 3 describes the characterization of traditional sources and LEDs, as well as the 

methodology that was implemented for the generation of ultraviolet sources with uniform 

irradiance. 

Chapter 4 presents the design and implementation of the photocatalytic reactor with 

optimized illumination, moreover, the results obtained using the reactor for decolorization 

of azo dyes are presented. 

Chapter 5 shows the degradation results obtained when there are temperature variations in 

the uniform irradiance system. 

Chapter 6 introduces the design and implementation of the online monitoring system in 

photocatalytic minireactors, to estimate the decolorization of azo dyes in real time. 

Although each chapter include a partial conclusion focused on its respective topic, in 

Chapter 7 a general conclusions and future work are presented. Additionally, this chapter 

also offers the contributions resulting from this research work. 
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Chapter 2. HETEROGENEOUS PHOTOCATALYSIS 

 

The mechanism of photocatalysis begins when a chalcogens semiconductor is irradiated with 

photons that have energy greater than or equal to that of its band gap (Band Gap). At that 

moment, a photon absorption occurs and electron / hole pairs (e-/h+) are created inside the 

photocatalyst, which are separated into free electrons in the Conduction Band (eCB
-) and gaps 

in the Valence Band (hVB
+). This dissociation of charges induces the redox potential, because 

the holes have oxidant capacity, and the electrons take part in the reduction reactions (see 

Fig. 2-1)[28]. 

 

 
Fig. 2-1. Photocatalytic Process. 

 

According to different studies, heterogeneous photocatalysis can be used to oxidize organic, 

inorganic compounds, and even treat heavy metals; for that reason, these types of processes 

are interesting and innovative for the treatment of contaminated water. Nevertheless, after 

years of research it has been stated that the main drawback to the use of AOPs is the high 

cost of using reagents as well as excessive energy and electricity consumption to use the 

lamps or generate ozone[25,32]. 
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2.1 Photocatalysts 

A fundamental task to take advantage of heterogeneous photocatalysis is the choice of the 

catalyst, since it must be activated by light. The catalysts represent an extensive class of 

semiconductor materials capable of having photocatalytic applications[35]. 

For a semiconductor to be cataloged as an ideal photocatalyst, it must have the following 

qualities[27]: 

• Photostability 

• Chemical and biologically inert nature 

• Availability and low cost 

• Ability to absorb reagents under efficient photonic activation 

 

Table 2-1 shows the main semiconductors used as photocatalysts, moreover a price 

comparison of the various catalysts for photocatalysis can be made and ordered according 

to the wavelength at which they work, to evaluate the possibility of using them either in 

photocatalysis with conventional lamps, sunlight, among other sources. 

Table 2-1. Characteristics of different photocatalysts. 

Photocatalyst 
Wavelength 

(nm) 

Energy 

(eV) 

Cost 

(USD/kg) 
Zone 

SnO2 318 3.9 60 – 120 

Ultraviolet 

ZnS 344 3.7 0.6 – 0.9 

SrTiO3 365 3.4 10 – 50 

BaTiO3 375 3.3 15 – 25 

TiO2 388 3.2 1.5 – 2 

ZnO 390 3.2 0.952 – 1.146 

WO3 443 2.8 900 – 974 

Visible 

FeTiO3 443 2.8 1.5 – 2 

CdS 497 2.5 500 – 1000 

Fe2O3 565 2.2 50 – 100 

CdO 590 2.1 5.5 – 6 

CdSe 730 1.7 300 – 500 
Infrared 

GaAs 886 1.4 100 – 400 
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As can be seen, the cost of the photocatalyst increases as it approaches the visible region of 

the electromagnetic spectrum that is used during solar photocatalysis. Although these 

photocatalysts are commercial, many photocatalysts works have been done to modify their 

characteristics and thus generate better photocatalysts, unfortunately not all of these works 

have created a low cost photocatalyst and with characteristics superior to those of TiO2, and 

although the activation of the catalyst by sunlight could represent a decrease in the energy 

cost, it also constitutes an investment in the installation costs of solar photoreactors with 

coolers to reach the optimum working temperature of the photocatalysis. 

In the case of photocatalysts other than titanium dioxide (TiO2) several comparisons have 

been made to corroborate their mode of working, some of these studies confirmed that zinc 

oxide (ZnO) exhibits better efficiency than TiO2 in the photocatalytic degeneration of dyes 

in aqueous medium. Kormann conducted a comparative study of the photocatalytic activity 

of TiO2, Fe2O3, and ZnO, and the results showed that ZnO and TiO2 possess much more 

photocatalytic activity than Fe2O3 in the degradation of chlorinated hydrocarbons; though, 

ZnO undergoes corrosion with ultraviolet light induced by autooxidation, and this 

phenomenon is one of those responsible for the decrease of the photocatalytic activity of 

ZnO until its inactivation [36]. 

In addition it has been reported that by doping thin films of TiO2 with different impurities 

such as Ce, Nb, Fe, Ag, Au by sputtering or implanting Fe in them, both their structure and 

their optical and photocatalytic properties can be modified, but many of these elements are 

toxic and can diffuse from the TiO2 to the environment during the photocatalytic 

application[32]. 

Likewise, cadmium sulfide (CdS) and iron oxides, despite having a suitable spectral response 

for the capture of solar radiation, are not suitable for the realization of this study, since they 

are not stable throughout the range of pH and undergo photo-corrosion during the process 

and the cadmium sulfide in its decomposition generates Cd+
2, cataloged as environmentally 

harmful[27]. 
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2.1.1 Titanium Dioxide 

Titanium dioxide is the most used catalyst in photocatalysis applications due to its high 

resistance to corrosion, low cost and safety[23,37]. 

TiO2 can be found in three crystalline forms, anatase, rutile and brookite, of these phases 

only the first two have photocatalytic activity, nevertheless, anatase has better yields. Each 

crystal lattice has its own electronic bands therefore its respective band gap and wavelength 

for its excitation, being for anatase 3.2 eV at 384 nm and for rutile 3.0 eV at 410 nm[38]. 

Due to this variation in the behaviors, a photocatalyst has been created by mixing these 

anatase and rutile forms in proportion 80/20, 75/25, or 70/30%. The commercial TiO2 is 

called Degussa P-25 and their activation zone is ≤ 388nm[39]. 

TiO2 has some disadvantages, such as the difficult recovery of the suspension due to its small 

size (specific surface area of 49 m2/g and a particle diameter of 21 mm) and its insufficient 

photocatalytic activity with solar radiation. For this reason, during recent years, a lot of 

research has been carried out to improve the characteristics of this catalyst, which have 

resulted in various methods of synthesis and doping, in addition to immobilizers and 

supports to recover the photocatalyst[40,41] 

Likewise TiO2 presents several advantages (i.e. photostability, effective oxidative power, and 

low or non- toxicity, low cost)[22,37]. Moreover its use in photocatalytic processes has some 

benefits such as, no addition of chemical products, no generation of wastes (sludges), and its 

full recovery that can be reused[42,43]. The photocatalytic process can be expressed 

according to Eq. 2-1 - Eq. 2-8 [11]: 

𝑇𝑖𝑂2 + ℎ𝑣(𝑈𝑉) → 𝑇𝑖𝑂2(𝑒𝐶𝐵
− + ℎ𝑉𝐵

+) Eq. 2-1 

𝑇𝑖𝑂2(ℎ𝑉𝐵
+) + 𝐻2𝑂 → 𝑇𝑖𝑂2 + 𝐻+ + 𝑂𝐻• 

Eq. 2-2 

𝑇𝑖𝑂2(ℎ𝑉𝐵
+) + 𝑂𝐻− → 𝑇𝑖𝑂2 + 𝑂𝐻• 

Eq. 2-3 

𝑇𝑖𝑂2(𝑒𝐶𝐵
−) + 𝑂2 → 𝑇𝑖𝑂2 + 𝑂2

−• 
Eq. 2-4 

𝑂2
−• + 𝐻+ → 𝐻𝑂2

• 
Eq. 2-5 

𝐷𝑦𝑒 + 𝑂𝐻• → 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 
Eq. 2-6 

𝐷𝑦𝑒 + ℎ𝑉𝐵
+ → 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Eq. 2-7 

𝐷𝑦𝑒 + 𝑒𝐶𝐵
− → 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Eq. 2-8 
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2.2 Ultraviolet Sources 

The term photocatalysis is defined by the IUPAC as "the acceleration of a chemical reaction 

in the presence of a photocatalyst, by excitation of ultraviolet radiation". UV radiation acts 

as the initiator of the reaction, not as a catalyst, because this radiation is depleted in the 

process[29–31,44]. 

As mentioned above, the bandgap of photocatalysts requires ultraviolet light irradiation, 

which is why there is a vast amount of artificial sources that help generate ultraviolet light. 

The most used ultraviolet light sources can be grouped into conventional, sunlight, laser and 

LED[10]. 

 

2.2.1 Conventional ultraviolet lamps 

In order to describe the behavior of ultraviolet lamps, a division is made with respect to the 

emission wavelength, where there are black lamps, which emit a long wavelength of UV 

radiation, and germicidal lamps that emit a long wavelength. Shortwave UV radiation, these 

can be low or medium pressure lamps[45]. 

 

2.2.1.1 Fluorescent lamps 

Fluorescent lamps are commonly used in the lighting industry. This type of lamps consists 

of a glass or quartz tube with two electrodes at each end, with an inert gas (argon, neon, 

xenon or krypton) containing mercury vapor at low pressure as an active ingredient; a typical 

mixture contains about 1% or even 0.1% metal vapor, and 99% - 99.9% inert gas. 

Mercury emits at UV at wavelengths of 253.7 nm (approximately 65% of the emitted light) 

and 185 nm (approximately 10% - 20%)[33,46]. 

The overall efficiency of the conversion of electrical energy into a fluorescent lamp (under 

optimal conditions) is approximately 28%. Due to the losses in the form of heat in the 

discharge, the walls and the electrodes, only about 63% of the consumed electrical energy is 

converted into UV radiation. This type of lamps work best at room temperature and its 

optimum working range is between 10 and 35 ºC, where the standardized luminous flux 

reaches approximately 90%. It’s useful life depends on the construction and varies from 

5,000 to 24,000 h[47]. 
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2.2.1.2 Xenon lamps 

Xenon and mercury-xenon lamps operate at very high pressure and temperature, therefore, 

they have to be handled with care to avoid thermal stress and contamination of the bulb. 

They produce bright white light that mimics natural light, which is appropriate for 

applications involving solar simulation (projection systems, absorbance, fluorescence). 

Mercury-xenon arc lamps have mainly the mercury spectrum with a xenon contribution[33]. 

 

2.2.1.3 Mercury lamps 

They are low pressure lamps, are used in applications that require high spectral purity. These 

lamps have a long warm-up time before starting to emit. When used with filters they can also 

provide strong monochromatic radiation at wavelengths of 404.7 and 435.8 nm (violet), 

546.1 nm (green), and 577.0 and 579.1 nm (yellow).  

 

2.2.2 Solar light 

Currently, there is a low efficiency design of solar capture technology, which leads to capture 

0.04% of the original solar photons, added to this, considering that it is only possible to work 

with 5% of the spectrum of ultraviolet solar radiation reaching the low atmosphere, it is 

deduced that solar radiation is not very efficient to be used in photocatalysis systems[32]. 

 

2.2.3 Ultraviolet LED 

UV Light Emitting Diode (LED) has an external quantum efficiency and a life time greater 

than 100,000 h, which is approximately 100 times longer than an conventional UV lamp; it 

has a low cost, robustness, compact size, light weight, low consumption, operate at room 

temperature and produces directional UV light that can be of the desired wavelength. 

Currently, this ultraviolet source are being widely used in studies of heterogeneous 

photocatalysis becoming an alternative to conventional ultraviolet lamps[48]. 

