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Chapter 1

Introduction

Nowadays, with the high development of new technologies and artificial in-

telligence, robotics is a very important field of research. From electrical and

mechanical engineering to computer science and applied mathematics, it covers

plenty of many interesting subjects to study. In the general area of applied

mathematics, this thesis treats a specific area of discrete mathematics and al-

gorithmics, which is called computational geometry. The goal of computational

geometry is the design of algorithms to solve geometric problems. Many types

of computational geometry problems arise from robotics, concerning physical

objects moving in the space or in the plane. The most important application of

computational geometry to robotics is probably motion planning, and it is also

a very natural and intuitive subject to work with.

Motion planning is an active field of research. It consists in producing a

continuous motion that connects a start configuration of a robot (or a group

of robots) and a goal configuration. Motion planning deals with many different

aspects: determining feasibility of motion problems with obstacles for one or

more robots, determining valid paths in an environment filled with obstacles,

approximating the shortest path for a robot, determining paths in discrete grid

problems etc. These problems and different approaches to solve motion plan-

ning problems are studied in [7] and many other books, journal and conference

papers.

Our work is about coordinated motion planning. This means that we study

the case of a multiple-robot system, where the robots may interfere with each

other. Our work deals with a very specific aspect of coordinated motion plan-

ning: proving the optimality of motions for two robots in an obstacle-free plane

(in our case, two square robots). In particular, this subject is relatively new

and there are only a few works about it. In this thesis the length of a motion

for two (or more) robots is the sum of the lengths of the trajectories of each

robot, and so the optimal motion is the one which has the minimum length.
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4 CHAPTER 1. INTRODUCTION

Most works about coordinated motion planning study problems that are

different from the one that is studied in this thesis. For example, the problem

of finding a path for two unlabeled robots in the plane with obstacles is studied

in [8]. Moreover, in [10] it is proved that the problem is NP-hard if the number

of robots is part of the input. Giving a path for two robots is much easier than

finding the optimal one and proving that it is optimal, that’s why in this thesis

we deal with an obstacle-free plane. Finding short paths for a group of robots

in a plane with obstacles is studied in [9]. The authors find feasible paths for

a group of robots giving a performance bound of how short is the path found

compared to the optimal one (they also consider the length of a motion to be

the total sum of the lengths of the paths). Another example of coordinated

motion planning is the problem of reconfiguring a set of labeled convex objects

in an obstacle-free grid, which is treated in [2]. In that work, the goal is to

find an algorithm to reconfigure a group of robots in a grid with a good time

performance bound, which is more related to discrete mathematics. Finally,

a very similar problem to the one of this thesis can be found in [4]. In that

article the authors study the problem of moving a line segment in an obstacle-

free plane. This can be seen as moving two point robots that are always at the

same distance, in contrast with this thesis, in which the robots can be at any

distance.

A0
A1

B1B0

Aint

A0A1

B1B0

Aint

A0A1

B1B0

Aint

A

A

B

B

B

A

Figure 1.1: Example of optimal coordinated motion for two square robots A
and B, where robot A must go from A0 to A1 and robot B must go from B0 to

B1. The optimal motion is as follows: 1) First, A is translated from A0 to Aint.

Mid: B moves from B0 to B1 avoiding robot A. Bottom: A is translated from

Aint to A1.
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Coordinated motion planning is much more complex that the single-robot

case because the interference between the robots is a hard constraint to deal

with. For example, consider the coordinated motion of Figure 1.1. As we will

show in this thesis, this motion is optimal over all feasible coordinated motions

for the initial and final positions A0, B0, A1 and B1. The tools used in the

proof are not trivial and, as one can observe, the motion is not trivial, since we

could change the point Aint and there is no intuitive explanation of why the

point Aint of the example is the indicated one to get an optimal motion.

Moreover, there is the fact that we seek to find optimal motions. This is

very different than finding a feasible motion (that is called pathfinding). Refer

at the example (with an obstacle) of Figure 1.2. Determining a feasible motion

for this example is pretty simple; first choose a path for B to move from B0 to

B1 avoiding the obstacle (without moving B). Then, first move robot A in the

direction of the y-axis until it doesn’t interfere with the path of B. Secondly,

move B from B0 to B1 along the path you chose, and finally move A to A1

avoiding the obstacle.

In 2018, Dan Halperin proposed to us to read the article of Kirkpatrick and

Liu [5] (and [6]) and try to generalize the results that were archieved in that

work. In that article, the authors find the optimal coordinated motions for two

disc robots in an obstacle-free plane. The basis of the proof is Cauchy’s surface

area formula (Theorem 2.13). The structure of the article is the following: first

it explains the ideas behind the proof, secondly it gives a non-trivial example

of optimal coordinated motion and finally it studies all the possible cases of

optimal coordinated motions.

Our main goal is to find optimal coordinated motions for two squares given

their final an initial positions in an obstacle-free plane. This means that every

robot is located in an initial position and has to reach a final position. The

unique constraint that our thesis deals with is the fact that the robots cannot

collide. In this work we suppose that the squares have the same orientation

and they cannot rotate. Moreover, the size of the squares may be different from

each other.

A0
A1

B1B0 A
B

Figure 1.2: Robot A must go from A0 to A1 and robot B must go from B0 to

B1. The black area is an obstacle.
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The structure of this work is similar to the one of [5]; it is divided in three

main chapters. In the first chapter, we introduce the basic concepts and results

which are the structure behind this work and [5]. In the second chapter, we dig

deeper into the case of two squares. We present new ideas and we use them to

prove the optimality of a non-trivial motion for two squares. These ideas can

be seen as a generalization of the ones used in [5]. To conclude, we make an

exhaustive study of the possible cases of configurations and their optimal coordi-

nated motions, which leads to our main result: we show an optimal coordinated

motion for every initial and final position of two square robots and prove its

optimality using the techniques presented in the second chapter. Furthermore,

we show that the optimal coordinated motions follow a common logical pattern

and they consist of one polygonal line for each robot.



Chapter 2

Preliminaries

In this chapter we will introduce the basic concepts of motion planning for two

side-parallel square robots. They consist of an adaptation of the definitions

and basic results for discs contained in [5]. We consider the robots to be open

squares, which are side-parallel and they cannot rotate. Therefore, the term

”robot” is used to understand the ideas of this thesis, but we will work with

abstract concepts.

We refer to the two robots as A and B, and generally to their positions, i.e.,

the positions of their centers, as A and B. The radius of a robot is defined as

one half of its side. We will denote the sum of the radii of the two squares as

s. This is due to the fact that the movement the robot A of radius s1 in the

presence of robot B of radius s2 can be described as the movement of the point

A in the presence of the square B′ with center at B and radius s = s1 + s2 (see

Figure 2.1). Therefore all the squares shown in the following figures will be of

radius s.

