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Abstract

Predicted in 1916 by Albert Einstein in his theory of general relativity, gravitational waves
are now at the heart of modern astrophysics. Created in some of the most energetic events
in the universe, such as binary black hole collisions, neutron star collisions or the big bang,
this ripples of space time offer a completely new spectrum for the study of the universe,
possibly allowing scientists to get an insight on previously unseen phenomena.

In this context, numerical relativity becomes important as a tool to simulate these
high-energy systems and calculate the resulting gravitational waves. As we wait for the
new generation of laser interferometers, the field has to find ways to keep up with the
increasing demand in accuracy. It is therefore important to study and tackle all the pos-
sible sources of error that the simulations might have.
One of the simplifications numeral relativity codes usually do is to consider the super-
massive bodies isolated in an otherwise massless non-expanding universe (a Minkowski
background). Although it is a fairly good approximation, it is still physically inaccurate
and a potential source of error.

This work aims to start exploring the possibility of new cosmological backgrounds
for black hole simulations. Specifically, we consider a particular metric, the Friedmann-
Lemaître-Robertson-Walker cosmology, and provide a full guided development on how
to adapt a state-of-the-art numerical relativity code, the Einstein Toolkit, to use that
metric as a background for black hole simulations. We then proceed to show results from
simulations we performed using that specific theoretical development.

Keywords— Numerical Relativity, Gravitational Waves, Einstein Field Equations, FLRW
metric, Friedmann-Lemaître-Robertson-Walker metric, Expanding Cosmology , Physics, General
Relativity, Numerical Calculus, Black Hole, Black Hole Binaries
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1 INTRODUCTION

1 Introduction

Predicted in 1916 by Albert Einstein in his theory of general relativity, gravitational waves are
now at the heart of modern astrophysics. Created in some of the most energetic events in
the universe, such as binary black hole collisions, neutron star collisions or the big bang, this
ripples of space time offer a completely new spectrum for the study of the universe, possibly
allowing scientists to get an insight on previously unseen phenomena [12,13]. Their non-matter-
interactive nature allows them to carry unaltered information from the edges of the universe,
making them essential to explore places where electromagnetic waves and particles cannot travel.

Gravitational waves were first observed in 1974, when Russell Alan Hulse and Joseph Hooton
Taylor discovered a pulsar-star binary system (later known as the Hustle-Taylor binary). By mea-
suring the change in the period of the binary’s orbit over almost a decade, they determined that
that change was produced by the radiation of gravitational waves (and the consequent loss of
energy), indirectly detecting gravitational waves for the first time, earning them the physics No-
bel prize in 1993.
The first direct observation of gravitational waves came on September 14, 2015, as a result of
the Laser Interferometer Gravitational-Wave Observatory (LIGO) project [37, 49]. This event,
GW150914, represented a milestone for the field of astrophysics and a hole new realm of possibil-
ities to explore. Since then, LIGO has provided more than 10 detections and it is still improving.
It is expected to get to design sensitivity in 2020. Moreover, the Laser Interferometer Space
Antenna (LISA) project [19], the space-based counterpart of the ground-based detector LIGO,
is supposed to start collecting data in less than 20 years. Both of this future events will provide
a very substantial increase in sensitivity, allowing scientists to observe events that are further
away and/or less energetic.
Other interferometers, such as Virgo [14] and GEO [51], will also be improving and providing
more accurate detections of gravitational waves.

The theory of general relativity predicts that gravitational waves should serve essentially as
a physical fingerprint for each gravitational event, allowing us to deduce the fundamental pa-
rameters of the original system from the detections [11]. But the theory of General Relativity ,
as beautifully simple and elegant as it may seem, is a very complex system of ten coupled and
non-linear four-dimensional partial differential equations. Therefore it can only be solved for
very specific and highly symmetric systems. Black hole and star binaries are not among those,
thus numerical integration techniques are needed to model the systems, evolve them in time and
finally obtain the desired gravitational waves.
In order to process the raw data provided by LIGO, find gravitational wave events inside the
live stream of data and be able to separate noise from actual detections, a gravitational wave
template bank has to be created. This catalogue should cover a wide enough range of initial
parameters so that every LIGO-detectable event could be found by searching for correlations
between the raw data and the templates in the catalogue of waves.

1



1 INTRODUCTION

This catalogue is being created by a handful of research groups [41, 44, 56, 70], but the pre-
dicted increase in sensibility that will be provided in the near future by both design-sensibility
LIGO and LISA are pushing the need for more accurate simulations and a wider parameter
space. With that objective in mind, new methods need to be developed.

One of the simplifications numeral relativity codes usually do is to consider the supermassive
bodies isolated in an otherwise massless non-expanding universe (a Minkowski background). Al-
though it is a fairly good approximation, it is still physically inaccurate and a potential source
of error.
This work aims to start exploring the possibility of new cosmological backgrounds for black hole
simulations. Specifically, we consider a particular metric, the Friedmann-Lemaître-Robertson-
Walker cosmology, and provide a full guided development on how to adapt a state-of-the-art
numerical relativity code, the Einstein Toolkit, to use that metric as a background for black hole
simulations. We then proceed to show results from simulations we performed using that specific
theoretical development.

This essay will be structured in the following way: We will first have a look the state of
numerical relativity today from a theoretical point of view, i.e how the Einstein equations are
transformed into a Cauchy problem and all the difficulties that arise when doing it. We will then
introduce the Cactus Framework and the Einstein Toolkit, the open-source state-of-the-art code
that we have used to produce our simulations. Finally, we will present our work, both theoretical
and practical aspects, as explained in the previous paragraph.

2



2 THEORETICAL BACKGROUND

2 Theoretical background

The aim of this section is to set the basis of numerical relativity, starting from the 3+1 foliation
of space-time, the projection of Einstein equations into this decomposed geometry to obtain the
ADM equations and the further modification of this equations to obtain the BSSNOK formula-
tion that is currently in use. We will also discuss the choice of gauge equations, as this notion
will be important for later sections.
We will not discuss however the mathematical background necessary to follow this chapter, in-
cluding very important differential geometry concepts as Lie and Covariant derivatives, Christof-
fel symbols, etc... For a formal numerical relativity-oriented overview of this mathematical
background please refer to [39].
Neither will we discuss in detail basic concepts of General Relativity such as the Einstein field
equations.

2.1 Geometrized Unit system

Throughout this work, and most naturally for general relativity, we will take as standard the
Geometrized Unit System [54]. This system consists in taking

c = G = kB = 1 (1)

where c is the speed of light, G is Newton’s gravitational constant and kB is Boltzman’s constant.
A full conversion table can be found in [54].

This system is practical for two main reasons:
The obvious reason is that in general relativity those constants appear in almost every equation,
and therefore setting them to unity allows for a more elegant theoretical development of the
physics.
What is a little more subtle but arguably more important is that this systems makes both mass,
length and time have units of length. This is important because it will make our simulations
"scalable" and reduce our parameter space. In short, the metric for a non-spinning black hole
in vacuum (a Swartzschild metric) will not depend on how big the black hole is (on his mass).
We will always set the total mass of our system to unity, and then the results can be scaled
accordingly with each particular mass and all quantities (time, space, ...) will scale with it. I.e.
by evolving a single space-time we will get the solution for all the equivalent systems no matter
the mass.
In fact, most of the literature gives both time and space measures in units ofM, which is nothing
more than the total mass of the system.

2.2 3+1 Decomposition and ADM equations

Probably one of the most elegant features of general relativity is the fact that it unifies space and
time into a single 4-dimensional space-time where all four dimensions are treated equally. This

3



2 THEORETICAL BACKGROUND

is not very practical however when numerically implementing these equations, and it is therefore
imperative to decouple one of the dimensions from the other three so that numerical integration
is possible. This process is called 3+1 decomposition and vastly dominates the literature, thus
there are plenty of texts that develop it. We will be following [73], [15], [25] and [39].
Although in theory any of the four dimensions could be separated from the others, historically
one distinguishes time over the three spatial dimensions, making for the most intuitive and easily
treatable approach possible. Space-time is therefore sliced into a set of fully space-like hypersur-
faces embedded into the 4-dimensional space-time (see Figure 11).
It needs to be noted that not every space-time can be sliced in this manner: The ones that
can are called "globally hyperbolic", and are characterised by not having closed time-like curves
(they don’t allow time travel to the past). We will from now on assume that all the space-times
considered fulfil this condition, which is true for most of the space-times of interest.