Some of the advantages of LEDs is that they do not require cooling systems to work, in 

addition you can resort to various assemblies in reactors. On the other hand, being 

unidirectional, the design of a reactor can achieve a high photocatalytic efficiency avoiding 

losses of UV light[32,49]. 
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The photocatalysis with UV/TiO2 uses conventional UV-lamps, which are typically based 

on low or medium pressure lamps, however due to its disadvantages (i.e. low photonic 

efficiency, overheating, short lifetime, high energy consumption, toxicity (mercury), low 

mechanical stability, cooling requirements), in recent years they have been replaced by LED 

lighting sources[10,50,51]. 

 

2.2.4 Comparison of ultraviolet light sources 

Table 2-2 shows the comparison of ultraviolet sources that can be used in wastewater 

treatment. 

Table 2-2. Comparison of ultraviolet sources. 

Characteristics 
LED 

LED385-33 

LP 

PL-L 18W/10/4P 

Xenon 

UXL-S75XE 

Wavelength (nm) 380 – 390 320 – 450 350 – 800 

Cost (USD) 8 14 500 

Power (W) 0.2 18 80 

Current (A) 0.02 0.375 5.4 

Voltage (V) 10 58 15 

Radiation power in UV (W)  3.5 8 

Temperature (ºC) -30 – 80 20 – 200 20 – 200 

Lifetime (h) 100,000 5,000 2,000 

 

While LEDs do not seem to be efficient enough as other sources, studies have shown that 

for certain applications, the replacement of mercury lamps with ultraviolet LEDs can 

significantly reduce CO2 production to 15 tons[10]. 

For this reason, the European Committee for Standardization (CEN) has prescribed 

conditions in which photocatalytic surfaces should be irradiated during the photocatalytic 

efficiency test, and LEDs have been included in the list of irradiation lamps, thanks to their 

unique properties[45]. 

In addition, photocatalytic reactors that use traditional UV light sources can waste up to 80% 

of the light they produce, while the LEDs to emit at specific wavelengths can completely use 

the light they generate and certain studies indicate that increasing the number and power of 

the LEDs can get better photocatalytic degradation of pollutants in less time (because these 

devices do not heat up)[10].
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2.3 Photocatalytic Reactors 

One of the most outstanding properties is the diameter of the reactor, since it must ensure 

an adequate relationship between the light source, the concentration of the photocatalyst and 

the efficiency of the process. The manner in which the radiation affects the reactor and the 

length of the optical path are essential to determine the optimum concentration of the 

catalyst and to avoid shielding effector. Another important parameter is the type of material 

used because they must have a high resistance to degradation and the ability to transmit UV, 

shortening the list of possibilities. The most common materials are plastics, acrylics and glass 

(with low content of iron and quartz, the latter being very expensive)[34]. 

The first investigations in the field of photoreactors were carried out with UV lamps because 

in this way the experimental conditions can be controlled, besides establishing the 

wavelength in a specific  work zone. Recently, basic research was carried out at the laboratory 

level for the development of new reactor designs, since commercial prototypes are mainly 

based on immersion reactors (annular)[32,52]. 

 

2.3.1 Classification of photocatalytic reactors 

There are several options to classify photoreactors 

Catalyst: The photocatalyst may be in suspension or immobilized [51]. 

• Photoreactors with agitation: They are used for photocatalysts in suspension. 

• Photoreactors with supports: They are used for immobilized photocatalysts. 

Illumination: UV irradiation is important for the design of reactors[38]. 

• Ultraviolet lamps: Mercury, low, medium or high pressure xenon lamps are the most 

popular. 

• Solar light: They have different configurations, which will be defined later. 

• LEDs: They have different advantages given their small sizes and the ease of coupling 

provided by this light source. 
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Source position: Location of the light source with respect to the reactor [29]. 

• Immersion: The light source is located inside, either centered or surrounding the 

reaction chamber. Within this type is the immobilizer configuration where the surface 

of the lamp can also provide additional area for the immobilization of the catalyst 

(see Fig. 2-2a). 

• Distributive: The light is distributed to the catalyst, a disadvantage is that the light 

hits the surface of the catalyst, without limiting the absorption by reagents. There are 

subtypes that include reflectors and fiber optics (see Fig. 2-2b). 

• External: The light source is located outside the reaction chamber, decreasing 

efficiency if the light source and the reactor are not of a single unit (see Fig. 2-2c). 

 

A) B) C) 

  
 

Fig. 2-2. Position of the source in photoreactors. A) Immersive, B) Distributive, C) External. 

 

2.3.1.1 Annular reactor 

These reactors the lamp is placed on the central axis of the cylinders (immersive). It has the 

advantage that practically the total of photons emitted by the lamp reach the medium to be 

degraded. With the aim to prevent the photons from reaching the external wall of the reactor 

by a small size in the design, a mirror covering the system can be placed. Sometimes these 

types of reactors are used for the continuous flow water process, in this case, it is 

recommended that contaminated water passes more than once through the length of the 

reactor to ensure that all the effluent is treated[52]. 
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2.3.1.2 Reactor with catalyst in suspension 

The most popular ones use the suspended catalyst in a flow that resides in an annular space 

surrounded by an ultraviolet source, nonetheless the latest studies have created thin films 

that contain the catalyst and thus it is easier to recover after the water process. This type of 

reactors considers the mass balance important since it involves the conversion and the 

agitation of the tank [47,49]. 

 

2.3.1.3 Multilamp reactor 

This type of equipment is widely used when the source of radiation are low pressure or 

fluorescent lamps, since they have low power. The configuration consists of several lamps in 

parallel to generate high radiant fluxes. Multilamp reactors have several geometries, most are 

cylindrical and the lamps are tubular, sometimes the reaction chamber is coated with 

reflective surfaces to take better advantage of the radiant flow. This type of reactors are used 

industrially in the field of water purification [52]. 

 

2.3.1.4 Reactor with filtering membranes 

The design of these reactors is almost similar to the annular reactors, however they use a 

microporous membrane at the outlet of the water flow, this membrane has the adequate 

dimensions to retain the catalyst inside the reactor, which makes them more efficient to 

recover the catalyst. Tubular designs of this type have been applied in river water 

treatments[11]. 

 

2.3.1.5 Reactor with immobilized catalyst 

These designs are cylindrical and the catalyst is immobile on a support to prevent its 

separation. A modification has large supports (the size of the reactor wall) and supports can 

be fiber mesh, or glass beads. These reactors use only one lamp and in the case of large 

reactors a matrix of lamps is used to generate sufficient radiation[47]. 
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2.4 Operation parameters of photocatalytic processes 

2.4.1 Catalyst concentration 

The concentration of the catalyst intervenes directly with the photocatalytic reaction rate, in 

a higher concentration is more probably a turbulence phenomenon, since efficient 

absorption of photons is prevented, therefore it is important to verify the amount of 

photocatalyst when used in suspension. 

At high concentrations the catalyst produces a slow reaction rate, and it is advisable to use a 

concentration close to the steady state point, so that the catalyst can be fully illuminated[28]. 

In addition, the intrinsic characteristics of the catalyst influence the photocatalysis process. 

The size of the particles improvement the generation of pairs e-/h+; However, if the particles 

have defects, they can sometimes reduce the efficiency of the process. While the properties 

in its texture contribute to improve the relationship between the catalyst and the species to 

be degraded[53]. 

 

2.4.2 Contaminant Concentration 

Generally, the kinetics of photocatalytic processes follow a Langmuir-Hinshelwood 

mechanism (see Eq. 2-9)[54]: 

𝑟 =  𝐾𝜃 =
 𝑘(𝐾𝐶)

1 + 𝐾𝐶
 Eq. 2-9 

where k is the true velocity constant; K is the equilibrium adsorption constant and C is the 

instantaneous concentration. The values of k and K have a direct relationship with the rest 

of the operating parameters of the photocatalytic processes, as well as by the contaminant. 

 

2.4.3 pH 

The pH affects the contaminant and the catalyst, a change in pH may imply improvements 

in the efficiency of the removal of organic contaminants (in the presence of TiO2) without 

affecting the reaction rate [25]. 
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2.4.4 Temperature 

Because of photonic activation, photocatalytic systems do not require heating and work at 

room temperature. At low temperatures (-40 to 0 ºC) and at very high temperatures (> 80 

ºC) the photon activity decreases, therefore, the optimum temperature to work is an average 

temperature (20 to 80 ºC)[23]. 

 

2.4.5 Radiant Flow 

The reaction rate is proportional to the radiant flow, given the photoinduced characteristic 

of the photocatalytic process, where the pairs (e-/h+) are consumed mainly by the chemical 

reagents instead of by the recombination rate. An approximate value of 25 mW/cm2 has 

been calculated in laboratory experiments using TiO2[28]. 

It should be considered that very intense radiant flows can increase the temperature of the 

photocatalyst, therefore it is important to avoid the use of too energetic lamps, especially 

when working with small photoreactors[22]. 

 

2.4.6 Quantum yield 

It is defined as the ratio of the reaction rate in the molecules per second (or in moles per 

second) to the efficient photon flux in photons per second (or in Einstein per second). Its 

theoretical maximum value is equal to 1. It is directly related to the instantaneous efficiency 

of a photocatalytic system. The knowledge of this parameter is fundamental to compare the 

activity of different photocatalysts in the same reaction, estimate the relative viability of 

different reactions and calculate the energy efficiency of the process as well as its cost[23]. 

 

2.4.7 Oxygen concentration 

The oxygenation is necessary for a total mineralization and its concentration disturbs the 

speed of reaction, since oxygen allows the reception of electrons that give rise to the 

development of photocatalytic reactions by decreasing the recombination of the pairs (e-/h+), 

nonetheless, some authors ensure that high concentrations of oxygen slow down the rate of 

degradation[27].
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2.5 Conclusions 

In this chapter the main elements that make up the photocatalytic processes were presented, 

as well as their operation parameters. 

The elements that make up these processes are closely related. The lighting (Table 2-2) 

depends on the type of photocatalyst (Table 2-1) and the geometry of the reactor (Fig. 2-2); 

the photocatalyst (suspension or immobilized) affects the geometry of the reactor and 

therefore the reactor must have the characteristics according to the type of photocatalyst and 

the light source. 
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Chapter 3. MODELING SOURCES AND DESIGN OF 

ULTRAVIOLET ILLUMINATION 

3.1 Introduction 

In the last years some authors[10,32,51,55–57] proposed the use of UV-LEDs to carry out 

the photocatalysis, most of the current studies focusing on the direct replacement of the 

conventional ultraviolet lamp by LED arrays[49,58,59] without any discussion regarding 

which is its most optimal distribution, in fact the number of LEDs changes considerably in 

the different proposals. Hence, finding a way to determine the minimum number of LEDs 

and its geometrical distribution needed to replace effectively the conventional UV lamp 

source is a question of potential interest. 

In this chapter we approach this problem by considering several important factors, which 

should be taken into account, such as the location and angle of position of the light source, 

the distance between this and the reactor and, mainly, the generation of a uniform irradiance 

pattern similar to that provided by the lamp to be replaced. Inasmuch as photocatalysis 

operation depends crucially on the photonic efficiency (the measure of the rate of reaction 

divided by the incident light intensity), it is necessary to design the geometry of LED arrays 

to obtain the desired value of irradiance as well as uniform field illumination[32,55]. 

With the aim to achieve this goal we use reported mathematical models for LEDs[60–62] to 

calculate the irradiance of a specific type of arrays and find an implemented geometry to 

obtain uniform illumination at a selected plane[63,64]. 

 

3.2 Irradiance models 

The replacement of conventional lamps by LEDs is performed imposing the condition that 

the irradiance generated by both sources at the central region of a given reactor should be 

equal. Any significant difference between the irradiance of the new source with regard to the 

current to be replaced, will lead to a performance loss of the photocatalytic process. Due to 

the distinct emission properties of each source in terms of radiated intensity and angular 

emission pattern a direct comparison of the emission of a single LED with an UV lamp is 

not adequate. Therefore, it is necessary to determine the optimum array configuration (i.e., 

geometry and number of LEDs), which must be used to obtain equivalent irradiances.