A0A1 B A0A1 B′

Figure 2.1: The same motion can be studied in terms of two squares of radii s1

and s2 (left) or in terms of a point and a square of radius s = s1 + s2 (right).

Definition 2.1. The position of a square is a point in R2 defined as the location

of its center. A configuration of a robot pair (A,B) is a pair of points (A,B).

A configuration (A,B) is said to be feasible if ||A−B||∞ ≥ s (equivalently, the

two robots don’t intersect each other).
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8 CHAPTER 2. PRELIMINARIES

Throughout this thesis, we will denote by P0 = (A0, B0) the initial configu-

ration of a robot pair, and by P1 = (A1, B1) its final configuration.

Definition 2.2. A trajectory mA of a robot from a position A0 to a position A1

is a continuous, rectifiable curve of the form mA : [0, 1]→ R2, with mA(0) = A0,

mA(1) = A1. A motion m of a robot pair (A, B) from a configuration (A0, B0)

to a configuration (A1, B1) is a pair (mA,mB), where mA is a trajectory of A
from A0 to A1 and mB is a trajectory of B from B0 to B1. A motion is said to

be feasible if all the configurations m(t), t ∈ [0, 1] are feasible.

All the placements and motions that are mentioned in this thesis are aimed

to be feasible.

Definition 2.3. The length l(mA) of a trajectory (more generally of a curve)

is the Euclidean arc-length of its trace. The length l(m) of a motion of a robot

pair (A,B) is the sum of the lengths of its two trajectories:

l(m) = l(mA,mB) = l(mA) + l(mB).

Definition 2.4. The distance between two configurations d(P0, P1) is defined

as the minimum possible length over all feasible motions from P0 to P1. Any

feasible motion m between P0 and P1 satisfying l(m) = d(P0, P1) is said to be

an optimal motion between P0 and P1.

Definition 2.5. Let p, q be arbitrary points in the plane. The following defini-

tions are illustrated in Figure 2.2:

a) We denote by s -sq(p) the square of radius s with center p parallel to the

square robots we are considering.

b) We denote by s -cone(p, q) the cone formed by all half-lines from p that in-

tersect s -sq(q).

c) We call support lines from p to q the two lines that delimit the s -cone(p, q).

We call support points the intersection points of s -sq(q) and its support lines

from p. In some figures the support lines will be represented as halflines.

d) We denote by s -corr(p, q) the s-corridor associated with p and q, defined as

the Minkowski sum of the line segment pq and an open square of radius s.

Next we give the basic definitions and results that we will use to find the

optimal motions. Most of them are stated for A and mA. The definitions and

results for B and mB can be stated analogously.

Definition 2.6. Let m = (mA,mB) be a motion from P0 to P1. We denote by

m̂A the closed curve defining the boundary of the convex hull of the trace of mA.



9

qp s-corr(p, q)

s-sq(p) s-sq(q) p
q

s-cone(p, q)

Figure 2.2: Left: example of s -corr(p, q). Right: example of s -cone(p, q).

Since mA together with segment A0A1 form a closed curve whose convex hull

has boundary m̂A, it follows that

l(mA) ≥ l(m̂A)− |A0A1|.

The inequality is, in fact, an equality when the trace of mA is convex. When

both mA and mB are convex, we say that m is convex.

Definition 2.7. The angle of a configuration P = (A,B) is the angle formed

by the vector from B to A with respect to the positive x-axis. Two points A and

B are said to be at angle θ if the angle of P = (A,B) is θ. See Figure 2.3.

A

B

y

x

θ

Figure 2.3: The angle θ of a configuration P = (A,B).

Let [θ0, θ1] be the range of angles counter-clockwise between P0 and P1.

Observation 2.8. Let m be any motion from P0 to P1. Then m is continuous

on the angles of the point configurations of A and B.

Observation 2.9. Let m be any motion from P0 to P1, and let I be the range

of angles realized by all the point configurations that can be realised by A and B
along m. Then either [θ0, θ1] ⊆ I or S1 − [θ0, θ1] ⊆ I.

Definition 2.10. A motion m is said to be counter-clockwise if [θ0, θ1] ⊆ I.

Clockwise motions satisfy S1 − [θ0, θ1] ⊆ I.

Observe that a motion can be clockwise and counter-clockwise at the same

time, and the union of all the counter-clockwise motions and all the clockwise
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ones is the total of motions. Consider the clockwise optimal motion and the

counter-clockwise optimal motion for a given configuration: one of them is the

optimal motion we seek to find. The following lemma gives a way to check if a

counter-clockwise (or clockwise) motion is optimal.

Lemma 2.11 ([5], Observation 1.5). Let m be a (counter-)clockwise motion

from P0 to P1 satisfying:

1) m is convex.

2) l(m̂A) + l(m̂B) is minimized over all possible (counter-)clockwise motions.

Then m is a shortest (counter-)clockwise motion from P0 to P1.

When a counter-clockwise motion satisfies the two properties of Lemma 2.11,

we say it is counter-clockwise optimal. The convexity of a given motion is simple

to verify. In order to check the second property, the Cauchy’s surface area

formula is used. This formula allows to translate the problem of measuring the

length of a curve into the problem of studying its support function, which, as

will be seen, is an easier task.

Definition 2.12. Let C be a closed curve. The support function hC : S1 → R
of C is defined as

hC(θ) = sup
(x,y)∈C

{x cos θ + y sin θ}.

See Figure 2.4 left for an illustration. Given an angle θ, the points that realize

the supremum are called support points, and the line oriented at angle π
2 + θ

passing through the support point(s) is called support line.

θ

p

l

hAB(θ)

θ

hB(π + θ)

hA(θ)

mA

mB

Figure 2.4: Left: Example of support point p and support line l of a closed

curve. Right: Example of hAB(θ) of a motion. With a slight abuse of notation,

the labels of hA(θ) and hB(π + θ) indicate the corresponding support lines.
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Theorem 2.13 (Cauchy’s Surface Area Formula). Let C be a closed convex

curve in the plane and hC be the support function of C. Then

l(C) =

∫ 2π

0

hC(θ)dθ.

Corollary 2.14. Let C1 and C2 be closed convex curves in the plane and let hi

be the support function of Ci. Then

l(C1) + l(C2) =

∫ 2π

0

(hC1(θ) + hC2(π + θ))dθ.

Definition 2.15. We denote by hA (resp hB) the support function of m̂A (resp

m̂B). We define

hAB(θ) := hA(θ) + hB(π + θ).

This definition of support function of a motion is crucial in the main proofs

of this thesis. Therefore, we are giving now another way to understand it. Given

an angle θ ∈ [θ0, θ1], we have two support lines corresponding to it (See Figure

2.4 right for an illustration). One support line is the ”caliper” perpendicular

to θ enclosing mA, and the other support line is the ”caliper” perpendicular

to θ + π enclosing mB. Then hAB(θ) corresponds to the distance between the

support lines.