2.2.1 The lapse function

Given one of this foliations {Σt}t≥0, we can parameterise it with a parameter t such that every
hypersurface is defined as a level surface of t. Given a hypersurface Σt, the gradient 1-from dt

and it’s metric dual vector ~∇t are both normal to Σt. We can then define an unitary normal
vector n as

n = ±(~∇t · ~∇t)−1/2~∇t such thatn · n = −1

It can be shown that both ~∇t and n are in fact time-like. They are of course collinear by
construction and we can write

n = α~∇t with α = ±(~∇t · ~∇t)−1/2

α is called the lapse function, and can be shown to be the rate between the proper time τ of
an Eulerian observer (defined as an observer with 4-velocity equal to n) and the time coordinate
t:

dτ = α dt (2)

2.2.2 The shift vector

Given a particular coordinate system for the foliation, we can also define ∂α = (∂t,∂i) as the
natural vector basis in the 4-dimensional space-time associated with the coordinates (xα), such
that

∂t :=
∂

∂t
∂i :=

∂

∂xi

It can be shown that ∂t is tangent to the lines of constant spatial coordinates and that ∂i define
a base for Σt’s tangent space Tp(Σt). ∂t is called the time vector, and generally differs from n.
It can be shown that

1Figure taken and modified from [39]
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2 THEORETICAL BACKGROUND

Figure 1: Foliation of Space-time into space-like hypersurfaces.

〈dt,∂t〉 = 〈dt, αn〉 = 1

This property allows us to uniquely choose a space-like vector (tangent to Σt) β = βi∂i such
that

∂t = αn+ β (3)

Because n is time-like and β is space-like, this is actually a 3+1 decomposition of δt.
β is called the Shift vector and represents the relative velocity between the Eulerian observers
and the lines of constant spacial coordinates.
It must also be noted that the normal vector n can be written in terms of α and β and the
coordinates using equation (3):

nµ = (1/α,−βi/α) (4)

2.2.3 Decomposition of the metric and choice of coordinates

As we have seen, given a space-time gµν , a space-like foliation {Σt} and a set of coordinates (xα),
we can uniquely determine a scalar field α = α(t, xi) and a space-like vector field β = β(t, xi).
The converse is also locally true in the sense that given a starting hypersurface Σ0 with local
metric γij and fields α and β, both the 4-dimensional metric gµν and the foliation {Σt} can be
uniquely determined:
The metric will be given by

ds2 = (−α2 + βiβ
i)dt2 + 2αβidx

i + γijdx
idxj (5)

and the "next" hypersurface of the foliation Σδt will be constructed by Lie transporting Σ0 along
the vector αn.

This means that a choice for {α,β, γij} is effectively a choice for our space-time metric,
our foliation of this space-time and a coordinate system on each hypersurface of the foliation.

5



2 THEORETICAL BACKGROUND

This approach will be the one used in the numerical relativity codes to set up and evolve initial
conditions.
The choice for α and β is of course not unique as we can reparametrize the coordinate system to
obtain the same overall 4-dimensional metric. This means α and β offer a choice of coordinates,
that is extremely important in numerical relativity. They are called Gauge Variables and we
will discuss the importance of their choice in sec.2.5.
Given {α,β, γij}, the explicit forms for the four-dimensional metric and the normal vector are:

gµν =

(
−α2 + βkβ

k βi

βj γij

)
(6)

gµν =

(
−1/α2 βi/α2

βj/α2 γij − βiβj/α2

)
(7)

nµ =
(
1/α,−βi/α

)
, nµ = (−α, 0) , nµnµ = −1 (8)

Is is also important to note that because of this decomposition of the metric we will introduce
some notation mechanics that will make work easier:

• Four-dimensional tensors will have Greek indexing (Gµν , etc...) and the manipulation of
indexes will be done using the four-dimensional metric gαβ .

• Three-dimensional tensors will have Latin indexing (βi, etc...) and the manipulation of
indexes will be done using the three-dimensional metric γij .

We will assume this mechanics and will not be explicit about them from now on.

2.2.4 Projection operators and Extrinsic Curvature

In order to go from the raw Einstein equations to their 3+1 from, we will need to disentangle
time from space by projecting them into the normal and spatial components. To do that, we
will define our projection operator

Pµν := δµν + nµnν (9)

Defined this way, Pµν is the projection operator into tangent space of the hypersurface Σt. Keeping
in mind that nµnµ = −1, it is easy to see that, for any vector vν ,

(Pµν v
ν)nµ = 0 , (10)

i.e that the normal component of the projected vector is null, which proves that Pµν indeed
projects any vector into Tp(Σt) since normal and tangent spaces are orthogonal complements.
This operator can also be easily extended to project arbitrary-order tensors by simply contracting
all free indices one at a time. For instance, we define for two-covariant tensors

PTµν := P εµP
ρ
ν Tερ . (11)

6



2 THEORETICAL BACKGROUND

Using the projection operator, we can also define the Extrinsic Curvature tensor as
follows:

Kµν := −P (∇µnν) = −∇µnν − nµnε∇εnν . (12)

where ∇µ is the covariant derivative that can be written using Christoffel symbols as

∇µnν = ∂µnν − Γεµνnε . (13)

Kµν can be shown to be both symmetric and purely spatial, and for that reason we will only
consider it’s spatial components Kij .

This tensor will be extremely important for the ADM formulation, and must not be confused
with the Intrinsic Curvature tensor Rij which is nothing more that the three-dimensional
Riemann tensor defined in terms of γij . The intrinsic curvature is defined purely with the three-
dimensional metric and therefore is intrinsic to the metric in the sense that it does not depend
on how the surface is embedded in the four-dimensional space-time.
The extrinsic curvature, on the other hand, reveals how the surface curves into the four-dimensional
space-time. A very intuitive way of looking at it is to look at how it has been defined: If n is
the normal vector field, defined in every point of the surface, ∇µnν quantifies the change of the
normal vector when we move over the surface, which in turn is equivalent to quantify how the
surface bends in the four-dimensional space-time. Kµν is not other than the spacial projection
of this quantity.
It must be noted that this way of defining the extrinsic curvature is highly simplistic and can
appear as arbitrary. This is not the case, as this definition derives from a more formal approach
that can be found in [39] and that involves the Weingarten map and the Second Fundamental
Form of the surface.

By operating on (12) one can show that

Kij :=
1

2α
(−∂tγij +Diβj +Djβi) (14)

and from (14) we deduce that

∂tγij = −2αKij +Diβj +Djβi (15)

Using the concept of Lie derivative, equation (15) can be rewritten as

(∂t −£β) γij = £αnγij = −2αKij (16)

The process can be found in [15]. Although equation (16) is more elegant, the evolution of the
metric will be coded using (15). With this equation, we only need an equation for the evolution
of Kij complete the evolution system. That equation will come from the Einstein field equations.

7



2 THEORETICAL BACKGROUND

2.2.5 ADM equations

The rest of the equations we need to close the system will come from the Einstein field equations

Gµν = 8πTµν (17)

where Tµν is the Stress-Energy tensor (holding all the mass and energy information) and Gµν is
the Einstein tensor (holding all the geometric information). Tµν depends on the configuration of
matter and energy, and will be further developed in sec.2.6 and Gµν is defined as

Gµν = Rµν −
1

2
gµνR . (18)

Here Rµν and R are respectively the four-dimensional Ricci tensor and scalar (both depend ex-
clusively on the four-dimensional metric).

By projecting this equations using the normal vector and the projection operator, we can
divide them in three groups:

• Fully temporal projection

nµnν (Gµν − 8πTµν) = 0 (19)

• Mixed projections

Pnµ (Gµν − 8πTµν) = 0 (20)

• Fully spatial projections

P (Gµν − 8πTµν) = 0 (21)

This three expressions are then developed to obtain the final equations. The development can
be interesting as it uses the Gauss,Ricci and Codazzi equations, but it is also long and can be
found in numerous text so we will take the freedom of not reproducing it here. To whoever can
be interested, refer to [39] for the full development. We will simply give the resulting equations
here:

• From the fully temporal projection (19), we get

R(3) +K2 −KijK
ij = 16πu (22)

where R(3) is the Riemann scalar derived from the three-dimensional Riemann tensor, K
is the trace of the extrinsic curvature and u is the energy density as measured by Eulerian
observers, defined as

u := nµnνT
µν (23)

8



2 THEORETICAL BACKGROUND

• From the mixed projections (20), we get

Dj

[
Kij − γijK

]
= 8πji (24)

with j is the momentum flux of matter as measured by Eulerian observers and defined as

ji := P iµ (nνT
µν) (25)

• From the fully spatial projections (21) we get

∂tKij = βk∂kKij +Kik∂jβ
k +Kjk∂iβ

k

−DiDjα+ α
[
R

(3)
ij − 2KikK

k
j +KKij

]
+ 4πα [γij(S − u)− 2Sij ]

(26)

where Sij is the stress tensor of matter defined as

Sij = PTij (27)

and S is it’s trace.
Like for eq.(15), (26) can be rewritten using the Lie derivative and takes the form

£αnKij = −DiDjα+ α
[
R

(3)
ij − 2KikK

k
j +KKij

]
+ 4πα [γij(S − u)− 2Sij ] .

