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Abstract

Concrete is a complex material and can be modeled on various spatial and temporal
scales. While simulations on coarse scales are practical for engineering applications, a
deeper understanding of the material is gained on finer scales. This is at the cost of an
increased numerical effort that can be reduced by the three methods developed and used
in this work, each corresponding to one publication.

The coarse spatial scale is related to fully homogenized models. The material is described
in a phenomenological approach and the numerous parameters sometimes lack a physical
meaning. Resolving the three-phase mesoscopic structure consisting of aggregates, the
mortar matrix and the interfaces between them allow to describe similar effects with
simpler models. This work addresses two computational challenges related to mesoscale
modeling.

First, aggregate particles take up a high volume fraction and an efficient particle-packing
algorithm is required to generate non-overlapping, random mesostructures. Enforcing an
additional distance between the aggregates is essential to obtain undistorted meshes for
finite element simulations, but further complicates the packing problem. An event-driven
molecular-dynamics algorithm is applied to this problem that, in contrast to traditional
methods, allows movement and a dense arrangement of the aggregates. This allows
creating concrete mesostructures with realistic aggregate volume fractions.

The second challenge concerns stability problems in mesoscale simulations of concrete
fracture. The geometric complexity and the combination of three material laws for each
of the phases leads to numerical instabilities, even for regularized material models. This
requires tiny time steps and numerous iterations per time step when integrated with
a classic backward Euler scheme. The implicit–explicit (IMPL-EX) integration extrap-
olates internal variables that account for the nonlinear behavior. This linearizes the
equations, provides additional robustness and a computational speedup. In combination
with a novel time step control method, a three-dimensional mesoscale compression test
is accelerated by a factor of 40, compared to an adaptive backward Euler algorithm.

The life time of concrete under cyclic loads is commonly predicted with empirical Wöhler
lines. They relate the number of endured cycles with the applied load amplitude and
can be included in constitutive formulations. They can, however, hardly be generalized
to geometries and load configurations other than the ones tested.

On a finer temporal scale, fatigue failure is modeled by the accumulation of damage
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within each loading cycle. This resolves the whole process of failure, includes stress
redistributions and size effects and can easily be extended to multiphysics phenomena.

The third computational challenge solved here is the efficient temporal integration that
would not be feasible in a naive cycle-by-cycle integration of thousands or millions of
cycles. The cost of evaluating a single cycle is reduced by reformulating the problem
in the frequency space. It is sufficient to equilibrate the structure once for each Fourier
coefficient which significantly speeds up this evaluation. The accumulated damage of
one cycle is integrated in time using an adaptive cycle jump concept. For a two dimen-
sional void test structure, the combination of both techniques leads to a 25 times faster
simulation compared to the full integration.

These three main contributions decrease the numerical cost of mesoscale simulations,
allow larger and more detailed models and are a basis to deepen the understanding of
the complex failure patterns in concrete.
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1 Motivation

1.1 Introduction

Concrete is one of the most attractive building materials consumed by humans more
than any other material, except water. 5% of worldwide CO2 emissions are created from
the cement industry. The conservation of natural resources is a key challenge for the next
decades. This can be achieved by increasing the lifetime of concrete structures with a
robust, lifetime oriented design. For this purpose, a reliable numerical model to predict
the performance of concrete over its lifetime is required. The investigation of the fatigue
behavior of concrete has been an ongoing research topic for many decades. However,
neither experiments nor theoretical works nor numerical simulations could fully explain
the complex processes that lead to fatigue failure.

Lifetime aspects including fatigue failure of concrete structures were traditionally only of
minor importance due to the limited amplitude of the applied cyclic loads compared to
the constant dead load. Because of the growing interest in maxing out the capacities of
concrete, its fatigue failure under compression has become an important issue. Typical
examples are offshore wind energy plants, which undergo extreme loading conditions of
non-uniform amplitudes arising from wind and waves or fatigue loading of bridges with a
steady increase of traffic weight. However, a variety of interacting phenomena such as e.g.
loss of prestress, degradation due to chemical reactions or creep and shrinkage influence
the fatigue resistance. As a consequence, it is difficult to estimate the lifetime using
only experimental techniques. Furthermore, failure due to cyclic loads is generally not
instantaneous, but characterized by a steady damage accumulation. Therefore, a reliable
numerical model to predict the performance of concrete over its lifetime is required, which
accurately captures order effects and full three-dimensional stress states.

Applications of such simulations are diverse. In the dimensioning of an engineering struc-
ture, more precise models can reduce uncertainties and the possibly redundant material
associated with it. In the fundamental research of material models, the importance of
several physical aspects in a material theory can be evaluated by adding or removing
them from a numerical model. This helps to understand to which extend certain phe-
nomena explain a measured material response. And another example is the recently
advancing concept of digital twins, where a numeric representation of a specimen is con-
stantly updated with measured data from its real-world counterpart to better predict
its behavior.
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1 Motivation

The challenge of modeling concrete material behavior is its complex internal geometry
and its nonlinear constitutive relationship. Its fracture process consists of the formation
of a broad distribution of microscopic cracks which coalesce and form a macrocrack. This
process is triggered by inhomogenities in the material. Theoretically, one can think of a
simulation that covers the whole material life time including the manufacturing process
with all the physical details on length scales down to (sub)atom level. Practically, how-
ever, suitable compromises have to be found that resolve certain physical or geometrical
aspects while approximating the rest.

The simulation of concrete in a fully homogenized manner means smearing of all con-
crete components to a homogeneous material that reproduces the macroscopic behavior.
The model resolution is chosen to represent the structural geometry. This is a rather
coarse representation, compared to resolving the complex internal material structure.
This resolution correlates with the numerical effort to solve such a model, which leads
to the main advantage of these methods: the calculations are very fast. In return, the
upper-scale phenomenological modeling of the heterogeneous internal concrete structure
leads to very complex constitutive models. That includes numerous parameters that
may lack a direct physical interpretation. They are determined by parameter fitting
with experimental data and their validity is restricted to certain load cases.

The modeling of concrete on the mesoscale allows the resolution of the internal concrete
structure, consisting of aggregates, the mortar matrix and the interfacial transition zone
in between. The complex failure processes can then be represented with simpler constitu-
tive models for each of the three components. This, however, comes at the disadvantage
of increased computational cost and stability issues of the numeric solution.

In quasistatic material models for concrete, the fracture processes only progress when
a new load maximum is reached. Fatigue behavior is modeled with the modification to
allow fracture progression on every load change – even well below this historic maximum.
This means that every loading cycle has to be resolved and numerical methods that deal
with the corresponding computational cost have to be employed. The benefit compared
to approaches that only predict the ultimate failure point, is that this models the whole
material lifetime. It automatically resolves stress redistributions and can be coupled in
a multiphysics context.

1.2 Structure and aim of the work

The goal of this work is to provide a framework of numerical methods that deal with
the numerical costs of mesoscale simulations for both quasistatic and cyclic loading. The
physical background of concrete modeling is presented first, focusing on the mesoscale
geometry, continuum damage mechanics and fatigue models. The resulting numerical
issues are shown and solved next.

8 Thomas Titscher



1.2 Structure and aim of the work

The complex mesoscale structure consists of a dense aggregate packing. The main chal-
lenge is to simulate this packing numerically. Therefore, an event-driven molecular-
dynamics algorithm is employed and adapted. Its growing and moving particles create
geometries with a realistically high aggregate volume fraction.

Next, this geometry is used in fracture simulations of mesoscale concrete. Softening
materials for both the interfacial transition zone and the cement matrix are employed
and the arising localization and stability issues are identified. Here, the implicit-explicit
(IMPL-EX) integration scheme provides additional robustness that results in a perfor-
mance benefit compared to backward Euler solution schemes.

Finally, the high numerical cost of fatigue simulations is addressed. In a full time in-
tegration of a structure under cyclic loading, each of the possibly millions of loading
cycles has to be divided into multiple steps per cycle. This high temporal resolution
clearly exceeds the computational resources. Two optimization techniques are combined
to reduce both the cost of evaluating a single loading cycle and the overall number of
cycle evaluations.

Thomas Titscher 9





2 Nonlinear physical aspects of concrete
modeling

Concrete is a complex material with a heterogeneous geometry and a multitude of physi-
cal phenomena. Main ingredients are cement, water and aggregates which are mixed dur-
ing the manufacturing process. The cement chemically binds the water in an exothermic
reaction that builds calcium silicon hydrate (C-S-H) on the nanostructure [Allen et al.
2007; Bullard et al. 2011; Hlobil et al. 2016] and the fluid concrete mixture gradually
hardens. The generated heat is released over the materials outer surface which creates a
temperature gradient towards the center. This already introduces thermal stresses and
even microscopic defects to the material. Concrete reaches the majority of its strength
within a few weeks after casting. The chemical reactions, however, go on for years or
decades and further stiffen the microstructure.

The hardened cement phase contains a complex pore structure with pore diameters in
the range of nano meters up to centimeters [Mindess et al. 2003]. It contains a mixture
of air, fluid water and water vapor that is heavily influenced by the temperature and
humidity of the surrounding air. Hygroscopic [Bažant et al. 1972; Johannesson et al.
2010] and thermo-hygroscopic [Gawin et al. 2011] models describe the corresponding
transport processes and phase transitions. As an example, fire induced spalling is a failure
mechanism based on these processes. A high temperature gradient causes the water to
evaporate. It is released near the materials surface but causes high pore pressures below
the surface where the water transport is hindered.

When concrete is exposed to a rather low mechanical load for a long time, it shows a
slow but steady deformation that is commonly modeled with creep models [Bažant et al.
1988]. The hygro-thermal processes caused by the long exposure to the environmental
conditions, however, cannot be neglected. Similar considerations are important in long
lasting fatigue experiments. This generally complicates the material modeling since a
single physical aspect can hardly be isolated in experiments.