In order to prove the optimality of a motion, we will first find a lower bound

for hAB(θ). Then, for a given configuration, we will find a counter-clockwise (or

clockwise) motion that matches that lower bound for every θ in the desired range

of angles [θ0, θ1]. This will prove that the motion is optimal by Corollary 2.14:

by this corollary the length of a motion is the integral of the corresponding

support function hAB, therefore, if the support function is minimized then the

length of the motion is the minimum and so it is optimal.
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Chapter 3

Optimal motions: basics

This chapter contains the main results of this thesis. First, we will give a

lower bound for hAB(θ) in the case of two squares, and then we will study the

optimality of motions with a fundamental case, resulting in the main lemma of

this thesis, which is used in every proof of the final case analysis.

3.1 Structural definitions and results

As mentioned, we seek to find a lower bound for hAB(θ).

In the case of two discs, giving a lower bound for it is quite simple. If s is

the sum of the radii of the discs, for a given angle θ ∈ [θ0, θ1], we have that

hAB(θ) ≥ s independently of θ. This is due to the fact that when two disc robots

are in contact, their centers stay at the same distance regardless of the angle of

the configuration (see Figure 3.1, left).

This is is not so for squares, as illustrated in Figure 3.1, right. In this case,

the lower bound for hAB depends upon θ. Indeed, when two square robots are in

contact, their distance depends on the angle of their configuration. This implies

that the tight lower bound for hAB(θ) will depend upon θ. We will call it s(θ).

For this reason we need to define new concepts, which will help us to better

understand the construction of optimal motions.

AA

B

d1 d2
B

A

d
d

A

Figure 3.1: For disc robots, as A slides in contact with the boundary of B, the

distance betweeen their centers stays invariable. For square robots the distance

between their centers changes.
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14 CHAPTER 3. OPTIMAL MOTIONS: BASICS

The following definitions are useful to find the desired lower bound, and they

will become more clear after we see a case of an optimal motion.

Definition 3.1. Given two points A = (Ax, Ay) and B = (Bx, By), we define

the distance between A and B at angle θ as

dθ(A,B) := |(Ax cos(θ) +Ay sin(θ)) + (Bx cos(θ + π) +By sin(θ + π))|.

This is a formal definition of the width of the minimum strip containing A

and B with orientation θ (see Figure 3.2).

A

B

θ
dθ(A,B)

Figure 3.2: Example of dθ(A,B).

Definition 3.2. Let θ, θ′ be two arbitrary angles. We define the s-distance

between θ and θ′ in the following way (see Figure 3.3):

Let A,B be any two points at angle θ′ such that d∞(A,B) = s, then

s(θ, θ′) := dθ(A,B).

θπ
4

B

s(θ, π4 )
θ

A

θ′

B

s(θ, θ′)

A

Figure 3.3: Examples of s(θ, θ′). Notice that s
(
θ, π4

)
> s(θ, θ′).

Definition 3.3. Let P = (P0, P1) be a point configuration and let [θ0, θ1] be the

range of angles counter-clockwise of P . We define

s(θ) := max
θ′∈[θ0,θ1]

s(θ, θ′).
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In Proposition 3.5 we prove that function s(θ) is a lower bound for hAB(θ).

Observe that, in the case of two disc robots, s(θ) = s for all θ ∈ S1, which is

the lower bound for hAB(θ) in that case.

Now, with these definitions in mind, the following observation is immediate

(see Figure 3.3).

Observation 3.4. Given θ ∈ [0, π2 ] (and symmetrically for the rest of angles),

we have:

s(θ) = max
θ′∈S1

s(θ, θ′) = s
(
θ,
π

4

)
.

Grouping these new concepts together, finally arises the first important proof

of our thesis. With the next proposition, we will be capable of studying the case

of two squares with techniques analogous to those in [5].

Proposition 3.5. Let P = (P0, P1) be a point configuration and let [θ0, θ1] be

the range of angles counter-clockwise of P . For all counter-clockwise motions

from P0 to P1 and θ ∈ [θ0, θ1], we have

hAB(θ) ≥ s(θ).

Proof. Let θ ∈ [θ0, θ1] and m be a counter-clockwise motion from P0 to P1. Since

m is a counter-clockwise motion and it is continuous on the angles, there exists

some configuration (Aθ′ , Bθ′) of m at angle θ′ for all θ′ ∈ [θ0, θ1]. Therefore, for

all θ′ ∈ [θ0, θ1],

hAB(θ) ≥ dθ(Aθ′ , Bθ′) ≥ s(θ, θ′).

This implies that

hAB(θ) ≥ max
θ′∈[θ0,θ1]

s(θ, θ′) = s(θ).

Observation 3.6. Let HA (resp HB) be the support function of segment A0A1

(resp., B0B1). Since A0A1 ⊆ m̂A (resp., B0B1 ⊆ m̂B), we have that

hAB(θ) ≥ HA(θ) +HB(π + θ).

Corollary 3.7. Let P = (P0, P1) be a point configuration, [θ0, θ1] be the range

of angles counter-clockwise of P , and θ ∈ [θ0, θ1]. We have:

hAB(θ) ≥ max(HA(θ) +HB(π + θ), s(θ)).

The way we will use this corollary is resumed in the following lemma:

Lemma 3.8. If the support points for an angle θ of a motion are A0 or A1,

and B0 or B1, then hAB(θ) matches its lower bound.

Proof. Suppose that the support points for a given theta ∈ S1 are Ai and Bj ,

for i = 0, 1 and j = 0, 1. Then, since Ai ∈ A0A1 and Bj ∈ B0B1, we have

that hAB(θ) is equal to the sum of the support functions of segments A0A1 and

B0B1, which is HA(θ) +HB(π+ θ). Applying Corollary 3.7, hAB(θ) matches its

lower bound.
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3.2 Fundamental case (I): axis-aligned squares

To better understand the techniques that we will use to identify optimal motions,

it is useful to study a concrete case of a non-trivial optimal counter-clockwise

motion. We consider this case to be most instructive and fundamental, and it

is worth to deepen in it, analogously to what is done in [5].

In this case, illustrated in Figure 3.4, B0 and B1 are aligned horizontally,

both A0 and A1 lie in s -corr(B0, B1), and they are also symmetric with respect

to the perpendicular bisector of segment B0B1. In this situation, we can assume

without loss of generality that A0 is located closer to B1 and A1 lies closer to

B0.

Before describing an optimal motion for this point configuration, we define

some points that are useful to prove its optimality. Refer to Figure 3.4. Let

ai be the upper support lines from Ai to s -sq(Bi), for i = 0, 1. These two

lines intersect at Aint. Let bi, for i = 0, 1, be the lower support lines from Bi to

s -sq(Aint), and let Ci be the support points of bi. By construction, ai is parallel

to bi. Observe that a0 is parallel to b0 and a1 is parallel to b1 by construction.