(28)

First, we should note that (22) and (24) are a set of four equations that do not have any tem-
poral derivatives. Indeed they are not evolution equations for our system and are instead called
constraints as they should be fulfilled by the system at any given time. Eq.(22) and eqs.(24)
are called respectively Hamiltonian (or Energy) and Momentum constraints, and show that not
every arbitrary combination of values for {γij ,Kij , Tµν} is a possible Einstein space.
The six remaining equations (26) contain the missing dynamics of our system and coupled with
eqs.(15) they form a closes system of evolution equations for the geometric variables of the
system. They are know as Arnowitt-Deser-Misner (ADM) equations and must be paired with
evolution equations for Tµν (that will be discussed in sec.2.6). Although the equations bear
Arnowitt, Deser and Misner’s name for their work in 1962 [22], the current state of the equations
was adopted later in [82]. The original equations in [22] used the momentum conjugate to the
metric πij instead of the extrinsic curvature.

It is also worth noting that, although the Hamiltonian and Momentum constraints should in
theory be calculated at every step to confirm that they hold, by using the Bianchi identities we
can actually prove that the evolution equations preserve the constraints, i.e that if the constraints
hold for a system {γij ,Kij , Tµν} they will automatically hold for that same system at any point
in time provided it has been evolved using the ADM equations.

9



2 THEORETICAL BACKGROUND

In practice, we will solve the constraints to find the initial conditions of our system (which is not
easy as we will see in sec.2.4) and then calculate them at every iteration (not solve them!) as an
indicator of how accurate our evolved system is.

2.3 Conformal decomposition and BSSNOK formulation

Although the ADM equations (16) and (28) are enough to evolve our system, the Cauchy prob-
lem needs initial data to evolve from. This is not a trivial problem as will be discussed by section
2.4 and demands a very important change of variables in the evolution equations.
This process will be called conformal decomposition and was introduced in 1944 by Lich-
nerowicz [48] as a tool for solving the initial data problem. Then, in the 1970’s York [77, 79]
showed that conformal decompositions are also important for the time evolution problem. It is
now know to be crutial for the numerical implementation of the solutions, as we will explain in
section 2.3.1.
Although we will not go into mathematical detail, we will try to expose the most significant
aspects of the conformal tranformations like the notion of hyperbolicity. We will also give the
original conformal evolution equations, as well as further developments made by Shimata and
Nakamura in 1995 [67] and by Baumgarte and Shapiro in 1999 [24] to obtain the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) evolution scheme that we use in our simulations. A full
mathematical development of this section can be found in [39].

2.3.1 Hyperbolicity of the evolution equations

Hyperbolicity is a concept general to all PDE systems concerning existence and stability of
solutions, but that plays an important role in numerical relativity as we will explain in this
section. A more detailed description of the concept of hyperbolicity can be found in [45].
Consider a one-dimensional (the concept can be generalised to higher dimensions), first-order
(any system can be made first-order by adding variables) and linear system of PDEs

∂tui =
∑
j

Mij∂xuj = qi i ∈ {1, ..., n} , (29)

or in matrix form
u+M∂xu = q . (30)

The system is said to be hyperbolic if all of M ’s eigenvalues are real functions, and strongly
hyperbolic if there also exist a complete set of eigenvectors (if not, the system is called weakly
hyperbolic).
In a physical sense, hyperbolicity implies that the system is causal and local. It can also be
mathematically proven that a strongly hyperbolic system is well posed in the sense that given a
set of initial conditions the solution of the system exists, is unique, and that small perturbations
in the initial data result only in small changes in the solution.

As we have mentioned before, the ADM equations 16 and 28 as given here are not in the
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original form given by Arnowitt, Deser and Misner in [22] but rather in a revisited form given
by York in [82].
Although the most visible change is the replacement of the canonical conjugate momentum πij

by the extrinsic curvature Kij , there is another minor but important change to the equations: If
we rewrite the original ADM equations with the extrinsic curvature, we would obtain an equation
for Kij that differs from ours (28) by a multiple of the Hamiltonian constraint.
Indeed, the fact that the system has constraints (basically expressions of our variables that
amount to zero) implies a non-unicity of the evolution equations. We can always add or subtract
any multiple of the constraints to obtain another evolution scheme that has the same solutions
than the original one as long as the constraints hold. However, the complete set of solutions
is not the same for both sets of evolution equations: The solutions only coincide in a subset
of solutions, called the constraint hypersurface, where the constraints hold (i.e. the set of
solutions with physical meaning).

If we were solving the system analytically, both sets of equations would therefore be equiva-
lent. As this is impossible for the majority of systems of interest, we are forced to consider how
numerical error will affect our equations. In particular, we are bound to ask ourselves how small
violations of the constraints (inevitable in numerical simulations) might affect the final solution.
In other words, how different is a solution that is slightly not in the constraint hypersurface to
another that is.
Since the constraints have second derivatives of the metric, adding or subtracting multiples of
those constraints affects greatly the structure of the differential equations, changing the system
from hyperbolic to elliptic, or even from well-posed to ill-posed. It is then important to consider
the way the evolution equations are written. Which is the best way to write them is still an open
problem, but throughout this section we will try to give a taste on how this problem has been
treated so far.

2.3.2 Conformal Decomposition

The conformal decomposition as presented by Lichnerowicz and York [48, 77, 79] is at core a
transformation in the spatial metric of the form:

γij = ψ4γ̃ij (31)

where γ̃ij is called the conformal metric and is considered known. The transformation is said
to be conformal because it can be shown to preserve angles.
In addition to this change, the extrinsic curvature is also split into it’s trace and it’s traceless
part:

Kij −→

{
K = γijKij

Aij := Kij − 1
3γijK

(32)

11
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We will also develop a conformal transformation for the traceless extrinsic curvature Aij . In
fact, two versions of this transformation are present in the literature:

Ãij = ψ−4Aij (33)

Âij = ψ−10Aij . (34)

Both transformations are useful and will be used for different purposes: Ãij is used while consid-
ering the conformal transformation of the evolution equations, while Âij is used for computing
initial data for black hole binaries as we will see in sec.2.4.

The original conformal transformation chooses

ψ =

(
γ

f

)1/12

(35)

where fij is a background metric and

γ = det(γij) and f = det(fij) . (36)

A background metric is a metric chosen such that it is Riemannian like γij (with full positive
signature) and such that

∂fij
∂t

= 0 . (37)

This definition of the background metric can seem pointless, but it is necessary to make the
conformal factor ψ coordinate independent. The resulting coordinate independence makes ψ a
scalar tensor field [39]. Although no other restriction is generally imposed to fij , most imple-
mentations consider the background metric to be flat, and we will do so from now on. We can
also see that by construction we have

det(γ̃ij) = f . (38)

With this decompositions, the ADM equations 16 and 28 and the constraints become the following
system: (

∂

∂t
−£β

)
ψ =

ψ

6

(
D̃iβ

i − αK
)

(39)

(
∂

∂t
−£β

)
γ̃ij = −2αÃij −

2

3
D̃kβ

kγ̃ij (40)

(
∂

∂t
−£β

)
K = −ψ−4

[
D̃iD̃

iα+ 2D̃ilnψD̃iα
]

+ α
[
4π (u+ S) + ÃijÃ

ij +K2/3
]

(41)

12
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(
∂

∂t
−£β

)
Ãij = −2

3
D̃kβ

kÃij + α

[
KÃij − 2γ̃klÃikÃjl − 8π

(
ψ−4Sij −

1

3
Sγ̃ij

)]
+ ψ−4

{
−D̃iD̃jα+ 2D̃ilnψD̃jα+ 2D̃j lnψD̃iα

+
1

3

(
D̃kD̃

kα− 4D̃klnψD̃kα
)
γ̃ij

+ α

[
R̃ij −

1

3
R̃γ̃ij − 2D̃iD̃j lnψ + 4D̃ilnψD̃j lnψ

+
2

3

(
D̃kD̃

klnψ − 2D̃klnψD̃klnψ
)
γ̃ij

]}
(42)

D̃iD̃
iψ − 1

8
R̃ψ +

(
1

8
ÃijÃ

ij − 1

12
K2 + 2πu

)
ψ5 = 0 (43)

D̃jÃ
ij + 6ÃijD̃j lnψ −

2

3
D̃iK = 8πψ4ji (44)

Where eqs (43) and (44) are the constraints of the system and can be rewritten using Âij as

D̃iD̃
iψ − 1

8
R̃ψ +

1

8
ÂijÂ

ijψ−7 +

(
2πu− 1

12
K2

)
ψ5 = 0 (45)

D̃jÂ
ij − 2

3
ψ6D̃iK = 8πψ10ji (46)

2.3.3 BSSN formulation

The Baumgarte-Shapiro-Shibata-Nakamura (BSSN) evolution scheme is a conformal trans-
formation of the ADM equations that further improves the conformal tranformations used by
Lichnerowicz and York.
This formulation was developped by Shimata and Nakamura in 1995 [67] and revisited by Baum-
garte and Shapiro in 1999 [24] and presents a well-behaved system of equations (unlike the ADM
equations). A review on it’s hyperbolicity can be seen in [65].