Chapter 3. Modeling sources and Design of Ultraviolet Illumination 

Irradiance models 

26 
 

3.2.1 Irradiance model for single LED 

LED arrays will be considered formed by individual emitters with identical properties (i.e., 

wavelength, radiant flux, irradiance). Due to their optical characteristics, LEDs of spherical 

encapsulation and without encapsulation cannot be considered Lambertian emitters, so their 

irradiance distributions are not directly proportional to the cosine of the angle of view. 

Nevertheless, it is possible to obtain a practical approximation of the irradiance distribution 

𝐸(𝑟, 𝜃) for a LED[60], given by: 

𝐸(𝑟, 𝜃) = 𝐸0(𝑟) 𝑐𝑜𝑠𝑚(𝜃) 
Eq. 3-1 

where E0(r) is the irradiance (W/cm2), r is the distance (cm) on axis and 𝜃 the view angle 

(deg). 

 

The reported values of m by different authors vary, Chen [60] report that m > 1, while 

Moreno [64] report that m > 30, which indicates large variations in the emission properties 

of each LED. However, at the specific view angle where the irradiance takes a value equal 

half to its maximum value, 𝜃 = 𝜃1 2⁄ , E(r, θ) = E0(r)/2, m for Eq. 3-1 can be expressed by: 

𝑚 =
− 𝑙𝑛 2

𝑙𝑛(𝑐𝑜𝑠 𝜃1 2⁄ )
 Eq. 3-2 

 

Considering a single LED placed at the position (x0, y0) in the z0 = 0 plane, the irradiance at 

a given point with coordinates (x , y) placed in a plane at distance z (see Fig. 3-1 for a schematic 

representation) is obtained by writing Eq. 3-1 in Cartesian coordinates (x,y,z): 

𝐸(𝑥, 𝑦, 𝑧) =
𝑧𝑚𝐼𝐿𝐸𝐷

[(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + 𝑧2](𝑚+2) 2⁄
 

Eq. 3-3 

 

where, E(x,y,z) is the irradiance distribution, ILED is the intensity (mW/sr) of the LED, z is 

the distance (cm) between the LED and the target (reactor), and m is given by Eq. 3-2. 
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Fig. 3-1. Schematic representation of the LED configuration and illumination plane. A) Location of a single 
LED, B) Square LED array 2x2. 

 

Since the irradiance model is based on the superposition of the emissions of each individual 

LEDs, the equation modeling distinct LED arrays will vary according to the particular 

distribution of the LEDs in the plane (x0, y0, 0). 

 

3.2.2 Irradiance model for Two LEDs Array 

The irradiance of a pair of LEDs (see Fig. 3-2) is produced by the sum of the irradiances of 

each LED and can be calculate by: 

𝐸(𝑥, 𝑦, 𝑧) = 𝑧𝑚𝐼𝐿𝐸𝐷{[(𝑋𝑎)2 + 𝑦2 + 𝑧2]−(𝑚+2) 2⁄ + [(𝑋𝑏)2 + 𝑦2 + 𝑧2]−(𝑚+2) 2⁄ } 
Eq. 3-4 

 

where, 

𝑋𝑎 = 𝑥 − (𝑑 2⁄ ) 
Eq. 3-5 

𝑋𝑏 = 𝑥 + (𝑑 2⁄ ) Eq. 3-6 

 

The optimum distance between elements can be calculated by: 

𝑑 = 𝑧(4 𝑚 + 3⁄ )1 2⁄  
Eq. 3-7 

 

where z is the distance between the center of the array to the target. 
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Fig. 3-2. Irradiance pattern of two LEDs. 

 

3.2.3 Irradiance model for Linear LED Array 

The irradiance of a linear array (see Fig. 3-3) is given by the sum of each of the LEDs to make 

up the array: 

𝐸(𝑥, 𝑦, 𝑧) = 𝑧𝑚𝐼𝐿𝐸𝐷 { ∑ [(𝑋2 + 𝑦2 + 𝑧2)−(𝑚+2) 2⁄ ]

𝑁

𝑛0=1

} 
Eq. 3-8 

 

where, 

𝑋 = 𝑥 − (𝑁 + 1 − 2𝑛0)(𝑑 2⁄ ) 
Eq. 3-9 

and N is the number of LEDs. 

 

The optimal distance between elements depends on the number of elements in the array, if 

the array has 3 LEDs, the distance can be calculate by: 

𝑑 = 𝑧(12 𝑚 + 3⁄ )1 2⁄  
Eq. 3-10 

 

For arrays with more than 4 elements the distance will be calculate by: 

𝑑 = 𝑧(3.2773 𝑚 + 4.2539⁄ )1 2⁄  
Eq. 3-11 
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The requirements imposed by Eq. 3-11 guarantee that more than 98% of the generated 

irradiance of the array is found at the central region of the target reactor. 

 

 

Fig. 3-3. Irradiance pattern of linear LED array. 

 

3.2.4 Irradiance model for square LED array 

The most used array for lighting panels and for large lamps is the square geometry, whose 

irradiance E(x,y,z) is the sum of the matrix consisting of MxN LEDs. As proposed by 

Moreno[64] the separation between LEDs in this configuration can be properly selected with 

the aim to obtain a uniform irradiance E(x,y,z) for a given distance z (see Fig. 3-4): 

 

𝐸(𝑥, 𝑦, 𝑧) = z𝑚𝐼𝐿𝐸𝐷 × {∑ ∑
1

[𝑋2 + 𝑌2 + 𝑧2](𝑚+2) 2⁄

𝑀

𝑚0=1

𝑁

𝑛=1

} 
Eq. 3-12 

 

where, 

𝑋 = 𝑥 − (𝑁 + 1 − 2𝑛) (
𝑑

2
) 

Eq. 3-13 

𝑌 =  𝑦 − (𝑀 + 1 − 2𝑚0) (
𝑑

2
) 

Eq. 3-14 

and N, M are the number of LEDs for the x-axis and y-axis respectively. 
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For arrays of dimensions 2x2 (see Fig. 3-1B), the distance d between each LED is equal for 

the x and y axis, and is given by: 

𝑑 = 𝑧 (
4

𝑚 + 2
)

1 2⁄

 
Eq. 3-15 

 

and for arrays with superior dimensions, distance d is given by: 

𝑑 = 𝑧 (
1.2125

𝑚 − 3.349
)

1 2⁄

 
Eq. 3-16 

 

The requirements imposed by Eq. 3-16, guarantee that more than 97% of the generated 

irradiance of the array is found at the central region of the target reactor. 

In order to obtain a particular irradiance value at a given point (x,y,z) (i.e., taken the plane z 

at the reactor position) using Eq. 3-2 to Eq. 3-16 imposing as initial condition the desired value 

of irradiance E(x,y,z) at that point; the number and position of the LEDs (N, M, x0 and y0) 

in the plane z = 0 will then be changed until obtaining the final configuration that satisfies 

the imposed conditions.  

 

 

Fig. 3-4. Irradiance pattern of square LED array. 
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3.2.5 Hexagonal LED Array 

The hexagonal array (see Fig. 3-5) is formed similarly to the square array, nevertheless, the 

number of LEDs is calculated by: 

𝐿𝐸𝐷𝑠 = (𝑁 × 𝑀) − 0.25[2𝑀 + (−1)𝑀 − 1] 
Eq. 3-17 

where N, M are the number of LEDs for the x-axis and y-axis respectively. 

 

The irradiance of a hexagonal array is given by the sum of the irradiances of each its elements: 

𝐸(𝑥, 𝑦, 𝑧) = 𝑧𝑚𝐼𝐿𝐸𝐷 { ∑ ∑ [(𝑋2 + 𝑌2 + 𝑧2)−(𝑚+2) 2⁄ ]

𝑁_

𝑛0=1

𝑀

𝑚0=1

} 
Eq. 3-18 

 

where, 

𝑋 = 𝑥 − (𝑁+ − 2𝑛0)(𝑑𝑥 2⁄ ) 
Eq. 3-19 

𝑌 = 𝑦 − (𝑀 + 1 − 2𝑚0)(𝑑𝑦 2⁄ ) 
Eq. 3-20 

 

and the 𝑁 ± term is: 

𝑁± = 𝑁[(−1)𝑚0 ± 1] 2⁄  
Eq. 3-21 

 

For arrays of dimensions 2x1 or 1x2, the distances among elements are: 

𝑑𝑥 = 𝑧(4 𝑚 + 2⁄ )1 2⁄  
Eq. 3-22 

𝑑𝑦 =
𝑧(12)1 2⁄

2(𝑚 + 2)1 2⁄
 

Eq. 3-23 

 

For arrays with more elements the optimal distances are: 

𝑑𝑥 = 𝑧(1.2125 𝑚 − 3.349⁄ )1 2⁄  
Eq. 3-24 
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𝑑𝑦 =
𝑧(3.6375)1 2⁄

2(𝑚 − 3.349)1 2⁄
 

Eq. 3-25 

 

 

Fig. 3-5. Irradiance pattern of hexagonal LED array. 

 

3.2.6 Irradiance model for Radial LED Array 

Other of the most popular arrays is the radial LED array (see Fig. 3-6). The total irradiance 

of this array is given by the sum of the irradiances of its elements, with 𝑁 ≥ 3 LEDs. 

𝐸(𝑥, 𝑦, 𝑧) = 𝑧𝑚𝐼𝐿𝐸𝐷 [ ∑ (𝑋2 + 𝑌2 + 𝑧2)−(𝑚+2) 2⁄

𝑁

𝑛0=1

] 
Eq. 3-26 

 

where, 

𝑋 = 𝑥 − 𝜌 cos(2𝜋𝑛0 𝑁⁄ ) 
Eq. 3-27 

𝑌 = 𝑦 − 𝜌 sin(2𝜋𝑛0 𝑁⁄ ) 
Eq. 3-28 

 

𝜌 is the radius of the array, this radius change to produce the uniform irradiance in the center 

of the pattern, and is given by Eq. 3-29 for arrays with N = 3 LEDs or Eq. 3-30 when the array 

has N > 3 elements, 

𝜌 = 𝑧(2 𝑚 + 2⁄ )1 2⁄  
Eq. 3-29 

𝜌 = 𝑧(1.851 𝑚 + 2.259⁄ )1 2⁄  
Eq. 3-30 
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Fig. 3-6. Irradiance pattern of radial LED array. 

 

3.2.7 Irradiance model for Radial with Central LED Array 

The radial with central LED array is a modification of the previous array (see Fig. 3-7), 

nonetheless, the equation to calculate de uniform irradiance change, because the central LED 

alters the homogeneity of the pattern. This array depends of the number of its LEDs 

(𝑁 + 1 ≥ 4). 

𝐸(𝑥, 𝑦, 𝑧) = 𝑧𝑚𝐼𝐿𝐸𝐷 { ∑ [(𝑋2 + 𝑌2 + 𝑧2)−(𝑚+2) 2⁄ ] + 𝜙(𝑥2 + 𝑦2 + 𝑧2)−(𝑚+2) 2⁄

𝑁

𝑛0=1

} 
Eq. 3-31 

 

where, 

𝑋 = 𝑥 − 𝜌 cos(2𝜋𝑛0 𝑁⁄ ) 
Eq. 3-32 

𝑌 = 𝑦 − 𝜌 sin(2𝜋𝑛0 𝑁⁄ ) 
Eq. 3-33 

 

𝜌 is the radius of the array, 

𝜌 = 𝑧(4 𝑚 + 2⁄ )1 2⁄  
Eq. 3-34 
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𝜙 is the relative flux (𝜙 = Φ𝑐𝑒𝑛𝑡𝑟𝑎𝑙 Φ𝑟𝑖𝑛𝑔⁄ ) of the central LED (Φ𝑐𝑒𝑛𝑡𝑟𝑎𝑙) respect to the power 

(Φ𝑟𝑖𝑛𝑔) of one LED over the ring. The optimal relative flow depends on the number of 

LEDs and is given by: 

𝜙 = 𝑁(𝑚 + 2 𝑚 + 6⁄ )(𝑚+6) 2⁄  
Eq. 3-35 

 

 

Fig. 3-7. Irradiance pattern of radial with central LED array. 