On the shorter time scale of fracture experiments, failure occurs within minutes of load-
ing and it is reasonable to focus purely on mechanical models. But these models can
indirectly include hygroscopic effects, e.g. in the description of the interfacial transition
zone (ITZ). It is a narrow zone (about 20 µm) surrounding the concrete aggregates. Dur-
ing drying, aggregates absorb water from this zone which leads to a more brittle and less
durable microstructure compared to the surrounding cement matrix material [Ollivier
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2 Nonlinear physical aspects of concrete modeling

et al. 1995]. This is observable in fracture experiments, where material deterioration and
damage starts in the ITZ. It effectively debonds the aggregates and leads to a stress
redistribution within the cement matrix. Macroscopic cracks in the cement connect the
damaged ITZs and lead to material failure. Resolving these processes with separate ma-
terial models for the cement matrix, the aggregates and the ITZ is often referred to as
mesoscale modeling [Wriggers et al. 2006; Unger et al. 2011b].

Note that the nano and micro structures of the phases are smeared into one model. Dur-
ing this homogenization, some information on the complex material response on lower
scales is lost and has to be modeled. But the main failure process – the ITZ deteriora-
tion with subsequent cement matrix cracks – can be resolved. Fully homogenized models
smear the properties of all phases into a single one. It is quite evident that obtaining a
similar material response requires more complex material models with parameters that
are no longer associated to the single material phases.

2.1 Mesoscale geometry

The mesoscale of concrete describes a scale that resolves the aggregates by the geometry,
usually in the order of millimeters and above. Aggregates are the filler material of a
concrete mix and consists of sand, gravel, crushed rock and many other hard materials
in various shapes and sizes. Their size distribution heavily influences the mechanical
properties of concrete and is the topic of mix design optimization [Hüsken et al. 2008].

For a numerical analysis, the aggregate geometry has to be obtained. One way is the
X-ray microtomography. A three dimensional voxel image is reconstructed from multiple
scans of a real concrete specimen [Nagai et al. 2006]. Depending on its value, each voxel
is assigned to either matrix or aggregate material [Nguyen et al. 2015]. This accurately
captures the mesoscale geometry but has some practical drawbacks. The specimen size
is limited to the X-ray system and scanning multiple samples to represent the variations
in the material is time consuming.

An alternative is a simulated mesoscale geometry that approximates real concrete aggre-
gate mixtures. The latter ones are defined via grading curves or sieve curves [DIN 1045
2008] and describe the aggregate mass distribution. Practically, the aggregate mixture
is poured over a sieve with a certain sieve size. The weight of all aggregates that remain
in the sieve is measured. This is repeated for several sieve sizes. The result can be inter-
preted as a cumulative density function (CDF) for the aggregate mass. This concept is
illustrated for three example distributions in Fig. 2.1.

The monodisperse distribution in Fig. 2.1a is characterized by a single aggregate diam-
eter d∗. All aggregates are able to pass a sieve with sieve size > d∗ and remain in it for a
sieve size < d∗. Thus, all aggregates have a size d∗. A bidisperse distribution is defined
by two diameters and corresponding mass fractions and is shown in Fig. 2.1b. All the
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2.2 Fracture modeling
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Figure 2.1: Size distributions for the particle diameter d between a minimal (dmin) and
maximal (dmax) diameter.

aggregate mass is above the bigger diameter and only the fraction of smaller aggregates
below it.

Real concrete mixtures are described by continuous distributions, similar to the one de-
picted in Fig. 2.1c. A discrete set of aggregates is picked randomly from this distribution
until the required total aggregate mass is obtained. The numerical problem of packing
these aggregates into a virtual specimen is further discussed in Section 3.1.

2.2 Fracture modeling

Material fracture or failure occurs if an applied external load exceeds the load carrying
capacity of the material. This then leads to an actual separation of parts of the material.

Materials like glass, crystalline materials or a variety of materials at low temperature
exhibit brittle failure. With gradually increasing load, the material behaves elastically
until it shatters instantaneously [Campbell 2012]. Ductile materials, like metals, on the
other hand, exhibit a different failure process. After an initial elastic phase, plastic defor-
mations occur and permanently change the shape of the structure, even after removing
the loads. For some technical applications, this point already defines material failure,
as the function of the material may be lost. As the load increases further, microscopic

Thomas Titscher 13



2 Nonlinear physical aspects of concrete modeling
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Figure 2.2: Failure pattern of quasi-brittle materials, according to [Poh et al. 2017].

voids form and connect to cracks. These cracks propagate through the material and
effectively reduce the load carrying cross chapter of the material. The increased load on
the remaining material then causes a spontaneous (brittle) failure.

The behavior of concrete, similar to rocks, some ceramics, or ice, is characterized as qua-
sibrittle. The pre-peak behavior, again, is mostly linear elastic with the initial material
stiffness. Towards the peak load, microscopic cracks form in a broad region, see Fig. 2.2a.
A further increase of the external displacements now causes strain softening. Defects from
the drying or geometric notches (e.g. aggregates) form slightly weaker regions where the
microcracks grow faster. This further weakens the regions, their strains increase and the
surrounding material unloads. This is depicted in Fig. 2.2b where opening microcracks
are illustrated thick and dotted microcracks close. This process continues and forms a
band of high strains, the localized zone in Fig. 2.2c.

2.2.1 Constitutive description

A framework for the material description is given by balance equations. Elastic mate-
rial laws can be derived from the non-dissipative conservation of momentum. Including
plastic deformation and damage introduces energy dissipation. Thus, the laws of ther-
modynamics, or more precisely, the Clausius-Duhem inequality or dissipation inequality
have to be fulfilled [Truesdell 1952]. They ensure the irreversibility of natural processes
such as the disability for damaged materials to heal.

The constitutive description of a material depends on its geometric representation. In
continuum models, the governing equations are formulated for a continuous medium
in terms of a stress-strain relationship. A simple example is Hooke’s law that describes

14 Thomas Titscher



2.2 Fracture modeling

isotropic linear elastic material. Continuum models will be the focus of this work and
are described in the next chapter, but alternatives are briefly discussed here.

Discrete models describe the material as an assembly of elementary entities such as
springs, bars, beams, spheres and many more. Associated constitutive models are formu-
lated in terms of forces and relative displacements. Truss or beam structures are simple
examples that can be extended to model fracture. Lattice models represent the material as
a fine grid (lattice) of beam elements that break, if a critical force is reached [Schlangen
et al. 1992]. They are also applied to mesoscale simulations. An aggregate structure
is projected to the lattice and the beam material properties are assigned accordingly.
Beams within an aggregate have a higher stiffness and endure more forces than matrix
beams. Beams that cross the aggregate-matrix interface are further weakened to rep-
resent the ITZ. A Voronoi triangulation can reduce the directional bias of the regular
lattice structure [Cusatis et al. 2011] and more sophisticated force-displacement laws can
include damage and plasticity under cyclic loading [Grassl et al. 2008].

The distinct element method approximates the body with closely packed particles and
imposes force-displacement relationships between them to model the material behav-
ior. These forces hinder particle overlaps and model friction in granular soil simula-
tions [Cundall et al. 1979]. Solid materials are modeled with a stiffer relationship and
fracture can be introduced with a sudden drop of transmissible forces after a defined
tensile strength [Zubelewicz et al. 1987].

An alternative are continuum models with embedded discontinuities. The idea is to
enhance the finite element discretization of a continuum model (often, but not neces-
sarily linear elastic) with a description of a discrete crack or a highly localized zone.
This description is provided by fracture mechanics that deals with stress singularities at
the crack tip and provides criteria for crack initiation and propagation [Erdogan et al.
1963]. The stress-free (Griffith) crack [Griffith 1921] is suitable for brittle materials, but
cannot model the softening response in quasibrittle materials. Instead, cohesive cracks
are used that relate the transferable traction over a crack with its opening or separa-
tion [Hillerborg et al. 1976]. Extended finite elements [Belytschko et al. 1999; Moës et
al. 1999; Moës et al. 2002; Unger et al. 2007; Loehnert et al. 2011] excel at modeling
a single crack by inserting the traction-separation law within continuous elements. But
especially in a three-dimensional setting, this results in a cumbersome geometry prob-
lem [Paul et al. 2017]. A less invasive alternative is placing the traction-separation laws
on the edges/faces of an existing finite element mesh. Accurately tracking the a priori
unknown crack path, however, may require frequent adjustments of the mesh. A compu-
tationally expensive resort is to allow discontinuities at every finite element edge [Carol
et al. 2001]. A more suitable application arises for known crack paths, mostly at in-
terfaces within the material. Examples are the rebar-concrete interface for reinforced
concrete [Lundgren et al. 2000] or the ITZ [Unger et al. 2011b].

Interestingly, traction-separation laws can be regarded as a limit case of continuum dam-
age models [Simo et al. 1993]. In the continuum strong discontinuity approach (CSDA)
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2 Nonlinear physical aspects of concrete modeling

very thin continuum damage elements with appropriate stress-strain laws resemble the
behavior of traction-separation laws [Oliver et al. 2002]. This allows modeling these
interfaces with only continuum damage mechanics [Titscher et al. 2019], which is advan-
tageous as it seamlessly integrates into continuum finite element codes.

2.2.2 Continuum damage mechanics

The term continuum damage mechanics is first mentioned in [Kachanov 1958] and de-
scribes material deterioration, in contrast to classic fracture mechanics1 in a continuous,
smeared fashion [Simo et al. 1987; Kachanov 2013]. The influence of defects on the mate-
rial is modeled by field variables, most dominantly damage, that then modify the elastic
properties of the material. A value of zero indicates virgin, intact material and corre-
sponds to the purely elastic material response. Microcracks are not able to transmit the
same forces as intact material. On the microscale, this corresponds to a reduction of effec-
tive, load-carrying cross chapter of the material. The damage variable can be interpreted
as the fraction of cracked surface, projected onto the loading direction. Complete mate-
rial failure occurs for a damage value of one and the material shows no more resistance
to external loads.