The BSSN formulation diverges from the original conformal tranformation in two aspects:

• The conformal factor ψ i replaced by

φ = lnψ =
1

12
lnγ . (47)

• Three auxiliary variables are introduced to make the system hyperbolic in nature:

Γ̃i = γ̃jkΓ̃ijk = −∂j γ̃ij (48)

where Γ̃ijk are the Crhistoffel symbols of the conformal metric and the second equality is
only true if γ = 1 (which it is by construction).
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With these two new variables, the evolution equations become

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i (49)

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k (50)

∂tK = −DiD
iα+ α

(
ÃijÃ

ij +
1

3
K2

)
+ 4πα (u+ S) + βi∂iK (51)

∂tÃij = e4φ
[
− (DiDjα)TF + α

(
RTFij − 8πSTFij

)]
+ α

(
KÃij − 2ÃikÃ

k
j

)
+ βk∂kÃij + Ãik∂jβ

k + Ãkj∂iβ
k − 2

3
Ãij∂kβ

k

(52)

∂tΓ
i = 2Ãij∂jα+ 2α

(
Γ̃ijkÃ

kj − 2

3
γ̃ij∂jK − 8πγ̃ijSj + 6Ãij∂jφ

)
+ βj∂jΓ̃i − Γ̃j∂jβ

i +
2

3
Γ̃i∂jβ

j +
1

3
γ̃kiβj,jkγ̃

kjβi,kj

(53)

where ∂i ≡ ∂/∂xi is the covariant derivative associated with the background metric fij (which
is flat) and Di is the covariant derivative associated with the non-conformal spatial metric γij ,
which can be calculated using the covariant derivative associated with γ̃ij by using the following
relation between Christoffel symbols

Γkij = Γ̃kij + 2
(
δki ∂jφδ

k
j ∂iφ− γ̃ij γ̃kl∂lφ

)
. (54)

Because we have added the variables Γ̃i, we also need to add eqs.(48) as a constraint.

Other conformal factors have been also discussed [28, 53] and have been shown to improve
the behaviour of the numerical solution near the singularity. Some of this choices include

χ = γ−1/3 (55)

and
W = γ−1/6 . (56)

In our codes we will use (55), but because the equations are very similar to the BSSN equations
for φ we will not write them here.
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2.4 Initial data

Finding initial data for complex systems is not trivial as we have already commented: On one
hand, you need to solve the constraint equations which is already a challenge since in a system
of nonlinear and coupled equations. On the other hand, you need the solution to have physical
meaning, i.e. to yield a metric that describes the system you are aiming to study.
Most of the methods involve conformal decompositions of the variables as shown in 2.3. The
usage of conformal methods was introduced in 1944 by Lichnerowicz [47] and then extended
by Choquet-Bruhat in 1956 and 1971 [30, 35], by York and Ó Murchadha in the 1970’s with
the Conformal transverse-traceless method [59,78,80,83] and in the 2000’s by York and Pfeiffer
with the so-called Thin Sandwich method [62, 81]. Other approaches not involving conformal
decompositions have also been found, but are not as popular in the literature. Therefore we will
stick to conformal methods. Recent reviews of the methods can be found in [23,39,61].
Although we will not give a full development of the methods, we will try to give an approximate
idea on how this methods usually work.

The basic idea is to decompose the metric variables as seen in 2.3, but using the alternative
conformal transformation for the traceless extrinsic curvature. We will then have

γ̃ij = ψ−4γij

K = γijKij

Âij = ψ10Aij = ψ10

(
Kij −

1

3
γijK

) (57)

We will also further decompose Âij with a general algebraic result that states that any trace-free
symmetric tensor can be decomposed as

Âij = Â∗ij + D̃iWj + D̃jWi −
2

3
γ̃ijD̃kW

k (58)

where Â∗ij is a traceless zero-divergence tensor, Wi is a vector and D̃i is the covariant derivative
associated with the conformal metric.
With this decomposition, the hamiltonian constraint becomes

D̃2ψ − 1

8
ψR̃− 1

12
ψ5K2 +

1

8
ψ−7ÂijÂ

ij = −2πψ5u (59)

where R̃ is the Ricci scalar associated with the Riemman tensor of the conformal 3-metric.
The momentum constraint becomes

D̃2W i +
1

3
D̃iD̃jW

j + R̃ijW
i − 2

3
ψ6D̃iK = 8πψ10ji (60)

To solve this equations, {γ̃ij , K , Â∗ij} are given and {ψ , Wi} are the variables to be found.
Although this two equations should be solved to find initial conditions, they can be heavily
simplified with some simple and popular assumptions: The most popular one is to consider the
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conformal metric to be flat (this is called conformal flatness) and consists on taking

K = 0

γ̃ij = ηij .
(61)

With this assumption, the constraints for vacuum (no matter) become

∇2ψ +
1

8
ψ−7ÂijÂ

ij = 0

∇2W i = 0
(62)

Then the second equation can be easily solved to find W i, and finally Âij is reconstructed to
solve for ψ.

As the simplest example of initial conditions, we will consider assume conformal flatness (61
and a moment of time-symmetry, i.e. Kij = 0. With this assumptions, the momentum constraint
is trivially satisfied and the hamiltonian constraint becomes the Laplace equation

∇2ψ = 0 . (63)

The most simple solution would be ψ = 1, which yields the Minkowski metric

γijdx
idxj = dx2 + dy2 + dz2 . (64)

The next possible solution would be
ψ = 1 +

a

r
(65)

with a a constant. For a = m/2, the spatial metric with spherical coordinates becomes

γijdx
idxj =

(
1 +

m

2r

)4 (
dr2 + r2dθ2 + r2sin2θdφ

)
. (66)

This is indeed the spatial Schwarzschild metric in isotropic coordinates, which is the physical
solution for non-spinning black hole in vacuum.
Because the Laplace equation is linear, we could deduce the initial data for multiple non-spining
black holes in vacuum by superposition:

ψ = 1 +
∑
i

mi

2‖r − ri‖
(67)

2.5 Gauge equations

In section 2.2 we introduced the gauge variables α (lapse) and β (shift) and their connection to
coordinate choice. We also noted that, although gauge variables appear extensively in the 3+1
formulation of the Einstein equations, those equations don’t explain how to choose them or limit
in any way the choices we can make. The values for gauge variables are indeed a free choice,
which in turn gives us a free choice of coordinates to solve our system. This illustrates perfectly
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the coordinate-independent aspect of general relativity theory.

This freedom of choice comes obviously with the question: what actually is the best choice
for our gauge variables? A lot of effort has been put over the years to find an answer to this
question, and some solutions have been proved to work very well. But the question is still open,
specially now that computationally more complicated systems want to be solved. I will not
attempt here to give a full detailed explanation on all the gauges that have been tested over the
years. I will instead try to give an intuitive explanation on why this is an important issue and
how the gauge that our code uses work.
To find a full explanation and development of the most famous gauges, [39] gives a good overview
and some examples of where those gauge conditions may be used. Other texts giving reviews of
the different gauges choices can be found in [25,46,68,82].

2.5.1 Geodesic gauge conditions

The most intuitive choice one could make would probably be to take

α = 1 (68)

βi = 0 . (69)

This choice is intuitive because from equation (2) we get that the parametric time (the time in
the simulation) becomes the proper time of Eulerian observers and from the definition of the
shift we can see that Eulerian observers also become lines of constant spatial coordinates. In
fact, Eulerian observers become geodesic lines in this choice of coordinates, which gives the name
"geodesic gauge".
In practice, this geodesic gauge conditions give a very bad performance as they don’t behave well
in presence of singularities (rendering them unusable for black hole computations). The reasons
why geodesic conditions don’t work for singularities are different in nature for lapse and shift
and therefore we will treat them differently.

2.5.2 Lapse moving puncture condition

The most simple case of spacetime with presence of singularity is of course the Schwarzschild
metric. If we consider the initial conditions found in 2.4 for the Schwarzschild metric (66) and
take the geodesic gauge conditions, we get an initial metric

ds2 = dt2 +
(

1 +
m

2r

)4 (
dr2 + r2dθ2 + r2sin2θdφ

)
. (70)

If we evolve this initial conditions, the code will crash at t = πm [39]. The reason is simple if we
look at the evolution of the hypersurface, given in figure 22.

As we can see, the code crashes because the hypersurface partially touches the singularity
(and therefore creates numerical NaN errors). This behaviour is common for geodesic slicing in

2Figure taken form [39].
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Figure 2: Geodesic-slicing evolution from the initial slice of Schwarzschild spacetime de-
picted in a Kruskal-Szekeres diagram. R stands for Schwarzschild radial coordinate (areal
radius), so that R = 0 is the singularity and R = 2m is the event horizon.

presence of singularities, and therefore this type of gauge cannot be used. This problem becomes
even more difficult to solve when we start considering black hole binaries, where both black holes
are moving (and therefore the punctures move too).