A0A1

Aint

B1B0

C0 C1C ′

a0 a1

b0 b1

C ′′Cm

Figure 3.4: First fundamental case of a counter-clockwise optimal motion (in

blue): B0 and B1 are aligned horizontally, and A0 and A1 are in their corridor.

We define C ′ to be the point of s -sq(Aint) such that segment C ′Aint is

perpendicular to a0 and b0, and C ′′ the point of s -sqAint such that segment

C ′′Aint is perpendicular to a1 and b1. Finally, we call Cm the midpoint between

C0 and C1.

Proposition 3.9. The following is a counter-clockwise optimal motion for the

above configuration (illustrated in Figure 3.4):

1. Translate A from A0 to Aint along a0.

2. Move B from B0 to B1 along the shortest path avoiding s -sq(Aint). This

involves translating B from B0 to C0 along b0, sliding it along the boundary

of s -sq(Aint) from C0 to C1 in the range of angles [π4 ,
π
2 + π

4 ], and finally

translating it from C1 to B1 along b1.
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3. Translate A from Aint to A1 along a1.

Proof. We will apply Lemma 2.11 to prove that the motion is optimal. To that

end, we are going to prove that the motion is convex, and that it is minimal

over all possible counter-clockwise motions.

It is obvious that the property of convexity is fulfilled (remember that a

motion is convex if both paths of A and B are part of its convex hull). Next we

prove that the motion is minimal, showing that hAB(θ) matches its lower bound.

We will show that, for an angle θ, the support points are A0 or A1 and B0 or

B1 (remember Lemma 3.8), or hAB(θ) = s(θ).

First, when A moves from A0 to Aint along a0, the support points for hA(θ)

and hB(π + θ) are A0 and B0, for the angles θ associated to the point configu-

rations of this part of the motion. On the second motion, A0 and B0 are still

the support points until B arrives at C ′. In that moment, since a0 and b0 and

parallel, the support points of hA(θ) and hB(π+ θ) simultaneously become Aint

and C0 respectively. Then B moves from C ′ to Cm, and the range of angles

associated to this part of the motion is [β0,
π
2 ] ⊆ [π4 ,

π
2 ].

Let θ ∈ [β0,
π
2 ]. By Observation 3.4, since π

4 ∈ [θ0, θ1], we have that

hAB(θ) ≥ s(θ) = s
(
θ,
π

4

)
,

which is the lower bound we want to match. But we observe that Aint and

C0 are two points at angle π
4 , so hAB(θ) = s

(
θ, π4

)
, and it matches the lower

bound. By symmetry, the same works for the remaining part of the motion.

This completes the proof.

Next we generalize this argument to another fundamental case that has no

analogous in [5]. The case of squares, as we have seen, is different from the case

of two discs, but with the correct assumptions we will be able to reach our goal.

3.3 Fundamental case (II): arbitrary squares

In this section we deal with a case of counter-clockwise optimal motion similar

to that of Section 3.2 except that now the squares are not horizontally aligned.

Using the same terminology as before, in this case there is only one contact

point between mB and s -sq(Aint) that we will call C. We can now state the

analogous result to that of Proposition 3.9.

Proposition 3.10. The following is a counter-clockwise optimal motion for the

above configuration, illustrated in Figure 3.5:

1. Translate A from A0 to Aint.
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B1

Aint

B0

C

A1
A0

C ′ C ′′

a0 a1

b0 b1

Figure 3.5: Second fundamental case of counter-clockwise optimal motion (in

blue): the squares are not axis-aligned.

2. Move B from B0 to B1, along the shortest path avoiding s -sq(Aint). This

means translating B from B0 to C and then from C to B1.

3. Translate A from Aint to A1.

Proof. The proof is similar to that of Proposition 3.9. The differences appear

on the second part of the motion, so we only discuss what happens then.

On the second part of the motion, B is translated from B0 to C. Throughout

this part of the motion the support points for hA(θ) and hB(π+θ) are A0 and B0.

Then B moves from C to B1; as before, since a0 and b0 are parallel, Aint and C

simultaneously become the support points when B reaches point C ′, which is the

projection of Aint onto b1 in the direction perpendicular to a0 and b0. Finally,

since a1 and b1 are parallel, before arriving at B1 the support points become

A1 and B1 simultaneously at point C ′′, which is the perpendicular projection

of Aint onto b1.

Since π
4 ∈ [θ0, θ1] and Aint and C are at angle π

4 , we obtain that hAB matches

its lower bound and the motion is optimal.

3.4 Fundamental motion

We are now ready to generalize the argument seen in the previous proofs. All of

these ideas are combined together in the main lemma of this thesis. This lemma

is used to prove the optimality of the motions for the general case, in Chapter

4.

Definition 3.11 (Dominated region). Let p ∈ s -corr(B0, B1). Let R be the

region below both upper support lines from p to s -sq(B0) and s -sq(B1). We call

R the dominated region of p with respect to s -corr(B0, B1). If q ∈ R, we say

that p dominates q with respect to s -corr(B0, B1) (or just p dominates q). See

Figure 3.6 for an illustration.
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B1B0

p

q

Figure 3.6: The area dominated by p is shaded. In particular, p dominates q.

Definition 3.12 (Fundamental motion). Let Aint be any point that dominates

A0 and A1. A fundamental motion is any motion of the following form:

1. move A from A0 to Aint in a motion m1, staying entirely within the region

dominated by Aint;

2. move B on the shortest path from B0 to B1 that travels below s -sq(Aint)

on a motion m2, i.e., translate B along the support segment b0 from B0

to s -sq(Aint), slide it along the boundary of s -sq(Aint) (maybe only on

one point), and finally translate it along the support segment b1 from

s -sq(Aint) to B1;

3. move A from Aint to A1 in a motion m3, staying entirely within the region

dominated by Aint;

such that:

• m is convex;

• p = A0, or p = A1, or the tangent vectors of m1 and m2 at Aint are

parallel to b1 and b0 respectively.

Lemma 3.13. (Domination lemma) In a fundamental motion, hAB(θ) matches

its lower bound for the angles θ associated to the part of the motion in which B
moves.

Proof. The proof is analogous to the proofs of propositions 3.9 and 3.10. The

proof needs Aint to dominate both A0 and A1 to show that the support point

of mA during m2 is Aint. The parallelism condition is crucial in the previous

proof. Otherwise, hAB(θ) fails to achieve its lower bound, as shown in Figure

3.7. Since p does not dominate A0 (A0 is not contained in the shaded area),

when B moves from B0 to C ′ we don’t have that hAB(θ) matches its lower bound

for that part of the motion. Moreover, since the tangent vector of m1 at p (in

the figure, segment A0p) is not parallel to b1, when B moves from C ′ to C ′′ we

neither have that hAB(θ) = s(θ) for the angles associated to it.
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B1B0

p A0

A1

C ′ C ′′

Figure 3.7: Example which does not satisfy the conditions of Lemma 3.13. The

area dominated by p is shaded.