 

In this chapter will be explained the methodology to calculate different UV-LED array to 

replace the conventional UV-lamps in a cylindrical photocatalytic reactor of diameter 6.5 cm 

and height 8 cm. 

 

3.3 Methodology 

3.3.1 Characterization of UV sources 

In order to replace conventional lamps with optimized LED arrays, the current reactor 

sources (low pressure mercury UV-lamps) and four different commercial LEDs were 

characterized. To characterize the optical power of the sources, a thermopile S120VC was 

used. Spatial characterization of the sources was performed by measuring the optical power 

as a function of the angle and of the distance to the source at a constant room temperature 

of 22 ºC.
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Table 3-1. Data of sources provided by the manufacturers. 

Characteristics UV- lamp UV - LEDs 

Model 
Philips PLL 

18W/10/4P 
XSL-370-5E XSL-375-5E VL380-5-15 LED385-33 

Peak wavelength 

(nm) 
360 370 375 380 385 

Radiated Power 

(W) 
3.5 0.006 0.006 0.007 0.011 

Power 

dissipation (W) 
18W 0.2 0.2 0.2 0.2 

Current (mA) 370 50 50 50 50 

 

3.3.2 Proposed algorithm 

In order to calculate the smallest number of LEDs for different types of arrays, an algorithm 

was implemented, this algorithm satisfies the needs of uniform irradiance of the 

photocatalytic reactor using the uniform irradiance models. 

In this research work a cylindrical reactor illuminated from the exterior by sources placed at 

fixed distance from its center was used. The initial conditions were established by fixing the 

desired irradiance value (Edes) at the plane z corresponding to the distance between the source 

and the center of the reactor (other options could be adopted for different reactor 

geometries). Additional input parameters were the data of the individual LEDs (view angle, 

intensity, and dimensions). Edes corresponds to the irradiance value delivered by the UV-lamp 

measured at the center of the reactor. 

With the aim to calculate the dimensions of a square array with uniform irradiance, the 

algorithm starts by comparing the irradiance of a single LED with Edes. In the case of single 

LED irradiance larger than Edes the algorithm stops. Usually this condition will be not met 

in the first iteration and additional LEDs should be added to form the array. Since this reactor 

has a defined height and it is desired to obtain a uniform illumination along the vertical 

direction, the next iteration in the square array algorithm is to place a second LED in this 

direction, separated from the first LED by a distance d provided by Eq. 3-15. The position of 

the LEDs in the vertical direction is optimized to maximize irradiance and again is compared 

with Edes. If the obtained value is lower than the desired irradiance, a new LED is added also 

in the vertical direction. The maximum number of LEDs in the vertical position is limited to 
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the height of the reactor. If the irradiance with the maximum number of LEDs in a single 

column is still lower than the target value Edes, the following iteration consists in the addition 

of an identical column separated from the first one by the distance given by Eq. 3-16 (or Eq. 

3-15 if the array is 2x2), and again the position of the array is implemented in order to 

maximize the irradiance at the target point. The iterations continue adding new columns until 

the calculated irradiance is larger or equal to Edes. Once the algorithm obtains the desired 

irradiance, it provides the total number of LEDs, specifying the number of elements that 

should be in M and N, as well as their optimal distances. 

 

 

Fig. 3-8. Flowchart of proposed algorithm with radial array. 

 

A similar algorithm can be implemented for other array geometries. For instance, for the 

radial array distribution the optimum radius can be found and different number of LEDs are 

added on a given ring by taking in regard its optimum angular position with the aim to 

maximize its irradiance at the selected point. More rings can be added until the target value 

is obtained (see Fig. 3-8).

Input:
• Characteristics:

o LED

o Photoreactor

• Irradiance (Edes)

• Type array
o Radial

Add elements

Calculate and compare:
• Edes > Esingle

Calculate and compare:

• roptimum

• Number of LEDs (NLEDs)

• Edes > Eradial

Calculate and compare:
• Number max LEDs for 

ring (LEDring)

• NLEDs > LEDring

Add Ring
Edes = Edes - Eradial

Output
• Number of LEDs

• roptimum

yes

no

yes

no

yes
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3.4 Evaluation Results 

3.4.1 Characterization of UV sources 

The Fig. 3-9 shows the relative intensity of the commercial LEDs with the aim to corroborate 

the data provided by the manufacturer (see Table 3-1), both the intensity and peak wavelength 

differ from producer’s data. To make the arrays for the experiments we selected the model 

LED385-33, because, it has the highest intensity of the UV LEDs. 

 

 

Fig. 3-9. Relative intensity of different commercial UV-LEDs 

 

Angular emission measurements show that the LEDs have a reduced emission angle with 

respect to the lamps. In addition, these measurements provide the value of the angle (𝜃) to 

be used in the determination of the parameter m as given in the Eq. 3-2. 

The polar plot corresponding to the UV lamp represented in Fig. 3-10A shows an angular 

emission over 360º with an emission pattern which is not homogeneous due to the particular 

geometry of the lamp, the emission being reduced by 50% when observed in the direction 

where the two tubes that compose the lamp are aligned. This type of lighting will not use the 

total irradiance generated by the lamp for the photocatalytic process, since part of the emitted 

light falls out of the limits of the reactor. 

In the case of the single LED, the angular emission also depends on its construction 

geometry; as can be seen in Fig. 3-10B, the light emission is limited to a certain angular range, 

which is lower than the emission angle of the lamps. Taking Eq. 3-1 as reference, the 

maximum emission occurs when the LED emits normally to the surface and decreases as the 
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angle 𝜃 increases. The value of m used in the equations of distribution of irradiance (Eq. 3-3 

and Eq. 3-4), is obtained from the half-maximum view angle measured experimentally 𝜃1/2 =

±12º. For this experiment the result obtained was m = 31.37. 

 

 

Fig. 3-10. Normalized angular emission of sources measured at a distance of 10 cm from the photodetector. 
A) a low-pressure ultraviolet lamp B) An ultraviolet LED, measured at a distance of 10 cm respect to the 
photodetector. 

 

In order to verify the feasibility of the replacement of conventional UV lamp sources by the 

use of LED arrays by means of the proposed methodology, two steps were involved. First, 

the irradiance of an ultraviolet lamp was measured experimentally (along the direction of the 

maximum emission shown in Fig. 3-10A) as a function of the distance from the lamp. These 

results are plotted in Fig. 3-11 (circular marks), for distances ranging between 6 – 36 cm. 

Secondly, the algorithm proposed in the previous section was used to generate the LED 

arrays matching the measured irradiance of the UV lamp at a specific distance; an square 

geometry scheme was selected, and once that the features of the arrays were obtained (i.e., 

their dimensions and number of LEDs) the irradiance values were calculated (Fig. 3-11, square 

marks) in order to compare them with the values of the lamp. 

The differences between the irradiances of each light source (Fig. 3-11, error bars) are due to 

that the methodology to generate the arrays has as objective to match or exceed the Edes value 

(i.e., the measured irradiance of the lamp), therefore, for some points an array could provide 

a higher irradiance than the required. Moreover, with the aim to corroborate mathematically 

that the results of each source have a direct relation, a trend curve was fitted to each source 

and the Pearson correlation coefficient was calculated, obtaining a result of 0.99, which 

verifies that both sources performed similarly and satisfy the Inverse-squared law. 
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Fig. 3-11. Irradiance of a lamp measured experimentally vs irradiance prediction of different LED arrays using 
the proposed methodology, at different positions. Fitted curves show the trend of experimental and predicted 
irradiance. The error bars indicate the difference in irradiance. 

 

The performance of the heterogeneous photocatalysis process is associated to the use of a 

source of illumination that activates the photocatalyst. For the case of Degussa P-25 titanium 

dioxide, an ultraviolet source is necessary. Fig. 3-12 shows the emission spectrum measured 

experimentally of the two different ultraviolet sources used in this work and their relation to 

the working area of TiO2 (defined by the shaded area).  

 

 

Fig. 3-12. Emission spectra of ultraviolet sources, and its relation to the activation area of TiO2. 
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It can be observed that conventional UV-lamps emit over a broader frequency spectrum 

than the UV-LED, but only a part of the emitted energy falls within the active region of the 

photocatalyst, representing a waste of energy. As a counterpart, the UV-LED concentrates 

most of its energy in the working area of the photocatalyst, being highly efficient for the 

photocatalytic processes. However, since the emitted intensity of a single LED is smaller 

than the intensity of the UV-lamp, several LEDs are needed to reach the irradiance values 

of a conventional lamp, being the array configuration a key parameter in order to achieve 

comparable results. 

 

3.4.2 LED array configuration 

The irradiance distribution of the UV-lamps at a distance of 10 cm from the source 

(corresponding to a transverse plane that crosses the center of the reactor) is shown in Fig. 

3-13A, depicting a relatively homogeneous illumination with a maximum irradiance of 6 

mW/cm2 at the center, and decreasing to 5 mW/cm2 towards the edges of the reactor. 

 

 

Fig. 3-13. Irradiance distribution of two sources. A) UV-lamp at a distance of 10 cm from the source B) square 
array of 5x2 LEDs with d = 1.68 cm between elements, at a distance of z = 8 cm from the source 

 

The selected distance to place the LED arrays was z = 8 cm to the center of the reactor (and 

not 10 cm as in the case of the UV-lamps by practical purposes in this setup). Edes (6 

mW/cm2) was defined by the maximum irradiance value of the UV-lamp at the point (0,0) 

plotted in Fig. 3-13A. The results show that a square array of 2x5 LEDs separated by d = 1.68 

cm between elements is needed to obtain the desired irradiance value at the selected point. 

A) B)
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In Fig. 3-13B, the distribution of irradiance in the transverse plane crossing the center of the 

reactor is plotted, and the results were obtained using the m parameter value obtained from 

the experimental measurements (m = 31.37) and achieving a value of 6.16 mW/cm2 for the 

(0,0) point. 

Since the emission patterns of the UV-LEDs and the UV-lamp are highly dissimilar (Fig. 

3-10), it is evident that the irradiance pattern of the sources is not identical (Fig. 3-13). 

However, it can be seen that the main goal of the methodology was achieved, by having 

generated the same irradiance value for the LED array as for a lamp at the center of the 

reactor, and most of its physical area is covered by the irradiance pattern. 

When the separation between LEDs is less than the optimal (i.e., by reducing their distance), 

the irradiance is increased but at expense of reducing its irradiation area, leading that the 

photocatalyst existing inside the reactor is not homogeneously illuminated and hindering its 

activation. Otherwise, the effect of a larger separation between individual elements results in 

non-uniform distribution and an overall decrease of the irradiance as well as in the 

photoactivity of the process. 

 

A) B) 

  

Fig. 3-14. Field of square array of 5x2 LEDs, at distance z = 8 cm from the source, with different distances 
between LEDs. A) space between elements less than optimal, d = 1 cm, B) space between elements superior 
to the optimum, d = 2.68 cm. 

 

3.4.3 Photoreactor with non-uniform irradiance 

The photoreactor to be optimized uses a magnetic stirrer to mix the photocatalyst with the 

dyed water, in Fig. 3-15 can be seen that the rotation of the magneto produces a vortex in the 

reactor center, this vortex is a typical in all reactors with this type of agitation.
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A) B) 

  

Fig. 3-15. Vortex generated by magnetic stirring. A) front view, B) Top view. 

 

To perform the optimization of lighting in these reactors, it must be taken into account that 

the vortex generates absence of water in the center of the reactor, for which reason, it is not 

advisable to calculate the maximum irradiance at this point, coupled with this, the decrease 

in volume of the reactor after each sample takes varies the dimensions of the vortex. 