Several lapse conditions have been proposed over the years to solve this problem, but most
of them are based on dynamical equations for α that implement collapse of the lapse near the
punctures. Mathematically, this relies on making α equal to 0 near the punctures, piling up the
hypersurfaces close to the singularity so that it is never reached. Physically, this corresponds to
freezing Eulerian observer’s proper time near the punctures, i.e advancing the simulation only in
regions that are far away from the singularity. Indeed, we have seen in 2.2 that

dτ = αdt , (71)

so if α = 0 near some region the simulation can keep going (t increases) without really advancing
physical time in that region (τ is fixed). This behaviour can be seen in figure 33, where the same
initial conditions as in figure 2 are evolved using maximal slicing lapse conditions.

One of the most known way of obtaining this behaviour are maximum slicing lapse conditions,
which is obtained by imposing the vanishing of the mean curvature K on all the hypersurfaces
Σt. This lapse conditions work well, but are generally not used in numerical relativity because
they need an elliptic system to be solved at every iteration:

DiD
iα = α

[
4π (E + S) +KijK

ij
]

(72)

3Figure taken form [39].
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Figure 3: Kruskal-Szekeres diagram depicting the maximal slicing of Schwarzschild space-
time. R stands for Schwarzschild radial coordinate, so that R = 0 is the singularity and
R = 2m is the event horizon, whereas r stands for the isotropic radial coordinate.

The lapse conditions that are used in practice are the so-called 1+log slicing conditions,
developed in 1995 by Bona, Massó, Seidel and Stela [27]. They are a generalisation of the
harmonic lapse conditions, and have the advantage over the maximal slicing that they are
written as an evolution equation for α, which is very easily implemented. The general form for
the 1+log slicing conditions are

(∂t −£β)α = −Kα2f(α) (73)

where f is an arbitrary function. Harmonic slicing is obtained with f(α) = 1, but taking
f(α) = 2/α has been found to have stronger singularity avoidance properties and therefore it is
the one used in our code:

(∂t −£β)α = −2αK (74)

2.5.3 Shift moving puncture condition

Shift conditions have historically been less discussed than lapse conditions for the simple fact
that in many cases taking βi = 0 works just fine. Some numerical problems arise however with
the simulation of black hole systems related to grid distortions.
In an intuitive way, one can imagine that black holes "attract" coordinates towards them, distort-
ing the mesh and possibly making it singular after some evolution time. To solve the problem,
two shift conditions have historically been implemented that counter this effect.

The first and more intuitive of them is the so-called minimal distortion shift condition
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[69]. We start by defining

Σij =
1

2
γ1/2γ̃ij , (75)

which is a measure of how distorted is the mesh at a certain point. Then the condition is simply
to impose

DjΣij = 0 . (76)

This equation results in a system of coupled elliptic equations that is slow to implement. For
that reason, just as we had for the maximal slicing condition, slightly weaker but much faster
conditions have been developed and implemented instead.

The conditions used in modern code are called Gamma-Freezing or Gamma-Driver con-
ditions [16,29], because they arise from imposing

∂tΓ̃
k = 0 . (77)

They mimic the minimal distortion conditions, but are simply implemented with a set of evolution
equations for βi. In their base form, the equations are

∂tβ
i = Bi

∂tB
i = ∂tΓ̃

i − ηBi .
(78)

Over the last years this equations have been slightly modified to obtain better behaviours for
binary systems [18, 29, 40, 57, 72], notably adding advection terms. The equations we will use in
our code will be (

∂t − βj∂j
)
βi =

3

4
Bi(

∂t − βj∂j
)
Bi =

(
∂t − βj∂j

)
Γ̃i − ηBi .

(79)

where η is called damping term. This damping term can be taken constant

η = 2 , (80)

but in light of recent studies [18,40,57] it has been shown the need to make η dependent on the
metric, specially for unequal mass simulations (where one of the objects is much more massive
than the other one). This has become important since LIGO and LISA are expected to be able
to detect star-black hole binaries (that fall in this category), and therefore it is important to
increase the precision of simulations in this regard.

2.6 Relativistic Hydrodynamics

In section 2.2 we have studied the 3+1 formalism for the Einstein equations. However, the
evolution equations we found for the metric (or geometric) variables must be also coupled with
evolution equations for the stress energy tensor Tµν , which not only contains information about
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regular matter but also about the electromagnetic field.
As a consequence, the complete general treatment of this topic is long and very complicated.
However, some cases can be treated quite easily: In this section we will limit ourselves to the
case of a perfect fluid with no electromagnetic field involved. A more complete treatment on
the topic can be found in [39].

In the case of a perfect fluid, the stress energy tensor can be written simply as

Tµν = ρhvµvν + Pgµν , (81)

where

• ρ is the rest mass density,

• P is the pressure,

• h = 1 + ε+ P/ρ is the specific enthalpy,

• ε is the specific internal energy and

• vµ is the fluid 4-velocity.

The stress-energy tensor must obey two equations for the perfect-fluid case: The first one is
the vanishing of it’s spacetime divergence, given by the equation

∇µTµν = 0 . (82)

This equation is a consequence of Einstein equations (G is chosen as also having this property)
and is general to general relativity. The other equation is more specific to perfect fluids and is
the conservation of the baryon number

∇µ (ρvµ) = 0 . (83)

To solve this equations numerically, one has to perform a change of variables:

D = ρW (84)

E = ρεW (85)

Sµ = ρhuµW (86)

V i =
vi

v0
(87)

W =
√
−gv0 (88)

This change of coordinates is a modified version of the 3+1 Eulerian formulation [20, 34] (by
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Wilson [75,76]). With this formulation, the equations for matter become

∂tD = −∂i
(
DV i

)
(89)

∂tE = −∂i
(
EV i

)
− P∂tW − P∂i

(
WV i

)
(90)

∂tSi = −∂j
(
SiV

j
)

+
S0

2
∂ig00 + Sj∂iβj +

SjSk

2S0
∂igjk −

√
−g∂iP (91)

This equations will be the ones used by the code, although the resulting D, E, Si and W will
then be converted back to ρ, ε, P and vi. Moreover, this dynamical equations will be paired
with an equation of state that in the case of the perfect fluid will be

P = (Γ− 1) ρε , (92)

where Γ is the adiabatic index.
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3 An Open-Source Code for Numerical Relativity

Having understood how numerical relativity works from a theoretical point of view, it is important
that we also have a brief look at how this theory is implemented. In this section we will briefly
introduce the Cactus framework and the Einstein Toolkit, the numerical framework and code
library with which our simulations are created. This overview will be both brief and superficial,
with the intention of giving a taste on how the code works and, more importantly, acknowledging
the work and contributions of dozens of researchers that have been developing this open-source
code environment for years. References will be given for whoever wants to explore it more in
depth.

3.1 The Cactus Framework

Cactus [1,38] is an open source problem solving environment designed for scientific research and
engineer use. It has a modular structure designed to ease customisation and the sharing of code
between multiple developers in different programming languages. Cactus offers code parallelisa-
tion for running on clusters or supercomputers, but can also be run in personal computers and
even laptops for non-research oriented users.

3.1.1 Thorns and Flesh

Cactus gets its name from its design: A central program, called Flesh, that coordinates a cus-
tomizable number of application modules called Thorns, that communicate with the central
core using a set of predefined functions, variables and files. Although the Flesh is written in
Fortran, thorns can be written in multiple programming languages, including C or C++, and
run at the same time.
Thorns can be dependent or independent from each other, allowing the construction of bigger
toolkits meant to work together or isolated thorns providing more niche utilities.
When the code is built, a separate built tree (referred to as configuration) is created for each
distinct combination of architecture and configuration options. Associated with each configura-
tion is a list of modules which are actually to be compiled into the resulting executable. This list
is called Thornlist. Moreover, each version of the executable can be further personalized using
a parameter file specified at runtime. For instance, each executable could be designed to run
a family of systems (black hole binaries, single black holes, binary stars, etc...) which specific
parameters can be specified through the parameter file (and made different for each simulation
without having to recompile the code).
The role of the flesh can be described by figure 4 4.

A full list of the thorns provided by the Cactus framework can be found in [3]. A full insight
on how the infrastructure works and how thorns can be created and added can be obtained by
reading [2, 4].

4Image taken from [38]
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Figure 4: The main flow of control in the Cactus Framework. The flesh initialises the
code, then hands control to the driver thorn.

3.1.2 Carpet: Adaptative Mesh refinement and interpolation

In Cactus, infrastructure capabilities such as memory management, parallelisation, time evolu-
tion, mesh refinement and I/O are controlled by a special component called driver. This allows
researchers to concentrate on physics and not infrastructure, and makes the hole process more
efficient. The Einstein Toolkit has two drivers, PUGH and Carpet. PUGH only provides access
to domains with uniform Cartesian grids and it is therefore fallen out of grace in numerical
relativity, where mesh refinement is extremely important (more resolution is needed near the
punctures).
This features are found in Carpet [5], that offers multi-block methods and adaptative mesh
refinement (AMR) [66]. In this subsection we will try to explain what this two concepts are
and why they are extremely important for numerical relativity.