3.5 Certifying non-optimality

In some cases our method is not able to find a counter-clockwise optimal motion.

This is due to the fact that the fundamental motion may be unfeasible. See

Figure 3.8 for an example where the blue continuous trace corresponds to the

counter-clockwise motion produced following the strategy from the previous

section. Notice that it is unfeasible because it intersects the square centered

at B0.

B1B0

A0
A1

Aint

A′
int

U1

U0R0

R1

T0

T1q

`

Figure 3.8: Example of a non-feasible counter-clockwise optimal motion (con-

tinuous blue trace). The dashed blue trace corresponds to m in the notation of

Lemma 3.14 (case 1, when A0U0 and A1U1 do intersect).

In Lemma 3.14 we show that the optimal motion is clockwise for these cases.

We include the proof of this lemma for completeness, although it is analogous to

that of Lemma 4.6 from [5]. We will use this lemma in the following chapter to

prove that the optimal motion is clockwise, instead of counter-clockwise, when

the fundamental motion we give is unfeasible.

Lemma 3.14. (Non-optimality lemma) Suppose A0, A1 ∈ s -corr(B0, B1). Let

Hij denote the half-plane below the upper support line from Ai to s -sq(Bj). If
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Hij intersects s -sq(Bi) for i ∈ {0, 1}, j = 1− i and Aj ∈ Hij, then the optimal

motion of the configuration must be clockwise.

Proof. We consider two main cases: the case where s -sq(B0) and s -sq(B1) do

not intersect and the cases where they do intersect. In both cases, we assume

that A0 lies in the half-plane below the line connecting B0 with B1. The case

where A0 lies above is analogous.

Case 1: s -sq(B0) does not intersect s -sq(B1) (Figure 3.8). Let U0 be the

upper support point from A0 to s -sq(B1). By our assumptions, A1 lies below

A0U0 and A1 ∈ s -corr(B0, B1). Let U1 be the upper support point from A1 to

s -sq(B0). We first deal with the case where the support segments A0U0 and

A1U1 intersect at a point Aint ∈ s -corr(B0, B1). Consider the fundamental

motion m′:

1. Translate A from A0 to Aint.

2. Move B from B0 to B1 along the shortest path avoiding s -sq(Aint). This

is done in three steps. First translate B to T0, which is the lower support

point from B0 to s -sq(Aint). Then slide B counter clockwise along the

boundary of s -sq(Aint) to T1, which is the lower support point from B1 to

s -sq(Aint). This sliding is done in some range of angles [β0, β1]. Finally,

translate B from T1 to B1.

3. Translate A from Aint to A1.

The motion above is unfeasible, as A0 cannot move from A0 to Aint on a straight

line without colliding with B0. However, Lemma 3.13 shows that l(m′) gives a

lower bound on all possible counter-clockwise motions.

Let us construct a clockwise motion whose length is no greater than that of

m′. Construct the point A′
int, which is the result of two reflections of Aint, first

along the line from B0 to B1 and then along the perpendicular bisector of B0B1.

In other words, A′
int is the symmetric of Aint with respect to the midpoint of

B0 and B1. Consider the following motion m:

1. Move B from B0 to B1 avoiding s -sq(A′
int) by first translating B from

B0 to R0, which is the upper support point from B0 to s -sq(A′
int); then

sliding it along the top boundary of s -sq(A′
int); and finally translating it

from R1, which is the upper support point from B1 to s -sq(A′
int), to B1.

2. Translate A from A0 to A1.

By symmetry, step 1 of m has the same length as step 2 of m′. Trivially, step

2 of m has at most the length of steps 1 and 3 of m′. Therefore, l(m) ≤ l(m′).

Furthermore m is a feasible motion. In order to prove this, notice that the

line segment B0R0 is parallel to A0Aint. Consider a third line `, parallel to the
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two previous ones and passing through A′
int. Observe that s -sq(B0) intersects

` in one single point q. Then, the fact that A0Aint intersects s -sq(B0) implies

that A0 does not collide with B when it moves from B0 to R0 in step 1. Hence

the optimal motion must be clockwise in this case.

When the support segments A0U0 and A1U1 do not intersect, this means

that U1 is below A0U0 (see Figure 3.9).

B1B0

A0 A1

Aint

U1

U0

R0

R1

T1

T0

A′
int

Figure 3.9: Example of a non-feasible counter-clockwise optimal motion (con-

tinuous blue trace). The dashed blue trace corresponds to m in the notation of

Lemma 3.14 (case 1, when A0U0 and A1U1 do not intersect).

In this case, let Aint be the right-most intersection point between A0U0

and s -sq(B0). One can see that, similarly to the fundamental case studied in

Section 3.3, the analogous motion m with this Aint gives us a lower bound of

the optimal counter-clockwise length. With this, the proof above works without

any modification.

Case 2: s -sq(B0) intersects s -sq(B1) (Figure 3.10). Let L denote the region

(shaded in the figure) within s -corr(B0, B1) below the squares s -sq(B0) and

s -sq(B1). We will show that if both A0 and A1 lie in L then the optimal

motion must be clockwise. The case where they are located in the zone above

the squares is handled similarly.

As before, we will first lower bound the optimal counter-clockwise motion

by an unfeasible motion m′, and then find a clockwise motion m whose length

is at most the length of m′. We will only give both motions, the argument will

be the same as before.

Let t be the upper intersection point of s -sq(B0) and s -sq(B1). We define

Aint to be t and we define m′ as follows:

1. Translate A from A0 to Aint.

2. Move B along the shortest path from B0 to B1 avoiding s -sq(Aint).

3. Translate A from Aint to A1.
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B1B0

A0 A1

Aint

A′
int

Figure 3.10: Example of a non-feasible counter-clockwise optimal motion (con-

tinuous blue trace). The dashed blue trace corresponds to m in the notation of

Lemma 3.14 (case 2: s -sq(B0) and s -sq(B1) intersect).

Construct the point A′
int which is the vertical reflection of Aint across B0B1.

Finally we define m:

1. Move B from B0 to B1 avoiding s -sq(A′
int) by sliding over the top of it.

2. Move A on a straight line from A0 to A1.
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Chapter 4

Optimal motions: general

case

This chapter devoted to prove the following result, where Aint is defined ad-hoc

for each case:

Theorem 4.1. Given two square robots A and B, with initial configurations

A0 and B0, and final configurations A1 and B1, there exists a position Aint

(exchanging the roles of A and B if required) such that the following is an optimal

motion:

1. Move A along the shortest path from A0 to Aint avoiding s -sq(B0). We

will call this part of the motion m1.