Three arrays were generated, providing the greatest amount of irradiance in the lower area 

of the reactor in order to optimize the lighting of the reactor. To generate the arrays, the 

maximum irradiance point was calculated evading the empty area of the vortex, and the 

volume decrease within the reactor was also considered. 

 

3.4.4 LED array implementation 

Fig. 3-16 shows the distribution of the implemented arrays. The square LED array of Fig. 

3-16A replaces a single ultraviolet lamp, only containing 10 LEDs, with a distribution of 2x5 

pieces and a distance of 1.68 cm between them. The radial LED array of Fig. 3-16B with 

radius of 2.1 cm, and a separation of 12º between elements, is able to replace the three lamps 

with a single array of 30 pieces, and has been designed to radiate from the top of the 

photoreactor. The non-uniform array of Fig. 3-16C, replaces a single ultraviolet lamp in vortex 

reactors, has 12 LEDs, in the upper part of the array it has 6 LEDs with a square distribution 

and d = 1.25 cm, while in the lower area 6 LEDs have a square distribution with d = 0.8 cm. 
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Fig. 3-16. Distribution of the implemented arrays. A) Square LED array 2x5, B) Radial LED array, C) Non-
homogeneous array. 

 

3.4.5 Implemented methodology 

The algorithm that forms the methodology described in this chapter was implemented and 

a graphic interface was created in MATLAB® (see Fig. 3-17), with the aim to facilitate the 

insertion and obtaining of the characteristics of the elements of the Array. 

In Fig. 3-17 the titles that are written in blue belong to the input data and the titles in red are 

the values calculated for the calculated array. 

Theta value is used to calculate the m value, the radius of the LED is also requested to 

calculate the minimum possible distance between elements in the different array 

configurations and in the radial arrangements to avoid overlapping the elements.  

The initial coordinates are specified if an array is not required to be centered with respect to 

the reactor dimensions, the z value is the distance between the LED to the maximum point 

of the desired irradiance, the Irradiance (E) is the desired irradiance value (Edes) and the 

Reactor dimensions are to calculate the limit dimensions that arrays can have. 
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Fig. 3-17. Graphical interface for application of the algorithm to calculate the characteristics for LED arrays 
with uniform irradiance. 

 

 

3.5 Discussion and conclusions 

This chapter explains the generation of the methodology that gives a solution to the problem 

of uniform illumination of the photocatalytic reactors, because currently the replacement of 

conventional lamps is carried out without taking into account the geometry of the reactor. 

The characterization of UV sources has shown that although the lamps have emission angles 

greater than LEDs, the emitted energy is not always used by the photoreactor, either they 

emit in wavelengths where there is no photocatalyst activity or by the geometry of the reactor; 
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and the LEDs because their structure can be adapted to specific distances or areas of the 

reactor, and all their emission energy can be used by the photocatalyst. 

Furthermore, it was shown that it is possible to create a methodology using uniform 

irradiance models to calculate the minimum number of LEDs and generate the irradiance 

equivalent to a conventional lamp. 

Besides, another way to optimize photoreactors on a laboratory scale is the total utilization 

of the emitted ultraviolet light. When the lamps are not perfectly aligned with the structure 

of the reactor, the ultraviolet light not incident in the reactor can be reused using panels that 

reflect UV, however, these panels have an extremely high cost so it is more profitable to 

place arrays optimized on all photoreactor faces. 





 
 

 47 

Chapter 4. PHOTOCATALYTIC REACTORS AND 

PHOTOCATALYTIC TESTS 

 

4.1 Introduction 

Textile industry is one of the largest consumers of water, mainly due to their finishing 

processes, such as dyeing, printing and subsequent washing steps. In general terms between 

150 and 350 L of water are required to produce a kilogram of textile product[4]. In addition, 

wastewater from textile industry contains different types of dyes and chemical additives, 

which cannot be easily degraded by conventional processes[5,6]. Currently, the treatments 

applied in order to process textile effluents are based on biological or physical-chemical 

processes. In general, the conventional biological treatment provides good chemical oxygen 

demand (COD) removal, but low efficiencies in color removal, due to the chemical stability 

and resistance to microbiological attack of dyes. Otherwise, the coagulation-flocculation 

treatment can remove color completely, but generates a sludge which requires an additional 

treatment to be destroyed [9,65]. 

Conventional lamps are being replaced by sources with low energy consumption and within 

this context the rapid development of LEDs over the last years have opened up new 

opportunities[10,45]. Nevertheless, it is still under discussion the possibility of using UV-

LEDs as efficient sources of ultraviolet light with enough energy and with the proper 

frequency range to be used during oxidation processes. Additionally, we could take advantage 

of its directionality to obtain maximum illumination towards the catalyst, of its reduced cost, 

compact size, lightweight, lower operating temperature and long lifetime. 

 

4.2 Methodology 

4.2.1 Reagents 

The materials used for this experiments were: i) Orange PX-2R dye (Reactive Orange 13), 

with CAS number 12225-85-3, molecular weight 762.03 g/mol; ii) titanium dioxide powder 

(TiO2) from the Sigma-Aldrich manufacturer (CAS number 13463-67-7), with particles of 21 

nm, surface area of 35 – 65 m2/g and a molecular weight 78.87 g/mol. 
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4.2.2 Light sources 

Two types of light sources were used: i) a low pressure mercury UV-lamp, Philips PLL 

18W/10/4P UVA, with peak wavelength at 360 nm, radiated power of 3.5 W and power 

dissipation of 18 W, operated at 370  mA. ii) UV-LEDs, Roithner LaserTechnik LED385-

33 UVA, with peak wavelength at 385 nm, radiated power of 11 mW and power dissipation 

of 200 mW, operated at 50 mA. 

 

4.2.3 Photocatalytic reactors 

For the measurements of the decolorization efficiency and energy consumption from the 

different sources, a photocatalytic reactor was built using a 250 mL borosilicate vessel and a 

magnetic stirrer to mix the TiO2 photocatalyst. Four different configurations were tested, one 

using UV-lamps and three with different UV-LED array configurations (the distribution of 

LEDs was obtained using the algorithm explained in the chapter 3). 

Fig. 4-1A shows the schematic photoreactor with three UV-lamps arranged at 120º around 

the vessel, at a distance of 10 cm from the center of the reactor. The schematic photoreactor 

of Fig. 4-1B has three square UV-LED arrays (Fig. 3-16A), placed 120º around the container, 

at a distance of 8 cm from the center of the reactor. Fig. 4-1C shows the schematic 

photoreactor using the UV-LED radial array (Fig. 3-16B), placed in the upper part of the 

photoreactor, at a distance of 10 cm with respect to the bottom of the vessel, and finally Fig. 

4-1D is the schematic square&radial photoreactor, combining the radial and square arrays(Fig. 

3-16A-B). 

The geometric configuration and the separation between UV-LEDs was selected with the 

aim to obtain an illumination as uniform as possible in the reactor with intensities comparable 

to that given by the UV-lamps used in the first configuration (Fig. 4-1A). 

 

4.2.4 Photocatalytic degradation experiments 

In order to simulate the effluents after the dyeing process, 250 mL of distilled water were 

mixed with 0.1 g/L of Orange PX-2R dye. Before photodegradation, the solution was mixed 

with 1 g/L of photocatalyst in suspension and then the mixture was put on magnetic stirrer 

in complete darkness for 30 minutes to ensure the adsorption of the dye on the surface of 

the catalyst. After 30 minutes, the UV-light source was turned on with the mixture in 
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constant agitation. The treatment was performed for 8 hours, and samples of were taken 

from the reactor every hour in order to determine the efficiency of the process. 

 

 

Fig. 4-1. Schematic diagram of photocatalytic reactors. A) UV-lamp photocatalytic reactor: 1) borosilicate vessel; 

2a,b,c) UV-lamps; 3a) magnetic stirrer; 3b) magneto. B) Square UV-LED array photocatalytic reactor: 1) borosilicate 

vessel; 2a,b,c) square UV-LED arrays; 3a) magnetic stirrer; 3b) magneto. C) Radial UV-LED array photocatalytic 

reactor: 1) borosilicate vessel; 2) radial UV-LED array; 3a) magnetic stirrer; 3b) magneto. D) Square&radial UV-LED 

array photocatalytic reactor: 1) borosilicate vessel; 2a,b,c) square UV-LED arrays; 2d) radial UV-LED array; 3a) 

magnetic stirrer; 3b) magneto. 

 

The decolorization rate was measured to determine the efficiency of the treatment, and was 

calculated by:
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𝐷𝑒𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (%) =  (
𝐴𝑏𝑠0 − 𝐴𝑏𝑠

𝐴𝑏𝑠0

) × 100 
Eq. 4-1 

where, Abs0 is the initial absorbance, and Abs is the absorbance at time t of the taken sample. 

The absorbance was determined with a with a UV–visible spectrophotometer (UV-2401, 

Shimadzu Corporation) at the maximum wavelength of the visible spectrum (λ = 487 nm). 

 

4.2.5 Energy consumption 

The power consumption of the AOPs for an experimental scenario, depends on different 

factors, such as the type of pollutant, type of light source, reactor configuration, among 

others. A quantitative comparison can be obtained in terms of Figures-of-merit, for the case 

of photocatalytic processes the efficiencies can be determined by means of the Figure-of-

merit “Electric energy per order (EEO)”, defined as the electric energy (kW) needed to 

degrade a pollutant by one order of magnitude (90%) in a unit volume of contaminated water 

(1 m3) [66–68]. 

 

EEO values [kWh/m3/order] can be calculated by: 

𝐸𝐸𝑂 =
(𝑃)(𝑡)(1000)

(𝑉)(60)(log(𝐶0 𝐶⁄ ))
 

Eq. 4-2 

 

where, P is the electric power (kW), t is the time (min), V is the water treated volume (L), C0 

and C are the initial and final concentrations of contaminant (mol/L). 

 

4.3 Evaluation Results 

Fig. 4-2 shows the different experimental photoreactors used in this chapter. The Fig. 4-2A is 

the reactor with 3 ultraviolet lamps, in Fig. 4-2B the reactor uses 3 square LED arrays 

presented in Fig. 3-16A, the Fig. 4-2C shows the reactor using the radial LED array of Fig. 

3-16B, and finally the reactor in Fig. 4-2D use all designed LED arrays (squares and radial). 

The reactors presented were implemented with the characteristics mentioned in section 

4.2.3, and during its operation they were maintained only with the light source selected, 

blocking any other type of lighting that could affect the process. 
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Fig. 4-2. Experimental reactors. A) Reactor with UV-lamps, B) Reactor with square LED arrays, C) Reactor 
with a radial LED array, D) Reactor with all UV-LEDs. 

 

4.3.1 Photocatalytic activity 

Four configurations were tested: i) The UV-lamp configuration shown in Fig. 4-2A; ii) A 

configuration using only the three square LED arrays (Fig. 4-2B); iii) A configuration 

including only the top radial distribution of LEDs (Fig. 4-2C), and iv) The configuration with 

all LEDs is shows in Fig. 4-2D. 

With the aim to perform the comparison of the dye degradation, all the samples were 

prepared under the same experimental conditions. It was corroborated prior to the 

photodegradation that the photocatalyst does not have the ability to degrade the dye without 

an UV-source. 

As it can be seen in Fig. 4-3, the performed experiments by the four analyzed configurations 

reached more than 90% of decolorization, which is the percentage necessary to calculate the 

Figure-of-merit EEO.  

The required time for the LED arrays configurations to reach this decolorization percentage 

is in all cases larger than the consumed by conventional lamps and in the last case (array with 

the highest number of elements) a full decolorization (100%) is achieved 20 minutes before 

than for the treatment with conventional lamps. In particular, it was observed that the time 

needed to achieve 90% decolorization was 1.74, 1.55 and 1.28 times longer than the UV lamp 

process for the ii), iii), and iv) UV-LED configurations respectively, and hence the geometry 

with more LEDs approaches more efficiently the operation of the conventional UV reactor. 