Multi-Block methods allow for an arbitrary number of independent grids to be placed around
the principal domain grid. Each independent grid (or block) exchanges boundary information
with the other grids and the main grid via techniques such as interpolation (see figure 5, down5).
AMR allows for the resolution in each block to be nonuniform and to be dynamically adapted
to the current state of the simulation, such that areas where more precision is needed can have
higher resolution. This is done via sets of embedded grids, each one with higher resolution
(normally by a factor of two) that it’s precedent (see figure 5, up6). This grid’s hierarchy are
called refinement levels. At regular intervals, the resolution requirements in the simulation

5Image taken from [66]
6Image taken from [66]
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are re-evaluated and the grid hierarchy is updated.

Figure 5: (Up) Base level G0
0 abd two refinement levels showing the grid alignments and

demonstrating proper nesting.
(Down) Schematic for the time evolution scheme, in 1 + 1 dimensions, for a two-grid
hierarchy. The large filled red circles represent data on the coarse grid, and smaller filled
green circles represent data on the fine grid. The algorithm uses the following order. 1:
Coarse grid time step, 2 and 3: fine grid time steps, 4: Copy of shared points (not shown)
from fine grid to coarse grid.

The result of combining both this features results in a computational domain with coarse
grid, with one or more blocks embedded in it. Each block is a dynamical grid offering further
refinement in certain regions, with multiple refinement levels in each block. This blocks can be
moved around the coarse grid thanks to AMR, allowing them to always be centered in the regions
of interest.
In numerical relativity, one block is usually placed on top of each puncture, with around eight
refinement levels (that is a refinement of 28 compared to the coarse grid). In case of binary
systems, these blocks follow each puncture around the coarse grid as they spiral towards the
center.
Without this features, numerical relativity would not be possible, as huge computational domains
are needed (so that the gravitational waves computed at the boundaries coincide with the ones
we can detect on earth), and the amount of dynamic memory that would be needed to have a
homogeneous grid in all that domain (while maintaining the necessary resolution for punctures)
would be absurd.
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3.1.3 Method of Lines

Another important feature offered by the Cactus framework is the implementation of the time
evolution scheme through the Method of Lines (MoL) [9,71]. Time evolution is done through
finite differences, generally using Runge-Kutta methods of up to fourth order in time.
For finite differences to be implemented, a system of PDEs must be written as an equivalent (up
to a certain order) system of ODEs in time

∂tq = L(q) (93)

that can be implemented using standard Runge-Kutta methods. MoL offers an interface to im-
plement this method. A variable must be registered, as well as a holder for L(q). Then at each
iteration the thorn responsible for the evolution of that variable updates L(q), which is then
used by MoL to evolved the variable following the chosen method.
L(q) should be computed by external thorns using any arbitrary method (of any chosen order)
such as forward, backward or centered differences. This contributes to the modularity of the
infrastructure, as different variables may be evolved using different order or different methods
that better adapt to the differential equations governing those variables.

3.2 The Einstein Toolkit

The Einstein Toolkit [6, 50, 84] is a collection of thorns for the Cactus framework that offer a
complete interface for solving the Einstein equations of gravity in 3+1 formalism, as well as their
full implementation. A full list and documentation of the existing thorns can be found in [7].
The thorn collection could be arranged in three main parts:

• Einstein Base is the main interface for the implementation of the system equations: it
contains very general thorns that should be used in almost every simulation.
ADMBase, HydroBase and TmunuBase create storage and basic scheduling bins for the ADM
variables, the hydrodynamics (Matter) variables and the Stress-Energy tensor respectively.
EOS_Base offers an interface and scheduling bins for the implementation of equations of
state.
All of this thorns do not perform any real action, they just provide a common interface
that other thorns can use to evolve the system. This adds to the modularity of the infras-
tructure.

• Einstein Initial Data and Einstein Evolve contain respectively thorns that allow set-
ting up the initial data and evolving the system.
For instance, GRHydro is an evolution code for the hydro variables following the scheme
presented in section 2.6, and TwoPunctures sets up the initial conditions of a binary system
of black holes.

• Einstein Analysis contains thorns that help with the analysis of the simulation, like
tracking the black holes or finding the apparent horizons.
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In our simulations, we generally use the EinsteinBase thorns, but most if not all of the
evolution, initial data and analysis thorns in our runs have been coded by GATech’s numerical
astrophysics research group over the years. A more detailed explanation of our setup will be
given in section 4 for each particular set of simulations.
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4 Development of an expanding-universe background

for the simulation of black hole binaries

4.1 Introduction and motivation

Like presented in section 1, Numerical Relativity has risen as one of the most prominent ways
to study the gravitational waves detected by LIGO. As we wait for the new generation of laser
interferometers, the field has to find ways to keep up with the increasing demand in accuracy. It
is therefore important to study and tackle all the possible sources of error that the simulations
might have.
One of the simplifications numeral relativity codes usually do is to consider the supermassive
bodies isolated in an otherwise massless non-expanding universe (a Minkowski background). Al-
though it is a fairly good approximation, it is still physically inaccurate and a potential source
of error.

This work aims to start exploring the possibility of new cosmological backgrounds for black
hole simulations. Specifically, we consider a particular metric, the Friedmnn-Lemaître-Robertson-
Walker (FLRW) cosmology, which, despite being one of the most simple models for an expanding
universe, is still seen as a very good approximation. Moreover, the FLRW offers a flat background
solution, which makes it suitable to be implemented in our current code without major overhauls.

Throughout this section we will study the FLRW model to then be able to develop the
theory necessary to adapt the Cauchy problem presented in section 2 to have an expanding
cosmological background. We will then implement this theory into the numerical framework
presented in section 3.

4.2 The Friedman-Lemaitre-Robertson-Walker universe

The simplest approach to an expanding cosmology is probably the Friedman-Lemaitre-Robertson-
Walker (FLRW) metric. It is an exact solution for the Einstein equations representing an
isotropic, homogeneous, path connected and expanding (or contracting) universe. It was de-
veloped independently by the four scientists in the 1920’s and 1930’s and is still today used as
a standard model for cosmology, introducing concepts like the scale factor and the Hubble
parameter that are still very much in use today.
The reason for that is because the universe is indeed believed to be both isotropic and homoge-
neous in sufficiently large scales, i.e. at any point in time the universe looks the same from any
point in space and all directions in space are equivalent. For more discussion on this topic, refer
to [36,60,63,64].

28



4 DEVELOPMENT OF AN EXPANDING-UNIVERSE BACKGROUND FOR THE
SIMULATION OF BLACK HOLE BINARIES

4.2.1 The FLRW metric

The generic form of the metric, that arises only from the geometric assumptions of isotropy and
homogeneity, is the following:

ds2 = −c2dt2 + a(t)2dΣ2 (94)

where Σ ranges over a 3-dimensional space of constant curvature with no time dependence. All
time dependence is included in a(t), which is called the Scale Factor and which form is not
specified by the geometry assumptions, but by the Einstein field equations as we will discuss in
4.2.2.
One of the most used coordinate systems for the FLRW metric are the polar coordinates {r, θ, φ},
where

dΣ2 =
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)
(95)

Where k is a constant representing the curvature of space. There are a couple of unit choices
for k (all other units are adapted as needed), but we will use the following convention: We will
take k ∈ {−1, 0, 1} as having no units, which forces r to be also unitless and a(t) to have units
of length. This means we will have three very different solutions depending of the value we take
for k:

• For k = −1 we will have an hyperbolic metric, with a universe that is open and that will
keep expanding forever.

• For k = 0 we will have an Euclidean metric, with a universe that is flat and that will
eventually neither expand or contract.

• For k = +1 we will have a parabolic metric, with a universe that is closed and that will
eventually collapse.

Many independent measurements seem to indicate that our universe is indeed flat, and the
assumption of flatness is also used in inflation theory, which is vastly favoured by scientists as it
successfully explains many observations otherwise unexplained. For this reason we will consider
k = 0 for the rest of the work.
Moreover, with k = 0 we can write the metric in Cartesian coordinates:

ds2 = −c2dt2 + a(t)2
(
dx2 + dy2 + dz2

)
(96)

4.2.2 Friedmann equations

As mentioned in 4.2.1, the homogeneity and isotropic conditions do not give a form for the scale
factor a(t). This will be given by the Einstein field equations: Using the metric given by 94, we
can compute the general expression for the Christoffel symbols. We can then compute the Ricci
tensor and scalar. Finally, we will consider the Stress-Energy tensor for the perfect fluid derived
in 2.6.
Substituting the mentioned elements into the Einstein field equations, we get to the following
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system of equations:
ȧ2 + kc2

a2
=

8πG

3
u (97)

ä

a
= −4πG

3

(
u+

3P

c2

)
(98)

with u and P the energy density and the pressure respectively7.
This system of equations is know as the Friedmann Equations for an isotropic and homoge-
neous universe. They give us the dynamics of the scale factor a as a function of the energy and
mass present in the universe.
Taking the assumption of a flat universe (k = 0), c = G = 1 as usual and defining the Hubble
Parameter as

H(t) =
ȧ

a
, (99)

we can rewrite the previous system as

H2 =
ȧ2

a2
=

8π

3
u (100)

Ḣ +H2 =
ä

a
= −4π

3
(u+ 3P ) (101)

which are the Friedmann equations for a flat universe. They will constitute our main tools going
forward.