2. Move B along the shortest path from B0 to B1 avoiding s -sq(Aint). We

will call this part of the motion m2.

3. Move A along the shortest path from Aint to A1 avoiding s -sq(B1). This

will call this part of the motion m3.

In the following, we will use m to refer to a motion as described in Theo-

rem 4.1. Without loss of generality, we may assume that B0 and B1 are aligned

horizontally. The proof is then done by a case analysis depending on the relative

positions of A and B in the initial and final configurations. For each case we fix

a position for A0, and, finally, we perform the following steps:

• We describe different zones where A1 can be located.

• We describe the position of Aint for each zone.

• We prove the optimality of the resulting motion or

25
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• we prove that the optimal motion must be the other way around (counter

clockwise or clockwise) showing that the conditions of the non-optimality

lemma (Lemma 3.14) are satisfied, or

• we prove that we need to exchange the roles of A and B to find the optimal

motion. We give the optimal motion all the cases.

We can distinguish three major cases (not necessarily disjoint) of initial and

final configurations, depending on the relative positions between the Ai’s and

the Bi’s. Up to symmetry, exchanging the roles of A and B or exchanging the

roles of A0 by A1 and B0 by B1, these cases cover all the possible situations

(see Table 4.1):

• Case 1. A0 6∈ s -corr(B0, B1) and B1 6∈ s -corr(A0, A1).

• Case 2. A0 ∈ s -corr(B0, B1), A1 ∈ s -corr(B0, B1), B0 6∈ s -corr(A0, A1)

and B1 6∈ s -corr(A0, A1).

• Case 3. A0 ∈ s -corr(B0, B1), B0 ∈ s -corr(A0, A1).

Then, the main subcases of cases 2 and 3 will take into account the following

property:

• Subcase 1. s -sq(B0) does not intersect s -sq(B1).

• Subcase 2. s -sq(B0) intersects s -sq(B1).

A0 6∈ s-corr(B0, B1) A0 ∈ s-corr(B0, B1)A0 ∈ s-corr(B0, B1)A0 6∈ s-corr(B0, B1)

B0 6∈ s-corr(A0, A1)

B0 6∈ s-corr(A0, A1)

B0 ∈ s-corr(A0, A1)

B0 ∈ s-corr(A0, A1)

B1 6∈ s-corr(A0, A1)

B1 ∈ s-corr(A0, A1)

B1 ∈ s-corr(A0, A1)

B1 6∈ s-corr(A0, A1)

A1 6∈ s-corr(B0, B1) A1 ∈ s-corr(B0, B1)A1 6∈ s-corr(B0, B1) A1 ∈ s-corr(B0, B1)

1

1

1

1

1

11

2

2

3

3

3

3

333

Table 4.1: All possible configurations of the Ai’s and Bi’s. In each cell, we

distinguish the case of this chapter which covers, up to symmetry, that config-

uration (recall that cases 3 and 4 cover the same configurations).

4.1 Case 1

In this case, A0 6∈ s -corr(B0, B1) and B1 6∈ s -corr(A0, A1). Therefore, A0 does

not interfere the optimal straight-line move of B from B0 to B1 and, after that,

B1 does not interfere the straight line move of A from A0 to A1. This is a simple
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case where the robot motions don’t need to be coordinated. An optimal motion

consists in moving first B on a straight line, and then moving A on a straight

line.

4.2 Case 2

In this case, both A0 and A1 belong to s -corr(B0, B1) but none of B0 and B1

belong to s -corr(A0, A1).

Definition of the zones (Figures 4.1 and 4.2) We fix the position of A0

and we distinguish four different zones for A1. Let p0 and p1 be the upper

support points from A0 to s -sq(B0) and s -sq(B1) respectively.

1. Zone I is the set of points that dominate A0.

2. Zone II is the set of points that A0 dominates.

3. Zone III is the set of points for which the upper support line from the

point to s -sq(B0) intersects A0p1.

4. Zone IV is the set of points for which the upper support line from the

point to s -sq(B1) intersects A0p0.

Definition of Aint For each zone, we define the point Aint:

1. If A1 ∈ Zone I, then Aint = A1.

2. If A1 ∈ Zone II, then Aint = A0.

3. If A1 ∈ Zone III, then Aint is the intersection of the upper support line

from A1 to s -sq(B0) and A0p1.

4. If A1 ∈ Zone IV, then Aint is the intersection of the upper support line

from A1 to s -sq(B1) and A0p1.

4.2.1 Case 2, subcase 1: s -sq(B0) and s -sq(B1) do not in-

tersect

Proof of Theorem 4.1 for this case (Figure 4.1)

• Zone I. Analogously to the fundamental case example (Section 3.3), along

m1 and m3 the support points are A0 or A1 and B0 or B1 and we conclude

that hAB matches its lower bound m1 and m3 by Lemma 3.8. Since in this

case Aint = A1, m is a fundamental motion because A1 dominates A0 (by

the definition of Zone I) and it is a convex motion. Hence we have that

hAB matches its lower bound along m2 from Lemma 3.13. Finally, this

motion is feasible since A0A1 belongs to Zone I.
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B1B0

A0

I

II

III
IV

p1

p0

Figure 4.1: Case 2, non-intersecting case. Zone III is represented with red and

orange, and Zone IV is represented with dark blue and light blue.

• Zone II. By definition Aint = A0 dominates A1. Taking this into account,

the proof is analogous to that for Zone I.

• The red area of Zone III and the dark blue area of Zone IV are studied in

Section 3.3 with the fundamental case, so the proof is exactly the same.

The orange area of Zone III and the light blue area of Zone IV are studied

in Case 3 (observe that those areas belong to Case 2 and Case 3).

4.2.2 Case 2, subcase 2: s -sq(B0) and s -sq(B1) intersect

B1B0

A0

I

II
IIIIV

p1p0

Figure 4.2: Case 2, intersecting case with A0 above s -sq(B0) and s -sq(B1).

Proof of Theorem 4.1 for this case (Figure 4.2) In this subcase there

are two possibilities:

• A0 and A1 are both above s -sq(B0) and s -sq(B1). This is the case of

Figure 4.2. The optimality proof of each zone is the same as the proof of

the non-intersecting case.

• A0 and A1 are both below s -sq(B0) and s -sq(B1). By the non-

optimality lemma (Lemma 3.14) we have immediately that the optimal

motion must be clockwise. Thus, by symmetry, the proof for each zone

is analogous to that for the non-intersecting case but with an optimal

clockwise motion. More precisely, the proof for Zone I is the same as that

for Zone II of the non-intersecting case; the proof for Zone II is the same



4.3. CASE 3 29

as that for Zone I of the non-intersecting case, and the proofs for zones III

and IV were studied in the fundamental case in Section 3.3.