In the most general case, the damage variable is a fourth order tensor. The experimental
identification of all its components, however, is extremely difficult. Thus, a symmetric
second order tensor is more commonly used [Sidoroff 1981; Carol et al. 1997].

Isotropic damage models

Defining the damage variable as a scalar value removes the directional information and
leads to isotropic damage models. But some of the directional information is recovered
in a spatial sense. A uniaxial tensile loading results in a narrow damaged band that
reduces the body’s stiffness in loading direction. In a perpendicular direction, however,
the projected load-carrying cross-chapter is only reduced by the width of the damaged
zone. If that zone is sufficiently small compared to the body’s dimensions, it merely
influences the material behavior in that direction.

The stored energy density of such a model reads

ψ = (1 − ω)ψ0 = (1 − ω)
1

2
ε : C : ε, (2.1)

where 0 ≤ ω < 1 denotes the scalar damage variable and ψ0 is the elastic energy density.
The latter one is written in terms of the fourth-order elasticity tensor C and the second-
order strain tensor ε.

1Phase field models for brittle failure [Miehe et al. 2010; Ambati et al. 2015] reformulate the crack
description in a continuous way.
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2.2 Fracture modeling

Implications for the damage growth and the constitutive modeling are derived from the
dissipation inequality mentioned above. In a local form and for a constant tempera-
ture [Jirásek et al. 2002b] it reads

Ḋ = σ : ε̇ − ψ̇ ≥ 0, (2.2)

where σ is the second-order stress tensor. After inserting Eq. (2.1),

Ḋ = (σ − (1 − ω)C : ε) : ε̇ + ψ0 ω̇ ≥ 0 ∀ε̇ (2.3)

follows. Without limiting the choice of ε̇, this inequality can only be fulfilled for

σ = (1 − ω)C : ε, (2.4)

which represents the constitutive equation, in this case Hookes law, reduced by the
factor (1 − ω).

With the positive potential ψ0, the dissipation inequality can only be fulfilled for a
non-negative damage growth. So even for unloading conditions, the damage must not
decrease. This implies that the damage variable cannot directly depend on the stresses
or strains. Instead, an additional history variable κ is introduced that captures the his-
toric maximum of the damage driving variable. Acounting for the maximum dissipation
principle [Simo et al. 2006], this is formulated by the loading-unloading conditions

f ≤ 0, κ̇ ≥ 0, κ̇f = 0, (2.5)

with the loading function f , usually in the form

f(κ, εeq) = εeq − κ. (2.6)

Here, εeq denotes an equivalent strain measure as the damage driving variable.

The exact shape of the post-peak curve or softening curve is defined by a damage law
ω(κ). For the isotropic case, that is a scalar function that monotonically depends on the
history variable to ensure non-negative damage growth. The two material parameters
that commonly define the damage law are the tensile strength ft and the fracture energy
Gf . They can directly be determined by an uniaxial tensile test. Equation (2.4) for this
case is shown schematically in Fig. 2.3 for an exponential damage law [Mazars et al.
1989; Oliver et al. 1990]. The tensile strength is the peak load at the point of damage
initiation and the fracture energy is related to the integral of the curve.

The definition of the equivalent strain measure heavily influences the model’s behavior
as they determine the boundaries of the elastic domain. They are defined by a loading
function that, in the simplest case, leads to damage growth when the equivalent strain
exceed a threshold. As illustrated in Fig. 2.3, this defines the maximal material strength.
A definition of the equivalent strains as the simple Euclidean or energy norm leads to
almost equal material strength in all loading directions. A Rankine failure criterion
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Figure 2.3: Uniaxial tensile test with an exponential damage law.

corresponds to unlimited compressive strength. Both versions are in contrast to the
experimental observation that the compressive strength of concrete is about one order
of magnitude higher than its tensile strength [Kupfer et al. 1969]. This is modeled with
the modified von Mises formulation. It introduces a scalar factor that expresses the ratio
of the materials compressive strength and its tensile strength [Vree et al. 1995].

These models cannot capture the correct strength envelopes, especially in biaxial load-
ings. A remedy is to introduce a split into one damage variable for compression, one for
tension, with separate and more complex loading functions [Mazars 1986; Comi et al.
2001]. Another problem with isotropic damage models is the crack closure effect, also
referred to as unilateral stiffness recovery. Cracks that correctly reduce the materials
stiffness in tension close in compression. The contacting crack faces can transmit com-
pressive stresses similar to the virgin material. In a simplified approach, this effect can
be modeled by splitting the elastic law into a hydrostatic and deviatoric components
and omit damaging the compressive hydrostatic part. A more sophisticated formulation
that also affects the deviatoric part is achieved by selectively deactivating damage in a
principal component split [Ladeveze et al. 1984; Faria et al. 1998].

Multiphysics coupling

In pure damage formulations, or elasto-damage formulations, the defects close perfectly
and the stress-strain curve unloads to the origin, as depicted by the dotted line in Fig. 2.4.
The effective stiffness is permanently reduced.

Plastic materials are characterized by a permanent deformation. In unloading, the de-
formation in form of a plastic strain remains in the load-free state. The stiffness of the
virgin material is not affected. This is illustrated with the dashed line in Fig. 2.4.

Plastic models consist of a yield surface, a flow rule and a hardening law. The yield sur-
face, similar to the loading function in damage models, defines the boundary of the elastic
regime. In the Mises- or J2-plasticity this yield surface is defined in terms of the second
deviatoric stress invariant [Mises 1913]. A pressure-sensitive formulation is achieved by
adding the first invariant, e.g. in the Drucker-Prager yield surface [Drucker et al. 1952].
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Figure 2.4: Unloading paths for different softening material models.

For concrete, the formulations also include the third deviatoric invariant [Ottosen 1977;
Menetrey et al. 1995] or multiple yield surfaces [Feenstra et al. 1996]

The flow rule defines the evolution of plastic strains, once the stress state reaches the yield
surface. In associative flow rules, plastic strains grow normal to the yield surface, which
is well-suited for metals. For pressure-sensitive materials like concrete, an additional,
non-associative flow rule has to be defined [Pramono et al. 1989].

The plastic flow leads to microstructural changes that influence the initial yield surface.
Its evolution is described by the hardening law. Isotropic hardening changes its size,
kinematic hardening its position and mixed formulations modify both [Lubliner 2008].

The coupling of damage and plasticity, e.g. [Grassl et al. 2006; Unger et al. 2011a], is
achieved by introducing the plastic strains εp into Eq. (2.4)

σ = (1 − ω)C : (ε − εp) (2.7)

and results in both a loss of stiffness and permanent deformations (see solid line in
Fig. 2.4). The effects of temperature are similarly introduced by adding additional
thermal strains and hygroscopic models add the contribution of the pore pressure via
shrinkage strains [Gawin et al. 2007]. Even though this work focuses purely on damage
modeling, the straight-forward inclusion of multiphysics phenomena, possibly in future
works, justifies the use of continuum damage models for both quasistatic and fatigue
simulations.

2.3 Fatigue modeling

Fatigue failure describes the material deterioration or fracture under cyclic loads that
can be well below the quasistatic failure limits. The experimental works on fatigue of
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Figure 2.5: Wöhler lines of cylindrical concrete specimen under compressive loading
from [Kim et al. 1996].

concrete go back to the early 1900s and deal with the ultimate material failure [Murdock
1965]. For a given load amplitude Smax, the number of loading cycles until material failure
Nf is measured. This is done for multiple load amplitudes and results in S-N-curves or
Wöhler curves, as shown in Fig. 2.5.

They can be used for a basic structural dimensioning. A linear elastic simulation identifies
the highest local load in a critical part of the structure. As indicated by the arrows in
Fig. 2.5, this load is then used to determine the expected cycles to failure from the
corresponding Wöhler lines of the material.

Figure 2.5 also shows a difference of up to one order of magnitude in the resulting value
of Nf . This high variance occurs even though the test specimens were manufactured from
the same batch of concrete. The Wöhler lines are not only influenced by the material
parameters. The long run time of the experiments influences the material behavior,
because the impact of long-time effects such as creep or shrinkage is significantly higher
as for quasistatic experiments. Other influences are the specimen size [Bažant et al.
1991], its age [Raithby 1979] and the loading frequency [Medeiros et al. 2015]. This
results in enormous experimental efforts to create Wöhler curves for all combinations of
influences.

Thus, to gain a better understanding of the effects of each phenomenon and its impact
on the overall failure, the experimental efforts shift towards investigating the whole
failure process instead of the single point of failure [Thiele 2015]. Non-destructive in-
situ techniques like digital image correlation [Mahal et al. 2015] or the measurement
of acoustic emissions [Noorsuhada 2016] help to characterize the failure process. The
underlying effects that cause fatigue failure, however, remain not fully understood [Sinaie
et al. 2015].

The modeling of the whole failure process requires material models that allow material
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2.3 Fatigue modeling

deterioration under cyclic loading. They should automatically resolve stress redistribu-
tions over the life time, can model arbitrary load shapes and amplitudes and can lead
to a deeper understanding of the processes that lead to fatigue failure.

A modeling approach is to express the loading function (Eq. (2.6)) and loading-unloading
conditions (Eq. (2.5)) in an incremental form

κ̇ =







ε̇eq if εeq = κ

g if εeq < κ.
(2.8)

A fatigue function g is introduced that represents the quasistatic model for g ≡ 0. For
g > 0, however, Eq. (2.8) allows damage accumulation within the elastic regime [Marigo
1985]2. Formulations for g can be derived from cohesive zone models [Kuna et al. 2015].
More sophisticated models are not only based on damage but include plasticity [Sima
et al. 2008; Breccolotti et al. 2015] or creep [Kindrachuk et al. 2015].