4.2.3 Hubble parameter and Critical energy density

The Hubble parameter as it is defined in 99 is the rate of expansion of our universe. The current
rate of expansion, H0 := H(t0), is in fact the Hubble constant that appears in the Hubble law.
It’s value has been calculated for years and therefore is know with great accuracy8:

H0 =
h

9.77 Gyr
with h = 0.6777± 0.013 (102)

The fact that this value is known has several consequences. First, it gives us a measurement for
the total energy density of our universe: If we consider eq.100, and consider the equation at the
present cosmological time t0, we obtain that

u0 =
3H2

0

8π
(103)

7We have omitted here the presence of the cosmological constant, as we will not be considering it in
our models and the Friedmann equations with presence of cosmological constant can be reduced to the
equations presented here as shown in [32]. Other corrections have also been added to this equations to
incorporate more advanced theories like inflation, dark matter or dark energy [32]. None will be treated
here.

8value measured in 2018 by the Dark Energy Survey collaboration [52]
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In fact, if we consider the other two solutions for the FLRW metric we see that for an hiperbolic
metric (open universe , k = −1) we necessarily have

u0 <
3H2

0

8π
, (104)

and for a parabollic metric (closed universe , k = 1) we necessarily have

u0 >
3H2

0

8π
, (105)

For this reason we define the critical energy density

ucrit =
3H2

0

8π
(106)

as the energy density necessary in order to have a flat universe.

4.2.4 Exact solutions for the flat FLRW universe

The Friedmann equations can be solved in some simple cases, notably in the case of a perfect
fluid, where

P = wu (107)

with w a dimensionless scalar. In this case, we can combine (100) and (101) to obtain

Ḣ +H2 = −4π

3
(u+ 3P ) = −1 + 3w

2
H2 . (108)

From here we get

Ḣ = −3(1 + w)

2
H2 , (109)

that we can integrate in time to obtain ( w 6= −1 )

H =
2

3(w + 1)
t−1 . (110)

Since H depends on the time derivates of a as we have defined in (99), we can further integrate
in time to obtain

a =

(
t

t0

) 2
3(1+w)

, (111)

and we define t0 and a0 = a(t0) as the scale factor and the cosmological time at present day. By
convention, we will take a0 = 1.

The two most relevant cases for this sort of solution are

• w = 0 : This would correspond to a pressure-less gas, also called dust. This sort of
interaction would have been dominant in the earlier stages of the universe. A universe
filled with this sort of matter would be called a matter-dominated universe.

• w = 1/3 : This would correspond to a radiation-dominated universe, where all the
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pressure comes from radiation pressure. It is believes that this sort of universe would
be dominant later on during the history of the universe.

In our work we will consider we have a radiation-dominated universe, and from now on we
will only develop and use this solution, where we have

a =

(
t

t0

)1/2

(112)

and considering eq. (110) at present time we get

H0 =
1

2 t0
. (113)

We can also go back to the first Friedmann equation (100) and substitute our equation for the
scale factor, and thus be obtain

(a−1/(2t0))2

a2
=

8π

3
u . (114)

From here, we use (113) and (106) to obtain

u a4 = ucrit (115)

which completely determines the evolution of matter in the radiation-driven universe.

4.2.5 Conformal time

We can change the expression of the metric by making a change of coordinates t→ η such that

ds2 = a2(η)
(
−dη2 + dΣ2

)
(116)

dt = a dη . (117)

We will call η the Conformal Time, and it’s corresponding metric (116) the Conformal
Metric. This conformal formulation of the FLRW metric will be very useful to develop our
gauge conditions in section 4.3.
Equation (117) also allows us to find the Friedmann equations for the conformal time by noticing
that

a′ :=
∂a

∂η
=

1

a

∂a

∂t
=
ȧ

a
(118)

and replacing it in (100) and (101). We obtain

(a′)2 =
8π

3
ua4 (119)

a′′ =
4π

3
(u− 3P ) a3 (120)
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We can also integrate (117), and we get

η =

∫
dη =

∫
a−1 dt =

∫ (
t

t0

)−1/2

dt = 2 t0

(
t

t0

)1/2

. (121)

We can evaluate this equation at present time to obtain

η0 = 2 t0 (122)

and then we can use this to get the scale factor as a function of the conformal time

a = η/η0 (123)

4.3 Development of the gauge conditions

After studying the background we want to implement, we can start tackling the actual problem
we were set to solve: Finding lapse conditions for this sort of background.
First, we should take a look to the conformal metric for the flat FLRW universe

ds2 = −a2dη2 + a2
(
dx2 + dy2 + dz2

)
(124)

and compare it to the conformal 3+1 metric with null shift (βi = 0)

ds2 = −α2dt2 + χγ̃ijdx
idxj . (125)

It is then clear that we could reproduce a flat FLRW universe with conformal metric by making
the associations

η ≡ t

a ≡ α

a2 ≡ χ

γ̃ij ≡ ηij

(126)

where ηij is the Minkowski metric. We can then consider two approaches to get lapse conditions:

• We can consider the first conformal Friedmann equation (119) and use (115) to get

(a′)2 =
8π

3
ucrit , (127)

and use our definition for Ucrit (106) to obtain

(a′)2 = H2
0 , (128)

which of course brings us to
∂tα ≡ a′ = H0 . (129)
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This will be the our first option for our lapse condition.

• We can also consider the BSSN evolution equation for the conformal factor (without the
advection term because βi = 0)

∂tχ = −1

6
αχK (130)

and then replace the conformal factor by it’s association to get

2aa′ = −1

6
αa2K , (131)

which becomes
∂tα = −1

3
α2K . (132)

This equation will be our second option for our lapse condition.

In fact, and most naturally, both equations (129) and (132) are the same. Indeed, if we
calculate the extrinsic curvature for the FLRW universe (app. A , (169)) we have that

K = 3H = −3H0a
−2 (133)

Note that the second equality only holds in conformal time. From here we substitute in (132) to
obtain (129).

It also needs to be noted that (132) is a 1+log lapse condition as presented in section 2.2.1
by taking

f(α) = 1/3 . (134)

For that reason we will use the form (132) in the code. However, this lapse condition is not fit
for puncture evolution. Indeed it does not achieve collapse of the lapse (α = 0) in the punctures.
For that reason we will implement a convex combination between the moving punctures lapse
equation (74) and (132) such that the evolution follows (74) at the punctures and (132) near the
boundary. We will also apply a correction to (74) to account for the different value K takes in
the FLRW metric.

The lapse we will implement will therefore be

(
∂t − βi∂i

)
α = −2

[
0.5− 0.5 tanh

(
r −R0

σ

)]
α (K + 3H)

− 1

3

[
0.5 + 0.5 tanh

(
r −R0

σ

)]
α2K ,

(135)

which corresponds to a 1+log lapse with

f(α) = 2α−1

[
0.5− 0.5 tanh

(
r −R0

σ

)](
K + 3H

K

)
+

1

3

[
0.5 + 0.5 tanh

(
r −R0

σ

)] (136)
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4.4 Development of the boundary conditions

An important part of every Cauchy problem are boundary conditions, which impose analytical
solutions in the simulation boundary. In numerical relativity, it is assumed that the integration
domain is big enough so that the black holes present around the origin do not influence the
solution at the boundaries. Therefore the values we will impose at the boundaries will be the
analytical values for the background, in our case the FLRW metric.

4.4.1 Hydro boundary conditions

As we have seen in section 2.6, our code for matter uses the rest mass density ρ, the intrinsic
internal energy ε, the pressure P and the 4-velocity vµ to calculate the evolution of matter. It is
then necessary to calculate boundary conditions for this variables.
This process somewhat more complicated than it seems because of the fact that our model only
provides an analytic solution for the energy density u and not the variables we actually need.
First, we will consider that we are in a co-moving frame with the fluid, i.e.

v0 = 1 , vi = 0 . (137)

We will then consider the equation implemented equation of state: For a perfect fluid we will use
the equation of state given by (92), using Γ = 4/3 because we want our matter to be radiation
(we need Γ− 1 = 1/3). This gets us to the following equation of state

P =
1

3
ρε . (138)

Finally we only need boundary conditions for ρ and ε. These will be given by the following
system of equations:

u = ρ(1 + ε) ,

ε =
Kε

Γ− 1
ρΓ−1 = 3Kερ

1/3 ,
(139)

where the first is only a definition and the second equation is the standard way to calculate ε in
the code. Kε is a constant that is usually taken with a value of 100. If we combine both equation
taking into account that u is known, and introduce equation (115) we get that

ρ =
ucrit

(1 + ε)a4

ε3(1 + ε) = 27K3ucrita
−4

(140)

The second equation cannot be solved analytically, so in the code we implement a Newton-
Raphson method to calculate the value of ε at every time step. The initial conditions for the
algorithm are motivated by Taylor expansions of the target function:

ε0 =
(
27K3ucrita

−4
)1/4 for

(
27K3ucrita

−4
)1/4 ≥ 0.5

ε0 =
(
27K3ucrita

−4
)1/3 for

(
27K3ucrita

−4
)1/4

< 0.5
(141)
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Once the boundary value for ε is obtained, the value for ρ is recovered from the first equation in
(140).