4.3 Case 3

In this case A0 ∈ s -corr(B0, B1) and B0 ∈ s -corr(A0, A1). An important ob-

servation is that the condition of B0 belonging to s -corr(A0, A1) is the same as

considering A1 belonging to the part of s -cone(A0, B0) in which segment A0A1

intersects s -sq(B0), but we only suppose that A1 belongs to s -cone(A0, B0).

Without loss of generality, we suppose that B0 lies to the right A0. For sim-

plicity of the case analysis and to better understand it, we will look for optimal

clockwise motions. This is the main and most complicated case, so we will study

it in detail.

Definition of the zones (Figures 4.3, 4.4, 4.9 and 4.10) Let p be the

upper support point from A0 to s -sq(B0), and let u be the topmost point of

s -sq(B0). In some cases, p and u may coincide (as in Figure 4.9). We distinguish

four different zones for A1.

I: Zone I is the set of points q ∈ s -cone(A0, B0) for which some support point

from q ∈ s -cone(A0, B0) to s -sq(B1) lies above segment pu.

II: Zone II is the set of points q ∈ s -cone(A0, B0) for which the upper support

line from q to s -sq(B1) intersects segment pu.

III: Zone III is the set of points q ∈ s -cone(A0, B0) for which the upper support

line from q to s -sq(B1) intersects A0p.

IV: Zone IV is the set of points q ∈ s -cone(A0, B0) that still have not been

considered.

Definition of Aint For each zone, we define the point Aint:

1. If A1 ∈ Zone I, then Aint = A1.

2. If A1 ∈ Zone II, then Aint is the leftmost intersection point between

s -sq(B0) and the upper support line from A1 to s -sq(B1).

3. If A1 ∈ Zone III, then Aint is the intersection point between the upper

support line from A1 to s -sq(B1) and the upper support line from A0 to

s -sq(B0).

4. Zone IV is a special case and we will handle it differently in each subcase.
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B1 B0
A0

p

u

I

II

III

IV

A0 = Aint

U

Figure 4.3: Case 3, subcase 1 with A0 6∈ s -sq(B1).

B1 B0

A0

III

p

I

II

IV

u

Figure 4.4: Case 3, subcase 1 with A0 ∈ s -sq(B1)

In figures 4.3, 4.4, 4.9 and 4.10 we show the different zones for A1. In each

zone, we give an example of the movement of A with a dotted polygonal line

with two crossed points. The crossed points of each zone are Aint (painted with

dark blue) and A1 (painted with light blue). If Aint = A1, then there is only

one crossed point painted with dark blue.

4.3.1 Case 3, subcase 1: s -sq(B0) and s -sq(B1) do not in-

tersect

Proof of Theorem 4.1 for this case (Figures 4.3 and 4.4)

• Zone I. We consider two cases depending wheter A0 lies in s -sq(B1) or

not and, if it does not, on wheter A1 is above or below the upper support

line U from A0 to s -sq(B1)

– A1 lies above U or A0 ∈ s -sq(B1) (see Figure 4.5). In this case B0

dominates B1 with respect to s -corr(A0, A1). This property is due to
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two facts: A0 belonging to s -corr(B0, B1) or s -sq(B1) implies that

B1 lies above to the upper tangent from B0 to s -sq(A0) (we call it

upper tangent taking into account that we need to consider a rotation

first to make A0 and A1 axis-alligned). A1 belonging to Zone I (or

Zone II) implies that implies that B1 lies above to the upper tangent

from B0 to s -sq(A1) because A1 lies above the upper tangent from

p to s -sq(B1).

Now we begin the proof of optimality: Exchanging the roles of A
and B, we define Bint = B0. Since Bint dominates both B0 and

B1 with respect to s -corr(A0, A1) and Bint = B0, we obtain that m

is a fundamental motion and we can apply the domination lemma

3.13 with the roles of A and B exchanged. This guarantees that hAB

matches its lower bound along m1. Since A1 dominates A0 and m

is trivially convex, m is a fundamental motion and we can apply the

domination lemma 3.13 to obtain that hAB matches its lower bound

along m2. since m3 is reduced to a single point, hAB matches its

lower bound along m3. Finally, under our assumptions, we observe

that the motion m is trivially feasible.

B1 B0

A0

A1

B1 B0

A1

A0

U

u

p

u

p

Figure 4.5: Zone I. Top: example of A1 being above U . Bottom: example of

A0 ∈ s -sq(B1). The shaded zones represent the domination zone of B1 with

respect to s -corr(A0, A1).
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– A1 lies below U and A0 6∈ s -sq(B1) (see Figure 4.6). In this case, the

positions of A0 and A1 satisfy the conditions of the non-optimality

lemma (Lemma 3.14). Thus we look for counter-clockwise motions.

Rotating the configuration, in the counter-clockwise zones, A1 is in

Zone IV, which we handle below.

B1 B0

A0

U

A1

A0

A1

B0 B1

Zone IV

Figure 4.6: Zone I. Top: example of A1 being below U . Bottom: The same

configuration, rotated. The shaded area is Zone IV for the counter-clockwise

motions.

• Zone II. When A1 lies in Zone II, B0 dominates B1 with respect to

s -corr(A0, A1), due to the same reasons to the ones of Zone I. Therefore,

defining B0 = Bint and applying the domination lemma 3.13 we have

that hAB matches its lower bound along m1 since the motion is trivially

convex. The same thing happens along m2, since Aint dominates A0 and

A1. Throughout m3, the support points are A1 and B1 so hAB matches

its lower bound along m3 by Lemma 3.8, and the motion is optimal since

it is feasible.

• Zone III. The proof is analogous to that for Zone II. The only difference

between these two zones is the definition of the point Aint. With the

definition of this point for Zone III, the requirements of the proof for

Zone II are also fulfilled and the proof has already been presented in

Chapter 3.

• Zone IV. This is the most complex zone. Let p be the upper support

point from A0 to s -sq(B0) and let u be the topmost point of s -sq(B0).

We distinguish three subcases depending on the positions of A0 and A1,

and we treat each subcase in a different way:
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1) (See Zone IV in Figure 4.4). A0 ∈ s -sq(B1). In this case, taking Aint

to be the intersection point of A0p and s -sq(B1), the same proof as

the one for Zone II applies.

2) (See Figure 4.7). A0 6∈ s -sq(B1) and the upper support point of A1

and s -sq(B1) lies inside s -corr(B0, B1). Under these assumptions we

must have A1 ∈ s -corr(B0, B1) or below the lower horizontal support

line of s -sq(B0) and s -sq(B1). We prove that taking Aint = A0 yields

a clockwise optimal motion:

By construction of Zone IV, A0 dominates A1 and the motion is

convex. Moreover, since the upper support point of A1 and s -sq(B1)

lies inside s -corr(B0, B1) we have that B1 dominates B0 with respect

to s -corr(A0, A1), thus we can apply the domination lemma twice

(like in the proof for Zone II); since A0 dominates A1, hAB matches

its lower bound along m2, and since B1 dominates B0, hAB matches

its lower bound along m3. Recall that there is no m1 because Aint =

A0. Therefore, the fundamental motion is optimal because under our

assumptions it is feasible.