The focus of this work is the numerical treatment of the model and not the model itself.
Thus, a basic fatigue model with

g =
(

εeq

κ

)n

〈ε̇eq〉+ (2.9)

is used [Marigo 1985; Fish et al. 2002; Fish et al. 2012; Kindrachuk et al. 2018]. The
Macaulay brackets denoted by 〈 〉+ correspond to the ramp function and prohibit a
damage accumulation in unloading conditions. The exponent n is the only free param-
eter and usually not sufficient for a calibration to experimental data. This formulation,
however, automatically includes the quasistatic case for εeq = κ.

2The third option g < 0 violates the dissipation inequality.
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modeling

The available computational power continuously increases and enables larger and more
detailed numerical simulations. This trend is often described by Moore’s law, the ob-
servation that the number of transistors in integrated circuits doubles every 24 months.
This influences the computational performance to also grow exponentially. The growth
of single core performance, however, started to slow down since 2000. This is commonly
compensated by distributing a single simulation to multiple cores. In the case of high-
performance computing, millions of cores available in supercomputers can be utilized.
But even modern workstations provide multiple cores that can be used to increase the
level of detail or decrease the run time of simulations.

The efficient utilization of available computational power requires domain decomposi-
tion techniques to parallelize the problem and are itself a huge area of research [Toselli
et al. 2006]. Especially for softening materials, the numerical effort required in each do-
main depends on its continuously evolving damage state and requires load balancing
algorithms [Willebeek-LeMair et al. 1993]. Additionally, the increasing computational
power leads to an increased environmental cost. As of June 2019, the Summit leads the
Top500 supercomputer ranking [Top 500 2019] with a power consumption of 13 MW,
which results in a significant amount of carbon dioxide emissions.

These factors motivate the work on methods that reduce the computational costs instead
of increasing the computational power.

3.1 Sphere packing for mesoscale simulations

In this work, sphere packing algorithms are used to place the aggregate particles of
the concrete mesostructure into a virtual specimen. A given specimen volume and a
required particle volume fraction determine the actual particle volume. A list of spheres
diameters is randomly sampled according to the grading curve of Section 2.1 until the
required particle volume is reached. The details of this procedure are shown in chapter 2
of Paper 1. It turns out that the simple process of pouring these particles into a container
is a challenging algorithmic task, solved with packing algorithms.
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3 Computational aspects of concrete modeling

3.1.1 Sphere packing algorithms

Spheres packings describe the arrangements of non-overlapping spheres in a given do-
main. An interesting question is to determine the configuration that maximizes the
sphere density φ, also referred to as their volume fraction. This density describes the
proportion of space filled by them.

The optimal packing of equal spheres was first investigated in the 16th century in the
context of cannonball stacking. The maximal volume fraction of φmax ≈ 74.05% was
formulated in the Kepler conjecture and only recently proven [Hales 2005]. This corre-
sponds to a regular lattice in either hexagonal close-packed (hcp) or face-centered cubic
(fcc) configuration. Due to the complexity of bidisperse or polydisperse sphere packings,
the problem is often investigated numerically [Torquato et al. 2010]. But the packing of
equal spheres remains relevant for crystal forming processes, as a benchmark problem
for the used algorithms [Titscher et al. 2015] or for packings in higher dimensions [Skoge
et al. 2006]. Interestingly, randomly arranged spheres form a maximally random jammed
packing (MRJ) and only reach φMRJ ≈ 64% [Kansal et al. 2002a]. Unlike the long-range
ordering of hcp and fcc, the spheres form optimally packed clusters in varying orienta-
tions, resulting in short-range ordering with lower space-filling.

The variety of existing sphere packing algorithms and their applications are discussed
in the introduction of Paper 1. Two main categories are identified, namely fixed and
moving particle algorithms. Fixed particle algorithms keep the position and size of placed
particles constant. One example of this category is the random sequential addition (RSA)
algorithm [Widom 1966], where a particle is placed randomly, if it does not overlap with
previously placed ones.

This will always result in a small gap between particles that result in a loosely packed
state. These gaps remain even for more sophisticated algorithms that construct the next
particle position to touch existing ones. Figures 3.1a and 3.1b illustrate this problem.
However, these algorithms are commonly used for the creation of concrete mesostruc-
tures [Bažant et al. 1990; Wriggers et al. 2006] and can be extended for non-spherical
particles [Wang et al. 1999; Häfner et al. 2006; Unger et al. 2011a].

Moving particle algorithms often resemble molecular dynamics (MD) phenomena and
allow rearrangements of the particles. In time-driven MD, e.g. [Cundall et al. 1979], a
system of motion equations is solved explicitly. Separation forces between overlapping
particles causes them to separate in the next time step. Close to the jammed state,
these forces may not be sufficient to prohibit overlaps. Event-driven molecular dynamics
(EDMD) was first introduced for efficient simulations of molecule interactions in dilute
systems [Alder et al. 1959]. All particles in the system are constantly moving via free-
flight dynamics and collisions between them or with the walls are fully elastic.

The extension of this algorithm to growing particles allows to reach a random close
packing of discs in 2D [Lubachevsky et al. 1990]. The advantage of this approach is
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(a) Randomly placed parti-
cles (solid) are not al-
lowed to move. They
block all positions for
new (dashed) particles.

+

+

(b) The same effect as in (a)
occurs if the fixed parti-
cles are placed not ran-
dom but close to walls
and other particles.

(c) Particle movement al-
lows a rearrangement to
fit all particles.

Figure 3.1: Main advantages of moving particle methods over fixed ones at high particle
volume fractions φ.

shown in Fig. 3.1c. A different growth rate for each particle results in bidisperse [Kansal
et al. 2002b] or polydisperse [Baranau et al. 2014] packings. And the handling of non-
spherical shapes is briefly discussed in chapter 7 of Paper 1.

Due to the high efficiency of RSA algorithm at rather low volume fractions, it is com-
monly used as the initial configuration of the EDMD algorithm. This technique is also
employed in this work and both algorithms are briefly introduced.

3.1.2 Random sequential addition

All particles are sorted according to their volume and the placement process is started
with the largest particle. Uniform random numbers are generated for all coordinates. In
the case of cuboid specimens, boundary overlaps are eliminated by the right choice of the
random number interval. Other specimen shapes such as cylinders require an additional
boundary collisions check.

The overlap check with already placed particles is done by a simple sphere separation
check. If the particle overlaps with previously placed particles, a new random position
is chosen. After a certain number of failed placement attempts of a single particle, the
algorithm aborts.

The complexity of the collision checks of a single particle is O(N), since it must be
checked against all already placed particles. The Big O notation describes the asymptotic
behavior of an algorithm up to a constant factor, in this case a linear dependency on
the number of particles N . This assumes that all the particles are assigned to a big
list that needs to be traversed for the overlap checks. The particle position, however,
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offers additional information that is used by spatial data structures for a tremendous
performance increase1. Here, the cell method or subbox method is used. The specimen
is divided into multiple cells and any given position is directly related to one of the cells.
The collision checks are now only performed within the cell of the current particle. As
the number of cells is related to the number of particles, a constant number of collision
checks (O(1)) eliminates overlaps.

3.1.3 Event-driven molecular dynamics

At the start of the EDMD algorithm, the specimen must already contain all particles.
This initial packing is trivial for zero-sized particles or low particle volume fractions. A
random initial velocity and a growth rate is given to each particle and the system evolves
in time. The growth rate of each individual particle is defined such that it reaches its final
diameter after a given simulation time tend. Consequently, the resulting size distribution
is in accordance with the desired grading curve.

The evolution of the system is then defined in terms of discrete events instead of a
continuous time. Each event describes the collision of a particle with either another
particle or the specimen wall at a certain time. These events are collected in an event
list that is sorted by time. The time is then advanced to the time of the nearest future
event and an elastic collision of the two collidables is performed. This changes their
velocity and, thus, invalidates all their future events. They have to be deleted from the
event list and new events have to be predicted.

The high number of collision checks and the maintenance of the event list are the main
numerical cost. The corresponding complexities are further discussed in chapter 5.4
of Paper 1, together with state-of-the-art optimization techniques. One of them is the
previously mentioned subbox method. A novel optimization technique is the time barrier.
In simple words, it ignores all events that are after a well defined future point in time
which reduces the size of the event list. Once the time barrier is reached, a new one is
chosen and the event list is fully rebuild.

3.1.4 Applications and results for the concrete mesostructure

Concrete grading curves are commonly defined for size classes up to 32 mm and down to
0.125 mm. That means that some aggregates even pass the finest sieve. Including them in
the mesostructure leads to an amount of aggregates that can neither be handled by the
sphere packing algorithms, nor the subsequent mesh creation, nor the final finite element
simulation. In concrete geometry simulations, a common choice for the cutoff diameter

1Spatial data structures are also widely used in computational mechanics to efficiently find elements
in a given mesh, e.g. for node selection or tracking of embedded discontinuities [Unger 2009].
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(a) RSA. The algorithm failed
after placing the 3 166

largest of 9 367 total
particles.

(b) EDMD - successful attempt.
The 3 166 biggest particles
are colored white, the others
black.

(c) EDMD - successful
attempt for a cylin-
drical specimen.

Figure 3.2: Result of the simulation with a = 5 dmax and an effective volume fraction of
φeff = 70%.

is dmin = 2 mm [Unger et al. 2011a]. All particles smaller than 2 mm are sand grains
that are assumed to be represented by the homogenized mortar matrix. Their volume is
subtracted from the total volume and the effective volume fraction φeff reduces. In the
common case of a mixture volume fraction φM = 70%, which represents the aggregate
volume fraction that is physically filled into the concrete mixer, and the grading curve
B16 [DIN 1045 2008], the volume fraction that is actually resolved by the mesoscale
geometry model is φeff = 40.6%.