However, when the process is considered also in terms of energy consumption this excess 
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of time in the oxidation process can be compensated by the increased energetic efficiency of 

the process. 

 

 

Fig. 4-3. Decolorization for the Orange PX-2R dye with different types of UV-sources, with a same initial 
concentration of 0. 1 g/L of dye and 1 g/L of photocatalyst. 

 

The Fig. 4-4 shows the evolution of the degradation of the dye made with the different UV- 

sources and configurations, each sample was taken every hour. 

A) 

 

B) 

 

C) 

 

D) 

 

Fig. 4-4. Decolorization samples of Orange PX-2R dye with different UV-sources. A) lamp, B) square array, 
C) radial array, D) square&radial array. 
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4.3.2 Kinetic analysis 

Kinetic rates obtained in the different experiments are shown in Fig. 4-5. As can be observed, 

the dye degradation in all cases follows a first-order kinetic model of Langmuir – 

Hinshelwood. This model provides the kinetic values (K), calculated from the slope of 

logarithmic absorbance values versus time of treatment, and the regression coefficients (R2). 

 

 

Fig. 4-5. Relation between ln(Abs/Abs0) and irradiation time, with a same initial concentration of 0. 1 g/L of 
dye and 1 g/L of photocatalyst. 

 

The values corresponding to the regression coefficients (R2), as well as the kinetic 

degradation rate (K) are listed in Table 4-1. The results indicate that the rate of kinetic 

degradation decreases for the cases with LED lighting with fewer pieces (square and radial 

arrays, 30 LEDs) and the values using lamp and the array with more pieces (square&radial 

array, 60 LEDs) are similar. 

In addition, these results suggest that exists a relationship between the lighting pattern of the 

source and its area of illumination. The lamp by having a wider lighting pattern covers a 

larger area in the reactor than the LED arrays. However, by joining the square and radial 

LED arrays the illuminated area of the reactor increases as well and the R2 and K values 

obtained from the lamp are nearly matched. 

With the aim to present in economic terms the results obtained for different ultraviolet 

sources and their configurations, the electrical cost of the processes was calculated. This cost 

was calculated considering the rate of the electric power for industrial use in Spain for the 
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year 2018 (0.19270 €/kWh). Table 4-1 shows the cost of each one of the processes when 

reaching 90 % of the decolorization. 

 

Table 4-1. The first-order degradation rate constant, and Costs for the decolorization of Orange PX-2R dye 
by different UV-sources. 

UV – source R2 K (min-1) Electrical cost 

(€/m3) 

Lamp 0.9664 0.0130 152.62 

Square LED array 0.8764 0.0084   29.60 

Radial LED array 0.9338 0.0090   26.36 

Square&radial LED array 0.9341 0.0132   43.62 

 

As can be seen in Table 4-1, all photocatalytic processes using LED arrays require less 

electrical power and are related to the number of LEDs contained in the array. However, the 

array with more LED elements only increases the cost by 33% than the radial LED array, 

and reduces the time of the photocatalytic process in one hour. 

 

4.3.3 Energy consumption analysis 

In general, the results reported in the literature rarely compare the performance between 

conventional lamps and LEDs, which difficult a direct comparison. Therefore, it is necessary 

to consider various operating parameters as the type of pollutant and its concentration, the 

source of illumination, the characteristics of the reactor, the photocatalyst among others. 

Nevertheless, the EEO can enable a performance measurement with the aim to compare the 

efficiency in terms of energy consumption. 

In order to perform the analysis of the energetic consumption with regard to the 

photocatalytic processes, the Figure-of-merit EEO was used and 90% of degradation values 

were considered (Fig. 4-3). As it was observed in the photocatalytic activity results, 

decolorization by conventional ultraviolet lamps is the first to reach 90 %, however, the EEO 

values are significantly far convenient with the use of the implemented LED arrays by means 

of the proposed methodology (Table 4-2), since conventional lamps considerably require 

more electrical power to carry out the photocatalytic process. According to the results, the 

experiments carried out with the array with the highest number of LEDs provided similar 
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results that those performed with the conventional UV-lamps, but reducing the energy 

consumption 72 %. 

The Table 4-2 shows the EEO values reported in the literature to degrade different pollutant by 

means of advanced oxidation processes.  

 

Table 4-2. Comparison of EEO values with literature. 

Source 
Treatment 

Process 
Contaminant 

EEO Value 

(kWh/m3) 
Reference 

Lamp 

8 mp-lamps (8W) Photo-Fenton Reactive Orange 4 357.10 [69] 

8 mp-lamps (8W) Photo-Fenton Reactive Yellow 14 416.60 [69] 

1 lp-lamp (30W) UV Insecticide diazinon 20,000.00 [70] 

8 mp-lamps (8W)  UV/H2O2 Reactive Orange 4 1,666.00 [69] 

8 mp-lamps (8W) UV/H2O2 Reactive Yellow 14 2,000.00 [69] 

1 lp-lamp (30W) UV/ZnO (14 nm) Insecticide diazinon 1,075.30 [70] 

1 lp-lamp (30W) UV/ZnO (33 nm) Insecticide diazinon 1,388.80 [70] 

1 mp-lamp (150W) UV/TiO2 SDBS 595.00 [71] 

8 mp-lamps (8W) UV/TiO2 Reactive Orange 4 500.00 [69] 

8 mp-lamps (8W) UV/TiO2 Reactive Yellow14 344.80 [69] 

3 lp-lamp (18W) UV/TiO2 Orange PX-2R 628.14 [ * ] 

LED 

30 LEDs (385nm) UV/TiO2 Orange PX-2R 129.45 [ * ] 

30 LEDs (385nm) UV/TiO2 Orange PX-2R 119.04 [ * ] 

60 LEDs (385nm) UV/TiO2 Orange PX-2R 178.12 [ * ] 

96 LEDs (375nm) UV/TiO2 Reactive Black 5 220.00 [29] 

15 LEDs (390-410nm) UV/TiO2 Malachite Green 789.47 [51] 

15 LEDs (390-410nm) UV/TiO2 Methylene Blue 3000.00 [51] 

15 LEDs (390-410nm) UV/TiO2 Rhodamine B 1500.00 [51] 

384 LEDs (395nm) UV/TiO2 O-cresol 37.00 [57] 

180 LEDs (375-380nm) UV/TiO2 SDBS 640.00 [71] 

4 LEDs (390-410nm) UV/TNA-300 Congo red 228.00 [49] 

4 LEDs (390-410nm) UV/TNA-500 Congo red 317.00 [49] 

4 LEDs (390-410nm) UV Congo red 14,285.00 [49] 

6 LEDs (360nm) UV/Peroxydisulfate Basic Red 46 155.40 [72] 

[*] experimental results for this chapter 
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For the case of the UV-LED/TiO2/dye processes two tendencies are manifested, i) 

implementations with more LEDs than the arrays proposed in this chapter and ii) 

implementations with fewer elements of LEDs. For both cases, the arrays generated by this 

methodology require a lesser amount of electrical power. For i) the amount of electric energy 

decreases about 20 – 45 %, and for ii) the electric energy consumed by the optimized arrays 

only requires between 5 – 15 % of the total energy by other arrays, depending on the type of 

array chosen (30 or 60 LEDs) for both cases. 

As for the experimental scenarios proposed in this chapter, it can be noticed that the 

optimized LED arrays only require between 10 – 28 % of the energy consumed by ultraviolet 

lamps to decolorate the same amount of water, the EEO value of this photoreactor indicates 

an energy saving since with the same amount of energy it is possible to decolorize an amount 

of 3.5 times more water than conventional lamps. 

It can be observed that in general the use of LEDs reduces the energy consumption of the 

treatment in comparison to the use of conventional UV-lamps. However, it is important to 

highlight that in some cases the consumption obtained is equals or even higher. This could 

be attributed to the fact that the distribution of the LEDs was not optimized during the 

treatment. 

 

4.4 Discussion and conclusions 

Photonics technology is present nowadays in a vast number of applications where the 

selection of the proper light source plays a crucial role for the implementation and 

optimization of practical devices. Light sources have evolved during the last decade and the 

efficient use of energy is an imperative requirement in modern lighting technologies for their 

use in medical, chemical and environmental applications. In order to exploit these 

advantages, it was necessary to study methods that fulfilled the best characteristics of the 

lighting sources that could replace to the conventional ones, thus in this chapter uniform 

irradiance models were applied with the aim to create a methodology for calculating 

optimized LED arrays, taking into account the photochemical requirements of the 

photocatalytic reactor, and demonstrating the feasibility of the method for the degradation 

of textile dyes. 

As is noted, the use of conventional lamps leads to an inefficiency of the photocatalytic 

process, since the photocatalyst does not take advantage of all the energy emitted by the 
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lamp, which produces an overconsumption of energy or the need to modifying the chemical 

characteristics of the photocatalyst, increasing the cost of the process. The use of LEDs 

could help to reduce the necessary energy to carry out the photocatalysis process (with the 

implicit benefits of the LED sources as lifetime, avoiding the use of mercury lighting 

sources), but if the LED arrays are not carefully optimized the reduction in electricity 

consumption cannot be assured, and the adding LEDs could counterproductively increase 

the cost of the process (as well as the cost of the implementation), thus, an improvement in 

photocatalytic results is not guaranteed. In this chapter, by emphasizing the minimum 

number of elements as well as their optimal distribution for the LED arrays with regard to 

the physical dimensions of the reactor, the obtained results show that a diminishing on the 

energy consumption for the photocatalytic process up to 90% can be achieved. 

In this chapter we can see, that the optimally increasing the LED elements from 30 to 60 is 

compensated by the decrease in the time of decolorization, as well as by an low energy 

consumption (119.45 vs 178.12 kWh/m3/order respectively), reaching a 100% of the 

decolorization before using lamps (416 vs 435 min). 
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Chapter 5. WAVELENGTH ANALYSIS 

 

5.1 Introduction 

Temperature is an important parameter in photocatalytic processes and sources of 

illumination. Photocatalytic processes work optimally at room temperature[32,73], 

nevertheless, LED lightning sources may affect the emission spectrum when there are 

significant temperature changes, this movement [74,75]. 

Most LEDs are made of GaAs and have direct energy gap semiconductors, on forward 

biasing the LED excess electron hole pairs are recombined with each other’s producing 

photons of light which are emitted to outside of the diode. The emitted light intensity is 

proportional to the excess charges which  increases linearly with the diode current, because, 

increasing the temperature, the band gap energy decreases and emitted wavelength 

increases[76,77]. 

Since the temperature affects the wavelength emitted by the LEDs, in this chapter, the 

wavelength shift of the LED was verified, as well as the existence of a significant change in 

photocatalytic processes when the LED light source undergoes temperature variations. 

 

5.2 Evaluation tests 

Two cases were corroborate: a) A cooling device was implemented in a LED385-33 in order 

to move the emission peak to a lower wavelength. b) Once the wavelength shift was 

measured, the same cooling device was implemented in the Radial LED array with the aim 

to corroborate the existence of a variation in the performance of the photocatalytic process 

in the presence of a change in the wavelength and intensity of the LEDs. 

 

5.3 Evaluation Results 

As seen in Fig. 5-1, the wavelength shift of LED385-33 when cooled to -7 ° C was 1.76 nm, 

changed from 384.35 to 382.59 nm, and its intensity increased 1.7 mW, nevertheless, to 

generate these changes were applied 2 A of power.
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Fig. 5-1. Wavelength shift of the UV-source LED385-33 

 

After measuring the wavelength shift and the intensity increase, the decolorization of the 

Orange PX-2R dye was performed by cooling the radial LED array to -7 ° C. 

Fig. 5-2 shows the decolorization curve obtained after cooling the UV-LED source compared 

to the uncooling decolorization curve. The results show that there is a variation in 

performance, nonetheless, it can be negligible since there is no improvement in process time 

or efficiency, besides, to cool the array requires 2 A of power. 

