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Abstract

Graph colouring is arguably one of the most important issues in Graph Theory. However,
many of the questions that arise in the area such as the chromatic number problem or
counting the number of proper colorings of a graph are known to be hard. This is the
reason why approximation schemes are considered.

In this thesis we consider the problem of approximate sampling a proper coloring at ran-
dom. Among others, approximate samplers yield approximation schemes for the number of
colourings of a graph. These samplers are based in Markov chains, and the main requirement
of these chains is to mix rapidly, namely in time polynomial in the number of vertices.

Two main examples are the Glauber and the flip dynamics. In the project we study
under which conditions these chains mix rapidly and hence under which conditions there
exist efficient samplers. The previous result proved rapid mixing of the chains provided
k > (11/6−ε0)∆ for some ε0 > 0. The aim of this project is to study how much can this value
ε0 be increased, and hence prove rapid mixing of the chains under weaker conditions. Our
result states that the flip and the Glauber dynamic mixes rapidly provided k > (11/6−ε0)∆
for ε0 = 1

1320 .

Keywords: Graph coloring, approximate samplers, Markov chains, randomized algo-
rithms.

iii



iv



Contents

1 Introduction 1

2 Markov chains 5
2.1 Properties of Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Fundamental Theorem of Markov chains . . . . . . . . . . . . . . . . . . . . . 6
2.3 Mixing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 MCMC and first examples 9
3.1 MCMC for randomly sampling colorings . . . . . . . . . . . . . . . . . . . . . 9
3.2 Glauber dynamics (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Properties of the chain; stationary distribution . . . . . . . . . . . . . 10

4 Path coupling 13
4.1 Path coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Glauber dynamics (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Flip dynamics: First results 17
5.1 Definition of the chain: Flip dynamics . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Properties of the chain; stationary distribution . . . . . . . . . . . . . 18
5.2 Coupling of the flip dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Linear programming and choice of flip weights . . . . . . . . . . . . . . . . . 21

6 Flip dynamics: use of an Alternative metric 27
6.1 Extremal configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Definition of the alternative metric . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Analysis of the Alternative metric: Expected variation distance 31
7.1 Study of ∇B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1.1 ∇B for extremal configurations . . . . . . . . . . . . . . . . . . . . . . 34
7.1.2 ∇B for non-extremal configurations; case c ∈ C1

σS ,τS
(v) . . . . . . . . . 37

7.1.3 ∇B for non-extremal configurations; case c ∈ C2
σS ,τS

(v) . . . . . . . . . 41

8 Main result 51

9 Relation between flip and Glauber dynamics 53

v



10 Random sampling and approximate counting 57

11 Conclusions 61

Bibliography 64

Appendix: Matlab code for solving LP1 and LP2 65

vi



Chapter 1

Introduction

Coloring of graphs is one of the major problems in Graph theory and has always triggered
a lot of interest not only among mathematicians but also due to its many applications in
other fields.

One of the most studied problems in this area is the chromatic number problem. Given
a finite simple graph G = (V,E), and a positive integer k, the goal is to determine whether
there exists a proper vertex coloring of G with k colors. Moreover, the minimum value k for
which there exists such coloring is called the chromatic number of G, and is denoted by χ(G).
For k ≤ 2 the existence of a k-coloring can be answered in polynomial time. However, Karp
[16] proved that determining the chromatic number of a graph is NP-complete for k ≥ 3.
There is little that we can say about the chromatic number of an arbitrary graph and the
existing results in the area require some additional information. For instance, if ∆ is the
largest vertex degree of the graph, a simple greedy algorithm gives that the graph is (∆+1)-
colourable. Basically the algorithm fixes an ordering of the vertices and colours each of them
with a colour not used among its neighbours. This algorithm gives that χ(G) ≤ ∆ + 1 and
Brook’s theorem determines when the bound is tight. In particular, it asserts that for ∆ ≥ 3,
the chromatic number satisfies χ(G) = ∆ + 1 if G contains a clique of order ∆ + 1.

A related problem is counting the number of proper k-colorings of a graph. Notice that
this problem is harder than determining the chromatic number, and belongs to a class of
problems called #P which is the analogous of NP for counting problems. There is a special
interest in the problem of counting the number of proper colorings in statistical physics,
where it corresponds to approximating the partition function of the zero temperature anti-
ferromagnetic Potts model [20].

While counting colorings exactly is #P-complete, which is the analogous of NP-complete
for counting, there are efficient algorithms for approximate counting in some cases. Some
of them are deterministic and are known as fully polynomial-time approximation scheme or
FPTAS while others are randomized and are known as fully polynomial-time randomized
approximation scheme or FPRAS.

It is known that when k < ∆, even approximate counting is NP-hard [10]. As the
existence of a k-coloring is ensured for k ≥ ∆ + 1 due to the greedy algorithm, we restrict
the question to these values. Hence the conjecture is whether there exist algorithms for
approximate counting for k ≥ ∆ + 1. This question has repeatedly challenged existing
algorithmic techniques and stimulated the development of new ones.

One of the approaches is to use Markov chain Monte Carlo methods (MCMC), given the
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strong relation that exists between the problem of counting the number of colorings of a
graph and sampling a proper coloring at random. More precisely, finding an approximating
scheme for counting can be reduced to finding an (almost) uniform random sampler, known
as FPAUS (fully polynomial almost uniform sampler). In this case the approximate scheme
for counting is randomized.

Another approach is to use deterministic algorithms. These algorithms make use of two
main techniques: the correlation decay, i.e. the decreasing influence of colors on distant
vertices; and the polynomial interpolation or Barvinok method [1], which uses the absence
of zeros of the partition function in a suitable region of the complex plane. However, the
results obtained with FPTAS have never improved the bounds given by the randomized
schemes [18]. Hence, let us focus on MCMC methods.

MCMC are methods that use a Markov chain whose stationary distribution is the one
we are interested in sampling from. In particular, the algorithm runs such chain until the
probability distribution is unlikely to be far from the stationary one and selects the current
state as the sample. One requirement for this chain is to converge fast to the stationary
distribution. Namely to converge in time polynomial in n, the number of vertices, so that
the algorithm is also polynomial. In this case the chain is said to mix rapidly and the time
to equilibrium is usually bounded using couplings of Markov chains.

The first chain that was studied is called the Glauber dynamics, and it is widely believed
to work for k ≥ ∆ + 2. Glauber runs as follows: at each step, choose a random node and
recolor it with a random color not appearing among its neighbours.

The first result in this area was due to Jerrum [13].

Theorem 1.1 ([13]) The Glauber dynamics is rapidly mixing, with mixing timeO(n logn),
provided k > 2∆.

Jerrum’s proof presented a bottleneck that was difficult to avoid. Therefore, the effort
was put on getting better bounds for restricted families of graphs. Dyer et al. [8] showed
rapid mixing for roughly k ≥ 1.489∆ provided the girth is at least 6 and the degree ∆ is a
sufficiently large constant, while Hayes and Vigoda [12] improved this to k ≥ (1 + ε)∆ for
girth at least 11 and degree ∆ logarithmic in the number of vertices. Other results concern
random graphs, trees or planar graphs. Dyer et al. [9] proved that one can construct
a Markov chain algorithm that with high probability mixes in O(n logn) time with k =
o(log logn). In the case of trees, Martinelli, Sinclair and Weitz [19] showed O(n logn)
mixing time for the Glauber dynamics on complete trees when k > ∆+2 and ∆ is constant.
And Hayes [11] showed that the Glauber dynamics mixes rapidly for k > ∆+c

√
∆ on planar

graphs, which was lately improved to k = Ω( ∆
log ∆).

In a breakthrough work, Vigoda avoided the bottleneck that presented Jerrum’s proof
and broke the 2∆ barrier. The chain he used to obtain this result was different from the
Glauber dynamics. Instead of flipping single vertices, Vigoda proposed to flip 2-colored
clusters or Kempe components. This chain, called flip dynamics, is a variant of the Wang-
Swendsen-Kotecký (WSK) algorithm [24] and one can prove rapid mixing of the Glauber
dynamics from rapid mixing of the flip dynamics, see [6]. Vigoda [23] described a more
sophisticated coupling for the flip dynamics and obtained the following result:

Theorem 1.2 ([23]) The flip dynamics is rapidly mixing, with mixing time O(n logn),
provided k > 11

6 ∆.
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In particular, Vigoda devised a one-step coupling using the Hamming metric, which is
the distance that counts the number of vertices in which two colorings differ.

However, it is known that any one-step coupling with the Hamming metric can not prove
rapid mixing for k < 11/6∆. There are two natural ways to overcome this issue. On the
one hand, Chen and Moitra [4] presented a multi-step coupling using the Hamming metric.
And on the other, Delcourt, Perarnau and Postle [5] described an alternative metric for the
one-step Vigoda’s coupling. By means of these two different strategies, they obtained two
independent proofs of Theorem 1.3.

Theorem 1.3 ([4],[5]) There exists ε0 > 0 such that the flip dynamics is rapidly mixing,
with mixing time O(n logn), provided k > (11

6 − ε0)∆.

In their paper, Perarnau et al. [5] obtained ε0 = 1
84000 ≈ 1.19 · 10−5 while Chen and

Moitra obtained ε0 ≈ 9.4 · 10−5. This value ε0 was thought to be possibly increased,
obtaining weaker conditions on rapid mixing on the chains.

The aim of this master thesis is to study how much can this value ε0 be increased.
We follow the idea described by Delcourt, Perarnau and Postle [5] and we describe an

alternative metric different than the Hamming metric and different from the one used in [5].
Through a tighter analysis in the expected variation distance in each step of the coupling
we obtain the following result

Theorem 1.4 Theorem 1.3 holds with ε0 = 1
1320 .

Taking into account the relation between the mixing time of the flip and the Glauber
dynamics, the improvement in Theorem 1.4 also applies in the case of Glauber and we get:

Theorem 1.5 The Glauber dynamics is rapidly mixing, with mixing time O(n2 logn),
provided k > (11

6 − ε0)∆, with ε0 = 1
1320 .

Structure of the thesis
We start introducing the main concepts of Markov chains and couplings. Then, we present

Monte Carlo Markov Chain methods and we describe the first chain used, the Glauber
dynamics. After that, in chapter 4, we study a useful technique in Markov chains, the Path
coupling method, which allows to bound the mixing time of a chain, and we apply it to the
Glauber dynamics. Then, in chapter 5 we present the flip dynamics and we give the proof
of Vigoda’s 11

6 bound (Theorem 1.2). In the following chapter we describe an alternative
metric for Vigoda’s coupling, different than the one used by Delcourt, Perarnau and Postle.
Chapter 8 is devoted to our main result, which improves upon the previous result. Finally
in chapter 9 we study the result of Diaconis and Saloff-Coste [6] and we prove rapid mixing
of the Glauber dynamics from the flip dynamics and in chapter 10 we relate the problem of
counting to the problem of randomly sampling.
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Chapter 2

Markov chains

Definition 2.1 A discrete-time discrete-space stochastic process (Xt) = (Xt)t≥0 is a
sequence of random variables, where Xt has support on a finite set Ω. Moreover, a stochastic
process is a Markov chain if it satisfies:

Pr(Xt+1 = y | X0 = x0 ∩ ... ∩Xt−1 = xt−1 ∩Xt = x) = Pr(Xt+1 = y | Xt = x)

This property is usually called Markovian or Memoryless property and refers to the fact
that the conditional probability of a transition from state x to state y is the same, no matter
what sequence x0, x1, ..., xt−1 of states preceded the current state x.

Definition 2.2 A Markov chain is time-homogeneous if Pr(Xt+1 = y | Xt = x) does
not depend on t. Hence we can define P (x, y) = Pr(Xt+1 = y | Xt = x), and we call
P = (P (x, y))x,y∈Ω the transition matrix of (Xt).

The Markov chain is fully characterized by the matrix P and the x-th row of P is the
distribution P (x, ·). Thus P is stochastic, that is, for all x ∈ Ω∑

y∈Ω
P (x, y) = 1

.
Given the transition matrix, the probability that Xt+1 = y can be written as follows:

Pr(Xt+1 = y) =
∑
x∈Ω

Pr(Xt+1 = y | Xt = x) · Pr(Xt = x) =
∑
x∈Ω

P (x, y) · Pr(Xt = x)

From this equation, if µt is the distribution at time t (i.e. µt(x) = Pr(Xt = x)) we have
that:

µt = µt−1P (1)
So, given an initial distribution µ0 :

µt = µ0P
t

Now we can study how does the distribution µt behave in the long term. From (1) if µt
has a limit π as t −→ ∞ any such limit distribution must satisfy π = πP . Namely, π must
be a left eigenvector of matrix P .
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Definition 2.3 Let (Xt) be a Markov chain with transition matrix P . A probability
distribution π is a stationary distribution of (Xt) if π = πP .

Clearly if the probability distribution of the Markov chain at t is µt = π, then µt′ =
π,∀t′ ≥ t. So, if the chain converges, the limiting distribution is stationary.

The following result gives a useful tool to find a stationary distribution of a chain:

Proposition 2.1 Let (Xt) be a Markov chain with transition matrix P . If π is a proba-
bility distribution on Ω such that for every x, y ∈ Ω

π(x)P (x, y) = π(y)P (y, x)

then π is a stationary distribution of P .

Proof. The y-th entry of πP is∑
x∈Ω

π(x)P (x, y) =
∑
x∈Ω

π(y)P (y, x) = π(y)
∑
x∈Ω

P (y, x) = π(y)

where we have used that P is a stochastic matrix. Hence πP = π.

2.1 Properties of Markov chains

Let us define two important properties of Markov chains that are fundamental for the
convergence of the Markov chain to a stationary distribution.

Definition 2.4 A Markov chain with transition matrix P is irreducible if for any two
states x, y ∈ Ω there exists an integer t such that P t(x, y) > 0.

Definition 2.5 A Markov chain with transition matrix P is aperiodic if for all x ∈ Ω,
gcd{t : P t(x, x) > 0} = 1.

If P is irreducible and aperiodic, the Markov chain converges to a stationary distribution.
This result is known as the Fundamental Theorem of Markov Chains.

Moreover, we can ensure that the stationary distribution is the uniform distribution in
some chains.

Definition 2.6 A Markov chain with transition matrix P is symmetric if for all x, y ∈ Ω,
P (x, y) = P (y, x)

If the Markov chain is symmetric, due to Proposition 2.1 the chain converges to the
uniform distribution.

2.2 Fundamental Theorem of Markov chains

Theorem 2.2 (Fundamental Theorem of Markov chains) Let (Xt) be an aperiodic
and irreducible Markov chain. Then there exists a unique stationary distribution π and for
every x, y ∈ Ω, limt→∞ Pr(Xt = x | X0 = y) = π(x).

We refer to Levin-Peres, [17], for the proof of the Fundamental Theorem.
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2.3 Mixing time

Once the convergence to a stationary distribution is ensured, we would like to know how
fast the Markov chain converges to it.

Definition 2.7 Let µ and ν be probability distributions in Ω. The total variation distance
between µ and ν is defined as

dTV (µ, ν) = sup
A⊂Ω
|µ(A)− ν(A)|

Definition 2.8 Let (Xt) be an aperiodic and irreducible Markov Chain with transition
matrix P and let π be its stationary distribution. The mixing time is defined as

τmix(ε) = min{t : max
x∈Ω

dTV (P t(x, ·), π) ≤ ε}

and we denote τmix = τmix(1/4).
Hence the mixing time measures the time required by a Markov chain to have a small

total variation distance with respect to the stationary distribution.

2.4 Coupling

Definition 2.9 Given (Xt), (Yt) Markov chains, a coupling is a joint stochastic process
(Xt, Yt) such that the marginal distributions are the same as the ones of (Xt) and (Yt) and
if Xt = Yt then Xt+1 = Yt+1.

In general, couplings are useful because a comparison between distributions is reduced to a
comparison between random variables. For instance, in the following proposition, dTV (µ, ν)
is upper bounded by the probability that the random variables X and Y are different, with
probability distribution µ, ν respectively, for any (X,Y ) coupling.

Proposition 2.3 Let X,Y be random variables with probability distributions µ and ν
respectively. Then:

dTV (µ, ν) ≤ min{P (X 6= Y : (X,Y ) coupling)}

Proof. Let A ⊂ Ω. Without loss of generality suppose µ(A) ≥ ν(A). Then

µ(A)− ν(A) = P (X ∈ A)− P (Y ∈ A) ≤ P (X ∈ A, Y /∈ A) ≤ P (X 6= Y )

Maximizing over A ⊂ Ω we obtain the inequality of the statement.

If fact, it can be shown that dTV (µ, ν) = min{P (X 6= Y : (X,Y ) coupling)} and such
couplings are called optimal, see [17].

Finally, we can think of couplings as Markov chains in Ω2. We will study further properties
of couplings in the following chapters.
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Chapter 3

MCMC and first examples

Many of the FPAUS are based on establishing convergence of a Markov chain defined on
the set Ω under consideration. The idea is to define a Markov chain (Xt) with state space
the one from which we want to sample, and whose stationary distribution is uniform on
Ω. If the hypothesis of the Fundamental Theorem of Markov Chains hold (see Theorem
2.2) and the chain is symmetric (see Theorem 2.1), the convergence of (Xt) to the uniform
distribution is ensured. Hence, the distribution of (Xt) is arbitrarily close to the uniform
for t large enough. For such t, taking Xt as the sample point gives a sample from an almost
uniform distribution. Such algorithms are known as Markov Chain Monte Carlo methods
(MCMC).

3.1 MCMC for randomly sampling colorings

Markov Chain Monte Carlo Method can be applied to the problem of random sampling
a coloring of a graph.

Although it is NP-complete to compute the chromatic number of a graph, there are some
conditions that imply that G is k-colorable. For instance, if k ≥ ∆ + 1, G is k-colorable.

Moreover, for the chains we will study, we will prove that irreducibility and aperiodicity
is given when k ≥ ∆ + 2. So the still opened problem is whether fast mixing can be proven
for this value.