With this in mind, the performance of the RSA and the EDMD algorithm is compared.
As expected by the discussion on fixed vs. moving packing algorithms, EDMD performs
better. It is able to fill 70% of the specimen, whereas the RSA algorithm already fails at
66.5%. The particle distribution for φeff = 70% is illustrated in Fig. 3.2. The RSA algo-
rithm stopped after placing 3 166 of 9 367 particles, whereas the EDMD was successful.

Another problem is related to the meshing of the generated particle geometries and
the subsequent simulation using finite elements. For numerical reasons, highly distorted
elements should be avoided. For this purpose, a minimal distance ∆d between any two
particles is enforced. This is done by adding ∆d to each particle diameter during the
sphere packing and removing it afterwards. Obviously, this highly influences the particle
distribution. In this configuration, the EDMD algorithm reaches an 11% higher particle
volume fraction.

In the case of growing particles in the EDMD algorithm, the grading curve is exactly
matched at tend. Even if the specimen had room for further particle growth, the re-
sulting distribution would differ from the desired grading curve. So, in the previously
shown experiments, the algorithm was always stopped at tend. The distance between the
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particles, however, is removed after the simulation and does not influence the effective
distribution. Here, the EDMD algorithm excels, as it can maximize ∆d until a jammed
state is reached. For a B16 grading curve and the desired 70% mixture volume fraction,
it is always able to reach a minimal particle distance ∆d > dmin/2..

3.2 Computational damage mechanics

The material descriptions sketched in Section 2.2.2 lead to (a system of) partial differ-
ential equations (PDE). Analytic solutions exists for a few crafted cases, but generally,
they have to be solved numerically, e.g., with the finite element (FE) method [Hughes
2012].

The details of the method are common knowledge, but a sketch is given here to introduce
the terminology used. The PDE is expressed in variational form and its solution is
approximated by finite sized elements that provide the solution values at their nodes and
interpolate between them. Linear elements have the node positions at their corners and
interpolate their values linearly. A better approximation of the solution is obtained for
higher order elements that introduce additional nodes within the element or at its edges
or faces. The discretization of the continuous problem to a discrete one in terms of nodal
positions leads to a residual vector that has to be equilibrated. This root-finding problem
can be solved with the Newton-Raphson algorithm that requires tangent stiffness matrix
which is the derivative of the residual vector with respect to the nodal values. The details
of this scheme in combination with a line-search algorithm for additional stability are
shown in chapter Backward Euler Time Integration of Paper 2.

3.2.1 Localization and regularization

The finite element solution of softening models, like the ones presented in Section 2.2.2
is known to suffer from mesh sensitivity. This is caused by a loss of ellipticity of the
equilibrium equations [Bažant 1976; Vree et al. 1995]. It results in a dependency of
the solution on the underlying finite element mesh in two main categories. First, the
numerical solution converges to a non-physical solution upon mesh refinement. Second,
the localization path that approximates the macroscopic cracks depends on the mesh
orientation. The root of these problems is the inability of the finite element mesh to
resolve the present characteristics of the problem. And for softening materials, these
characteristics correspond to a discrete crack that cannot be resolved in a continuous
volume.

Mathematically, this problem is addressed in the localization analysis [Hill 1958]. The
goal is to define conditions on how a continuous strain field transforms into narrow bands
with a strain jump. This can be analyzed for a given model in terms of critical damage
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values and localization angles [Jirásek 2007]. The main problems that lead to the mesh
dependency, however, can also be illustrated in a simple one dimensional bar.

A homogeneous one dimensional bar is loaded in uniaxial tension. The momentum bal-
ance equation implies a uniform stress that grows elastically until the material’s tensile
strength is reached. Further pulling on the bar causes the stresses to reduce, according
to the softening law, see Fig. 2.4. Every cross chapter of the material can now have two
possible strain states. In one fraction of the bar, the strains decrease and the reduced
stress is reached by an elastic unloading. The remaining part of the bar exhibits increased
strains and a damage-based stress drop. The damaged fraction of the bar, however, is
undetermined and every value fulfills the governing equations.

Real materials are not perfectly homogeneous and exhibit small variations in their prop-
erties. The part of the bar with the lowest tensile strength will damage first and localize.
As the tensile strength of the other parts of the bar is not reached, they unload elastically.
The overall material behavior now depends on the size of the weakest zone.

The fracture energy is a material property that describes the energy required to generate
stress-free crack surfaces within the material. It is a parameter in continuum damage
models, usually used within the damage law. Continuum models have no description
of an internal surface and the fracture energy is dissipated over a volume. So a larger
softening zone dissipates more energy than a smaller zone, and an infinitely small zone
dissipates no energy. In a simulation of the bar with linear finite elements, the minimal
zone size is defined by the finite element size. Thus, the localization occurs within a
single finite element and the dissipated energy depends on its size [Sluys et al. 1992;
Jirásek 1998].

One of the possible remedies to this problem is to include the width of the finite element
in the constitutive relationship. This was first done in softening plasticity [Pietruszczak
et al. 1981] and later adapted to damage modeling [Bažant et al. 1985]. The idea is to
spread the displacement jump of the traction-separation law into a localized strain band
with a defined size. The transformation of the tractions to continuous stresses is adapted
accordingly. This leads to a simple scaling of the constitutive parameter that controls
the softening behavior and is easy to add in existing finite element codes. These models
are referred to as crack band models or models with mesh-adjusted softening modulus.

Problems arise in two or three dimensions where the definition of the localized band
size is not clear. If the crack is oriented parallel to the sides of a regular, quadrilateral
finite element mesh, the crack band size equals the edge length of the finite elements.
This leads to the common approximation of the characteristic element length as the
square root its area (2D) or the cubic root of its volume (3D). This changes for inclined
cracks [Bažant 1985] and the band size is related to the assumed crack path [Oliver
1989], often determined by the direction of principal strains. Strain-injection methods
can then be employed to obtain a localization path that is not disturbed by the mesh
orientation [Dias et al. 2018].
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Additional care has to be taken for higher order elements, as they can resolve a crack
band that is smaller than their size. In the one-dimensional case, the effective band
width can be adapted accordingly, but simulations in multiple dimensions require further
adaptions, especially if the localized zone is not aligned with the mesh. Further challenges
occur, e.g. for deviations from pure uniaxial stress states and localization near symmetry
planes. This is further discussed in [Jirásek et al. 2012].

Nonlocal damage models

The previously discussed models can be labeled as local models as the stresses at one
position of the body are directly calculated by the strains there. This is advantageous
for finite element simulations, since the elements can be evaluated separately. The mesh-
adjusted softening modulus improves the objectivity of numerical results, especially the
mesh-insensitive dissipated energy in uniaxial loading. But the localization still occurs
within a single layer of elements and the problems described above remain.

More sophisticated techniques enrich the continuum formulation with additional infor-
mation regarding the internal material structure. They aim to enforce a mesh-independent
size of the localized zone. Examples are Cosserat theories that introduce additional rota-
tional degrees of freedom [Cosserat et al. 1909] and viscoplastic regularization techniques
that introduce rate-dependent terms [Needleman 1988]. They are further discussed with
other alternatives in [Bažant et al. 2002]. The two classes of nonlocal integral models
and gradient enhanced models are further discussed here.

Nonlocal integral models [Pijaudier–Cabot et al. 1987] generally replace a local function
with its weighted average over a volume V . Several nonlocal models are reviewed and
compared in [Jirásek 1998] that differ in the choice of the local function. A formulation,
where damage is driven by an averaged equivalent strain εeq, convergences upon mesh
refinement, while this is not the case for formulations that directly average the damage
or the strains. The corresponding nonlocal equivalent strain formulation reads

ε̄(x) =
∫

V
α(x − ξ)εeq(ξ)dξ (3.1)

where α denotes the nonlocal weight function. It is typically formulated in terms of the
distance r = ‖x − ξ‖ of the source point ξ to the target point x, e.g. in a Gaussian
distribution function. This function includes the internal length l that controls the radius
of the nonlocal interaction.

The nonlocal equivalent strains ε̄ are included in the model by replacing the local equiv-
alent strains in the loading function (Eq. (2.5)) with their nonlocal counterpart

f(κ, ε̄) = ε̄− κ. (3.2)

Compared to the crack band regularization, this technique requires major changes in the
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implementation, as the finite elements can no longer be evaluated separately. The con-
tribution of each element consists of all other elements. Practically, the weight function
is limited to a certain radius R and the averaging is restricted to elements within R.
In a naive implementation, even this neighbor search can be a bottleneck for large FE
meshes, but spatial data structures as sketched in Section 3.1.2 solve this problem. The
bigger numerical problem is the structure of the tangent stiffness matrix. In the undam-
aged state, it corresponds to a linear elastic model where the bandwidth of the matrix
is determined by the direct neighbor elements. This sparsity pattern remains constant
in a local formulation. As damage evolves in an integral nonlocal formulation, the band-
width of the matrix grows. This requires dynamic memory allocations and decreases
the numerical solver performance [Jirásek et al. 2002a]. Especially for concrete on the
mesoscale that shows distributed damaged zones, this approach has a high numerical
cost.

A nonlocal gradient formulation based on equivalent strains, namely the implicit gradient-
enhanced damage model, can be derived from Eq. (3.1) with a Taylor expansion of
εeq(ξ) [Peerlings et al. 1996]. This approximation results in the boundary value problem

ε̄− l2∇2ε̄ = εeq in V and (3.3)
∇εeq · n = 0 on ∂V (3.4)

that has to be solved in addition to the momentum balance equations. In fact, this model
is equivalent to a nonlocal integral model with the Green’s function of Eq. (3.3) as the
weighting function [Peerlings et al. 2002].