 

 

Fig. 5-2. Orange PX-2R dye decolorization with different temperature. 
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5.4 Discussion and conclusions 

Although TiO2 has a wide working area in the ultraviolet zone (400 – 488 nm), shifting the 

emission peak from 384.35 to 382.59 (1.76 nm) and increasing its intensity does not generate 

a significant change in the Photocatalytic process performance. 

While the LEDs can work at -20 C, the manufacturer does not recommend low temperatures 

for long periods of time, since the life of the diode could be shortened. 

To cause a significant improvement in the performance of the photocatalytic process, it 

would probably be necessary to cool the array evenly at -15 ° C, however, it would increase 

energy consumption to decrease the temperature, which is not recommended in the 

optimization of this processes. 
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Chapter 6. IN-SITU MONITORING OF 

DECOLORIZATION OF TEXTILE DYES  

 

6.1 Introduction 

Water pollution is nowadays one of the most worrying health problems influencing the life 

of all living beings and textile industry, among the sectors with larger influence in the 

production of wastewater[7,8,78], uses more than 100,000 different dyes, with roughly 

280,000 tons lost in the textile effluents every year[9,10]. Textile wastewater is commonly 

contaminated with high concentrations of organic substances derived from various residues 

of dyes and different chemical additives [8,9]. Approximately 800,000 tons are synthetic azo 

dyes, widely used because of their high reactivity and color resilience [6,7,8]. For their 

mineralization and degradation advanced oxidation processes are commonly used [20–22]. 

Amongst the AOPs, photocatalytic process is highlighted due to their high efficiency in the 

removal of contaminants, including synthetic dyes [30,79].  

Current photocatalytic processes in aqueous solution involve different types of reactors 

[52,80–88], which can be classified in different groups according to their geometry (e.g. 

tubular or cylindrical, rectangular or square reactors among others), liquid agitation 

techniques (e.g. continuous flow reactors, stirrer rotation for instance) and lightning source 

including mainly low or medium pressure ultraviolet lamps [42,89–92], currently being 

replaced by LED lighting [51,55,93–97], which can reduce the size of the reactors allowing 

to make compact photo reactors known as mini reactors or micro reactors [49,98,99]. These 

reactors usually work with less than 1 Liter of water [29,31,49,50,96–101], using 

photocatalysts either in suspension [31,101–104] or immobilized [105–107]. Reactors with 

photocatalyst in suspension are the mostly used, since it is not necessary to obtain any 

previous treatment of the photocatalyst. On the other hand, reactors with immobilized 

photocatalyst, used for diverse applications such as continuous flow processes, need a careful 

preparation to avoid low reaction rates [106]. 

Monitoring of the degree of oxidation achieved in AOPs is a crucial parameter to determine 

when the process is completed (i.e. measurement Chemical Oxygen Demand (COD), Total 

Organic Carbon (TOC), Biochemical Oxygen Demand (BOD))[31,42,90,100].
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In particular, for dyed solutions the principal measurement of the degree of decolorization 

is used[4,11,14,108,109]. This analysis involves frequently a measurement of the absorbance 

at different times obtained by extracting samples periodically, generating a decrease in the 

water volume (non-negligible in such mini reactors) and altering the photocatalysts 

concentration [31,101]. An improvement of the existing monitoring techniques should revert 

in as more efficient control of the oxidation process. In particular, online monitoring could 

offer a solution conserving the volume and catalyst concentration of the treated water. This 

possibility has been currently proposed for monitoring in reactors with immobilized 

photocatalyst[95,98,110,111], but not for photocatalyst in suspension due to its intrinsic large 

scattering[32,39,41,112–115]. 

In this chapter we propose a novel implementation for the online monitoring of dye 

decolorization in photocatalytic in suspension reactors, which can be adapted to different 

reactor geometries, taking profit of the natural process of scattering to measure the color 

removal. The frequency spectrum of the scattered radiation when the solution is illuminated 

by a white-light source is continuously monitored by a fiber-coupled spectrometer measuring 

the degree of decolorization in real time.  

 

6.2 Methodology 

6.2.1 Reagents 

The materials used for this experiments were six different textile dyes of the azo 

chromophore group (Table 6-1), Orange PX-2R dye (CAS No. 12225-85-3), Procion Blue H-

EXL (CAS No. 124448-55-1), Procion Navy H-EXL (mixed of CAS No. 186554-26-7 and 

CAS No. 186554-17-8), Procion Crimson H-EXL (CAS No. 186554-26-7), Remazol Black 

B133 (CAS No. 17095-24-8), and Procion Yellow H-EXL (mixed of CAS No. 72906-24-2 

and CAS No. 72906-25-3), and titanium dioxide powder (TiO2) from the Sigma-Aldrich 

manufacturer (CAS number 13463-67-7), with particles of 21 nm, surface area of 35 – 65 m2 

/g and a molecular weight 78.87 g/mol. 
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Fig. 6-1. Chemical structure CAS No. 12225-85-3. 

 

 

 

Fig. 6-2. Chemical structure CAS No. 17095-24-8. 

 

 

Fig. 6-3. Chemical structure CAS No. 186554-27-8. 

 

 

Fig. 6-4. Chemical structure CAS No. 72916-24-2. 

 

Fig. 6-5. Chemical structure CAS No. 186554-26-7. 

 

 

Fig. 6-6. Chemical structure CAS No. 124448-55-1. 

 

 

Fig. 6-7. Chemical structure CAS No. 72906-25-3. 
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Table 6-1. Description of the selected dyes. 

Abbr. 

Name 

Commercial Name C. I. Name Num. 

Reactive 

Groups 

𝝀𝒎𝒂𝒙 Fig. 

OP2 Orange PX-2R Reactive Orange 13 1 487 nm Fig. 6-1 

RB Remazol Black B133 Reactive Black 5 2 598 nm Fig. 6-2 

PC Procion Crimson H-EXL Reactive Red 231 2 545 nm Fig. 6-5 

PN Procion Navy H-EXL Not registered 2 606 nm Fig. 6-3 

PB Procion Blue H-EXL Reactive Blue 198 2 624 nm Fig. 6-6 

PY Procion Yellow H-EXL Reactive Yellow 138:1 2 416 nm Fig. 6-4 

and 

Fig. 6-7 

 

6.2.2 Decolorization experiments 

For the measurements of the decolorization a photocatalytic reactor was built using a 250 

mL borosilicate vessel and a magnetic stirrer. ¡Error! No se encuentra el origen de la referencia.A 

shows schematic diagram of the photoreactor with the in-situ monitoring configuration, 

¡Error! No se encuentra el origen de la referencia.B shows the schematic diagram of the effect of the 

scattering in a photoreactor with suspended catalyst, the reactor has two square UV-LED 

arrays (UV-LED array (2) and(4)), placed 120º around the container, at a distance of 8 cm 

from the center of the reactor, and another three non-uniform UV-LED arrays placed 120º 

around the vessel (UV-LED array (1), (3) and (5)), at a distance of 4 cm from the center of 

the reactor, and UV-LED radial array, placed in the upper part of the photoreactor, at a 

distance of 10 cm with respect to the bottom of the vessel. 

The geometric configuration and the separation between UV-LEDs was selected with the 

aim to obtain an illumination as uniform as possible in the reactor using uniform irradiance 

models[96]. The UV-LEDs were manufactured by Roithner LaserTechnik LED385-33 

UVA, with peak wavelength at 385 nm, radiated power of 11 mW and power dissipation of 

200 mW. 
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6.2.3 Monitoring with recirculation system 

In a first attempt to achieve this goal the geometry of the initial photoreactor (see Fig. 6-8A) 

was modified including a pump to circulate the dye solution into an external circuit and using 

1 mm thick cuvette to measure the degree of decolorization of the sample (see Fig. 6-8B).  

 

A) B) 

 

 

Fig. 6-8. Schematic diagrams. A) Reactor with placement of all UV-LED arrays. B) Diagram of monitoring 
with recirculation system, (1a-f) UV-LED arrays, (2) Photoreactor, (3) Pump, (4) Cuvette for sample analysis, 
(5a-b) Photodetector, (6) Laser, (7) Data Acquisition System. 

 

 

6.2.4 Online monitoring 

The online monitoring configuration used a white-light lamp (Thorlabs OSL1-EC), whose 

irradiance is emitted in a spectral range different from the photocatalyst activation zone 

(<388 nm) to avoid the alteration of the photocatalytic process, this lamp was placed normal 

to the reactor's surface, illuminating in the radial direction to induce the scattering from the 

catalyst in suspension. Also, a fiber bundle connected to an spectrometer (Andor Shamrock 

303i) was oriented in order to collect the scattered radiation from the reactor, but avoiding 

direct ultraviolet light from the UV sources of the photocatalytic process, in addition between 

the reference lamp and the spectrometer a barrier was placed to avoid erroneous readings. 

The spectrometer was configured to take a sample every 5 minutes until the total 

decolorization of each dye was reached. 
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The transmittance was calculated by: 

%𝑇 =  (
𝐼

𝐼0

)  ×  100 
Eq. 6-1 

where I is the transmitted light intensity, and I0 is the original light intensity. 

 

Absorbance can be calculated given its relation to transmittance by: 

𝐴 =  2 − 𝑙𝑜𝑔(%𝑇) Eq. 6-2 

where %T is the transmittance as a percentage. 

 

The percentage of decolorization was calculated by Eq. 4-1. 

 

6.2.5 Measurements with traditional method 

With the aim to measure the absorbance value by the traditional method it is necessary to 

take a sample, and remove the titanium dioxide (e.g. filtration, centrifugation) to be able to 

use the spectrophotometer (UV-2401, Shimadzu Corporation) at the maximum wavelength 

of the visible spectrum of each dye (Table 6-1). Subsequently, the percentage of 

decolorization can be calculated by ¡Error! No se encuentra el origen de la referencia.. 

 

6.2.6 Photocatalytic decolorization experiments 

In order to simulate the effluents after the dyeing process, 250 mL of distilled water were 

mixed with 0.1 g/L of each dye. Before photodegradation, the solution was mixed with 1 

g/L of photocatalyst in suspension and then the mixture was put on magnetic stirrer in 

complete darkness for 30 minutes to ensure the adsorption of the dye on the surface of the 

catalyst. After 30 minutes, the UV-LED source was turned on with the mixture in constant 

agitation. The catalytic process was carried out until the total color removal of each dye was 

reached. Initial and final traditional samples of each dye were taken to verify the 

decolorization values obtained with online monitoring against the traditional method. 
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6.3 Evaluation results 

6.3.1 Monitoring with recirculation system 

Fig. 6-9 shows the photoreactor with the recirculation system implemented, this 

configuration presented some problems, in the circulation process part of the catalyst was 

adsorbed at the circuit walls and the cuvette, it was also not possible to make a direct measure 

through the cuvette in transmission due to the high scattering present. 

 

 

Fig. 6-9. Implemented reactor with recirculation system. 

 

Fig. 6-10 shows the cuvette used for decolorization analysis. As can be seen in Fig. 6-10A due 

to the scattering of the cuvette the reference Laser could not cross the sample to analyze it 

with the photodetector, and in Fig. 6-10B can be see the photocatalyst stuck in the cuvette 

corners. 

In another attempt to transmit the light through the cuvette, the reference Laser was 

substituted for a white light lamp, however, as can be seen in Fig. 6-10C there is a large amount 

of scattering that inhibits correct measurement. 

Using immobilized TiO2 geometries can palliate the effect of the scattering but can introduce 

other problems such as how to obtain a uniform illumination of the sample (this is a crucial 

aspect in photocatalytic processes). 
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A) B) C) 

   

Fig. 6-10. Cuvette for sample analysis. A) Lateral view, B) Front view, C) Lateral view with white lamp 
illumination. 