Hence, the goal is to find which are the sufficient conditions, on k and ∆, for the Markov
chain to converge fast. More precisely, we will say that the Markov chain mixes rapidly if the
mixing time is polynomial on the number of vertices n. This is much less than the number
of k-colorings of a graph which is exponential in n. Namely, the number of k-colorings
of a graph on n vertices is greater than (k − ∆)n due to the fact that there are at least
k − ∆ available colors at each vertex. Hence, constructing all k-colorings and picking one
at random would take time O(cn), for some constant c, which is exponential in n.

Our first approach is given by the Glauber dynamics.

3.2 Glauber dynamics (I)

Let G = (V,E) and Ω the set of k-colorings of G. The Glauber dynamics is a Markov
chain on the set Ω defined by the following transitions:

9
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- Select w ∈ V uniformly at random
- Select c ∈ [k] uniformly at random
- If no neighbours of w have color c, recolour w with colour c.
Equivalently, the chain can be defined by the probability of going from any pair of states

σ, τ ∈ Ω, σ 6= τ , which is:

P (σ, τ) =
{ 1
nk if σ, τ differ at exactly one vertex v and τ(v) = c′ with c′ ∈ Av(σ)
0 otherwise.

where Av(σ) is the set of available colors of v in coloring σ. And we define P (σ, σ) so
that P (σ, ·) is a probability distribution.

3.2.1 Properties of the chain; stationary distribution

First of all notice that every improper coloring has a positive probability to reach a proper
one, but a proper coloring can not move to any improper coloring. Hence, the chain even-
tually reaches a proper coloring, so the support of the stationary distribution is the set of
proper colorings of the graph. In particular, it is enough to consider Ω the set of proper
k-colorings of G.

Now, we argue that the stationary distribution is the uniform distribution in this support.

Proposition 3.1 The Glauber dynamics is irreducible and aperiodic for k ≥ ∆ + 2 and
its stationary distribution is the uniform distribution.

Proof. First, the chain is aperiodic because for every state σ ∈ Ω, P (σ, σ) > 0. Moreover,
for k ≥ ∆ + 2, and for any pair σ, τ ∈ Ω there exists a positive probability to move between
them. For instance the chain could move from σ to τ taking the following movements:
Consider an ordering of the vertices of G and try to recolour them in this order. When
attempting to recolour vertex v to colour c = τ(v), some of the neighbours of v might be
already coloured with c. Then recolour all these neighbours with an arbitrary available
colour different from c and we can do this as the number of colours k ≥ ∆ + 2.

Hence, for k ≥ ∆ + 2 the hypothesis of the Fundamental Theorem of Markov Chains
(Theorem 2.2) hold, and there exists a stationary distribution of this chain.

Moreover this stationary distribution is the uniform distribution in the set of proper
colorings. Let π be such distribution and let us see that Proposition 2.1 holds. Let σ, τ ∈ Ω.
If σ, τ are not proper, then π(σ), π(τ) = 0 and the hypothesis hold. Now suppose one of
them is proper and the other not; without loss of generality assume σ is not proper and
τ is proper. Then π(σ) = 0 and P (τ, σ) = 0 and again the equality of the proposition is
fulfilled. And lastly, if σ, τ are proper colorings, then π(σ) = π(τ) and P (σ, τ) = P (τ, σ).
It follows from Proposition 2.1 that the stationary distribution π is uniform in the set of
proper colorings.

To sum up, the Glauber dynamics converges to the uniform distribution on the set of
k-proper colorings of G for k ≥ ∆ + 2.

10
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Notice that the bound k ≥ ∆+2 is tight for irreducibility. For G = Kn and k = n = ∆+1,
let σ be a proper k-coloring. Then P (σ, τ) = 0 for any τ 6= σ and P (σ, σ) = 1. Hence, for
any number of steps, there is not a positive probability to move from one state to a different
one.

11
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Chapter 4

Path coupling

The main issue about MCMC is determining how large t must be until the distribution
at time t is close enough to the stationary one. To do that recall the definition of the total
variation distance between two distributions and impose that µt, the distribution at time t,
is within ε distance from the stationary one. This is in particular the mixing time. So the
main problem is to bound the mixing time of the chain.

The method of coupling is a useful tool to obtain bounds on the mixing time of a chain.
More precisely, we have results that relate the total variation distance of two probability
distributions with the probability that a coupling of two Markov chains with such probability
distributions, are not coupled (recall Theorem 2.3).

First, let us define the couplings we will be interested in, those whose expected total
variation distance decreases in any step of the chain.

Definition 4.1 Let d denote a metric in Ω and dmax the diameter of Ω under this metric.
For an initial pair (x, y) ∈ Ω2, a coupling (x, y) → (x′, y′) γ-contracts for (x, y) for some
γ ∈ (0, 1) if

E[d(x′, y′)] ≤ γd(x, y)

The following theorem proves that if there exists α > 0 and a coupling that (1 − α)-
contracts for all (x, y), then the Markov chain mixes rapidly.

Theorem 4.1 Let α > 0 and suppose the coupling (1−α)-contracts for every (x, y) ∈ Ω2,
then

τmix = O(α−1 log(dmax))

Proof. In order to bound τmix, we need to bound the total variation distance by 1
4 . Due to

Proposition 2.3 we have:

‖Xt − Yt‖TV ≤ Pr(Xt 6= Yt|X0, Y0) ≤ Pr(d(Xt, Yt) ≥ 1|X0, Y0) ≤ E(d(Xt, Yt)|X0, Y0)

where we have applied Markov inequality. It suffices to bound this expectation. As the
coupling is contractive by hypothesis, we have:

E(d(Xt, Yt)|X0, Y0) ≤ (1− α)d(Xt−1, Yt−1|X0, Y0) ≤ (1− α)td(X0, Y0) ≤ e−αtdmax

13
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because 1− x ≤ e−x. Then for a given ε

‖Xt − Yt‖TV ≤ e−αtdmax ≤ ε

is satisfied if
t ≥ − ln ε+ ln dmax

α

So, in particular, τmix = O(α−1 log dmax).

One of the most usual metrics considered for couplings on graph colorings is the Hamming
distance, which counts the number of vertices in the graph whose color differ in the two
colorings. More precisely the Hamming distance between colorings X and Y is defined as

d(X,Y ) = |{v ∈ V : X(v) 6= Y (v)}|

We can now state the first result concerning mixing time for the Glauber dynamics.

Theorem 4.2 The Glauber dynamics is rapidly mixing, with mixing time O(n logn),
provided k > 4∆.

Proof. Let (Xt) and (Yt) be two Glauber dynamics in Ω. We will consider the identity
coupling for these chains: we choose the same vertex w and color c in both chains. Now,
let Dt = {v : Xt(v) 6= Yt(v)} be the set of disagreeing vertices at time t and dt = |Dt|, the
Hamming distance between Xt, Yt. Then, applying Markov inequality:

P[Xt 6= Yt] = P[dt ≥ 1|X0, Y0] ≤ E[dt|X0, Y0]

so it is enough to bound this last expectation.
Suppose we are given Xt and Yt that determine Dt, and we want to find the expectation

of dt+1 conditioning to dt
There are 3 cases, which we will denote by good move, bad move or neutral move de-

pending on whether the value of dt+1 is smaller, greater or equal to the value of dt.
- Good move (dt+1 < dt): In this case, Dt+1 = Dt \ {w}. So w ∈ Dt and color c does not

appear in the neighbourhood of w in Xt and Yt. There are at least (k − 2∆)dt choices for
the pair (c, w).

- Bad move (dt+1 > dt): In this case, w is recolored in just one chain. Hence w does not
belong to Dt but has a neighbour u ∈ Dt such that the color chosen c is either Xt(u) or
Yt(u). Such choices lead to Dt+1 = Dt ∪ {w}, and there are at most 2∆dt.

- Neutral move (dt+1 = dt): All the other moves keep Dt+1 = Dt.

As every move happens with probability 1
kn we obtain

E[dt+1|dt] ≤ dt + 1
kn

(−(k − 2∆)dt + 2∆dt) ≤
(

1− 1
kn

)
dt

where in the last inequality we have used the hypothesis that k > 4∆.
The coupling is (1 − 1

kn)-contracting, so applying Theorem 4.1 we get that τmix =
O(n logn)
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4.1 Path coupling

In some state spaces it may be difficult to bound the distance between a pair of arbitrary
states. The path coupling lemma claims that it suffices to define the coupling for a small
subset of initial pairs in Ω2. This subset will be specified by a pre-metric.

Definition 4.2 A pre-metric on Ω is a pair (Γ, ω) where Γ is a connected, undirected
graph with vertex set Ω, and ω is a positive real-valued function that assigns weights to
edges ση of Γ such that for every edge στ , ω(στ) is the minimum weight among all paths
between σ and τ . We will refer to adjacent vertices in Γ as neighboring pairs.

From this pre-metric, we can define a metric for the whole space Ω. For any σ, η ∈ Ω,
let Pσ,η be the set of simple paths φ = (φ0, ..., φs) where φ0 = σ and φs = η. The metric d
induced by the pre-metric is defined as d(σ, τ) := minφ∈Pσ,η

∑s
i=1 ω(φi−1φi), the minimum

weighted path between states σ and τ .

Lemma 4.3 (Path coupling) Let (Γ, ω) be a pre-metric in Ω, and let d be the metric
induced. If a coupling defined in the edges of Γ (1−α)-contracts for some α > 0, then there
exists a coupling in Ω satisfying

τmix = O(α−1 log(dmax))

Proof. We construct a coupling that (1−α)-contracts for all Ω2 and apply Theorem 4.1. We
construct the coupling for an arbitrary pair of states Xt, Yt by composing couplings along
a shortest path between Xt and Yt in Γ. Let Z0

t = Xt, Z
1
t , ..., Z

j
t = Yt be a shortest path

between Xt, Yt. By hypothesis:

E(d(Zit+1, Z
i+1
t+1)|Zit , Zi+1

t ) ≤ (1− α)d(Zit , Zi+1
t )

We obtain that:

E(d(Xt+1, Yt+1)|Xt, Yt) ≤
∑

1≤i<j
E(d(Zit+1, Z

i+1
t+1)|Zit , Zi+1

t )

≤ (1− α)
∑

1≤i<j
d(Zit , Zi+1

t ) = (1− α)d(Xt, Yt)

The result now follows from Theorem 4.1.

The strength of the path coupling method is that it requires only comparisons between
adjacent states, rather than arbitrary states, and this results in much simpler analyses and
better bounds.

4.2 Glauber dynamics (II)

Path coupling can be applied to Glauber dynamics and it yields to a stronger result than
the one obtained in section 3.2.

Theorem 4.4 The Glauber dynamics is rapidly mixing, with mixing time O(n logn),
provided k > 3∆.
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Proof. Recall the setting of the Glauber dynamics. Let Ω = [k]V the set of all k-colorings
of graph G and d the Hamming distance.

Let Γ be the graph with vertex set Ω and adjacencies given by

E(Γ) = {X,Y ∈ Ω× Ω : d(X,Y ) = 1}

i.e, pairs of colorings that differ in a single vertex. As Ω = [k]V , the length of the shortest
path between any two states X and Y is d(X,Y ). So in particular, the Hamming distance
is the distance induced by the pre-metric (Γ, 1).

We apply the Path coupling lemma (Lemma 4.3) for Γ and d.
Let Xt, Yt ∈ Γ be neighboring coloring pairs (XtYt ∈ E(Γ)), such that Xt(v) 6= Yt(v).

In order to apply path coupling we consider the identity coupling; both chains attempt to
update the same vertex w to the same color c.

Only updates with w ∈ N(v) and c ∈ {Xt(v), Yt(v)} will succeed or fail in exactly one
chain. So these are the only attempts that might increase the distance by 1. There are at
most 2∆ cases in which the distance might increase.

On the other hand, the only updates that decrease the distance are successful recolorings
of v. Since the colorings are equal for all vertices different from v, Xt(N(v)) = Yt(N(v)). So
there are at most ∆ colors in the neighborhood of v, and there are at least k −∆ available
colors for v.

As each update occurs with probability 1/kn, we get

E(d(Xt+1, Yt+1)|Xt, Yt) ≤ d(Xt, Yt) + 1
kn

(2∆− (k −∆)) ≤ 1− 1
kn

for k > 3∆. Applying the path coupling lemma for α = 1
kn , the theorem follows.

Moreover, modifying the coupling considered, the result can be improved and we obtain
the following theorem:

Theorem 4.5 The Glauber dynamics is rapidly mixing, with mixing time O(n logn),
provided k > 2∆.

Proof. The graph Γ and distance d remain the same as in the previous proof. We simply
modify the coupling slightly.

Let Xt and Yt differing at vertex v. If Xt attempts to recolor w ∈ N(v) to Xt(v) then Yt
attempts to recolor w to Yt(v). Similarly, if Xt attempts to recolor w ∈ N(v) to Yt(v) then
Yt attempts to recolor w to Xt(v). In all other cases, use the identity coupling.

In the first case, the update fails in both chains. There is no recoloring so the distance
does not change. And in the second, the distance is increased by 1. So, with this coupling
there are at most ∆ recolorings that might increase the distance, attempting to recolor w
in Xt to Yt(v) and to Xt(v) in Yt.

We now have

E(d(Xt+1, Yt+1)|Xt, Yt) ≤ 1 + 1
kn

(∆− (k −∆)) ≤ 1− 1
kn

for k > 2∆.
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Chapter 5

Flip dynamics: First results

In the previous chapters we have studied MCMC with one particular Markov chain, the
Glauber dynamics. The chain chooses a vertex at random and tries to recolor it with a
random color not appearing in the neighborhood. As seen in Theorem 4.5, Jerrum [13]
devised a coupling for this chain that is rapidly mixing for k > 2∆.

Vigoda, in his paper [23], presents another Markov chain which has weaker conditions
that ensure rapid mixing. This new Markov chain is known as Flip dynamics and it is a
variant of the Wang–Swendsen–Kotecký (WSK) algorithm, presented in [24]. In this case,
the transitions are given by flips of 2-colored clusters and the bottleneck that appeared
in Jerrum’s approach, the one in which v has ∆ neighbours, can be now avoided. More
precisely, when a neighbour of v is recoloured in a chain in a way that would have increased
the distance, we can couple it with a flip of size 2 on the other chain in such a way that
the distance remains equal. But now, flips of larger clusters must also be described. In this
chapter, we describe the Flip dynamics as well as the coupling that gives a lower bound on
k for rapid mixing. In particular, the result obtained is that the flip dynamics is rapidly
mixing for k > 11

6 ∆.

5.1 Definition of the chain: Flip dynamics

Recall that G = (V,E) and the state space Ω is the set of k-colorings of G including
non-proper ones.

Before specifying the transitions, let us define the concept of alternating path. For a
coloring σ, a path v = x0, x1, ..., xt = w is an alternating path between vertices v and w
using colors c and σ(v) if (xi, xi+1) ∈ E, σ(xi) ∈ {c, σ(v)} and σ(xi) 6= σ(xi+1) for all
i ∈ [0, t− 1]. Then, the Kempe component Sσ(v, c) is the following cluster of vertices

Sσ(v, c) := {w ∈ V : there exists an alternating path between v and w using colors σ(v), c}

Note that for every vertex v the flip of cluster Sσ(v, σ(v)) does not change σ. For con-
venience, redefine Sσ(v, σ(v)) = ∅ for any v ∈ V . Moreover for every vertex y ∈ Sσ(v, c),
Sσ(v, c) = Sσ(y, c) if σ(v) = σ(y) and Sσ(v, c) = Sσ(y, σ(v)) otherwise. So every Kempe
component S can be relabelled in |S| ways.
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Flip dynamics: First results

In each transition, the Flip dynamics exchanges the colors in a Kempe component. One
convenience of this definition is that flipping a Kempe component in a proper coloring yields
to another proper coloring. More precisely, given weights {pi}i≥0, the transitions are defined
as follows:

- Choose v and c uniformly at random in V and [k].
- Let α = |Sσ(v, c)|. With probability p = pα

α , flip cluster Sσ(v, c) by interchanging colors
c and σ(v) in the cluster.

For every y ∈ Sσ(v, c) there is an equivalent cluster indexed by y. Hence each cluster can
be chosen in α different ways, so the probability that a cluster is flipped is actually pα. If
Sσ is the set of all Kempe components in σ, the transitions can be restated as follows:

- Choose a Kempe component S ∈ Sσ each one with probability 1/nk.
- Let α = |S| and flip S with probability pα.
The values of the pi’s will be specified later.

5.1.1 Properties of the chain; stationary distribution

The flip dynamics embeds the transitions of the Glauber dynamics if p1 > 0. Hence the
chain is aperiodic and irreducible on the space of colorings for k > ∆ + 2. Moreover, as in
the Glauber dynamics, the flip dynamics satisfies that every improper coloring has a positive
probability to reach a proper one, but a proper coloring can not move to an improper one.
Hence, the support of the stationary distribution is again the set of proper k-colorings of G.
Using that the chain is symmetric in the set of proper colorings and theorems 2.1, 2.2; the
steady state distribution is uniform on the set of proper colorings of G.

5.2 Coupling of the flip dynamics

Now that it is clear that the chain converges to the uniform distribution, we would like
to prove that it converges in time O(n logn) provided k large enough. The first step will
be to define a contractive coupling for every pair of neighbouring states in order to use the
Path coupling lemma with the Hamming distance.

Let G be a graph and (σ, τ) a neighbouring coloring pair of G differing in vertex v.
Then consider when clusters Sσ(x, c), Sτ (x, c) might be different in the sense that Sσ(x, c) 6=
Sτ (x, c) or Sσ(x, c) = Sτ (x, c) but there is a vertex y in this set such that σ(y) 6= τ(y).

As v is the only vertex in which the colorings differ, the clusters must involve v. So
v ∈ Sσ(x, c) and/or v ∈ Sτ (x, c). For that reason, the set of clusters D that might be
different in the two chains are Sσ(v, c), Sτ (v, c) for any color c and Sσ(w, τ(v)), Sτ (w, σ(v))
for w a neighbour of vertex v.