The same equations can be derived in a thermodynamically consistent way from the free
energy potential

ψ(ε, εeq, ω) =
1

2
(1 − ω)ε : C : ε +

1

2
h(εeq − ε̄)2 +

1

2
hl2∇ε̄ · ∇ε̄, (3.5)

which is further shown in chapter Governing Equations of Paper 2. The first term of
Eq. (3.5) is already known from the stored energy density of a local damage model in
Eq. (2.1). The second term describes the stored energy between a nonlocal strain field ε̄
and a local strain norm εeq. The parameter h can be interpreted as a local-to-nonlocal
coupling modulus. The third term includes the energy of gradients of the nonlocal strain
field and the nonlocal length parameter l.

The localization analysis of the gradient-enhanced damage model proves that it remains
well-posed [Peerlings et al. 2002]. This is caused by the screened Poisson equation in
Eq. (3.3) that limits the curvature of the nonlocal equivalent strain field ε̄ and prohibits
full localization. The main additional numerical cost is the introduction of the nonlocal
strains ε̄ as an additional scalar degree of freedom that increases the size of the resulting
system of equation. In contrast to the integral formulations, the band structure remains
narrow and is known a priori.
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Figure 3.3: Behavior of the gradient-enhanced damage model in a uniaxial tensile test.
The dashed line corresponds to the damage profile after doubling the bound-
ary displacement.

Figure 3.3 shows a typical damage plot of the gradient-enhanced damage model, where
the peak damage reaches the value ω ≈ 1. The distribution of the local strain norm is
higher and narrower than that of its nonlocal counterpart. A geometric notch is intro-
duced in the form of a 10% reduced cross chapter at x ∈ [−l, l] to trigger the localization.
This explains the small kink in the local strain norm. The characteristics of the damage
law cause the damaged zone to be much wider than the nonlocal strain zone. In this
sense, it really describes a zone of distributed microcracks where only values very close
to one represent a localized crack.

Note that the nonlocal length l is not directly related to the width of any of the shown
variables. So even if the actual characteristic length is known from experiments [Bažant
et al. 1989; Geers et al. 1996], the model parameter l has to be calibrated such that the
localized zone sizes of model and experiments match. This is done once for a given ma-
terial and the calibrated l corresponds to a constitutive parameter of the model. This is
an advantage over the regularization techniques of local models where the characteristic
length can vary for each element and Theoretically depends on the current stress state
of the structure, which is often neglected due to computational reasons.

The additional dashed line in Fig. 3.3 shows the damage distribution after further in-
creasing the boundary displacement. This causes the local strains to grow further. As
the curvature of the nonlocal strains is limited by Eq. (3.3), their distribution widens
and damage continues to grow. This spurious damage growth in fully localized regions
is one of the disadvantages of the gradient-enhanced damage model. Another one is a
deficiency regarding damage initiation in shear problems [Simone et al. 2004]. Both prob-
lems are addressed by using a nonlocal length parameter that decreases with growing
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local strains [Saroukhani et al. 2012] or with damage [Poh et al. 2017]. That way, with
a vanishing nonlocal length, the model transitions towards a local model. Obviously, a
certain fraction of the initial nonlocal length is needed for the problem to remain well-
posed. This imposes constraints to the mesh where the element length has to be reduced
significantly to resolve the narrower nonlocal zone.

The interpolation order of the nonlocal strain field ε̄ is originally chosen to be one order
lower than the displacement field d [Peerlings et al. 1996]. That way, the local strain
norm calculated as the spatial derivative of d has the same interpolation order as ε̄. This
restriction, however, is no requirement and any combination of interpolation orders can
be used [Simone et al. 2003]. In chapter Appendix of Paper 2, this was analyzed up to
order four and equal interpolation orders perform best.

3.2.2 Instabilities

The term instabilities is used here to generally describe numerical problems that arise
in the solution of the global system of equations. One such instability is the snap-
back phenomenon that occurs in certain configurations where the stored elastic energy
spontaneously dissipated. Sophisticated loading methods like arc-length methods [Riks
1979; Geers 1999a; Geers 1999b] or dissipation based loading [Verhoosel et al. 2009; May
et al. 2016] solve this issue globally. Within a mesoscale geometry, however, this can
occur locally between aggregates. This results in mini-snapbacks that barely influence
the global behavior but require tiny load increments to resolve.

Another problem are structural bifurcations. A simple example is a symmetric structure
under bending with only one aggregate. As the damaged zone reaches the aggregate, both
the left or the right continuation are possible. This also results in tiny load increments,
until the point, where one path is chosen. Note that the global response is identical for
both paths.

For a sufficiently complex mesoscale structure, both phenomena contribute to a bad
performance of classic backward Euler solution schemes, i.e. the common linear Tay-
lor expansions and the Newton-Raphson solution of the governing equations that is
described in detail in chapter Backward Euler Time Integration of Paper 2. In a three-
dimensional mesoscale simulation, the solution in Fig. 3.4 required 259 adaptive load
increments and 1100 solutions of the global system of equations. The details of this
simulations are presented in chapter Three-dimensional Compression Test of Paper 2.

Numerical methods to address these issues were first applied to local damage models,
like the continuous strong discontinuity approach used in this work. A singular acoustic
tensor of these models corresponds to zero eigenvalues in the element stiffness matrices.
Through the assembly process of all elements of the finite element mesh, even the global
algorithmic tangent matrix can become ill-conditioned [Oliver et al. 2006].
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(a) F = Fmax. (b) F = 0.6Fmax. (c) F = 0.25Fmax.

Figure 3.4: Damage plot of the adaptive backward Euler solution at different loading
states after the post-peak. Elements with damage ω > 0.99 are shown as
solid elements, others as wireframe.

This issue can be solved by secant stiffness based methods. For each load step, the
sequentially linear approach [Rots et al. 2008; Graça-e-Costa et al. 2012] repeatedly
identifies critical elements and adapts their internal variables until equilibrium is reached.
The method can be applied to smeared and discrete crack models and exhibits a ”saw
tooth” load-displacement relation.

3.3 Implicit-Explicit (IMPL-EX) method

An alternative is the implicit-explicit (IMPL-EX) scheme [Oliver et al. 2008]. It adapts
the internal variables in all elements simultaneously once per load step to obtain the
secant stiffness. This requires only minor changes to existing model implementations
and smoothly approximates the load-displacement curve.

Even for nonlocal models that do not suffer from the instabilities of local models, IMPL-
EX provides two benefits. First, the implementation of the method itself is less invasive
and even the implementation of the mechanical models is simplified, because certain
derivatives vanish. Secondly, it reduces the computational effort by improving the prop-
erties of the global matrix and by reducing the number of time steps required to finish
the simulation. The latter is achieved by using error control schemes [Oliver et al. 2008;
Blanco et al. 2007]. Each IMPL-EX iteration introduces an extrapolation error that
depends on the time step length. The right choice of this time step ensures that the
extrapolation error is limited to a prescribed value.

The IMPL-EX scheme and its application to the model are discussed next. Special focus
is given to the development of a new class of adaptive time stepping schemes. The
speedup of the method is then investigated for the mesoscale geometry shown above
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(Fig. 3.4).

3.3.1 Method

The implicit/explicit (IMPL-EX) scheme is a time integration scheme for nonlinear
constitutive models. Their nonlinearities often arise from internal history variables α2

of the model and their evolution equations. For a new time step n+ 1, an extrapolated
value α̃ is used instead of evaluating the evolution equation. This extrapolation is the
explicit stage of the algorithm and reads

α̃n+1 = αn +
∆tn+1

∆tn
(αn − αn−1) , (3.6)

where αn = α(tn) and αn−1 = α(tn−1) and the time step is defined as ∆tn = tn − tn−1.
The modified system of equations is solved and this solution is used to determine αn+1

(without ˜) from the evolution equation. For the special case of a quasistatic isotropic
damage model, this is also an explicit formula. For a general nonlinear model, this is not
the case. Hence the name implicit stage.

This extrapolation has several implications:

• By extrapolating those variables based on previously calculated values, derivatives
with respect the history variables vanish. In fact, they do not need to be imple-
mented. Especially for derivatives of tensor invariants, this time-consuming and
error-prone process can be avoided.

• In the case of the gradient-enhanced damage model, this also leads to a decoupling
of the two differential equations. The two resulting systems of equations are solved
separately. The numerical effort for solving a sparse system of equations scales
worse than linear (often quadratically) with the number of degrees of freedom N .
Thus, splitting the system is advantageous as N2 > 2(N/2)2.

• Each system of equations is now symmetric. This roughly halves the numerical
cost.

• The extrapolation involves time steps that can be chosen freely. For smaller time
steps, IMPL-EX converges to the backward Euler solution. A coarse time stepping,
however, can give an approximation of the solution with a fraction of the numerical
effort.

More details are presented in chapter IMPL-EX Time Integration of Paper 2.
2For the gradient-enhanced damage model, the strain-like history variable κ is used as the extrapolation

variable. But for the general method, it refers to any internal variable, like a damage value in other
formulations or a plastic strain.
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3.3.2 Summary of adaptive IMPL-EX time stepping

The IMPL-EX scheme introduces an additional error, the extrapolation error of the
internal variables. This error is influenced by the time step and smaller time steps will
result in smaller extrapolation errors, but increase the overall computational cost. For
softening models, the extrapolation error in the region of damage initiation is higher
than in the elastic regime or towards a fully damaged state. To obtain a small overall
error with a fixed time step, the small time steps required to resolve damage initiation
have to be employed for the whole simulation. Additionally, this optimal value is hard
to determine a priori.

Adaptive time stepping schemes address both problems. Their goal is to calculate the
new time step such that it keeps the extrapolation error bounded. With the proper
definition of the extrapolation error, this automatically results in smaller time steps
in the region of damage initiation and larger ones elsewhere, which saves a significant
number of iterations. Therefore, three main error categories are introduced in chapter
Adaptive IMPL-EX Time Stepping of Paper 2 and are summarized here.