B1 B0

A0 = Aint

A1

p

u

Figure 4.7: Zone IV, subcase 2 example.

3) A0 6∈ s -sq(B1) and subcase 2) does not apply. In this case A1 must

lie left of the lower support line l1 between A0 and s -sq(B1) (by the

definition of Zone IV), above or on the lower horizontal support line

from s -sq(B0) to s -sq(B1) and outside s -corr(B0, B1) (See Figure

4.8). The hypothesis of the non-optimality lemma with the roles

of A and B switched are fullfilled and the optimal motion must be

counter-clockwise optimal. If we takeBint = B0 we obtain an optimal

counter-clockwise motion. This is the optimal motion of the previous

subcase 2) with the roles of A and B switched.
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B1 B0

A0

A1

l1

A0A1

B0

B1

Figure 4.8: Example of Zone IV, subcase 3. The bottom configuration is the

top one rotated to have A0 and A1 horizontally aligned. Notice how B0 and B1

satisfy the conditions of the non-optimality lemma.

4.3.2 Case 3, subcase 2: s -sq(B0) and s -sq(B1) intersect

Proof of Theorem 4.1 for this case (Figures 4.9 and 4.10)

• Zone I. If A1 lies in the portion of s -cone(B0, B1) below s -sq(B0) and

s -sq(B1) the fundamental motion is not feasible. But A1 cannot lie below

s -sq(B0) and s -sq(B1) and in Zone I at the same time, because the portion

that lies below s -sq(B0) and s -sq(B1) is convex. Because of this convexity

the support point from Aint to s -sq(B1) cannot lie above segment pu

(recall the definition of Zone I and the figures of the zones).

If A1 does not lie below s -sq(B0) and s -sq(B1), then the proof for Zone I in

the non-intersecting case applies. This is because the zones and the point

Aint are defined by the same properties and the property that can change

is the feasibility of the fundamental motion. Therefore, the conditions of

the proof are also fullfilled, like the property that Aint dominates A0 and

A1.

• Zone II. The proof for the non-intersecting case works. This is because

the feasibility of the motion does not change.

• Zone III. The proof for Zone II in the non-intersecting case works. This

is because the feasibility of the motion does not change.

• Zone IV. This Zone is again the most complex one. Let p be the upper
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B1 B0

A0

IV

I

III

p = u

Figure 4.9: Case 3, subcase 2 with A0 6∈ s -sq(B1).

B1 B0

A0

IV

I

II

p

u

Figure 4.10: Case 3, subcase 2 with A0 ∈ s -sq(B1).

support point from A0 to s -sq(B0) and let u be the topmost point of

s -sq(B0). We split the proof in two different subcases depending on the

position of A0:

1) A0 lies above both s -sq(B0) and above s -sq(B1). In this case the

motions and proofs are the same as those for the non-intersecting

case for Zone IV. This is because the feasibility of the fundamental

motion does not change.

2) A0 lies below s -sq(B0) or below s -sq(B1). If A1 is above of the

upper support line between A0 and s -sq(B1) and above of the up-

per support line between A0 and s -sq(B0) (see Figure 4.11), then

the non-optimality lemma shows that the optimal motion must be

counter-clockwise. In this case, if we make a vertical reflection we can

take A0 = Aint and the motion is counter-clockwise optimal since A0

dominates A1 with the same proof as the one in the non-intersecting

case, Zone IV, 2).

Then we assume that A1 is outside the region handled above. In

this case, as before, the proof is analogous to the one for Zone IV

of the non-intersecting case with the following change: if p belongs

to s -sq(B1), we change the definition of Aint to be the topmost in-

tersection point between s -sq(B0) and s -sq(B1). This is because

if p belongs to s -sq(B1) we need to get outside of s -sq(B1) along
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B1 B0

A0

A1

Figure 4.11: Case 3, subcase 2: Example of Zone IV, subcase 2 when the non-

optimality lemma applies.

s -sq(B0) until we reach the first point that is outside of s -sq(B1),

which is the new Aint (See Figure 4.12). Since p dominates A0 and

A1 and the new Aint also dominates them, all the other properties

of fundamental motion remain.

B1 B0

A0

p
Aint

A1

Figure 4.12: Zone IV: Aint is different from the non-intersecting case.



Chapter 5

Conclusions

In this work we have described and proved the optimal coordinated motions

for two square robots in a obstacle-free plane. To do so, we have generalized

the ideas of Kirpatrick and Liu [5] from two discs to two squares in Chapter

3. Furthermore, in Chapter 4 we have proved that the optimal coordinated

motions are always polygonal lines and follow a common pattern similar to the

one proved for discs [5]. Moreover, the motions can be decoupled so that only

one square is moving at any given time.

The main differences between [5] and our work are:

1. The orientation of the squares matters. This doesn’t happen with two

discs because of their rotational symmetry.

2. We have defined the concept of s(θ) to prove a lower bound for hAB(θ).

We need this lower bound depending on θ even when the squares are

horizontally placed, which is the simplest case.

3. Lemma 3.13 (the Domination Lemma) of [5] does not hold for squares

due to the orientation dependency of our problem, so we proposed a new

statement that works for squares.

4. The proofs are more involved since there are more cases in the case anal-

ysis, due to the orientation dependency.

To conclude, we remark that there are many approaches and variants of this

problem that are left for further research. This is a new problem and almost

nothing has been done in this area, so almost all the related problems are open.

The most remarkable ones are:

1. Optimal motions for other robots shapes. We have generalized the ideas

for the two disc robots to two squares. The logical question now is if these

new definitions and the results we have used to find optimal coordinated

37
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motions are also valid for other shapes. For example, what happens if

the robots are two equal or different convex polygons or another type of

convex shapes? Furthermore, can we also find a lower bound for hAB(θ)

and prove the optimality of a non-trivial motion?

2. Optimal motions for more than two robots. If we look for free-collision

motions for three or more robots, not so much has been done. Further-

more, there are no techniques and results to show optimality of motions for

three robots, and so we don’t know which is the shape of these shortest mo-

tions. The algorithms that can be found are pathfinding algorithms which

give computational upper bounds, but they don’t say anything about the

lengths of the paths and how good are they compared to the optimal ones,

like in [3] and in [1].

3. Optimal motions for two robots with obstacles. Finding the optimal coor-

dinated motion for two discs in the plane with any type of obstacle is an

interesting variant of the problem. Even the case of a single point obstacle

is open.

4. Optimal motions in higher dimensions. The problem of finding the optimal

motion for two sphere robots in 3D space is also open.
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