For S /∈ D, S is shared in σ and τ so the flip of S in both colorings does not change the
distance between them. It is enough to use the identity coupling for moves that flip clusters
not in D.

In order to couple the flips of components in D, we decompose D in sets Dc where Dc

is the set of Kempe components consisting of Sσ(v, c), Sτ (v, c) and Sσ(w, τ(v)), Sτ (w, σ(v))
for w any neighbour of vertex v colored c (basically Dc are the elements in D that involve
color c).
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Flip dynamics: First results

For any σ ∈ Ω and S ∈ D, let σS be the coloring obtained from σ after flipping Kempe
component S. The expected variation in the Hamming distance satisfies:

E[∇dH ] = E[∇dH |S /∈ D]P [S /∈ D] +
∑
c

E[∇dH |S ∈ Dc]P [S ∈ Dc] =

= 1
nk

∑
c

∑
S∈Dc

[dH(σS , τS)− dH(σ, τ)]
(2)

where we have used that sets S /∈ D do not modify the Hamming distance, that each
Kempe component is selected with equal probability 1

nk and that ∇dH is determined when
the Kempe component flipped is given.

Let Uc be the set of neighbours of v that are colored c, and let δc = |Uc|. We will denote
the elements of Uc by {uc1, ..., ucδc}, or simply by {u1, ..., uδc} when color c is clear from the
context. More precisely

Dc = {Sσ(v, c), Sτ (v, c), {Sσ(w, τ(v)), Sτ (w, σ(v))}w∈Uc}

Sets in Dc are disjoint except possibly Dσ(v) and Dτ(v).
Moreover if c /∈ {σ(v), τ(v)}:

Sσ(v, c) =
( δc⋃
i=1

Sτ (uci , σ(v))
)
∪ {v} Sτ (v, c) =

( δc⋃
i=1

Sσ(uci , τ(v))
)
∪ {v} (3)

For c = σ(v), we have Sσ(v, c) = Sτ (u, σ(v)) = ∅ for all u ∈ Uc. Similarly for c = τ(v),
Sτ (v, c) = Sτ (u, σ(v)) = ∅ for u ∈ Uc.

Observation 5.1 One remark that has to be done is that v can have some neighbours
u′1, ..., u

′
m ∈ N(v) colored c that belong to the same Kempe component Sτ (u′1, σ(v)) = ... =

Sτ (u′m, σ(v)). In order to consider the flip with the right probability, redefine Sτ (u′i, σ(v)) =
∅ for 1 < i ≤ m. Do the same modifications for Sσ(u′i, τ(v)).

For c such that δc > 0, let us define Ac := |Sσ(v, c)|, Bc := |Sτ (v, c)|, aci := |Sτ (ui, σ(v))|
and bci := |Sσ(ui, τ(v))|. Also, define the vectors ac := (aci : i ∈ [δc]) and bc := (bci : i ∈ [δc]).
We say that (σ, τ) has configuration (Ac, Bc; ac,bc). Also define acmax := maxi aci and icmax
a maximizing argument. Analogously, define bcmax = maxj bcj and jcmax a maximizing argu-
ment. If the color is known by context, we will just refer to A,B, ai, bj ,a,b, amax, imax, bmax
and jmax. In particular, the following inequalities are satisfied:

A ≤ 1 +
∑
i

ai, B ≤ 1 +
∑
i

bi (4)

with equality if c 6= σ(v), τ(v).

Flips of clusters in the set Dc for σ will be coupled with flips of clusters in the same
set Dc for τ . The idea is to couple the big flips, Sσ(v, c) and Sτ (v, c), with the largest
of the other flips Sτ (ui, σ(v)), Sσ(uj , τ(v)). And then, couple the remaining weights of
Sτ (ui, σ(v)) and Sσ(ui, τ(v)) as much as possible. Notice that Sτ (ui, σ(v)) ⊂ Sσ(v, c) and
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Flip dynamics: First results

Sσ(uj , τ(v)) ⊂ Sτ (v, c). In particular, this coupling flips the maximum number of equal
elements together, so that the Hamming distance increases as little as possible. It can be
understood as a greedy coupling.

More precisely the coupling is defined as follows:

1. Flip Sσ(v, c) and Sτ (uimax , σ(v)) together with probability pA

2. Flip Sτ (v, c) and Sσ(ujmax , τ(v)) together with probability pB

3. For all i ∈ [δc] let qi = pai − pA · 1i=imax and q′i = pbi − pB · 1i=jmax .

(a) Flip Sτ (ui, σ(v)) and Sσ(ui, τ(v)) together with probability min(qi, q′i)
(b) Flip Sτ (ui, σ(v)) with probability qi −min(qi, q′i)
(c) Flip Sσ(ui, τ(v)) with probability q′i −min(qi, q′i)

Proposition 5.2 The above dynamics is a coupling.

Proof. Notice that each Kempe component S is flipped with probability p|S|. So, the
marginal distributions are equal to the distribution defined by the flip dynamics.

Moreover if Xt = Yt for some t, then the flip corresponds to the identity coupling and
hence Xt+1 = Yt+1.

The definition of coupling holds.

Given a configuration (A,B; a, b), define H(A,B; a,b) := (A−amax−1)pA+(B−bmax−
1)pB +

∑
i(ai · qi + bi · q′i −min(qi, q′i)). The previous coupling gives us the following bound:

Proposition 5.3

E[∇dH ] ≤ 1
nk

(
− |{c : δc = 0}|+

∑
c: δc>0

H(Ac, Bc,ac,bc)
)

(5)

Proof. From equation (2) we need to bound E[∇dH |S ∈ Dc]. Let us analyze the variation
of the Hamming distance for each coupled move in Dc. Let c fixed and (A,B; a,b) the
configuration in a neighboring coloring pair (σ, τ) before the flip.

First, consider the case in which δc = 0. Here, Dc = {Sσ(v, c), Sτ (v, c)} and Sσ(v, c) =
Sτ (v, c) = {v}. The coupling in this situation corresponds to the identity coupling and
yields to colorings σ′, τ ′ with σ′(v) = τ ′(v) = c. So, in this case, ∇dH = −1.

Now let us analyse the case in which δc > 0 and c 6= σ(v), τ(v).
Move 1) increases dH by at most (A− amax − 1) because the colorings are still identical

in the set of vertices that corresponded to Sτ (uimax , σ(v)) before the flip and we substract
1 due to the fact that vertex v was already colored different before the flip. Equivalently
move 2) increases the Hamming distance by at most (B − bmax − 1).

For move 3a) the Hamming distance increases by ai + bi − 1, the sum of sizes of both
components minus 1 for ui which is the vertex that have in common.

Moves 3b) and 3c) increase the distance by ai and bi respectively.
Taking into account the probabilities for which every flip is made, we get:
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E[∇dH |S ∈ Dc, c 6= σ(v), τ(v)] ≤ (A− amax − 1) · pA + (B − bmax − 1) · pB

+
∑
i

(
(ai + bi − 1) ·min(qi, q′i) + ai · [qi −min(qi, q′i)]+

bi · [q′i −min(qi, q′i)]
)

= H(A,B,a,b)

(6)
Lastly, we refer to [3] for the case c = σ(v), τ(v). Using technical details it can be seen that
the above inequality

E[∇dH |S ∈ Dc, c ∈ {σ(v), τ(v)}] ≤ H(A,B,a,b) (7)

also holds.
So, considering all possible values of c we get that:

E[∇dH ] ≤ 1
nk

(
− |{c : δc = 0}|+

∑
c: δc>0

H(Ac, Bc,ac,bc)
)

5.3 Linear programming and choice of flip weights

In order to apply path coupling lemma, and so to prove rapid mixing of the flip dynamics,
we need the coupling to be contractive. Hence the aim is to find weights that make the
expected variation in distance negative.

This variation will depend on the configurations that have the graph with both colorings
and the number of moves that can increase and decrease the Hamming distance.

Definition 5.1 A configuration (A,B; a,b) is realizable if there exists a graph G, a neigh-
boring coloring pair (σ, τ) defined in G and a color c such that (A,B; a,b) = (Ac, Bc; ac,bc).

Namely, a configuration is realizable if some neighboring coloring pair (σ, τ) has it. In
particular a configuration is realizable if and only if it satisfies the inequality (4). We will
refer to δc as the size of the realizable configuration.

An example of a realizable configuration is shown in Figure 5.1.
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σ(v)
τ(v)

c

σ(v)

c

σ(v)

c

σ(v)

u1

v

u2

Figure 5.1: Configuration (7, 3; (4, 2), (1, 1)), which is a realizable configuration. Here we
represent both colorings σ, τ , which only differ in v.

Observation 5.4 Values of (A,B; a,b) do not identify uniquely the subgraph associated
to those vertices. In particular, one configuration (A,B; a,b) admits many representations
in the graph. Figure 5.2 gives an example of colorings in two different subgraphs that
correspond to the same configuration, in this case configuration (4, 2; (3), (1)).

σ(v)
τ(v)

c

σ(v) σ(v)

u1

v

σ(v)
τ(v)

c

σ(v)

c

u1

v

Figure 5.2: Two representations of the configuration (4, 2; (3), (1))

Proposition 5.5 Suppose that there exists λ > 0 such that H(A,B; a,b) ≤ −1 +λm for
all realizable configurations (A,B; a,b), where m is the size of the configuration. Then the
coupling is contractive for k > λ∆.

Proof. From Proposition 5.3 we have that

E[∇dH ] = 1
nk

(
− |{c : δc = 0}|+

∑
c: δc>0

H(Ac, Bc,ac,bc)
)
≤ 1
nk

(
− |{c : δc = 0}|+

∑
c: δc>0

(−1 + λδc)
)

= 1
nk

(
− k + λ

∑
c: δc>0

δc

)
≤ 1
nk

(
− k + λ∆

)
< 0
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where in the last inequality we have used the hypothesis that k > λ∆.
More precisely, if ({Xt}, {Yt}) is a coupling of the flip dynamics and (Xt, Yt) is a neigh-

boring coloring pair, we have:

E[dH(Xt+1, Yt+1)] ≤ dH(Xt, Yt) + 1
nk

(
− k + λ∆

)
≤ 1− c

nk
,

for some c > 0.

So, our goal will be to find weights pi such that H(A,B,a,b) ≤ −1+λm for all realizable
configurations (A,B; a,b). The path coupling lemma then gives us that the mixing time is
O(n logn).

In particular, we want to find the minimum λ such that the previous inequalities hold.
We obtain the following linear programming problem.

minimize
λ, {pi}i∈N

λ

subject to H(A,B; a,b) ≤ −1 + λm, for all realizable (A,B;a,b) of size m,
p0 = 0 ≤ pi ≤ pi−1 ≤ p1 = 1, for all i ≥ 2

(8)

There are some issues that must be considered in this linear program. The first one is
that there are infinitely many variables. The second one is that there is an infinite number
of constraints. And the third is that it might be difficult to enumerate all possible realizable
configurations.

Vigoda handles the first problem by restricting to flips of components of size at most
7. Or equivalently by imposing pα = 0 for α ≥ 7. We can argue this in terms of two
inequalities that give us this value for p7. Consider the configurations (3, 2; (1), (1)) and
(7, 3; (3, 3), (1, 1)). For these configurations, inequality H(A,B; a,b) ≤ −1 + λm in (8)
corresponds to:

p1 + p2 − 2p3 −min(p1 − p2, p2 − p3) ≤ −1 + λ
2p1 + 5p3 −min(p1 − p3, p3 − p7) ≤ −1 + 2λ (9)

These inequalities already give us that λ ≥ 11
6 , with equality only possible if p7 = 0. The

linear program will give us this value λ = 11/6 and we will claim that no other coupling
could give a better bound.

The second issue can be solved by the following 2 observations:

Lemma 5.6 H(A,B; a,b) ≤ (A − 2amax)pA + (B − 2bmax)pB +
∑
i(aipai + bipbi −

min(pai , pbi))

Proof. Let g(wi) = aipai + bipbi − min{pai , pbi} and f(wi) = (ai · qi + bi · q′i − min(qi, q′i))
Then:

• If i 6= imax, jmax then f(wi) = g(wi).
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• If i = imax = jmax then f(wi) = ai(pai−pA) + bi(pbi−pB)−min{pai−pA, pbi−pB} ≤
aipai + bipbi −min{pai , pbi}− pA(ai− 1)− pB(bi− 1) = g(wi)− pA(ai− 1)− pB(bi− 1)

• If i = imax 6= jmax then f(wi) = ai(pai − pA) + bipbi − min{pai − pA, pbi} ≤ aipai +
bipbi −min{pai , pbi} − pA(ai − 1) = g(wi)− pA(ai − 1).
Analogously if i = jmax 6= imax then f(wi) ≤ g(wi)− pB(bi − 1)

So adding for all i we have that∑
i

f(wi) ≤ pA + pB − pAamax − pBbmax +
∑
i

g(wi)

And for H(A,B; a,b) we get

H(A,B; a,b) = (A− amax − 1)pA + (B − bmax − 1)pB +
∑
i

f(wi) ≤ (A− 2amax)pA

+ (B − 2bmax)pB +
∑
i

g(wi)

Lemma 5.7 Consider for all i the additional constraints ipi ≤ 1, (i − 1)pi ≤ 1
3 and

(i− 2)pi ≤ 2/9.
Let (A,B; a,b) be a realizable configuration of size m greater or equal than 3.
If {pi}i∈N satisfy the additional constraints, then for λ ≥ 49

27 (and in particular for λ ≥ 11
6 ):

H(A,B; a,b) ≤ −1 + λm.

Proof. Consider the bound given for H(A,B; a,b) in the previous lemma. Hypothesis give
that (A− 2amax)pA, (B − 2bmax)pB ≤ 2/9 and without loss of generality assume ai ≥ bi for
all i, and so pai ≤ pbi . Then, by lemma 5.6:

H(A,B; a,b) ≤ 4
9 +

∑
i

((ai − 1)pai + bipbi)

Using that ipi ≤ 1 and that (i− 1)pi ≤ 1
3 , we have:

H(A,B; a,b) ≤ 4
9 +m

(1
3 + 1

)
≤ −1 + 49

27m ≤ −1 + λm for m > 2.

In particular any configuration that satisfies m ≥ 3, satisfies the contractive condition for
k > 11

6 ∆ given that the weights satisfy the additional properties.

This already makes the linear program finite in the number of variables and constraints.
Finally, we can enumerate all possible realizable configurations as follows. For c 6=

σ(v), τ(v) we can enumerate them by considering all possible (A,B; a,b) such that A =
1 +

∑
i ai and B = 1 +

∑
i bi and the size of A and B are less than 7 (see condition (4)).

For c = σ(v), τ(v), we refer to [3] and it is enough to include constraints:
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• ipi ≤ 1 ∀i,

• (B − b2)pB + b1pb1 ≤ −1 + 2λ for B = b1 + b2, 1 ≤ b1 ≤ b2 ≤ 6, B ≤ 6.

This linear program, which we will denote by linear program 1 or LP1, is now finite and
can be described as follows:

minimize
λ,{pi}i∈{0,1,...,7}

λ

subject to H(A,B; a,b) ≤ −1 + λm, ∀a, b ∈ {0, 7}m \ {(0, ...0)},m ∈ {1, 2}

A = 1 +
m∑
i=1

ai, B = 1 +
m∑
i=1

bi,

A,B ≤ 7, A ≥ B

(B − b2)pB + b1pb1 ≤ −1 + 2λ B = b1 + b2, 1 ≤ b1 ≤ b2 ≤ 6, B ≤ 6.

p0 = 0 ≤ pi ≤ pi−1 ≤ p1 = 1, for all i ≥ 2

p7 = 0,

ipi ≤ 1, for all i

(i− 1)pi ≤ 1
3 , for all i

(i− 2)pi ≤ 2
9 , for all i

where in the first inequality we have added A ≥ B in order to consider each configuration
up to symmetry only once.

Notice that the first constraint corresponds to realizable configurations of size strictly less
than 3 and color c 6= σ(v), τ(v).

The second one corresponds to the case c = σ(v), τ(v). And the last 3 constraints imply
inequality H(A,B; a,b) ≤ −1 + λm for realizable configurations of size m ≥ 3 and colors
c 6= σ(v), τ(v).

LP1 is solved using the Matlab code in the appendix ”Matlab code for solving LP1 and
LP2”. The feasible region of this linear program is not empty and we consider the solution
that minimizes λ.

More precisely, we obtain that the optimal λ is λ∗ = 11/6 and the values of the pi’s are:

p1 = 1, p2 = 13
42 , p3 = 1

6 , p4 = 2
21 , p5 = 1

21 , p6 = 1
84 , pα = 0 ∀α ≥ 7 (10)

which are also the values that Vigoda obtained in his paper (see [23]).
In particular and to summarize, the flip dynamics with these parameters is 1

kn -contractive
and, applying the Path coupling lemma (Lemma 4.3) we have the following result.

Theorem 5.8 The flip dynamics is rapidly mixing, with mixing time O(n logn), provided
k > 11

6 ∆.
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Flip dynamics: First results

Finally, we claim that this is the best result that can be obtained using the Hamming
distance. More precisely:

Theorem 5.9 If k < 11
6 ∆ there exists no choice of flip parameters {pα}α∈N and one-step

coupling such that it is contractive under the Hamming metric.

The proof can be found in [3]. Basically, it shows 2 counterexamples of neighbouring
coloring pairs for which any one-step coupling can’t do better.
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Chapter 6

Flip dynamics: use of an
Alternative metric

Theorem 5.9 states that it is not possible to cross the 11
6 barrier with one-step coupling

for the flip dynamics with the Hamming metric. This can be circumvented in two different
ways: Considering multi-step couplings with the same metric or considering a one step
coupling using an alternative metric. We will discuss the second approach.