The absolute extrapolation error is the difference of the extrapolated value α̃ after the
explicit stage to the value α after the implicit stage. Applied to the gradient damage
model with α = κ as the extrapolation variable, the point of damage initiation is not
properly resolved. This is addressed by time stepping schemes based on the relative
extrapolation error. They relate the absolute error to the previous value of the history
variable. The time step is reduced around the damage initiation and increased towards
full localization. This is quantified in a convergence analysis that relates the precision of
the error control schemes with the computational effort. A third method is to directly
limit damage growth to a fixed absolute value. This method excels at resolving the peak
load, as this is the region where damage grows rapidly. In the post-peak region, however,
the damage increments decrease exponentially. The comparison to a fixed absolute value
is no longer a good indicator of the actual error.

3.3.3 Speedup of mesoscale simulations

The performance and precision of IMPL-EX is compared to a backward Euler integra-
tion for constant and adaptive time stepping in a double-notched tensile test (2D), a
compression test of homogenized material (2D) and a mesoscale compression test (3D).

The latter one is already in the introductory part of this chapter and further discussed
next. The geometry overview of Fig. 3.5a shows tetrahedron elements for the linear
elastic aggregates and the nonlocal damage matrix. The CSDA interface is modeled
with wedge (pentahedron) elements.

The resulting load-displacement curves for different time integration schemes are shown
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Figure 3.5: Setup and results of the mesoscale simulation of Fig. 3.4.

in Fig. 3.5b. There is almost no visible difference between the IMPL-EX solution with
400 fixed time steps and the adaptive backward Euler reference solution. With only 200
time steps, the solution suffers from a small oscillation near the peak load and continues
very close to the equilibrium path. Compared with the backward Euler simulation, this
results in a computational acceleration of ≈ 11 times. The adaptive scheme with ξ = 0.15
corresponds to 57 time steps and its accuracy is comparable to that of IMPL-EX with
200 fixed time steps. Thus, the acceleration compared with the adaptive backward Euler
solution increases to ≈ 40 times. The reduced number of time steps is one factor for
the reduced wall time. Another one is the numerical benefits of IMPL-EX mentioned in
Section 3.3.1. The linear IMPL-EX system of equations requires a single solve compared
to multiple iterations of the nonlinear backward Euler method. Additionally, the IMPL-
EX system is symmetric and can be solved in a staggered, decoupled way which roughly
halves the solution time of a single solve compared to the asymmetric coupled system
of equations of the backward Euler method.

3.4 Time integration of a fatigue model

The development of numerical methods for reliable simulations of fatigue failure in struc-
tures and components has gained significant importance in the past decade. The main
emphasis of the research is to reduce the computational costs required for realistic sim-
ulations of fatigue deterioration by means of continuum damage mechanics.

Formally, two time scales are introduced. The microchronological scale describes the
structural response arising from the high frequency load and corresponds to single load
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cycles. Classically, the cycle is divided into a number of time steps. The computational
cost is dominated by the solution of the governing nonlinear equations in each of those
time steps. The damage growth over the full material life time is described on the
macrochronological scale. The computational cost consists of repeated evaluations of
the microchronological problem.

With about ten nonlinear solutions per cycle and possibly millions of cycles until mate-
rial failure, it becomes clear that this straightforward cycle-by-cycle integration exceeds
the computational resources. However, the damage accumulation on the microchrono-
logical scale is much smaller than the one on the macroscale. In this sense, fatigue is
a multiscale phenomenon in time [Fish et al. 2002] and, analyzed as such, gives rise to
several acceleration techniques on both scales.

Currently established methods to improve the computational efficiency of realistic simu-
lations are cycle jump methods, asymptotic and almost periodic homogenization meth-
ods and Fourier transformation-based approaches that are further reviewed in [Chakraborty
et al. 2013].

In asymptotic methods, the history variables and the response fields are approximated
using an asymptotic expansion. The initial boundary value problem is then decomposed
into averaged and oscillatory parts and dual-time scale algorithms are employed for its
solution [Manchiraju et al. 2007]. Applications to fatigue failure for continuum mechanics
is demonstrated in [Oskay et al. 2004; Fish et al. 2002; Fish et al. 2012].

The cycle jump methods first calculate the rate of damage (or any other history variable)
of one cycle and use it then to extrapolate the evolution of the history variables for the
subsequent cycles [Cojocaru et al. 2006; Kravchenko et al. 2014]. These omitted cycles are
jumped over and explain the name of the method. A jump length of one cycle resembles
the cycle-by-cycle integration. A larger jump length provides computational speedup,
but introduces an extrapolation error.

As for the IMPL-EX scheme, the length of the jump is determined adaptively for optimal
performance. In the very early and very late stage of the life time, the material behavior
is dominated by large and varying damage scales and the time integration requires short
jump lengths. In between, the material shows degradation with an almost constant
damage rate and the size of the jumps can be noticeably increased while satisfying the
prescribed extrapolation tolerance.

The Fourier transformation-based temporal integration (FTTI) combines two meth-
ods that address both the microchronological and the macrochronological scale sepa-
rately [Kindrachuk et al. 2017]. The number of evaluated time steps on the microchrono-
logical scale is reduced by solving the problem in frequency space. And the adaptive cycle
jump technique reduces the number of macrochronological time steps needed to reach
material failure.
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3.4.1 Integration of the microchronological scale

Accumulation of damage during a single load cycle is usually negligible in a typical
fatigue scenario. As a consequence, the damage state remains almost unchanged and
the structural response follows the quasi periodic boundary conditions. It is therefore
reasonable to assume that the unknown solution fields u can be approximated as Fourier
series

u := u(Υ, τ) =
∑

k∈Z

uk(Υ )eikωτ . (3.7)

In terms of the two time scales introduced above, Υ ∈ [0, Nf T ] corresponds to the
macrochronological problem and captures the loading cycles with period T until material
failure after Nf cycles.

A time integration of the problem would discretize the microchronological scale τ ∈ [0, T ]
into N time steps and solve the governing equations for each of those. In this case, the
governing equations are a gradient-enhanced damage model for fatigue. It consists of the
momentum balance with the constitutive equation Eq. (2.4), where damage is driven by
the nonlocal equivalent strains Eq. (3.3) and the fatigue evolution equations (2.8) and
(2.9).

The presented Fourier approach first assumes a separation of scales, i.e. the evolution of
the history variable within a cycle is small and does not influence the rate of change of
the history variables within a cycle. This improves the condition of the resulting system
of equations similarly to the explicit IMPL-EX stage. Instead of solving the system
N times for every time step, it is solved k times to determine the unknown Fourier
coefficients uk. For a sinusoidal load, this only requires to solve for the mean values u0

and the amplitudes u1. Then, according to Eq. (3.7), the solution fields can be cheaply
evaluated at arbitrary time steps. This is used in a second step to approximate the
damage growth of the cycle by integrating the local evolution equations (2.8) and (2.9)
at the N time steps.

3.4.2 Adaptive cycle jump

In the region of an almost constant damage rate, the damage increment of a single
cycle is extrapolated over many future cycles. Generally, this damage evolution on the
macrochronological scale can be formulated as a first order ordinary differential equation.
It relates the macrochronological change of damage to the microchronological damage
increment of one loading cycle. The direct cycle jump method [Cojocaru et al. 2006] with
its straightforward extrapolation is then a forward Euler discretization of this equation.
It is, however, beneficial to employ second order methods like the midpoint rule applied
by [Kindrachuk et al. 2017] or Heun’s method used by [Peerlings et al. 2000]. They
provide a significant advantage and are also used in this work.
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Figure 3.6: Averaged numerical efforts needed to integrate the microchronological cell (a
single loading cycle), including finding the Fourier coefficients for the FTTI
method.

The extrapolated damage after each jump introduces a deviation from the equilibrium
state. This is caused by the solution fields that still correspond to the time step before the
jump. Thus, they have to be updated while keeping the previously extrapolated history
variables constant. This transforms the nonlinear asymmetric system of equations into
two linear symmetric ones. The corresponding equations are shown in chapter 3.2 of
Paper 3. They are very similar to the explicit IMPL-EX stage and result in the same
performance benefits.

An adaptive jump length algorithm is introduced for the same reasons as the adaptive
IMPL-EX time step. Here, the error measure is based on a relative error of the inter-
nal forces and the corresponding equations are shown in chapter 3.6 of Paper 3. The
performance benefits of this method are discussed next.

3.4.3 FTTI for the gradient-enhanced damage model

The FTTI scheme refers to a combination of the Fourier-transformation based integra-
tion of the microchronological scale and the adaptive cycle jump on the macrochronologi-
cal scale. But generally, both algorithms can be separated, e.g. by combining the adaptive
cycle jump with any other integration technique of the microchronological problem. In
chapter 4.3 of Paper 3, three such techniques are compared and the results are shown
in Fig. 3.6.

In the case of the gradient-enhanced damage model, the Fourier approximation of Eq. (3.7)
is first only applied to the displacement field. The nonlocal equivalent strain field is recov-
ered by solving Eq. (3.3). This is referred to as the partial FTTI method and requires only
half of the computational time of the reference full time integration. Applying Eq. (3.7)
to both solution fields results in the full FTTI method and reduces the computational
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time of integrating a single loading cycle to about a third of the reference.

The validational example of chapter 4.1 of Paper 3 is illustrated in Fig. 3.7 and shows the
overall performance of the FTTI scheme. The two-dimensional void structure in Fig. 3.7a
is uniaxially loaded with a triangular force that is approximated with five Fourier modes.
The holes in the domain cause stress and strain concentrations which initiate damage
on the hole boundaries. The damaged region expands until failure occurs.

The sensitivity analysis in Fig. 3.7b demonstrates the impact of the adaptive time step-
ping tolerance on the accuracy of the FTTI analysis. The solutions converge towards
the reference cycle-by-cycle simulation as the tolerance tol decreases. For tol = 0.02, the
FTTI solution and the direct numerical simulation are almost identical. Note that the
adaptive time stepping properly recognizes the changing rates of material degradation
and thus adequately adapts the macrochronological step size (jump). The jump length is
gradually increased during the phase of almost constant damage growth and decreased
when approaching failure.