 

6.3.2 Online monitoring 

In the experiments a photocatalytic microreactor with suspended TiO2 photocatalyst was 

used. The titanium dioxide spherical nanoparticles, are suspended in water and continuously 

stirred to avoid precipitation of the suspension. As a consequence the averaged particle 

density and hence the averaged index of refraction at each microscopic volume element of 

the suspension will show temporal fluctuations, leading to a quite uniform scattering 

distribution in all directions when illuminated by a light beam. The size of the scattering 

centers, much smaller than the wavelength, leads to Rayleigh-type scattering with 

omnidirectional dispersion acting quite effectively in the visible part of the spectrum. 

The conventional method to determine the decolorization degree requires filtering the 

suspended photocatalyst to measure the absorbance using a spectrophotometer. The degree 

of decolorization is directly related to the amount of oxidation achieved in the sample. 

Online monitoring of the decolorization process would allow to follow the kinetics of the 

process in real time. 

We propose a new solution taking profit of the natural scattering emitted over broad spectral 

regions with the aim to perform an online monitoring of the spectrum directly from the 

reactor body. We will also demonstrate its performance in the monitoring of the 

decolorization of azo dyes. 

Fig. 6-11 shows the implemented photoreactor with the elements to perform online 

monitoring, this reactor uses 86 LEDs, distributed in different arrays for the photocatalytic 
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process and was implemented according to the description in ¡Error! No se encuentra el 

origen de la referencia.A. 

 

Fig. 6-11. Implemented photocatalytic reactor with decolorization monitoring. 

 

For the monitoring we used a white light source coupled to a fiber bundle and placed close 

to the reactor wall illuminating the dye solution. In the Fig. 6-11 it can be seen the strong 

scattering present in the illuminated solution. The scattered radiation is captured by a second 

fiber bundle and coupled to a spectrometer to record its frequency spectrum. Since the 

scattering of radiation is omnidirectional, the detection fiber bundle can be placed in any 

location adequate to the geometry of the reactor. In the experiments the fiber bundle was 

placed close to the source using a screen in order to eliminate direct coupling from the source 

to the detector. The acquisition process can be automatized allowing the recording of the 

spectrum of the dye at selected times. In each experiment measures were taken every 5 

minutes automatically. 

As initial reference the spectrum of clean deionized water with an amount of photocatalyst 

in suspension identical to that used in the dye samples and with identical magnetic stirring 

conditions was recorded. The capabilities of this system were tested by monitoring the 

decolorization process of six different dyes with colors varying along the visible spectrum 

(details of the dyes used are presented in Table 6-1). Fig. 6-12 shows the intensity spectral 

curves, recorded for each sample. The arrows indicate the direction of change of the spectra 

as a function of time, indicating that the intensity of the spectrum signal recorded increases 

with time as the decolorization process takes place. For these measurements a calibrated 

optical illumination to obtain absolute values of irradiance is not needed, since merely the 
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Scattering
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LED

array
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LED array

LED

array
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relative variations of the spectrum are considered. From these curves an increase of the 

transparency of the samples, given by the increase of the overall spectrum intensity, can be 

inferred. 

 

 
Fig. 6-12. Spectrum recorded of each dye as a function of time. a) OP2, b) RB, c) PC, d) PN, e) PB, f) PY. 

 

Taking as a reference the spectrum of the TiO2 suspension in deionized water, normalized 

values of the transmittance of the dye during the oxidation process are shown in Fig. 6-13. 

These curves allow to determine also which wavelengths are more sensitive to the 

decolorization process according to the characteristics of the dye.  

Taking as a reference the spectrum of the TiO2 suspension in deionized water, normalized 

values of the transmittance of the dye during the oxidation process are shown in Fig. 6-13. 

These curves allow to determine also which wavelengths are more sensitive to the 

decolorization process according to the characteristics of the dye. 

Fig. 6-14 shows a measure of the normalized absorbance of the sample, obtained from the 

recorded spectra using Eq. 6-2. The absorbance values decrease when the color is removed 

from the dyed water. 
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Fig. 6-13. Transmittance of each dye. a) OP2, b) b c) PC, d) PN, e) PB, f) PY. 

 
Fig. 6-14. Absorbance of each dye. a) OP2, b) RB, c) PC, d) PN, e) PB, f) PY. 
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The decolorization percentages, calculated using the ¡Error! No se encuentra el origen de 

la referencia. using the maximum absorbance of each dye (information of Table 6-1) allow 

to extract kinetic information of the oxidation process as show in Fig. 6-15. These figures 

show that in all cases 100% of decolorization was reached with varying oxidation velocities 

depending of the nature of each dye. 

 
Fig. 6-15. Decolorization of each dye. a) OP2, b) RB, c) PC, d) PN, e) PB, f) PY. 

 

Fig. 6-16 shows the initial and final decolorization samples of each dye by the in-situ 

monitoring. 

 

Fig. 6-16. Decolorization samples initial and final of each dye. 
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The total decolorization time for each one of the tested dyes is shown in Fig. 6-17 ranging 

between the 2 hours and 10 hours. The online measurement allowed to make a completely 

automatized recording. 

 

 

Fig. 6-17. Time of decolorization of each dye. 

 

6.3.3 Measured absorbance with traditional method 

With the aim to compare the results obtained in this in-situ monitoring with the traditional 

method employed, initial and final samples of each of the photocatalytic processes (each dye) 

were analyzed. The absorbance values were measured using a 1/20 dilution after 

centrifugation to remove the titanium dioxide in suspension. The absorbance curves 

obtained (initial and final), plotted in Fig. 6-18, show equivalent trends to those obtained by 

the in-situ method. 

 

6.3.4 Kinetic values and Energy consumption 

The dyes degradation rate at each experiment follows a first-order kinetic model of Langmuir 

– Hinshelwood, this model provides the kinetic values (K), calculated from the slope of 

logarithmic absorbance values versus time of treatment, and the regression coefficients (R2). 

In Table 6-2 the values corresponding to the regression coefficients (R2), and the kinetic 

degradation rate (K) are listed. Moreover, since each decolorization process had a different 

duration, the calculation of the energy consumption is also listed in the table. When the 

degradation rate of the Orange PX-2R dye is calculated using the traditional method, the 

values of R2, K obtained are 0.9341 and 0.0132 respectively, which are close to the values of 

the online monitoring. 
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Fig. 6-18. Absorbance of each dye by traditional method. a) OP2, b) RB, c) PC, d) PN, e) PB, f) PY. 

 

 

 
Table 6-2. First-order degradation rate constant, and Energy Consumption for the decolorization of azo dyes. 

Dye R2 
K 

(min-1) 

Energy 

Consumption 

(kWh/m3) 

Orange PX-2R 0.9232 0.0159 332.53 

Remazol Black B133 0.7218 0.0101 688.00 

Procion Crimson H-EXL 0.9060 0.0281 269.47 

Procion Navy H-EXL 0.9861 0.0232 131.87 

Procion Blue H-EXL 0.7610 0.0131 292.40 

Procion Yellow H-EXL 0.7870 0.0219 407.07 
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6.4 Discussion and conclusions 

The implementation of this online monitoring technique has been developed as an alternative 

method to the traditional decolorization analysis schemes based on photocatalytic processes. 

In this work, it was proved that the scattering produced by suspended titanium dioxide, can 

be exploited in order to perform the online monitoring of color removal of azo dyes in 

photocatalytic processes. Thus avoiding, alterations or interruptions during the process by 

maintaining unaltered the photocatalyst concentration, as well as the volume of the 

contaminant (crucial condition in minireactors and microreactors).  

Since the scattering is present due to the fluctuations in the suspended particles density, this 

the technique could be extended to other semiconductor photocatalysts with different index 

of refraction or particle dimensions. 

In addition, since this technique allows to arbitrarily select the sampling frequency of the 

acquired spectra, the precision in the determination of the degradation curve could be 

improved by taking more samples. Furthermore to having more samples we can know the 

exact moment in which the process has reached the total decolorization, or the desired 

percentage. Moreover, it allows in the determination of the degradation to control the 

dynamics of the process. 

In this chapter we developed a simple non-invasive online monitoring technique for 

photocatalytic reactors based on the detection of the variations in the decolorization of textile 

dyes by exploiting the light scattering produced by the photocatalyst in suspension. 

The presented online monitoring technique, operates regardless of the geometry or 

dimensions of the reactor. For the conducted experimental scenarios, lighting source 

remained external; nevertheless, this technique also can be applied in photoreactors with 

traditional immersive lighting. 

By exploiting the light scattering physical process, it can be achieved the online monitoring 

of laboratory scale photoreactors (mini and micro reactors), while avoiding the use of 

supplementary procedures during the photocatalytic process, as is the case of reactors with 

optical modified characteristics (that permit lighting filtering techniques), or the use of 

immobilized photocatalysts. 

Although for the experimental scenarios presented in this chapter a white light lamp was 

used, it is also possible to use other types of lighting sources (e.g., laser or LED). Thus, since 
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it is also possible the degradation assessment in the ultraviolet zone, the online monitoring 

is not only restricted to decolorization processes, allowing the online degradation monitoring 

for different applications (e.g., organic matter monitoring).  

For this line of research, future work can be focused on developing and implementing 

automatic control systems that enable the deactivation of the lightning source when the 

sample reaches the desired degradation percentage, avoiding unnecessary energy 

consumption; as well as using in-situ monitoring to analyze different types of contaminants. 
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Chapter 7. CONCLUSIONS AND FUTURE WORK 

 

7.1 General conclusions 

• A methodology has been generated for the replacement of conventional lamps by 

LED Arrays with low energy consumption. 

• Using optimized lighting, energy consumption has been reduced, as well as the time 

for decolorization of textile waters. 

• In-situ monitoring in reactors with photocatalyst in suspension dispenses with the 

implementation of filtering or centrifugation processes, as well as the alteration of 

current reactors to eliminate the catalyst during the photocatalytic process. In 

addition, waste of photocatalyst is avoided by removing it before finishing the 

degradation process. 
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7.2 Future work 

 

• The results obtained during this research project have been obtained after the 

common work between the research groups Nonlinear Dynamics, Nonlinear Optics 

and Lasers (DONLL), Motion Control and Industrial Applications (MCIA) and the 

collaboration with the Institute of Textile Research and Industrial Cooperation of 

Terrassa (INTEXTER), who have analyzed the data obtained and provided the 

chemical agents that have been used. Therefore, the results and future work are of 

great interest for the three groups. 

• The methodology with uniform irradiance models could be improved using genetic 

algorithms that provide specific arrangements for each reactor surface. The MCIA 

group has Professors who have worked with different optimization algorithms, 

including genetic algorithms, therefore, the generation of a new lighting array with a 

unique shape can be applied soon. 

• The signal obtained in non-invasive monitoring can be used to control many 

parameters of the process, for example, if working with water that does not require 

total degradation, it could be established to reach a certain threshold to stop the 

process, or if it is used in chain reactors it could be automated to move on to the 

next process. The MCIA group is currently working with signal processing for 

process control, therefore, continuing to work with this type of sensors is under 

analysis. 
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Chapter 8. THESIS RESULTS DISSEMINATION 

 

8.1 Journals 

Tecilli Tapia, Valentina Buscio, Jose Trull and Vicent Sala, "Performance Analysis and 

Methodology for replacing conventional lamps by optimized LED arrays for Photocatalytic 

Processes" in Chemical Engineering Research and Design. 

Under review since February 2019  

Impact factor: 2.795 

 

Tecilli Tapia, Jose Trull, and Luis Romeral, "In-situ decolorization monitoring of textile dyes 

for an optimized UV-LED/TiO2 reactor " in Catalysts. 

Under review (minor revisions) 

Impact factor: 3.444 

 

8.2 Congresses 

Tapia-Tlatelpa, T.; Trull, J.; Sala, V.; Romeral, L., “Methodology for lighting optimization 

applied to photocatalytic reactors”, in Proceedings of the Numerical Simulation of 

Optoelectronic Devices (NUSOD); 2019; pp. 31–32. 
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