The new metric considered will be based in the fact that not many configurations attain
equality in H(A,B; a,b) ≤ −1 + λm with λ = 11

6 . The ones pushing λ to be 11
6 will be

called extremal configurations.

6.1 Extremal configurations

Let p be the solution given by LP 1 described in (10). In order to define the alternative
metric, we need to distinguish those configurations that reach equality for the constraint
H(A,B; a,b) ≤ −1 + λm.

Using the code for LP1 given in the appendix ”Matlab code for solving LP1 and LP2”,
we see that there are only 6 configurations for the choice of flip parameters p that at-
tain equality H(A,B; a,b) = −1 + λm (this number is given by the variable tight ineq).
However, among those, two of them already force the objective value to be 11

6 , which
are (3, 2; (2), (1)) and (7, 3; (3, 3), (1, 1)) up to symmetries. We will focus on these con-
figurations and we will refer to them as the extremal configurations. In particular let
Π = {(3, 2; (2), (1)), (2, 3; (1), (2)), (7, 3; (3, 3), (1, 1)), (3, 7; (1, 1), (3, 3))} be the set of ex-
tremal configurations. We also define Πi to be the set of extremal configurations of size i for
i ∈ {1, 2}, in particular Π1 = {(3, 2; (2), (1)), (2, 3; (1), (2))} and Π2 = {(7, 3; (3, 3), (1, 1)),
(3, 7; (1, 1), (3, 3))}.

Recall that we are considering (σ, τ) a neighbouring colouring pair, so (σ, τ) only differ in
one vertex v. In particular, (3, 2; (2), (1)) corresponds to the configuration of size 1 in which
the Kempe component in σ, Sσ(v, c) has size 3 and the Kempe component Sτ (v, c) has size
2. Moreover, let u be the neighbour of v colored c. Values (2), (1) indicate that there is
one neighbour of u (different than v) colored σ(v) and none colored τ(v). Equivalently, the
configuration (7, 3; (3, 3), (1, 1)) is the one that has |Sσ(v, c)| = 7 and |Sτ (v, c)| = 3. The
extremal configurations are represented in Figure 6.1.
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σ(v)
τ(v)

c

σ(v)

σ(v)
τ(v)

c

σ(v) σ(v)

c

σ(v) σ(v)

σ(v)
τ(v)

c

σ(v)

c

c

σ(v) σ(v)

σ(v)
τ(v)

c

σ(v)

c

c

σ(v)

c

Figure 6.1: These are the extremal configurations (up to symmetry) that push λ to
be 11/6. Although there is only one extremal configuration up to symmetry of size 2,
(7, 3; (3, 3), (1, 1)), it can arise from 3 different subgraphs.

The constraints that correspond to these 2 extremal configurations are given in the system
of equations (9) and the objective value for these 2 constraints is minimized to 11/6 only if
p3 = 1/6 and p7 = 0. Fixing these values for p3 and p7, we study the new objective value
for the rest of realizable configurations. In particular, we define LP2 a new linear program
as follows:

minimize
λ,{pi}i∈{0,1,...,7}

λ

subject to H(A,B; a,b) ≤ −1 + λm, ∀a, b ∈ {0, 7}m \ {(0, ...0)},m ∈ {1, 2}

A = 1 +
m∑
i=1

ai, B = 1 +
m∑
i=1

bi

A,B ≤ 7, A ≥ B

(A,B;a,b) 6= (3,2;(2),(1)),

(A,B;a,b) 6= (7,3;(3,3),(1,1))

(B − b2)pB + b1pb1 ≤ −1 + 2λ B = b1 + b2, 0 ≤ b1 ≤ b2 ≤ 6, b2 > 0.

p0 = 0 ≤ pi ≤ pi−1 ≤ p1 = 1, for all i ≥ 2

p7 = 0 p3=1/6,

ipi ≤ 1, for all i

(i− 1)pi ≤ 1
3 , for all i

(i− 2)pi ≤ 2
9 , for all i
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Flip dynamics: use of an Alternative metric

Notice that this is the problem obtained from LP1 erasing the constraints for the 2
extremal configurations and adding constraint p3 = 1/6. The differences between LP1 and
LP2 are written in blue.

Observation 6.1 LP2 is solved in the appendix ”Matlab code for solving LP1 and LP2”
and the optimal solution is λ = 161/88 for the flip parameters:

p1 = 1; p2 = 185/616; p3 = 1/6; p4 = 47/462; p5 = 9/154; p6 = 2/77; p7 = 0;

Moreover the constraints in LP1 that are not contained in LP2 are implied by p3 = 1/6
and p7 = 0. Hence the assignment p = {pα}α∈N0 given by Observation 6.1 for α ∈ [6] and
p0 = 0 is a feasible solution of LP1 with the same objective value 11/6.

All together gives the following proposition.

Proposition 6.2 Given (A,B; a,b) a realizable configuration of size m,

H(A,B; a,b) ≤
{
−1 + 11

6 ·m, if (A,B; a,b) is a extremal configuration for p,
−1 + 161

88 ·m, otherwise.

given the parameters

p1 = 1; p2 = 185/616; p3 = 1/6; p4 = 47/462; p5 = 9/154; p6 = 2/77; p7 = 0.

This proposition tells us that the term 11/6 is only tight for a few configurations. And
this will be the key point for defining an alternative metric.

6.2 Definition of the alternative metric

The aim is to construct a contractive coupling for k > (11/6−ε0)∆ using a metric different
than the Hamming one.

The metric for Ω will be defined from a pre-metric (Γ, ω). Let Γ be the graph having Ω
as vertex set and adjacencies between colorings that differ in a single vertex.

For σ, τ a neighbouring coloring pair, we define:

C1
σ,τ (v) = {c ∈ [k] : (Ac, Bc; ac,bc) is an extremal configuration for (σ, τ) of size 1}

C2
σ,τ (v) = {c ∈ [k] : (Ac, Bc; ac,bc) is an extremal configuration for (σ, τ) of size 2}

and let Cσ,τ (v) = C1
σ,τ (v) ∪ C2

σ,τ (v).
Notice that C1

σ,τ (v), C2
σ,τ (v) are the sets of colors that appear in extremal configurations

of size 1 or 2 respectively and that for each color in C2
σ,τ (v) there are 2 neighbours of v that

participate in a extremal configuration.
We also define γ1

σ,τ (v) := |C1
σ,τ (v)|/∆ and γ2

σ,τ (v) := 2|C2
σ,τ (v)|/∆ which are the number

of neighbours of v that appear in 1-extremal configurations and 2-extremal configurations
respectively normalised by a factor ∆. And let γσ,τ (v) := γ1

σ,τ (v) + γ2
σ,τ (v), which is the

number of neighbours of v that appear in some extremal configuration normalised by a
factor ∆. In particular γσ,τ (v) ≤ 1.
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Flip dynamics: use of an Alternative metric

Let η1, η2 ∈ (0, 1
4), that will be defined later. We define the weight function as follows:

ω(σ, τ) := 1− η1(1− γ1
σ,τ (v))− η2(1− γ2

σ,τ (v)))

Notice that ω(σ, τ) ∈ [1 − η1 − η2, 1 − min(η1, η2)], in particular smaller than 1. As
η1, η2 < 1

4 , every edge has weight greater than 1
2 , so every edge is a minimum weighted

path. Hence (Γ, ω) is a pre-metric.
Basically, this new pre-metric takes into account the proportion of extremal configurations

in each state. As the 11/6 bottleneck is due to them, the new pre-metric puts more weight
in neighbouring coloring pairs that have those extremal configurations.

Now, let d be the metric induced by (Γ, ω). The weight function w satisfies that w(σ, τ) ≤
1 for (σ, τ) ∈ Γ and using minimum weighted paths, d(σ̃, τ̃) ≤ dH(σ̃, τ̃) for any (σ̃, τ̃) ∈ Ω2.
So we can define

dB(σ̃, τ̃) := dH(σ̃, τ̃)− d(σ̃, τ̃) (11)

Although dB might not be a metric, we will use the fact that it is non-negative.
As done with the Hamming metric, we have to study the expected variation in distance

d in one step of the greedy coupling. This analysis is done in the next chapter.
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Chapter 7

Analysis of the Alternative metric:
Expected variation distance

In this chapter we want to study under which conditions the coupling is contractive
using the alternative metric. Our goal will be to prove contractness for colorings satisfying
k > (11/6 − ε0)∆, a weaker condition that the one obtained for the 1-step coupling using
the Hamming distance. The coupling is defined in section 5.2 and we take the assignment
of flip parameters given in Observation 6.1. As rapid mixing of the flip dynamics is already
known for k > 11/6∆, we will focus on k ≤ 11/6∆. Moreover, due to LP2, we know that
k ≥ 161/88∆. Hence, we will consider that k ∈ [161

88 ∆, 11
6 ∆].

We begin with some definitions. For any neighbouring coloring pair (σ, τ) and a step of
the greedy coupling (σ, τ) −→ (σ′, τ ′) we define:

∇(σ, τ) := nkE[d(σ′, τ ′)− d(σ, τ)] (12)

Due to (11) and linearity of expectation, ∇(σ, τ) can be decomposed into the sum of two
terms ∇(σ, τ) = ∇H(σ, τ) +∇B(σ, τ) defined as:

∇H(σ, τ) := nkE[dH(σ′, τ ′)− 1] (13)
∇B(σ, τ) := −nkE[dB(σ′, τ ′)− dB(σ, τ)] (14)

In order to bound ∇(σ, τ) we will bound the terms ∇H and ∇B separately.
First we bound the contribution of ∇H(σ, τ), the Hamming part.

Proposition 7.1 Let δ = 11
6 −

161
88 . For any (σ, τ) neighbouring coloring pair we have

∇H(σ, τ) ≤
(11

6 − δ(1− γσ,τ )
)

∆− k

Proof.

∇H(σ, τ) =nk · E(dH(σ′, τ ′)− 1) ≤
(
− |{c : δc = 0}|+

∑
c: δc>0

H(Ac, Bc,ac,bc)
)

where we have used Proposition 5.3. Now, due to Proposition 6.2 we get
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Alternative metric: Expected variation distance

∇H(σ, τ) ≤11
6 ·∆ · γσ,τ + 161

88 ∆(1− γσ,τ )− k =
(11

6 − δ(1− γσ,τ )
)

∆− k (15)

Once the contribution of ∇H is bounded, we proceed to bound ∇B in the next section.

7.1 Study of ∇B

First recall that Dc is the set of Kempe components that involve color c and vertex v.
Now we define the event Xc = {S ∈ Dc} as the event that the Kempe component flipped
S belongs to Dc. This event is well defined as in the greedy coupling S ∈ Dc in one chain
if it also does in the other. And let X be the complementary event of the union of Xc;
X =

⋃
c∈[k]Xc. In particular X is the event that the component flipped does not involve v.

In order to bound ∇B we split its analysis conditioning on the events Xc and X. We define

∇B(σ, τ, c) := −nkE[1Xc · (dB(σ′, τ ′)− dB(σ, τ))] (16)
∇B(σ, τ) := −nkE[1X · (dB(σ′, τ ′)− dB(σ, τ))] (17)

With these definitions∇B(σ, τ) can be bounded as follows∇B(σ, τ) = ∇B(σ, τ)+
∑
c∈[k]∇B(σ, τ, c).

Proposition 7.2 ∑
c∈[k]
∇B(σ, τ, c) = O(1)

Proof. In order to bound ∇B(σ, τ, c) we study the term dB(σ, τ)− dB(σ′, τ ′).

First, notice that either σ′ = τ ′ or σ′(v) 6= τ ′(v) by the definition of the coupling.
In the first case, dB(σ, τ)− dB(σ′, τ ′) = 0 and we are done.
In the second case, dB(σ′, τ ′) can be computed using a minimum weighted path. More

precisely, σ′ and τ ′ differ in at most 6 vertices, due to the fact that the Kempe component
flipped has size at most 6 (pj = 0 for j ≥ 7) and if S ∈ Dc then v ∈ S.

Hence there exist colorings σ′ = ζ0, ..., ζs = τ ′ with s ≤ 6 such that dH(ζi, ζi+1) = 1 and

dB(σ′, τ ′) =
s−1∑
i=0

dB(ζi, ζi+1) (18)

As σ′(v) 6= τ ′(v), there exist j such that (ζj , ζj+1) differ at vertex v and this is the only
vertex in which they differ.

Moreover, due to the fact that (σ, τ) is a neighbouring coloring pair, dH(σ, τ) = 1 and

dB(σ, τ) = dH(σ, τ)− d(σ, τ) = 1− ω(σ, τ) = η1(1− γ1
σ,τ (v)) + η2(1− γ2

σ,τ (v))

In the same way, dB(ζj , ζj+1) = η1(1− γ1
ζj ,ζj+1

(v)) + η2(1− γ2
ζj ,ζj+1

(v)).
We will now argue that the difference between these two values is O( 1

∆). Notice that for
each pair (ζi, ζi+1), at most the color of one neighbour of v is changed. Hence at most j
neighbours of v in ζj differ with respect to σ and each of the different neighbours contributes
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Alternative metric: Expected variation distance

with at most l
∆ to (γlζj ,ζj+1

(v)− γlσ,τ (v)) for l ∈ {1, 2}. This implies that substracting both
values we get:

dB(σ, τ)− dB(ζj , ζj+1) = η1(γ1
ζj ,ζj+1(v)− γ1

σ,τ (v)) + η2(γ2
ζj ,ζj+1(v)− γ2

σ,τ (v)) ≤ max{η1, η2}
2j
∆ ≤

≤ max{η1, η2}
2s
∆ ≤

3
∆

using that η1, η2 ≤ 1/4. Now, as dB is non-negative and due to equality (18):

dB(σ, τ)− dB(σ′, τ ′) ≤ dB(σ, τ)− dB(ζj , ζj+1) = O

( 1
∆

)
Taking into account that P (Xc = 1) = δc+1

nk and that k ≤ 11
6 ∆, we get

∑
c∈[k]
∇B(σ, τ, c) ≤ 3 · ∆ + k

∆ = O(1)

Now it remains to bound ∇B(σ, τ).
Let D = (Sσ ∪ Sτ ) \ D be the set of Kempe components of σ and τ that do not involve

vertex v. In particular X = {S ∈ D}.
For a coloring σ and S ∈ Sσ, let σS be the coloring obtained from σ after flipping Kempe

component S. Since dH(σ, τ) = 1, dB(σ, τ) = η1(1− γ1
σ,τ (v)) + η2(1− γ2

σ,τ (v)). Moreover as
we are considering flips in S ∈ D, the Hamming distance remains equal, so dH(σS , τS) = 1
and dB(σS , τS) = η1(1− γ1

σS ,τS
(v)) + η2(1− γ2

σS ,τS
(v)).

It follows that

∇B(σ, τ) =− nk
∑
S∈D

P (S flipped)[dB(σS , τS)− dB(σ, τ)] = −nk
∑
S∈D

p|S|
nk

[η1(γ1
σ,τ (v)− γ1

σS ,τS
(v))

+ η2(γ2
σ,τ (v)− γ2

σS ,τS
(v))] =

∑
S∈D

p|S|[η1(γ1
σS ,τS

(v)− γ1
σ,τ (v)) + η2(γ2

σS ,τS
(v)− γ2

σ,τ (v))]

(19)
For each c ∈ [k] and i ∈ {1, 2} we define:

ξ1
σ,τ (v, c, S) :=


−1, if c ∈ C1

σ,τ (v) and c /∈ C1
σS ,τS

(v)
1, if c /∈ C1

σ,τ (v) and c ∈ C1
σS ,τS

(v)
0, otherwise.

ξ2
σ,τ (v, c, S) :=


−2, if c ∈ C2

σ,τ (v) and c /∈ C2
σS ,τS

(v)
2, if c /∈ C2

σ,τ (v) and c ∈ C2
σS ,τS

(v)
0, otherwise.

and

∇B(σ, τ, c,S ′) := 1
∆
∑
S∈S′

p|S|[ξ1
σ,τ (v, c, S)η1 + ξ2

σ,τ (v, c, S)η2] (20)
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Alternative metric: Expected variation distance

Basically, ξ
i
σ,τ (v,c,S)

∆ is the contribution of color c to (γiσS ,τS (v)−γiσ,τ (v)) for i = 1, 2. With
these definitions note that

∇B(σ, τ) =
∑
c∈[k]
∇B(σ, τ, c,D)

.

Observation 7.3 As seen in Observation 5.4, values of (A,B; a,b) do not identify
uniquely the subgraph associated to those vertices. Hence the value of Ai(A,B; a,b) may
depend on this representation. We will consider the greatest value for any possible repre-
sentation of (A,B; a,b).

7.1.1 ∇B for extremal configurations

The following lemma bounds the contribution of ∇B(σ, τ, c,D) for each color c appearing
in one extremal configuration. Recall that as S ∈ D, vertex v is not included in the Kempe
component flipped and S is the same in both colorings (in this case the coupling is the
identity).

Lemma 7.4 For every neighboring coloring pair (σ, τ) and color c we have:
A) If c ∈ C1

σ,τ (v), then ∇B(σ, τ, c,D) ≤ −2η1(k−∆−2)
∆ + (−η1 + 2η2) · 1{2η2>η1}

B) If c ∈ C2
σ,τ (v), then ∇B(σ, τ, c,D) ≤ −12η2(k−∆−2)

∆ + k · η1−2η2
3∆ · 1{2η2<η1}

Proof. Recall that the extremal configurations are (3,2;(2),(1)) and (7,3;(3,3),(1,1)) up to
symmetries. Let c ∈ Ciσ,τ (v) for i ∈ {1, 2}, namely (σ, τ) has an extremal configuration for
such color. We define the following set of components:

S0 = {S ∈ D : c /∈ CσS ,τS (v)}
S1 = {S ∈ D : c ∈ C1

σS ,τS
(v)}

S2 = {S ∈ D : c ∈ C2
σS ,τS

(v)}

which are the set of Kempe components in D whose flip yields to a non-extremal configura-
tion, to a 1-extremal and to a 2-extremal configuration for color c respectively. Note that
D = S0 ∪ S1 ∪ S2.