The impact on the total solution time is shown in Fig. 3.7c, where the computational
costs grows with increasing FTTI accuracy. For tol = 0.02 the full FTTI requires only
7.1% of the reference simulation time. This value further decreases to 4% for the higher
tolerance value 0.04.
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(a) Distribution of the nonlocal equivalent strain at two stages of the life time. The marked
positions are chosen for the qualitative analysis.

(b) Impact of the adaptive time stepping
(ATS) algorithm for there values of the
tolerance on the damage evolution. The
upper lines represent pos. 2 and the lines
below correspond to pos. 3.

(c) Computational time required to perform
fatigue simulations with the FTTI tech-
nique at various tolerances of the ATS.

Figure 3.7: Evaluation of the two-dimensional void structure under triangular cyclic
loading.
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4 Discussion

4.1 Conclusions

The complexity of the material makes numerical simulations of concrete a challenging
task. From the various spatial scales that all influence the materials behavior, this work
addresses the mesoscale that resolves the concrete aggregates. In contrast to simulations
on finer scales, it makes numerical simulations up to lab specimen size feasible. And
from the various physical processes, this work investigates the phenomenon of damage
to model concrete fracture. This is done with regularized continuum damage models for
quasistatic and fatigue failure as they allow integrating additional physical phenomena.
In this thesis, three advancements were made towards more detailed mesoscale geome-
tries and faster and more stable simulations on them.

Application of molecular dynamics simulations for the generation of
dense concrete mesoscale geometries

The concrete mesoscale geometry is numerically represented by spherical particles. It is
characterized by a particle size distribution that follows real concrete grading curves.
Several sphere packing algorithm exist, to produce a non-overlapping packing of these
particles in the virtual mesoscale specimen. Common sphere packing algorithms like
the random sequential addition (RSA) algorithm excel at low particle volume fractions.
Towards the high aggregate content of concrete, however, their efficiency drops until no
valid packing is achieved. The previously placed and fixed particles block all the spots
and finding a free random position becomes unlikely or impossible.

The employed event-driven molecular-dynamics (EDMD) algorithm allows particle re-
arrangements. This increases the volume fraction up to realistic values for concrete. The
continuously growing particles move under free-flight dynamics and the simulation is
advanced discretely to the next event, which is an elastic collision with either other
particles or walls. Several optimization techniques are employed such that the numerical
effort for the required collision predictions and the event organization only scales loga-
rithmically with the number of particles. Depending on the specific grading curve used,
the maximum volume fraction of the algorithm exceeds the RSA value by up to 11%.
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The present EDMD algorithm with its growing particles excels at maximizing the dis-
tance ∆d between particles. This is advantageous for finite element simulations as it
increases the available space for meshing the matrix material between the aggregates.
This is especially needed for nonlocal models that have to resolve a localized zone with
several elements.

Implicit-Explicit Integration of Gradient-Enhanced Damage Models

One of such models is the implicit gradient-enhanced damage model by Peerlings et
al. or Poh et al. that is employed in this work as the matrix material law in mesoscale
simulations. Damage is driven by a nonlocal equivalent strain that serves as a localization
limiter and prevents spurious mesh dependencies and strain localization.

The interfacial transition zone is modeled with thin elements and the continuous strong
discontinuity approach (CSDA). It represents a discrete traction-separation law on the
predefined crack paths around the aggregates within a continuum damage mechanics
framework. In combination with the linear elastic aggregates, the quasistatic failure
pattern of concrete is reproduced. The weaker ITZ material damages first, the aggregates
start to debond and macroscopic cracks within the matrix material cause material failure.

Small snap-backs and bifurcation points in this complex geometry cause tiny time steps
in a standard backward Euler solution algorithm. Thus, the implicit-explicit (IMPL-EX)
method is introduced as an alternative. Its implementation is little invasive and mainly
requires the extrapolation of the history variables. This decouples the system of equations
and provides various numerical benefits. The backward Euler algorithm requires the full
algorithmic stiffness, and the resulting monolithic system is nonlinear and asymmetric.
The decoupling allows a subsequent solution of each subsystem, in which one tangent is
linear and symmetric and the second tangent is constant. Additionally, off-diagonal terms
in the algorithmic stiffness matrix are no longer required and only the block-diagonal
matrix entries have to be computed/implemented.

There is a certain minimal time step for the backward Euler scheme which constrains the
run time of the simulation. By accepting a loss in accuracy, the IMPL-EX scheme can
find solutions with an arbitrary number of iterations. The actual acceleration, however,
strongly depends on the problem. In a three-dimensional compression test, a reason-
able approximation of an adaptive backward Euler solution is obtained with equidistant
IMPL-EX time steps and an acceleration of ≈ 11 times. IMPL-EX extrapolation errors
during the damage initiation have a larger influence than the same errors in an almost
completely damaged material. Since smaller time steps lead to smaller errors, it is benefi-
cial to concentrate the time steps around the point of damage initiation. This is achieved
by using adaptive time stepping algorithms. The performance of three different classes of
algorithms are assessed. The scheme that limits the relative error of the history variables
performs best. It is capable of reducing the number of iterations while maintaining the
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accuracy. In the three-dimensional compression test mentioned previously, a significant
acceleration (≈ 40 times) is obtained.

A Fourier transformation-based method for gradient-enhanced modeling
of fatigue

The computational costs of CDM fatigue simulations are usually not dominated by
algorithmic instabilities, but simply by a high number of simulation time steps. This
number is composed of the steps required to integrate a single loading cycle and the
number of full cycles until material failure.

Basic fatigue behavior is introduced into the implicit gradient-enhanced damage model
by modifying the evolution equation and damage is accumulated for each (positive)
change of the nonlocal strains. Compared to empirical approaches like the Wöhler con-
cept, this can resolve stress redistributions and order effects and, again, allows to include
multiphysics phenomena.

The damage growth within one loading cycle corresponds to the microchronological scale
and is small compared to the damage growth over the macrochronological scale of the
materials life time. This scale separation allows to reduce the computational cost by
two optimizations. The almost constant damage state within one cycle leads to a quasi-
periodic structural response and the unknown solution fields can be approximated as
Fourier series. Then, instead of solving the system of equations for each time step of the
cycle, it is solved for a generally lower number of Fourier amplitudes.

The evolution of damage on the macrochronological scale is governed by the microchrono-
logical contribution by means of the adaptive cycle jump technique. The damage rates
from single microchronological cycle evaluations are extrapolated over a high number of
cycles using a second-order method. Each of those macrochronological steps is further
accompanied by the determination of the global equilibrium.

Both techniques are combined to the Fourier transformation-based time integration
(FTTI) scheme that accurately agrees with the reference fatigue response obtained
through a direct numerical simulation of a load controlled test. Depending on the pre-
scribed tolerance of the adaptive time stepping scheme, the FTTI technique predicted
the fatigue loading history about 11 to 25 times faster than the reference simulation of
the validation example.
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4.2 Outlook on the future

This chapter contains some envisaged future developments on the topics of this thesis.
The thesis presents a number of computational techniques that are devised to solve
some of the numerical problems and performance issues arising in concrete mesoscale
simulations. Thus, the models are chosen to show the basic phenomena of damage,
but are not necessarily suited to completely represent real concrete material. This is
especially true for the presented fatigue model. Without these techniques, however, the
design of more sophisticated models is hard. They cannot be validated or calibrated,
possibly due to instabilities, but certainly due to unmanageable computational costs.
Thus, the optimization techniques can generally be seen as the basis for future model
development.

In the context of fracture modeling, this includes a more accurate failure representation
in compressive loading. For the fatigue model, a fatigue function that represents the dam-
age evolution over the loading cycles of real concrete specimens has to be found. This
should not be done by a curve fitting approach, but based on a physical understanding of
the underlying processes. In a first step, the experimentally observable loading-unloading
hysteresis has to be modeled by including (visco-)plasticity. It may then be necessary to
additionally include slow-scale effects like creep and drying to account for the deforma-
tion caused by the mean load and the environmental conditions, respectively. For real
concrete structures, the well-controlled experimental conditions are no longer present.
Temperature and humidity changes that are eliminated in an experimental setup have
to be included in the model. Depending on the application, the applied loads now have
varying frequencies and amplitudes and can deviate from the uniaxial compression tested
in experiments.

But there are also more specific research topics linked directly to the presented algo-
rithms. The presented concrete mesoscale geometry is based on spherical aggregates, that
work well with the EDMD algorithm, but are seldom found in real concrete. The collision
time between two moving and growing spheres is predicted by solving a quadratic equa-
tion. An extension of the algorithm to ellipsoids has to also include angular velocities
and is shown in [Ghossein et al. 2013]. Either this or the present algorithm can then be
used to calculate a bounding sphere/ellipsoid distribution that fits arbitrary aggregate
shapes as shown in Fig. 4.1.

The formation of macroscopic cracks in the later stages of both quasistatic and fatigue
simulations require a proper resolution of the corresponding field variables. This is, how-
ever, not required in earlier stages where the fields are rather smooth and a coarser finite
element resolution suffices. Thus, mesh adaptation and refinement strategies can further
reduce the numerical costs of such simulations [Plaza et al. 2000]. A refinement step cor-
responds to an increased number of internal variables and requires adaptations to the
IMPL-EX and FTTI algorithms. The extrapolation formulas shown in this work have to
be enriched with further geometric information to allow the interpolation of the internal
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4.2 Outlook on the future

𝑑𝐵c)

a)

b)

Figure 4.1: The EDMD algorithm can be performed with bounding spheres of diameter
dB for each non-spherical particle. Arbitrary shapes e.g. a) based on spherical
harmonics [Garboczi 2002], b) deformed cuboids or c) ellipsoids can be used.

variables from the current mesh to a possibly refined one before the extrapolation.
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