Now if i = 1, then for every S ∈ S1 we have ξ1
σ,τ (v, c, S), ξ2

σ,τ (v, c, S) = 0 so

∇B(σ, τ, c,D) = ∇B(σ, τ, c,S0) +∇B(σ, τ, c,S2)

And when i = 2, then for every S ∈ S2 we have ξ1
σ,τ (v, c, S), ξ2

σ,τ (v, c, S) = 0 so

∇B(σ, τ, c,D) = ∇B(σ, τ, c,S0) +∇B(σ, τ, c,S1)

We will distinguish the cases i = 1 and i = 2. Let us begin with the case i = 1.
For c ∈ C1

σ,τ (v) and S ∈ S2, we have that ξ1
σ,τ (v, c, S) = −1 and ξ2

σ,τ (v, c, S) = 2. It
remains to see in how many ways we can move from a 1-extremal configuration to a 2-
extremal configuration. Let u ∈ Uc be the neighbour of v colored with c. Then in order
to obtain a 2-extremal configuration, one of the neighbours of v different than u, call it u′,
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must change its color to c. There are ∆ ways to choose such neighbour u′, and as it has to
change its color to c, the Kempe component is uniquely determined.

σ(v)
τ(v)

c

σ(v)

u

z

v

u′

Figure 7.1: In order to get a 2-extremal configuration from a 1-extremal configuration one
neighbour of v different than u must change its color to c. Ther are at most ∆ ways to
choose u′ and then the Kempe component that has to be flipped is Sσ(u′, c).

Hence, for c ∈ C1
σ,τ (v) and recalling (20) we get:

∇B(σ, τ, c,S2) ≤ (−η1 + 2η2) · 1{2η2>η1}

where we have added the indicator function due to the fact that this is only a positive
and tight contribution to the expected variation distance if 2η2 > η1.

For c ∈ C2
σ,τ (v) and S ∈ S1, we have that ξ1

σ,τ (v, c, S) = 1 and ξ2
σ,τ (v, c, S) = −2. We

now count how many sets S ∈ D can convert one 2-extremal configuration into a 1-extremal
configuration. Let Uc be the set of neighbours of v colored with c. The only way to convert
this extremal configuration into a 1-extremal configuration is changing the color of at least
one of the vertices in Uc. There are 2 choices for the vertex in Uc and less than k options
for the new color c′. Therefore, there are less than 2k Kempe components. Now we argue
that each Kempe component must have size greater or equal than 3. Suppose, without loss
of generality, that (A,B; a,b) = (7, 3; (3, 3), (1, 1)). If S = Sσ(u1, c

′), then S has to modify
Sτ (u2, σ(v)) in order to obtain 1-extremality (as |Sτ (u2, σ(v))| = 3 and in the 1-extremal
configuration has size at most 2). This implies that the Kempe component has to be larger
or equal than 2. Moreover it can not be 2 as Sτ (u1, σ(v)), Sτ (u2, σ(v)) would be equal (see
Figure 7.2) which contradicts Observation 5.1. Analogously for S = Sσ(u2, c

′).

σ(v)
τ(v)

c c

σ(v)

u1

v

u2

Figure 7.2: If |Sσ(u1, c
′)| = 2 and Sσ(u1, c

′) intersects Sτ (u2, σ(v)) then Sτ (u1, σ(v)) =
Sτ (u2, σ(v)).
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Hence each of the 2k Kempe components has size greater than 3 and we get:

∇B(σ, τ, c,S1) ≤ 2k · p3
∆ · (η1 − 2η2) · 1{2η2<η1} = 2k · η1 − 2η2

6∆ · 1{2η2<η1}

where again we impose with the indicator function that this is only considered when it is
positive.

Now we bound ∇B(σ, τ, c, S0), so our aim is to count in how many ways an extremal con-
figuration can be converted into a non-extremal configuration in a step of the flip dynamics.
Flips of components S ∈ S0 imply that for i = 1, ξ1

σ,τ (v, c, S) = −1 and ξ2
σ,τ (v, c, S) = 0

and for i = 2, ξ1
σ,τ (v, c, S) = 0, ξ2

σ,τ (v, c, S) = −2. As the contribution is negative, we will
only focus on Kempe components of size 1, and we will obtain an upper bound of the term
∇B(σ, τ, c, S0).

Consider S ∈ S0 of size 1, so p|S| = p1 = 1. Basically, S will remove an extremal
configuration if it selects a vertex w different from v of the extremal configuration and
changes its color to c′ with c′ /∈ σ(N(w)) ∪ {σ(v), τ(v), c}. So there are at least (k −∆− 2)
choices for c′ taking into account that either σ(v), τ(v) or c belong to N(w). Moreover, for
i = 1, there are 2 possible choices for vertex w while for i = 2, there are 6 choices (see
Figure 7.3).

v

v

Figure 7.3: Recall extremal configurations of size 1 and 2. There are either 2 or 6 vertices
different than v respectively, which are represented in grey. Grey vertices are the ones that
can be recolored in order to break extremality.

Hence:

• For i = 1: ∇B(σ, τ, c, S0) ≤ η1
∆ 2(k −∆− 2) · ξ1

σ,τ (v, c, S) = −2η1
∆ (k −∆− 2)

• For i = 2: ∇B(σ, τ, c, S0) ≤ η2
∆ 6(k −∆− 2) · ξ2

σ,τ (v, c, S) = −12η2
∆ (k −∆− 2)

Finally, from the bounds of ∇B(σ, τ, c, S0), ∇B(σ, τ, c, S1) and ∇B(σ, τ, c, S2) we have that
For i = 1

∇B(σ, τ, c,D) ≤ −2η1(k −∆− 2)
∆ + (−η1 + 2η2) · 1{2η2>η1}
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For i = 2

∇B(σ, τ, c,D) ≤ −12η2(k −∆− 2)
∆ + k · η1 − 2η2

3∆ · 1{2η2<η1}

7.1.2 ∇B for non-extremal configurations; case c ∈ C1
σS ,τS

(v)
Now we want to study the case in which c /∈ Cσ,τ (v) and c ∈ CσS ,τS (v), after the flip of

a Kempe component S ∈ D. Let (A,B; a,b) /∈ Π be the non-extremal configuration and
define Ri(A,B; a,b) := {S ∈ D : c ∈ CiσS ,τS (v)}, the set of Kempe components S ∈ D whose
flip yields to an i-extremal configuration from configuration (A,B; a,b) for i ∈ {1, 2}. Also
define Ai(A,B; a,b) :=

∑
S∈Ri(A,B;a,b) p|S|. Let Uc = {u1, ..., uδc} be the set of neighbours

of v colored with c and denote by USc the set of neighbours of v colored c after the flip of
the Kempe component S, more precisely USc := N(v) ∩ (σS)−1(c).

For simplicity, let us define the sets

H = {(4, 2; (3), (1)), (3, 3, (2), (2)), (5, 3; (2, 2), (1, 1), (4, 4; (2, 1), (1, 2)) up to symmetry}

and

G = {(8, 3; (4, 3), (1, 1)), (9, 3; (5, 3), (1, 1)), (10, 4; (3, 3, 3), (1, 1, 1)) up to symmetry}

First we bound A1(A,B; a,b).

Lemma 7.5 We have

A1(A,B; a,b) ≤


2k + ∆p2 if (A,B; a,b) ∈ H

4
3k otherwise

Moreover for configurations (A,B; a,b) ∈ G we have A1(A,B; a,b) ≤ 2k · p3.

Proof. Let S be a Kempe component whose flip yields to a 1-extremal configuration, so we
have that USc = {uS}, uS ∈ N(v). We study the value of A1(A,B; a,b) distinguishing the
different values of δc before flipping the component:

• δc = 0
In this case, Uc = ∅ so one neighbour of v, call it u, has to change its color to c. The
Kempe component that has to be flipped is uniquely determined by the choice of u and
color c, more precisely it is Sσ(u, c). The contribution is then A1(A,B; a,b) ≤ ∆ ≤ 4

3k.

• δc = 1
In this case Uc = {u}. We will distinguish the case where USc = Uc and the case where
USc 6= Uc. In particular, define

B1(A,B; a,b) :=
∑

S∈R1(A,B;a,b)
S:USc 6=Uc

p|S|, C1(A,B; a,b) :=
∑

S∈R1(A,B;a,b)
S:USc =Uc

p|S|
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so A1(A,B; a,b) = B1(A,B; a,b) + C1(A,B; a,b).

If USc 6= Uc and as in the previous analysis of δc = 0, there are at most ∆ Kempe
components leading to a 1-extremal configuration, but each has size at least 2, due to
the fact that it has to include vertices u and uS . The contribution is B1(A,B; a,b) ≤
∆p2.

Now, consider the case USc = Uc = {u}. For our analysis, let us define the set
N := N(uS)

⋂
[Sσ(uS , τ(v)) ∪ Sτ (uS , σ(v))], which are the neighbours of uS different

than v colored σ(v) or τ(v).

If N is empty, a neighbour of u has to flip its color to either σ(v) or τ(v). There are
at most 2∆ options for such S, so C1(A,B; a,b) ≤ 2∆.

If |N | = 1, N = {w}, there are 2 options; either w belongs to the extremal configura-
tion or it does not, which are represented in Figure 7.4. In the first case, the vertex
or vertices that have to change its color are uniquely determined. More precisely, let
z ∈ N(w) ∩ Sσ(w, c) \ {u}, which is well defined because (A,B; a,b) is non-extremal.
In order to get a 1-extremal configuration, the Kempe component flipped has to be
S = Sσ(z, c′) for c′ ∈ [k], so there are at most k options for such Kempe component S.
And in the second case, the Kempe component must include w and another neighbour
of u. These 2 vertices already define the Kempe component S so there are at most ∆
options for S each of size at least 2. Adding both values we get an upper bound of
C1(A,B; a,b) ≤ k + ∆p2.

σ(v)
τ(v)

c

σ(v)

c

u

v

w

z

σ(v)
τ(v)

c

σ(v)

u

v

w w′

Figure 7.4: Representation of the 2 options for |N | = 1.

For the following cases, choose a color c′ in [k] and study the Kempe components
Sσ(w, c′) with w ∈ N .

If |N | > 2, then only one component Sσ(w, c′) with w ∈ N can lead to a 1-extremal con-
figuration with its flip. Basically, the Kempe component must contain all the vertices
of N except possibly one. So once the color c′ is chosen, the Kempe component that
has to be flipped is uniquely determined (see Figure 7.5). Therefore C1(A,B; a,b) ≤ k.
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Figure 7.5: Representation of sets Sσ(wi, c′) for |N | = 3, N = {w1, w2, w3} and wi ∈ N .
Either Sσ(wi, c′) are all different or Sσ(w1, c

′) = Sσ(w2, c
′) 6= Sσ(w3, c

′) (up to permutation)
or Sσ(w1, c

′) = Sσ(w2, c
′) = Sσ(w3, c

′). Only in the last 2 cases, the flip of a Kempe
component can yield to 1-extremality, because there is a Kempe component that contains
all vertices of N except possibly one.

Otherwise, |N | = 2 and the flip of both Kempe components Sσ(w, c′) with w ∈ N ,
could lead to a 1-extremal configuration. So, given that there are k options for color
c′, there are at most 2k Kempe components transforming the configuration into an
extremal one. Notice that case 2k is a very particular case. It is only obtained when
N(w) ∩ σ−1(c) = {u} for both w ∈ N , i.e. the only neighbour of w colored c is
u (see Figure 7.6). For the other configurations with |N | = 2, there exists w ∈ N
such that N(w) ∩ σ−1(c) \ {u} 6= ∅. Let N = {w1, w2}, and suppose without loss of
generality that z ∈ N(w1)∩σ−1(c)\{u}. Then there are at most k options for Kempe
components Sσ(w1, c

′), for c′ ∈ [k] but flips of Sσ(w2, c
′) 6= Sσ(w1, c

′) do not yield to
extremal configurations. In particular, Sσ(w2, c

′) must contain vertex z in order to
reach extremality, namely colors {c, σ(w2)} which are {c, σ(v)} or {c, τ(v)}. But then
v ∈ S, so S /∈ D (see Figure 7.6). So the only positive contribution in C1(A,B; a,b) is
given by Sσ(w1, c

′), hence at most k.

σ(v)
τ(v)

c

σ(v) σ(v)

u

v

σ(v)
τ(v)

c

σ(v) τ(v)

u

v

σ(v)
τ(v)

c

σ(v)

c

σ(v)

u

v

w1 w2

z

Figure 7.6: The first 2 configurations, (4, 2, (3), (1)) or (3, 3, (2), (2)) up to symmetries, are
the only ones with δc = 1 that can move to a 1-extremal configuration in 2k different Kempe
flips. For the rest of configurations with |N | = 2, assume z ∈ N(w1) ∩ σ−1(c) \ {u}. Then
only flips of Kempe components Sσ(w1, c

′) may lead to extremality and the contribution is
k.

Hence we have that C1(A,B; a,b) ≤ k + ∆p2 except for configurations (4, 2, (3), (1)),
(3, 3, (2), (2)) up to symmetries for which C1(A,B; a,b) ≤ 2k.
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All together gives us a bound of A1(A,B; a,b) = B1(A,B; a,b)+C1(A,B; a,b) ≤ 2k+
∆p2 for configurations (4, 2; (3), (1)), (3, 3, (2), (2)) andA1(A,B; a,b) = B1(A,B; a,b)+
C1(A,B; a,b) ≤ k + 2∆p2 ≤ 4

3k otherwise.

• δc = 2
As δSc = 1, one vertex of Uc must change its color with the flip. As there are at most
2 choices for the vertex in Uc, A1(A,B; a,b) ≤ 2k. Again, this bound is tight only
for one specific case; when flipping any of the two vertices in Uc lead to a 1-extremal
configuration. This case is shown in Figure 7.7.
For the other configurations, either one of the flips do not yield extremality or one of
the 2 Kempe components must have size greater than 3 (the argument is analogous
to the case c ∈ C2

σ,τ (v) ∩ C1
σS ,τS

(v) from Lemma 7.4). So A1(A,B; a,b) ≤ k(p1 + p3).

σ(v)
τ(v)

c

σ(v)

c

σ(v)

u1

v

u2

σ(v)
τ(v)

c

σ(v)

c

τ(v)

u1

v

u2

Figure 7.7: These are the only cases with δc = 2 in which up to 2k Kempe flips could lead to
1-extremal configurations. They are configurations (5, 3, (2, 2), (1, 1)) or (4, 4, (2, 1), (1, 2))
up to symmetries.

• δc ≥ 3
As in the previous case, all but one vertices of Uc must change their color. Take a color
c′ ∈ [k] and study the Kempe components Sσ(u, c′) with u ∈ Uc. Recalling Figure 7.5,
only the flip of one Kempe component can yield to a 1-extremal configuration. Hence
C1(A,B; a,b) ≤ k.

Summing up, we get that A1(A,B; a,b) ≤ 2k + ∆p2 for configurations (4, 2; (3), (1)),
(3, 3, (2), (2)), (5, 3; (2, 2), (1, 1)) and (4, 4; (2, 1), (1, 2)) up to symmetry and A1(A,B; a,b) ≤
max{k + 2∆p2, k + kp3} ≤ 4

3k otherwise, taking into account the values of the pi’s and the
fact that k > 161

88 ∆.

Finally, we study configurations (A,B; a,b) = (8, 3; (4, 3), (1, 1)), (9, 3; (5, 3), (1, 1)) and
(10, 4; (3, 3, 3), (1, 1, 1)) up to symmetries, which we will need in the following sections. As
in all cases δc > 1 one vertex of Uc must change its color. Choose a color c′ and study the
Kempe components Sσ(u, c′) with u ∈ Uc. The flip of at most two Kempe components could
lead to a 1-extremal configuration, and the structure of the configurations imply that each
Kempe component must have size at least 3 in order to reach the 1-extremal configuration
(again the argument is analogous to the case c ∈ C2

σ,τ (v) ∩ C1
σS ,τS

(v) from Lemma 7.4).
Hence we get that for these configurations A1(A,B; a,b) ≤ 2k · p3.
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7.1.3 ∇B for non-extremal configurations; case c ∈ C2
σS ,τS

(v)
For A2(A,B; a,b) we proceed in a slightly different way. Recall that (A,B; a,b) =

(A,B; (a1, ...aδc), (b1, ..., bδc)) is a non-extremal configuration and Uc = {u1, ..., uδc} is the
set of neighbours of v colored with c. Fix the 2-extremal configuration (A∗, B∗; a∗,b∗) =
(A∗, B∗; (a∗1, a∗2), (b∗1, b∗2)), (A∗, B∗; a∗,b∗) ∈ Π2. For any Kempe component S, let USc =
N(v) ∩ (σS)−1(c) be the set of neighbours of v colored c after Kempe flip of S.

Now, we define T := {S ∈ D : (AS , BS ; aS ,bS) = (A∗, B∗; a∗,b∗)}, the set of Kempe
components whose flip yields to that 2-extremal configuration.

Consider the partition T = T1 ∪ T2 ∪ T3 with

T1 := {S ∈ D : USc \ Uc 6= ∅}
T2 := {S ∈ D : Uc \ USc 6= ∅} \ T1

T3 := {S ∈ D : Uc = USc }

For every S ∈ T3, as (A,B; a,b) is non-extremal, there exists x ∈ {a, b} and j ∈ {1, 2},
such that xj 6= xSj . So we can consider the following partition of T3:

T −3 = {S ∈ T3 : ∃j, xj < xSj }
T +

3 = {S ∈ T3 : ∃j, xj > xSj } \ T −3

From the definition of Tj we define Bj = Bj(A,B; a,b) :=
∑
S∈Tj(A,B;a,b) p|S|. Also define

B+
3 =

∑
S∈T +

3 (A,B;a,b) p|S| and B−3 =
∑
S∈T −3 (A,B;a,b) p|S|. We first bound these quantities.

Lemma 7.6 We have

1. B1 ≤ ∆. Moreover B1 ≤ ∆p2 if δc 6= 1.

2. B2 ≤ 3k and B2 = 0 if δc ≤ 2.

3. B−3 ≤ 2∆ , B+
3 ≤ 3k and B3 = 0 if δc 6= 2.

Proof. We first bound |Tj |, for j ∈ {1, 2, 3}. Recall that for (AS , BS ; aS ,bS) = (A∗, B∗; a∗,b∗)
a 2-extremal configuration, δSc = 2 and xSj ∈ {1, 3}.

To bound the size of S ′ ∈ {T1, T −3 } we do the following. In this case, there exists a vertex
z in the neighbourhood of the Kempe component associated to σ or τ that belongs to the
corresponding component in σS or τS . Let π = σ and ϕ = τ if this Kempe component is
the one associated to σ and π = τ , ϕ = σ otherwise. If there exists a set N(S ′) such that
S ∩ N(S ′) 6= ∅ for any S ∈ S ′, then any S ∈ S ′ can be described as S = Sϕ(w, c′) with
w ∈ N(S ′) and a unique color c′ ∈ {c, π(v)}. Therefore |S ′| ≤ |N(S ′)|.

If S ′ = T1, and S ∈ S ′, take N(S ′) = N1 = N(v). It is straightforward to see that
S ∩N1 6= ∅. Hence |T1| ≤ ∆.

If S ′ = T −3 , and S ∈ S ′ recall that there exists j such that xj < xSj . Set π = σ, ϕ = τ

if x = a and π = τ , ϕ = σ if x = b. Then define N(T −3 ) = N3 the set of neighbours of
Sϕ(uj , π(v)). This set satisfies that S ∩N3 6= ∅. So |T −3 | ≤ xj∆ ≤ (xSj − 1)∆ ≤ 2∆.

To bound the size of S ′ ∈ {T2, T +
3 } we proceed as follows. For S ∈ S ′, there is a vertex

in the Kempe component associated to σ or τ that does not belong to the corresponding
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Kempe component in σS , τS . If there exists a set R(S ′) such that S ∩ R(S ′) 6= ∅ for any
S ∈ S ′, then any S ∈ S ′ can be decribed as S = Sσ(w, c) for w ∈ R(S ′) and c ∈ [k]. Hence,
|S ′| ≤ |R(S ′)|k.

If S ′ = T2, and S ∈ S ′, define l := min{δc, δSc + 1} = min{δc, 3} and let R(T2) =
R2 = {u1, ..., ul}, with ui ∈ Uc for i ∈ [l]. We have that |S ∩ Uc| = |Uc \ USc | ≥ 1 and
|S ∩ R2| ≥ |S ∩ Uc| − (δc − l) ≥ |S ∩ Uc| − (δc − (δSc + 1)) = |S ∩ Uc| − |Uc \ USc | + 1 = 1.
Hence as |R2| = l ≤ 3 we have |T2| ≤ 3k.

If S ′ = T +
3 , and S ∈ S ′, there exists j such that xj > xSj and set π = σ, ϕ = τ if x = a and

π = τ, ϕ = σ if x = b. Now, let R(T +
3 ) = R3 be the set of xSj vertices in Sϕ(uj , π(v)) \ {uj}

that minimize distance to uj . As uj /∈ R3, we have that S ∩ R3 6= ∅ and |R3| = xSj ≤ 3, so
|T +

3 | ≤ xSj k ≤ 3k.

Once we have |Tj | bounded, Bj can be trivially bounded by Bj ≤ |Tj | · p1 = |Tj | due to
the fact that the pi’s are decreasing and p1 = 1.

Finally, in the case of B1, p|S| = 1 only if S = {w}, with w ∈ N(v), so one necessary
condition is that δc = δSc − 1 = 1. Otherwise, we have that |S| ≥ 2. Therefore, we obtain
the desired result.

From the previous lemma we are now able to compute A2(A,B; a,b)
∣∣∣∣
(A∗,B∗;a∗,b∗)

, namely

the value of A2(A,B; a,b) given that the flip of the Kempe component yields the 2-extremal
configuration (A∗, B∗; a∗,b∗).

Lemma 7.7 Once fixed (A∗, B∗; a∗,b∗) ∈ Π2 we have:

A2(A,B; a,b)
∣∣∣∣
(A∗,B∗;a∗,b∗)

≤


3k + ∆p2 if (A,B; a,b) ∈ G

4
3k + ∆p2 otherwise

Proof. We want to study for which Kempe components S ∈ D we get (AS , BS ; aS ,bS) =
(A∗, B∗; a∗,b∗) and recall that Π2 = {(7, 3; (3, 3), (1, 1)), (3, 7; (1, 1), (3, 3))}. We will con-
sider that (A∗, B∗; a∗,b∗) = (7, 3; (3, 3), (1, 1)) and will consider the results up to symmetry.

Now, recall lemma 7.6. First we argue when B2 = 3k or B+
3 = 3k are tight.

B2 is only not null when δc > 2. From the proof of the lemma, B2 = 3k only if min{δc, 3} =
3 and the flip considered has size 1. This implies that δc = 3 and the bound is tight when
the flip of any of the Kempe components Sσ(u, c′) for u ∈ {u1, u2, u3} = Uc and c′ ∈ [k],
leads to the same 2-extremal configuration. Hence |Sσ(u, c′)| = 1 and the 3 flips yield to
(A∗, B∗; a∗,b∗) only if (A,B; a,b) = (10, 4; (3, 3, 3), (1, 1, 1)).
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σ(v)
τ(v)

c

σ(v) σ(v)

c

σ(v) σ(v)

c

σ(v)

c

u1

v

u2 u3

Figure 7.8: Configuration (10, 3; (3, 3, 3), (1, 1, 1)) is the only one with δc = 3 that can
move to (7, 3; (3, 3), (1, 1)) in up to 3k flips of size 1. Recall that this configuration has
|Sτ (ui, σ(v))| = 3 and in the graph each Sτ (ui, σ(v)) can be a tree of height 1 or 2

If δc = 3 and (A,B; a,b) 6= (10, 4; (3, 3, 3), (1, 1, 1)), then there exists x ∈ {a, b}, j ∈
{1, 2, 3} such that xj 6= x∗j . As in the case of B−3 , if xj < x∗j then the bound is simply
2∆ < 4

3k. Otherwise, if xj > x∗j , assume without loss of generality that xj = a1 and a1 ≥ 4 >
a∗1 = 3. Then, for c′ ∈ [k], the flip of Sσ(u1, c

′) may lead to the extremal configuration and the
contribution is upper bounded by k. But Kempe components Sσ(u2, c

′), Sσ(u3, c
′) have to

modify the Kempe component Sτ (u1, σ(v)) in order to obtain extremality. This implies that
the size of these Kempe components have to be larger or equal than 2. Moreover, |Sσ(u2, c

′)|
can not be 2, as Sτ (u1, σ(v)), Sτ (u2, σ(v)) would be equal, see Figure 7.9. Equivalently
|Sσ(u3, c

′)| ≥ 3. The bound is then k + 2kp3.

σ(v)
τ(v)

c c

σ(v)

u1

v

u2

Figure 7.9: If |Sσ(u2, c
′)| = 2 and Sσ(u2, c

′) intersects Sτ (u1, σ(v)) then Sτ (u1, σ(v)) =
Sτ (u2, σ(v))

For δc > 3, two vertices in Uc must be flipped in order to obtain δSc = 2. Hence as both
vertices are colored c, the Kempe component must have size greater than 3 (otherwise they
would be the same component). We get |Sσ(w, c′)| ≥ 3, and B2 ≤ 3kp3 <

4
3k.

To summarise B2 ≤ 3k for configuration (10, 4; (3, 3, 3), (1, 1, 1)) up to symmetry and
B2 ≤ 4

3k otherwise.

Again from the proof of lemma 7.6, B+
3 = 3k only if xj > xSj = 3 and y ∈ {a, b} \ {x}

satisfies y1 = y2 = 1. As we consider, (A∗, B∗; a∗,b∗) = (7, 3; (3, 3), (1, 1)) we have x =
a, y = b. Let N := N(uj)∩Sτ (uj , σ(v)), the set of neighbours of uj different than v colored
σ(v). We analyse all the possible values of |N |:
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1. |N | = 0: This case is not possible due to the fact that |N | = 0 implies that aj = 1
and aj = 1 6> 3 = a∗j .

2. |N | = 1: Let N = {w}. Either w ∈ SτS (uj , σ(v)) or w 6∈ SτS (uj , σ(v)), that is w
belongs to the extremal configuration after the Kempe flip or not. In the first option,
consider the set of 2 vertices in Sτ (w, c) \ {uj , w} that minimize the distance to w.
One of them has to change its color in order to obtain extremality, so there are at
most 2k options of size 1. This is only tight for the configuration (8, 3; (4, 3), (1, 1)),
see Figure 7.10.

σ(v)
τ(v)

c

σ(v)

c c

c

σ(v)

c

Figure 7.10: Configuration (8, 3; (4, 3), (1, 1)) is the only configuration with |N | = 2 that
can yield to (A∗, B∗; a∗,b∗) in 2k Kempe flips of size 1.

Otherwise, the bound is k + ∆p2. Let us argue it with the aid of Figure 7.11. If
|N(w) ∩ σ−1(c) \ {uj}| ≥ 2 (second and third figures), only the flip of one Kempe
component Sσ(zi, c′), may lead to extremality and hence the contribution is k (recall
arguments in Figure 7.5 and Figure 7.6). Only if |N(w) ∩ σ−1(c) \ {uj}| = 1 (first
figure) either Sσ(t, c′), with c′ ∈ [k] and t ∈ N(z) ∩ Sσ(w, c) \ {w} or Sσ(z′, c), with
z′ ∈ N(w) \ {uj , z} may lead to extremality. Hence there are k options for the first
option and ∆p2 for the second due to the fact that Sσ(z′, c) must also contain vertex
z.

σ(v)
τ(v)

c

σ(v)

c

σ(v)
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v

w

z z′

t

...

σ(v)
τ(v)

c

σ(v)

c

σ(v)

c
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v

w

z1 z2

...

σ(v)
τ(v)

c

σ(v)

c c c

cuj

...

v

w

z1 z2 z3

Figure 7.11: If the configuration is different from (8, 3; (4, 3), (1, 1)), the contribution is at
most k + ∆p2.
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In the second case, if w 6∈ SτS (uj , σ(v)), another vertex w′ ∈ N(uj), w′ 6= w, belongs
to SτS (uj , σ(v)). There are ∆ options to choose such vertex w′, and the Kempe
component is uniquely determined by vertices {w,w′} so the bound is ∆p2. Adding
both values we get a bound of 2k + ∆p2 < 3k for configuration (8, 3; (4, 3), (1, 1)) or
k + 2∆p2 ≤ 4

3k otherwise.

3. |N | = 2: As |N | = 2 and the configuration is non-extremal, there exists a neighbour z
of N in Sτ (uj , σ(v)) different than uj . We consider the set of 3 vertices R3 = {N, z}
and study the flips of Sσ(t, c′) for t ∈ R3 (the argument is similar to the one of T +

3 ).
Only the flips of the three vertices lead to extremality in a very particular case; see
Figure 7.12. In the other cases at most the flip of two of them lead to extremality
and the bound 2k is tight only for configuration (9, 3; (5, 3), (1, 1)). For the rest of
configurations the bound is k + kp3 due to the fact that one of the components S
must have size greater than 2. Hence, the bound is either max{3k, 2k} = 3k for
configurations (8, 3; (4, 3), (1, 1)) and (9, 3; (5, 3), (1, 1)) or k + kp3 <

4
3k otherwise.

σ(v)
τ(v)

c

σ(v)

c

σ(v)

cuj

v

w1 w2

z

...

σ(v)
τ(v)

c

σ(v)

c

σ(v)

cuj

v

w1 w2

z

...

σ(v)
τ(v)

c

σ(v)

c

σ(v)

c

cuj

v

w1 w2

z

...

Figure 7.12: The first figure corresponds to the only representation of (8, 3; (4, 3), (1, 1))
that admits 3k Kempe flips of size 1 moving to (7, 3; (3, 3), (1, 1)). The second figure is
another representation of (8, 3; (4, 3), (1, 1)) that admits 2k Kempe flips. Configuration
(9, 3; (5, 3), (1, 1)) moves to (7, 3; (3, 3), (1, 1)) in up to 2k different Kempe flips of size 1. For
the rest of configurations the upper bound is k + kp3

4. |N | = 3: Choose color c′ and study flips of Kempe components Sσ(w, c′) with w ∈ N .
At most the 3 of them lead to an extremal configuration and this is only possible if the
configuration is (8, 3; (4, 3), (1, 1)). Otherwise, the case is analogous to the computation
of B2 for δc = 3. We get a bound of 4

3k.
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5. |N | ≥ 4: Take an arbitrary set R3 ⊂ N with |R3| = 3 and study flips of Sσ(w, c′) with
w ∈ R3 and c′ ∈ [k]. At most the 3 Kempe flips lead to extremality and the Kempe
components must contain 2 vertices of Uc. The contribution is then upper bounded
by 3kp2 <

4k
3 .

To sum up B+
3 ≤ 3k if the configuration is (8, 3; (4, 3), (1, 1)) or (9, 3; (5, 3), (1, 1)) up to

symmetry and B+
3 ≤ 4k

3 otherwise.

Now, notice that A2(A,B; a,b)
∣∣∣∣
(A∗,B∗;a∗,b∗)

= (B1 + B2 + B3)(A,B; a,b). As the values

of Bj , j ∈ [3], depend on δc, we maximize over the different cases δc ≤ 1, δc = 2 and δc ≥ 3.
We obtain

A2(A,B; a,b)
∣∣∣∣
(A∗,B∗;a∗,b∗)

≤
{

3k + ∆p2, if (A,B; a,b) ∈ G
4
3k + ∆p2, if (A,B; a,b) /∈ G

In the previous lemma, we fix in advance the extremal configuration to get a bound of

A2(A,B; a,b)
∣∣∣∣
(A∗,B∗;a∗,b∗)

. From there we could already find a bound for A2(A,B; a,b) by

just adding A2(A,B; a,b)
∣∣∣∣
(A∗,B∗;a∗,b∗)

twice; that is adding the contributions of the two

different 2-extremal configurations (7, 3; (3, 3), (1, 1)) and (3, 7; (1, 1), (3, 3)). Even so, we
are interested in obtaining a tighter bound, and the following lemma gives this bound.

Lemma 7.8 We have

A2(A,B; a,b) ≤


3k + ∆p2 if (A,B; a,b) ∈ G

2k otherwise

Moreover for configurations (A,B; a,b) ∈ H, we have A2(A,B; a,b) ≤ ∆.

Proof. The proof is done using 3 claims. The first and second claims give us the value
of A2(A,B; a,b) for configurations in G and H respectively. And the third tells us that
the only configuration that can move to both 2-extremal configurations with flips of size
1 is (5, 5; (3, 1), (1, 3)) with A2(5, 5; (3, 1), (1, 3)) ≤ 2. As a corollary of the third claim,
we have that for (A,B; a,b) /∈ G ∪ H ∪ (5, 5; (3, 1), (1, 3)) the bound is A2(A,B; a,b) ≤

A2(A,B; a,b)
∣∣∣∣
(A∗,B∗;a∗,b∗)

· (p1 + p2) due to the fact that at least 2 vertices have to be

flipped to obtain one of the 2-extremal configurations. This gives us that A2(A,B; a,b) ≤
(4

3k + ∆p2) · (p1 + p2), so we conclude.
More precisely we have the following claims and proofs:

Claim 1: Configurations in G satisfy A2(A,B; a,b) ≤ 3k + ∆p2.
Proof of claim 1: Recall that G = {(8, 3; (4, 3), (1, 1)), (9, 3; (5, 3), (1, 1)), (10, 4; (3, 3, 3), (1, 1, 1))}

up to symmetry.
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For configuration (10, 4; (3, 3, 3), (1, 1, 1)) up to symmetry, as δc = 3 > 2 = δSc one vertex
of Uc must be flipped. The choice of such a vertex and color already determine the extremal
configuration. Hence A2(A,B; a,b) ≤ 3k holds.

For the other configurations, δc = 2 so the only non-zero contributions are the ones related
to B1 and B3. Sets in T1 do not depend on the extremal configuration we are moving to.
More precisely, once fixed the vertex w ∈ USc \ Uc, the Kempe component Sσ(w, c) already
determine the extremal configuration which the flip yields. Hence the contribution ∆p2 is
tight without conditioning on the extremal configuration.

For the contribution of B3 we have the following. Without loss of generality assume we
have configurations (8, 3; (4, 3), (1, 1)), (9, 3; (5, 3), (1, 1)). Then |Sτ (u1, σ(v))| ≥ 4. Let N1 =
N(u1)∩Sτ (u1, σ(v)). Notice that for |N1| ≥ 2 the extremal configuration (3, 7; (1, 1), (3, 3))
can not be achieved (see Figure 7.13). This is due to the fact that the Kempe compo-
nent should flip vertices in N1 colored σ(v) to τ(v), and the resulting coloring would have
|SσS (u1, τ(v))| ≥ 4, which is not possible for a extremal configuration.

σ(v)
τ(v)

c

σ(v)

c

σ(v)

cu1

v

u2

...

Figure 7.13: Case |N1| ≥ 2: Flipping neighbours of u1 and u2 different than v to color τ(v)
do not yield to extremality

Now, let |N | = 1 , N = {w}, and consider M = N(w)∩Sτ (u1, σ(v)) \ {u1}. If |M | ≥ 2 it
is not possible to move to extremal configuration (3, 7; (1, 1), (3, 3)) because we should flip
vertices colored c, σ(v), τ(v), as shown in Figure 7.14.

σ(v)
τ(v)

c

σ(v)

c c

cu1

w

v

u2

...

Figure 7.14: Case |N | = 1, |M | > 2 can not yield to the extremal configuration
(3, 7; (1, 1), (3, 3)), because we should flip vertex w, colored σ(v) to color τ(v) and this
flip do not yield to extremality as |SσS (u1, τ(v))| ≥ 4.
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Case |M | = 1, M = {m}, is the only case in which we can get to both extremal con-
figurations. In order to get configuration (7, 3; (3, 3), (1, 1)), fix z ∈ N(m) ∩ Sσ(v, c) \ {w}.
The Kempe component flipped must be Sσ(z, c′) for c′ ∈ [k]. Hence there are k options.
And in order to reach configuration (3, 7; (1, 1), (3, 3)) the Kempe component is unique, in
particular it is Sσ(w, τ(v)). Hence the contribution is at most p1. Adding both values
we get a bound of k + p1 and taking into account the contribution of B1,B3, we get that
A2(A,B; a,b) ≤ k + p1 + ∆p2 < 3k + ∆p2.

σ(v)
τ(v)

c

σ(v)

c

σ(v)

cu1 u2

v

w

m

z

...

Figure 7.15: Only if |N | = 1, |M | = 1, we can move to both extremal configurations

Claim 2: Configurations in H satisfy A2(A,B; a,b) ≤ ∆.
Proof of claim 2: Configurations (4, 2; (3), (1)), (3, 3, (2), (2)) satisfy δc = 1, so the only

non-zero Bj for j ∈ {1, 2, 3} is B1. Moreover only one extremal configuration can be achieved,
otherwise the Kempe component should flip colors σ(v), τ(v) and c. So A2(A,B; a,b) ≤ ∆.
For the other 2 configurations, (5, 3; (2, 2), (1, 1)) and (4, 4; (2, 1), (1, 2)) satisfy δc = 2 so
B2 = 0 and B1 = ∆p2. Moreover B+

3 = 0 due to the fact that these two configurations
satisfy xi ≤ 2 for any i. Hence for any Kempe component S there exists xj such that
xj < xSj = x∗j = 3 so T +

3 = ∅. Finally B−3 = 2∆p2, where the last term is multiplied by
p2 due to the fact that at least 2 vertices have to be flipped. Again and due to the same
reason it is only possible to move to one 2-extremal configuration. Therefore the bound is
A2(A,B; a,b) ≤ 3∆p2 ≤ ∆ as p2 < 1/3.

Claim 3: The only configuration that can move to both 2-extremal configurations with
flips of size 1 is (5, 5; (3, 1), (1, 3)).

Proof of claim 3 : If the configuration can move to both 2-extremal configurations with
flips of size 1, it must only differ in one vertex with respect to each 2-extremal configuration.
Hence (5, 5; (3, 1), (1, 3)), shown in Figure 7.16, is the only possibility.

Moreover, once fixed the extremal configuration, configuration (5, 5; (3, 1), (1, 3)) can only
move to that extremal configuration with a unique Kempe flip. Hence the contribution is
A2(5, 5; (3, 1), (1, 3)) ≤ p1 + p1 = 2.
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σ(v)
τ(v)

c

σ(v)

c

c

τ(v)

c

u1

v

u2

Figure 7.16: Configuration (5, 5; (3, 1), (1, 3)) is the unique configuration that can move to
both 2-extremal configurations with flips of size 1. Moreover the representation that admits
it, is unique (only as a rooted tree with 2 leaves)

Finally, Claims 1, 2 and 3 imply that for (A,B; a,b) /∈ G ∪ H ∪ (5, 5; (3, 1), (1, 3)), the

bound A2(A,B; a,b)
∣∣∣∣
(AS ,BS ;aS ,bS)

≤ (4
3k + ∆p2) is only tight for one of the two extremal

configurations. For the other, the Kempe component flipped S has size |S| ≥ 2 so we can
multiply its contribution by p2.

We get that for (A,B; a,b) /∈ G ∪ H ∪ (5, 5; (3, 1), (1, 3)) the bound is A2(A,B; a,b) ≤

A2(A,B; a,b)
∣∣∣∣
(AS ,BS ;aS ,bS)

· (p1 + p2) ≤ (4
3k+ ∆p2) · (1 + p2) < 2k, where we have used that

p2 = 185/616.

Corollary 7.9 If c /∈ Cσ,τ (v), then

∇B(σ, τ, c,D) ≤ max
{(2k

∆ +p2

)
η1+2η2,

(2k
∆ p3

)
η1+2

(3k
∆ +p2

)
η2,

(4/3k
∆

)
η1+2

(2k
∆

)
η2

}
Proof. Recall definition of∇B(σ, τ, c,D) in (20) and let (A,B; a,b) /∈ Π, hence the color asso-
ciated to this configuration c, satisfies c /∈ Cσ,τ (v). Notice that for i ∈ {1, 2}, ξiσ,τ (v, c, S) 6= 0
if and only if S ∈ Ri(A,B; a,b), the set of Kempe components whose flips yields to an i-
extremal configuration. In particular:

∇B(σ, τ, c,D) = max
(A,B;a,b)/∈Π

A1(A,B; a,b) · ξ1 · η1
∆ + A2(A,B; a,b) · ξ2 · η2

∆

Moreover in this case ξiσ,τ (v, c, S) = i, so:

∇B(σ, τ, c,D) = max
(A,B;a,b)/∈Π

A1(A,B; a,b) · η1
∆ + 2 · A2(A,B; a,b) · η2

∆

Considering the values of A1(A,B; a,b),A2(A,B; a,b) we obtain the desired bound.
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Chapter 8

Main result

We now show that the coupling with the metric d defined in section 6.2 contracts in
expectation and the proof of the main result of our work. Again, we assume that k ≥ 161

88 ∆.
Theorem 8.1 For the flip parameters p given in Observation 6.1 there exists µ > 0 such

that for every k > (11
6 − ε0)∆, with ε0 = 1

1320 , and every neighboring coloring pair (σ, τ),
the greedy coupling satisfies ∇(σ, τ) ≤ −µk for sufficiently large ∆.
Proof. Recall that δ = 11

6 −
161
88 = 1

264 and set η1 = 2.85η2 and η2 = δ∆
13.5k−5.7∆ .

Notice that from Corollary 7.9, fixing η1 = 2.85η2, we obtain that for c /∈ Cσ,τ (v), then

∇B(σ, τ, c,D) ≤ 4k
∆

(
η1
3 + η2

)
= 7.8k · η2

∆
Using this result together with (12), Theorem 7.1 and Lemma 7.4 we get

∇(σ, τ) ≤
[11

6 −
(2η1(k −∆− 2)

∆

)
γ1
σ,τ (v)−

(12η2(k −∆− 2)
∆ + k

(η1 − 2η2)
3∆

)
γ2
σ,τ (v)

2 −

−
(
δ − 7.8kη2

∆

)
(1− γσ,τ (v))

]
∆− k

We would like to bound the above expression for any possible value of γiσ,τ (v). The above
bound is maximized when the following expression is minimized:(2η1(k −∆− 2)

∆

)
γ1
σ,τ (v)+

(12η2(k −∆− 2)
∆ +k (η1 − 2η2)

3∆

)
γ2
σ,τ (v)

2 +
(
δ−7.8kη2

∆

)
(1−γσ,τ (v))

Recall that γσ,τ (v), γiσ,τ (v) ∈ [0, 1], for i = 1, 2, and that γσ,τ (v) = γ1
σ,τ (v) + γ2

σ,τ (v). Hence,
the above expression is a linear convex combination of the function evaluated in γiσ,τ (v) in
the extremal points. Due to convexity the minimum corresponds to some extremal point
(γ1
σ,τ (v), γ2

σ,τ (v)) ∈ {(0, 0), (0, 1), (1, 0)}.
Also note that ε0 = δ

5 and as k > (11
6 − ε0)∆ =

(11
6 −

δ
5
)
∆, there exists some small

constant µ > 0 such that
(11

6 −
δ
5
)
∆ ≤ k−µk . It follows from straightforward computations

that for sufficiently large ∆:

∇(σ, τ) ≤
(11

6 −
δ

5

)
∆− k ≤ −µk
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Main result

We proceed with the proof of our main result:

Proof of Theorem 1.4. By Theorem 8.1, for the flip probabilities p there exist ε0 =
1

1320 , µ > 0 such that if k ≥ (11/6 − ε0)∆, then the greedy coupling (σ, τ) −→ (σ′, τ ′)
defined on neighbouring coloring pairs (σ, τ) satisfies

∇(σ, τ) = nkE[d(σ′, τ ′)− d(σ, τ)] ≤ −µk

In particular, as d(σ, τ) ≤ 1 for (σ, τ) a neighbouring coloring pair:

E[d(σ′, τ ′)] ≤ d(σ, τ)− µ

n
≤
(

1− µ

n

)
d(σ, τ)

The coupling defined in the set of neighbouring coloring pairs is then contractive with
respect to the metric d, where µ > 0 is a constant. Due to the Path Coupling Lemma
(Lemma 4.3), the flip dynamics mixes in time

τmix = O

(
n

µ
logn

)
= O(n logn)
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Chapter 9

Relation between flip and Glauber
dynamics

In the previous chapters we have studied different arguments to prove rapid mixing of the
flip dynamics. In this chapter, we prove that, once proved rapid mixing of the flip dynamics
under some conditions on k and ∆, the Glauber dynamics mixes under the same conditions
in time O(n · τflip). We prove it using the comparison technique described by Diaconis
and Saloff-Coste [6], which relates the eigenvalues of the transition matrices of two Markov
chains. Moreover, the second eigenvalue is related to the mixing time of the Markov chains
(see [7], [14]). These two results allow to derive an inequality relating the mixing time of
both chains, which is the proposition we will use, see [21].

The result is strongly connected to the study of the underlying graph of both chains. Re-
call the setting of the two Markov Chains. Glauber and flip dynamics have the same state
space Ω, the space of proper k-colorings, and the same stationary distribution π, which is
uniform on Ω. If P is the transition matrix of a Markov Chain then the underlying graph
associated to the dynamic is G = (Ω, E(P )) where E(P ) = {(σ, τ) : P (σ, τ) > 0}. As the
chains are symmetric, the underlying graphs of the flip and the Glauber dynamics, Gflip and
GGD respectively, are undirected.

We begin with some definitions. For each move (σ, τ) ∈ E(Pflip) we define associated paths
of moves in E(PGD). Instead of defining a single one, we define a set of fractional paths called
a flow. More precisely let γ denote a path (η0, η2, ..., ηk) where each (ηi, ηi+1) ∈ E(PGD)
and with length |γ| = k. For each (σ, τ) ∈ E(Pflip) let Γσ,τ = {γ : η0 = σ, ηk = τ} be the set
of paths from σ to τ .

A flow is a set of functions f = fσ,τ : Γσ,τ −→ R+ satisfying that
∑
γ∈Γσ,τ f(γ) = 1.

The idea is to simulate a transition of the flip dynamics using several Glauber transitions,
in such a way that the number of paths traversing any particular Glauber edge is minimized.
In particular, the goal is to define flows minimizing Aη,ξ defined as

Aη,ξ := 1
PGD(η, ξ)

∑
γ∈Γσ,τ :(η,ξ)∈γ

|γ|f(γ)Pflip(σ, τ)

Observe that PGD(η, ξ) ≥ 1/nk while Pflip(σ, τ) ≤ 1/nk. In addition we will define flows
such that f(γ) = 0 for |γ| ≥ 7 which follows from the fact that the flip dynamics do not flip
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Kempe components of size greater than 6. Hence, the quantity Aη,ξ is simplified to

Aη,ξ ≤ 6
∑

γ∈Γσ,τ :(η,ξ)∈γ
f(γ) (21)

And we will be interested in the maximum of Aη,ξ over all edges that we will denote by
A∗:

A∗ = max
(η,ξ)∈E(PGD)

Aη,ξ

In particular we will use Diaconis and Saloff-Coste result to bound the mixing time of the
Glauber dynamics in terms of this quantity A∗ and the mixing time of the flip dynamics.
We use the version described in [21].

Theorem 9.1
τGD = O(A∗τflip log |Ω|)

Now we apply Theorem 9.1 to proof Theorem 1.5.

Proof of Theorem 1.5. Since |Ω| ≤ kn, log(|Ω|) ≤ n log k and it suffices to define a flow
such that A∗ = O(1) in order to proof Theorem 1.5 from Theorem 9.1.
From (21) we want to upper bound

∑
γ∈Γσ,τ :(η,ξ)∈γ f(γ) for any possible edge (η, ξ).

Let (σ, τ) be an edge of Pflip. The move from σ to τ interchanges colors c, c′ on a cluster
S = T ∪ T ′ with σ(v) = c for all v ∈ T and σ(v) = c′ for all v′ ∈ T ′. A natural way to
simulate this flip using several Glauber flips is the following: first recolor each vertex in T
to an arbitrary color, then recolor each vertex in T ′ to color c and finally recolor each vertex
in T to color c′.

The arbitrary color used in the first step to recolor v ∈ T can be chosen among the set of
available colors of v, namely from the set Av = Av(σ) = [k] \ {σ(v)

⋃
w∈N(v)

σ(w)}.

Now let
ψ = {ψ1, ..., ψ|T |}

be such that ψi(vi) ∈ Avi for each vi ∈ T . And denote the set of all ψ to be Ψσ,τ . If we fix
an ordering of the vertices of G, then each set ψ defines a canonical path γψ as follows:

Stage 1: In order, consider each v ∈ T and recolor it to ψ(v).
Stage 2: In order, recolor each vertex v ∈ T ′ to color c.
Stage 3: In order, recolor each vertex v ∈ T to color c′.

As we do not want to increase the flow in any particular edge we define the flow such
that it is distributed evenly among all possible paths γψ:

f(γψ) := 1
|Ψστ |

First we upper bound f(γψ). Notice that Av ≥ k −∆ which is Ω(k) due to the fact that
k > (11

6 − ε0)∆. Therefore |Ψστ | = Ω(k|T |) and

f(γψ) = O(k−|T |)
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Then we upper bound the number of paths that traverse any particular edge. We partition
such paths in terms of the size of the associated set T . Let

Ri(η, ξ) := {γψ : (η, ξ) ∈ γψ, ψ ∈ Ψσ,τ , |T | = i}

With this definition,
Aη,ξ ≤ K2

∑
i

|Ri(η, ξ)|
ki

(22)

So our aim is to compute |Ri(η, ξ)| and hence to count the number of paths traversing
any particular edge (η, ξ), and having |T | = i. Notice that a specific path γ is uniquely
determined by the sets of vertices T, T ′, colors c, c′, set of colors ψ as well as the colors σ(x)
for any x /∈ S. From the coloring η, the values of σ(x) for all x /∈ S are already known.
Now, suppose that move η −→ ξ recolors vertex v ∈ V . We divide our analysis of |Ri(η, ξ)|
considering the stage in which we traverse edge (η, ξ):

Stage 2: In this case notice that c = ξ(v) and c′ = η(v). We also know that v ∈ T ′. Cluster
S = T ∪ T ′ satisfies that |S| ≤ 6 so the number of such clusters containing v is at most ∆5.
Since all vertices of T ′ have color c or c′ in η, given a candidate set T the corresponding set
T ′ is fixed (T ′ is the set of vertices colored c, c′ adjacent to some vertex of T ). Hence the set
T is the only variable and as |T | = i, there are at most O(∆i) choices for T . Moreover, once
T is chosen, colors ψ are fixed; more precisely ψ(v) = η(v) for v ∈ T . Therefore, assuming
edge (η, ξ) is traversed during stage 2 of the path, then |Ri(η, ξ)| = O(ki).

Stage 1: In this case v ∈ T , c = η(v) and ψ(v) = ξ(v). We do not know the value of c′,
hence there are at most k possible choices for it. Now, consider the sets T1, T2 in T \{v} with
T1 the vertices in T that have already been colored and T2 the vertices in T that have not
been recolored. Again, and due to the same argument as before, there are at most O(∆|T1|)
choices for the vertices in T1 and for each w ∈ T1 we know ψ(w) = η(w). Moreover, for
a specific T1 vertices in T2 and T ′ are uniquely determined: neighbours of vertices in T1
colored c and c′ respectively. The only thing that remains is the choice of colors ψ for the
vertices of T2. And for T2 there are O(k|T2|) choices for the associated colors ψ. Combining
the choices for color c′ and sets T1 and ψ we get |Ri(η, ξ)| = O(k1+|T2|∆|T1|) = O(ki).

Stage 3: Symmetrical to stage 1.

So, adding all the contributions we have that the total number of paths traversing edge
(η, ξ) and satisfying |T | = i is |Ri(η, ξ)| = O(ki). Combining with (22) we get thatA∗ = O(1)
and this ends the proof of Theorem 1.5.
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Chapter 10

Random sampling and approximate
counting

In the previous chapters we studied Markov chains in order to obtain efficient random
samplers, namely fully polynomial almost uniform samplers (FPAUS). We have studied two
dynamics; Glauber and flip, and the relation between them.

Random sampling is closely related to approximate counting. In 1986, Jerrum, Valiant,
and Vazirani [15] proved the equivalence between approximate counting and approximate
sampling for self-reducible problems. Although we won’t define the concept of self-reducibility,
we will follow the proof in Levin-Peres book [17] to prove the reduction from approximate
counting to approximate sampling in the case of colorings.

In this way, one efficient algorithm for sampling a coloring at random (FPAUS) yields an
efficient approximation algorithm for counting the number of colorings of a graph (FPRAS).

Theorem 10.1 Let G be a graph on n vertices and k ∈ N.
If the Glauber dynamics mixes rapidly on the set of k-colorings of G, then there exists

an FPRAS for estimating the number of k-colorings of G.

More precisely, let τmix be the mixing time of the Glauber dynamics, which is polynomial
in n. Given parameters η, ε, there exists a random variable W which can be simulated in
time Cη,ε · n · τmix such that

P

{(1− ε)
|Ω| ≤W ≤ (1 + ε)

|Ω|

}
≥ 1− η

where Cη,ε is a constant that depends on η, ε.
In particular, 1

W approximates |Ω|, the number of colorings of G.

Proof. Let σ0 be a k-proper coloring of G. Enumerate the vertices of G as {v1, v2, ..., vn}
and define for j = 0, ..., n

Ωj := {σ ∈ Ω : σ(vi) = σ0(vi) for i > j}

The elements of Ωj have j free vertices, and n−j vertices colored as in σ0. A random element
of Ωj can be generated using a slight modification of the Glauber dynamics. Basically, only
the colors of vertices {v1, ..., vj} can be updated so the bound on the mixing time still holds
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with j replacing n. Moreover the stationary distribution is the uniform distribution in Ωj ,
and we will denote it by πj .

We run the Glauber dynamics in Ωj and we have that it converges to the uniform distri-
bution πj in polynomial time in the number of vertices. Therefore for T := τmix( ε

6nke) we
have that

dTV (P T (σ0), πj) = ‖P T (σ0, ·)− πj(·)‖TV ≤
ε

6kn (23)

We will approximate the ratio |Ωj−1|
|Ωj | . A random element of Ωj can be generated by

running the Markov chain for T steps. We compute an := d27kn
ηε2 e elements of Ωj . Denote

by Sj the sample obtained.
Let σij be the i-th sample of Sj and let Zij be the indicator random variable that the i-th

sample of Sj is also an element of Ωj−1, i.e., if σij(vj) = σ0(vj). Due to (23):∣∣∣E(Zij)− πj(Ωj−1)
∣∣∣ =

∣∣∣P T (σ0,Ωj−1)− πj(Ωj−1)
∣∣∣ ≤ ε

6kn
Define Wj := 1

an

∑an
i=1 Z

i
j , which corresponds to the proportion of elements in Sj that

belong to Ωj−1. We see that Wj approximates |Ωj−1|
|Ωj | :

∣∣∣∣∣E(Wj)−
|Ωj−1|
|Ωj |

∣∣∣∣∣ =
∣∣∣∣∣ 1
an
·
an∑
i=1

E(Zij)− πj(Ωj−1)
∣∣∣∣∣ ≤ 1

an
·
an∑
i=1
|E(Zij)−πj(Ωj−1)| ≤ ε

6kn (24)

Hence,
|Ωj−1|
|Ωj |

− ε

6kn ≤ E(Wj) ≤
|Ωj−1|
|Ωj |

+ ε

6kn

Dividing by |Ωj−1|
|Ωj | and taking into account that |Ωj−1|

|Ωj | ≥
1
k we get:

1− ε

6n ≤ E(Wj) ·
|Ωj |
|Ωj−1|

≤ 1 + ε

6n

Let W :=
∏n
i=1Wi. Notice that the {Wj} are independent and that |Ω| = |Ωn| = |Ωn|

|Ω0|
because Ω0 = {σ0}. Then, multiplying the above inequality for all terms Wi, i ∈ [n], we get:

1− ε

6 ≤
(

1− ε

6n

)n
≤ E(W ) · |Ωn|

|Ω0|
≤
(

1 + ε

6n

)n
≤ e

ε
6 ≤ 1 + ε

3 (25)

where we have applied that ex ≤ 1 + 2x for x ∈ [0, 1] and (1−x)n ≥ 1−nx. In particular∣∣∣∣E(W )− 1
|Ω|

∣∣∣∣ ≤ ε

3|Ω| (26)

We now show that W is concentrated around this value.
First, we compute Var(Wj). Notice that Zij is a indicator random variable so it is non-

negative, E((Zij)2) = E(Zij) and E(Zij) is equal for all i, which gives that E(Wj) = E(Zij).
Moreover they are independent. Taking into account these properties we have

Var(Wj) = 1
a2
n

an∑
i=1

(E(Zij)− (E(Zij))2) ≤ 1
a2
n

an∑
i=1

E(Zij) =
E(Zij)
an

= E(Wj)
an
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Dividing both sides of the inequality by E(Wj)2 we get

Var(Wj)
E(Wj)2 ≤

1
anE(Wj)

Since |Ωj−1|
|Ωj | ≥

1
k , and from equation (24) we get that:

E(Wj) ≥
1
k
− ε

6kn ≥
1
3k

So the two previous inequalities give:

Var(Wj)
E(Wj)2 ≤

1
anE(Wj)

≤ 3k
an

(27)

Also due to the independence of the random variables Wi:

E
(

W

E(W )

)2
= E

[ n∏
i=1

(
Wi

E(Wi)

)2]
=

n∏
i=1

E(W 2
i )

E(Wi)2

Substracting 1 from both sides shows that:

Var W
E(W )2 =

n∏
i=1

[
1 + Var (Wi)

E(Wi)2

]
− 1

Then
Var(W )
E(W )2 ≤

n∏
i=1

[
1 + 3k

an

]
− 1 =

n∏
i=1

[
1 + ηε2

9n

]
− 1 ≤ e

ηε2
9 − 1 ≤ 2ηε2

9 (28)

where we have applied the same inequalities as in (25).
Applying Chebyshev’s inequality to the random variable W and inequality (28)

P

{
|W − E(W )| ≥ E(W ) · ε2

}
≤ η

If the event |W − E(W )| < E(W ) · ε2 is satisfied, then using (26) and the triangle inequality∣∣∣∣W − 1
|Ω|

∣∣∣∣ ≤ |W − E(W )|+
∣∣∣∣E(W )− 1

|Ω|

∣∣∣∣ ≤ E(W ) · ε2 + ε

3|Ω| ≤
ε

|Ω| (29)

Hence
P

{∣∣∣∣W − 1
|Ω|

∣∣∣∣ ≤ ε

|Ω|

}
≥ 1− η

Finally, for each of the n variables Wi, i = 1, ..., n we need to simulate each of the an chains
for T steps. The total time needed is

T · an = Cη,ε · n · τmix

which is polynomial in n due to the fact that the Glauber dynamics mixes rapidly.

As Theorem 1.5 states that the Glauber dynamics mixes rapidly for k > (11/6− ε0)∆ we
obtain the following corollary:

Corollary 10.2 Let G be a graph and ∆ the maximum vertex degree of G. Then there
exists an FPRAS for computing the number of k-colorings of G for k > (11/6− ε0)∆ with
ε0 given in Theorem 1.4.
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Chapter 11

Conclusions

Following the idea introduced by Delcourt, Perarnau and Postle [5], in this thesis we
describe an alternative metric for Vigoda’s greedy coupling. The motivation is given by
Theorem 5.9 which states that for k < 11

6 ∆ there is not any one-step coupling contractive
under the Hamming distance.

The new metric takes into account the presence of extremal configurations in the colorings,
which avoid rapid mixing of the chain beyond the value 11/6. More precisely, the new metric
gives more weight to neighboring coloring pairs having extremal configurations. This makes
the expected variation distance decrease in these cases and allows to prove rapid mixing
under weaker restrictions.

In their paper, Chen, Perarnau et al. [3] defined a metric d that took into account the
presence of 1-extremal and 2-extremal configurations together.

The first modification is that our metric d considers the contribution of 1-extremal and
2-extremal configurations separately and with different weights η1 and η2.

Moreover, in this thesis we have introduced some improvements in the study of the ex-
pected variation in dB for flips of Kempe components S ∈ D, not involving vertex v. We
have taken into account the size of the Kempe components flipped and hence the proba-
bility that they are flipped. And we have done a tighter analysis on the number of sets
that allow moving within the classes of extremal and non-extremal configurations. As it
is harder to destroy a 1-extremal than a 2-extremal configuration and the contribution of
movements from 2-extremal configurations to 1-extremal configurations is small, the metric
penalises more the presence of 1-extremal configurations. In the definition of the metric this
corresponds to a larger value of η1 than η2.

The last refinement corresponds to Proposition 7.2. This proposition studies the expected
variation in dB for flips of Kempe components S ∈ Dc, in particular flips involving vertex v.
As the Kempe component flips at most 6 vertices, the proportion of extremal configurations
before and after the flip do not differ a lot, and hence the variation in dB is small. The
proposition proves that this variation is constant, while in the previous paper this was upper
bounded by (k + ∆).

Recall that for non-extremal configurations Proposition 6.2 already tell us that using this
metric k ≥ 161

88 ∆. Hence using the technique considered in this thesis, the improvement
could be at most δ∆ for δ = 11

6 −
161
88 .

The modifications described above yield Theorem 1.4, 1.5, which say that the flip and the
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Glauber dynamics are rapidly mixing for k > (11
6 −

δ
5)∆ = (11

6 −
1

1320)∆ while the previous
result gave rapid mixing for k > (11

6 −
δ

318)∆ = (11
6 −

1
84000)∆.

There are several ways in which it is possible to continue the work of this master thesis.
One option would be to increase the optimum value 11

6 to 11
6 +ε and describe the extremal

configurations for this new optimum. If the suboptimum value was less than 161
88 , we could

get a better bound on rapid mixing.
Another option would be to describe the tight configurations for the value 161

88 , which we
will call pseudo-extremal configurations, and consider them in the description of the metric.
However, the analysis would be quite tough due to the fact that we should study all the
transitions, not only between extremal and non-extremal configurations, but also between
them and pseudo-extremal configurations.

We could also modify the Markov chain used. For instance we could consider flips of
3-colored-cluster components. In this case the difficulty yields in the description of the
coupling.

And finally, we could focus on deterministic algorithms. An open question is whether
there exist an FPTAS for counting colorings provided k > (2− ε)∆.
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Appendix: Code

Matlab code for solving LP1

1 %LINEAR PROGRAM, minimizes f ( x ) s t . M∗x<=t , Aeq∗x=beq , lb<=x<=
ub

2

3 M = [ ] ;
4 k = 7 ;
5 %inc=number o f v a r i a b l e s : k v a r i a b l e s p i and lambda
6 i n c = k+1;
7 %so l Vigoda = [ 1 ; 13/42 ; 1/6 ; 2/21 ; 1/21 ; 1/84 ; 0 ; 1 1 / 6 ] ;
8

9 %DELTA = 1
10 f o r i =1:k
11 f o r j=i : k
12 eq = ze ro s (1 , inc ) ;
13 eq (1 , i ) = i ;
14 eq (1 , i +1) = − i ;
15 eq (1 , j ) = eq (1 , j ) + j −1;
16 eq (1 , j +1) = eq (1 , j +1)−( j−1) ;
17 eq (1 , inc ) = −1;
18 M = [M; eq ] ;
19 end
20 end
21

22 %DELTA = 2
23 f o r i =1:k
24 eq = ze ro s (1 , inc ) ;
25 eq (1 , 1 ) =2;
26 eq (1 , i ) =2∗( i −1) ;
27 i f (2∗ i+1 <= k )
28 eq (1 ,2∗ i +1)=1;
29 end
30 eq (1 , inc ) = −2;
31 M = [M; eq ] ;
32 end
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33

34 %Case c=sigma ( v ) , tau ( v )
35 f o r b2=1:6
36 f o r b1=1:6−b2
37 B=b1+b2 ;
38 eq = ze ro s (1 , inc ) ;
39 eq (1 ,B) = (B−b2 ) ;
40 eq (1 , b1 ) = b1 ;
41 eq (1 , inc ) = −2;
42 M = [M; eq ] ;
43 end
44 end
45

46 [ s1 , s2 ] = s i z e (M) ;
47 t1 = −1 ∗ ones ( s1 , 1 ) ;
48

49 %p i ’ s are dec r ea s ing
50 f o r i =1:k−1
51 eq = ze ro s (1 , inc ) ;
52 eq (1 , i +1) = 1 ;
53 eq (1 , i ) = −1;
54 M = [M; eq ] ;
55 end
56

57 %Addit iona l c o n s t r a i n t s
58 f o r i =1:k−1
59 eq = ze ro s (1 , inc ) ;
60 eq (1 , i ) = i ;
61 M = [M; eq ] ;
62 end
63

64 f o r i =1:k−1
65 eq = ze ro s (1 , inc ) ;
66 eq (1 , i ) = i −1;
67 M = [M; eq ] ;
68 end
69

70 f o r i =1:k−1
71 eq = ze ro s (1 , inc ) ;
72 eq (1 , i ) = i −2;
73 M = [M; eq ] ;
74 end
75

76 t = [ t1 ; z e r o s (k−1 ,1) ; ones (k−1 ,1) ;1/3∗ ones (k−1 ,1) ;2/9∗ ones (k
−1 ,1) ] ;

77 f = ze ro s ( inc , 1 ) ;
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78

79 f ( inc , 1 ) = 1 ;
80

81 Aeq = ze ro s (1 , inc ) ;
82 Aeq (1 , 1 ) =1;
83 beq = 1 ;
84 lb = ze ro s ( inc , 1 ) ;
85 ub = ones ( inc , 1 ) ;
86 ub( inc , 1 ) =100;
87

88 x = l i n p r o g ( f , M, t , Aeq , beq , lb , ub ) ;
89

90 t i g h t i n e q = 0 ;
91 i n d i c e s = [ ] ;
92 t o l = exp(−15) ;
93 A = M∗x + ones ( s i z e (M, 1 ) ,1 ) ;
94 f o r i =1: s i z e (A, 1 )
95 i f abs (A( i ) ) < t o l
96 t i g h t i n e q = t i g h t i n e q + 1 ;
97 i n d i c e s = [ i n d i c e s ; i ] ;
98 end
99 end

The solution obtained is x = [1, 13/42, 1/6, 2/21, 1/21, 1/84, 0, 11/6] which is the
same described by Vigoda in [23].
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Matlab code for solving LP2

1 %LINEAR PROGRAM, minimizes f ( x ) s t . M∗x<=t , Aeq∗x=beq , lb<=x<=
ub

2

3 M = [ ] ;
4 k=7;
5 %inc=number o f v a r i a b l e s ; k v a r i a b l e s p i and alpha
6 i n c=k+1;
7 %so l Vigoda = [ 1 ; 13/42 ; 1/6 ; 2/21 ; 1/21 ; 1/84 ; 0 ; 1 1 / 6 ] ;
8 %so l Perarnau = [ 1 ; 185/616; 1/6 ; 47/462; 9/154 ; 2/77 ; 0 ;

16 1/88 ] ;
9

10 %DELTA = 1
11 f o r i =1:k
12 f o r j=i : k
13 eq = ze ro s (1 , inc ) ;
14 eq (1 , i ) = i ;
15 eq (1 , i +1) = − i ;
16 eq (1 , j ) = eq (1 , j ) + j −1;
17 eq (1 , j +1) = eq (1 , j +1)−( j−1) ;
18 eq (1 , inc ) = −1;
19 i f i ˜= 1 | | j ˜=2
20 M = [M; eq ] ;
21 end
22 end
23 end
24

25 %DELTA = 2
26 f o r i =1:k
27 eq = ze ro s (1 , inc ) ;
28 eq (1 , 1 ) =2;
29 eq (1 , i ) =2∗( i −1) ;
30 i f (2∗ i+1 <= k )
31 eq (1 ,2∗ i +1)=1;
32 end
33 eq (1 , inc ) = −2;
34 i f i ˜= 3
35 M = [M; eq ] ;
36 end
37 end
38

39 %Case c=sigma ( v ) , tau ( v )
40 f o r b2=1:6
41 f o r b1=1:6−b2
42 B=b1+b2 ;
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43 eq = ze ro s (1 , inc ) ;
44 eq (1 ,B) = (B−b2 ) ;
45 eq (1 , b1 ) = b1 ;
46 eq (1 , inc ) = −2;
47 M = [M; eq ] ;
48 end
49 end
50

51 [ s1 , s2 ] = s i z e (M) ;
52 t1 = −1 ∗ ones ( s1 , 1 ) ;
53

54 %p i ’ s are dec r ea s ing
55 f o r i =1:k−1
56 eq = ze ro s (1 , inc ) ;
57 eq (1 , i +1) = 1 ;
58 eq (1 , i ) = −1;
59 M = [M; eq ] ;
60 end
61

62 %Addit iona l c o n s t r a i n t s
63 f o r i =1:k−1
64 eq = ze ro s (1 , inc ) ;
65 eq (1 , i ) = i ;
66 M = [M; eq ] ;
67 end
68

69 f o r i =1:k−1
70 eq = ze ro s (1 , inc ) ;
71 eq (1 , i ) = i −1;
72 M = [M; eq ] ;
73 end
74

75 f o r i =1:k−1
76 eq = ze ro s (1 , inc ) ;
77 eq (1 , i ) = i −2;
78 M = [M; eq ] ;
79 end
80

81 t = [ t1 ; z e r o s (k−1 ,1) ; ones (k−1 ,1) ;1/3∗ ones (k−1 ,1) ;2/9∗ ones (k
−1 ,1) ] ;

82 f = ze ro s ( inc , 1 ) ;
83

84 f ( inc , 1 ) = 1 ;
85 Aeq = ze ro s (3 , inc ) ;
86 Aeq (1 , 1 ) =1;
87 Aeq (2 , 3 ) =1;
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88 Aeq (3 , 7 ) =1;
89 beq = [ 1 ; 1 / 6 ; 0 ] ;
90 lb = ze ro s ( inc , 1 ) ;
91 ub = ones ( inc , 1 ) ;
92 ub( inc , 1 ) =100;
93

94 x = l i n p r o g ( f , M, t , Aeq , beq , lb , ub ) ;
95

96 t i g h t i n e q = 0 ;
97 i n d i c e s = [ ] ;
98 t o l = exp(−15) ;
99 A = M∗x + ones ( s i z e (M, 1 ) ,1 ) ;

100 f o r i =1: s i z e (A, 1 )
101 i f abs (A( i ) ) < t o l
102 t i g h t i n e q = t i g h t i n e q + 1 ;
103 i n d i c e s = [ i n d i c e s ; i ] ;
104 end
105 end

The solution obtained is x = [1, 185/616, 1/6, 47/462, 9/154, 2/77, 0, 161/88], which
is the same as the one obtained by Delcourt et al. in [5].
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