4.4.2 Metric boundary conditions

To obtain the metric boundary conditions we only have to use what we have already learned
about the FLRW metric in conformal time:

χ = a2

γ̃ij = ηij

K = −3H0a
−2

Ãij = 0

(142)

However, we do not want to have Dirichlett boundary conditions because of numerical errors
introduced by reflections at the boundaries. Instead, we need to create reflection-absorbing
boundary conditions [16,17]. We consider any scalar variable (or tensor component) f such that

f(xi, t) = f0 +
u(r − t)

r
, (143)

i.e that f is composed of a base function f0 and a wave-like distortion u that fades as 1/r.
Physically, f0 will be our background value and u is the distortion created by the black hole(s)
at the center of the the simulation domain.
Note that we consider u spherically symmetric, which is not true for black hole binaries and
other asymmetric systems. However, we are considering ourselves at the boundaries which are
supposed to be "infinitely far away" from the observed system, so spherical symmetry is a good
approximation.

Because simulations are done generally with a Minkowski background, that is not dependent
on time, the boundary conditions consider f0 to be constant in time. We will thus need to
develop our own variation of reflection-absorbing boundary conditions.
We start by considering the time and space derivatives of (143):

∂tf = ∂tf0 −
u′(r − t)

r
(144)

∂if = −x
i

r3
u(r − t) +

xi

r2
u′(r − t) (145)

where we have used that

∂r

∂xi
=
xi

r
,

∂iu(r − t) =
∂r

∂xi
∂u(r − t)

∂r
=
xi

r
u′(r − t) .

(146)
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Then we have that

xi

r2
(f − f0) =

xi

r3
u(r − t)

= −∂if +
xi

r2
u′(r − t)

= −∂if −
xi

r
∂tf +

xi

r
∂tf0

(147)

and from this last equation we can reorder the terms to obtain

∂tf = ∂tf0 −
f − f0

r
+

r

xi
∂if

= ∂tf0 −
f − f0

r
+
∂xi

∂r
∂if

(148)

which is a differential equation for f that can be implemented as boundary conditions.
This last expression can also be generalised to obtain

∂tf = ∂tf0 −
f − f0

r
+ ∂rf . (149)

We will implement this boundary conditions for all the metric variables {γ̃ij , χ,K, Ãij , Γ̃i} taking
f0 as the analytical value given by (142).

4.5 Development of the initial data

Another important aspect we had to develop where the initial conditions for our Cauchy prob-
lem. For this project we developed two sets of initial conditions: one set for pure cosmological
simulations (without punctures) and another for simulation of punctured space-times (which is
our final objective).

4.5.1 Cosmological simulations

For cosmological simulations we aim to reproduce the flat FLRWmetric for a radiation-dominated
universe. The initial data will therefore be very similar to the boundary conditions we just built
simply taking t = η0 (here t is not the cosmological time but the simulation time parameter).
For the metric initial data, however, the variables to be set will not be the BSSN variables but
rather the ADM variables {γij ,Kij , α, β

i}.
The initial conditions for the hydro variables will be given by

vi0 = 0

ρ0 =
ucrit

(1 + ε0)a4
0

ε30(1 + ε0) = 27K3ucrita
−4
0

P0 =
1

3
ρ0ε0

(150)
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The initial conditions for the metric variables will be given by

γij = a2
0ηij

Kij = −a2
0H0δij

α = a0

βi = 0

(151)

All the above quantities depend on the initial values a0 , H0 and η0 that we can set using
equations 112, 113 and 122: if we take a0 = 1 by convention, then

H0 =
1

2t0
=

1

η0
. (152)

For convenience, we will choose to start our simulations at t = 1, so we have to impose η0 = 1,
and then we get that H0 = 1.

4.5.2 Puncture simulations

As discussed in section 2.4, finding initial data for Black hole simulations is not trivial and involves
solving a system of coupled elliptic equations. We alsoo saw that is we assume R̃ij = K = u = 0

we get to a much easier system that is easily solved. Although for a FLRW metric two of those
assumptions cannot be made, we can work around this problem if we take a closer look to the
equations.

First, let’s consider the Hamiltonian equation taking into account that in our case γ̃ij = ηij

(i.e R̃ij = 0):

∇2ψ − 1

12
ψ5K2 +

1

8
ψ−7ÂijÂ

ij = −2πψ5u (153)

If we consider the matter term, and develop it using the FLRW metric equations at t = η0, we
get that

−2πψ5u = −2πψ5ucrit = −2πψ5 3H2
0

8π
= −3

4
ψ5

(
−1

3
K

)2

= − 1

12
ψ5K2 (154)

So our Hamiltonian equation becomes

∇2ψ +
1

8
ψ−7ÂijÂ

ij = 0 (155)

which is equivalent to solve the Hamiltonian equation with K = u = 0.

In the same spirit, we can consider the Momentum constraint

D̃2W i +
1

3
D̃iD̃jW

j − 2

3
ψ6D̃iK = 8πψ10ji (156)

and we can see that

• because of K being constant in space, we have D̃iK = 0
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• and if we develop ji we have that

ji =
(
δiµ + ninµ

)
(nνT

µν) = nνT
iν + niu (157)

and considering the expressions for nµ and nµ as well as βi = 0 we have that ji = 0.

In the end, like with the Hamiltonian constraint, we will have that the Momentum equation that
we want to solve is equivalent to the K = u = 0 case.

This is very important because it will allow us to use extremely well-optimised already existing
code to solve our initial constraints. Indeed, we will proceed as follows:

• First, we will use the already-existing code to solve the constraints for the case K = u = 0.
This will yield values for Aij and ψ corresponding to a puncture space without matter and
conformally flat.

• During the construction of the ADM variables using the computed values, we will use our
analytical solutions for K and matter to create the actual initial data as follows:

γij = a2
0ψ

4ηij

Kij = Aij +
1

3
γijK = Aij −H0γij

(158)

• We will add our hydro initial conditions as given by equations (150).

Because of what we have seen in this section, we know this new data will also be solution of the
constraint equations, so our simulation can start without any trouble. Like for the cosmological
simulations, we will use a0 = η0 = H0 = 1 as our initial cosmological constants.

4.6 Numerical simulations

After the theoretical development of sections 4.3, 4.4 and 4.5, we should be able to implement
the background into our puncture simulations.
To this purpose, we have coded two thorns:

• FLRWBackground is a thorn that has two main functions: First, it interacts with ADMBase

and HydroBase to set the initial conditions for the metric and the hydro variables (sepa-
rately). Second, it provides boundary conditions for the hydro variables that follow the
theory developed in section 4.4.1.

• TwoPuncturesFLRW is a thorn modified from our own version of the EinsteinToolkit thorn
TwoPunctures. TwoPunctures solves the Hamiltonian and Momentum constraints for a
conformaly flat universe without matter using a single domain spectral method [21]. We
have modified it to create our metric initial data for punctures, following the methodology
developed in section 4.4.2.
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4.6.1 Radiation-dominated FLRW flat cosmology in conformal time

As a first result, and to test both our theoretical development and code, we have performed
a simulation of a flat and radiation-dominated FLRW universe. This work can be seen as a
radiation-dominated counterpart of the matter-dominated FLRW universe found in [26].

For this runs, we will evolve the initial data provided by FLRWBackground (both metric and
hydro) using our own implementation of the BSSN system 9 paired with GRHydro [55] for the
evolution of the hydro variables. We use fourth order finite differencing for the metric variables
and second order diferencing for the hydro variables.
We use the PPM reconstruction method [31] and the Riemann solver Marquina [43], both coded
into GRHydro, to convert the conserved hydro variables E,D, Si, V i back to the primitive vari-
ables and solve the evolution system (89).
We use EOS_Base and EOS_Omni to implement the equation of state (138).
As gauge conditions, we use constant shift and our lapse condition (129) that we code into our
BSSNOK evolution code. For the boundary conditions, we also modify our evolution thorn to
provide the metric boundary conditions seen in (142) using the dynamic implementation seen in
(149). The hydro boundary conditions will be implemented using FLRWBackground.

For simulation domain, we have taken a cartesian grid with a single level of refinement and
without imposing any symmetry. We introduce two parameters L and ∆ such that the domain
boundaries and the point separation can be written as

xi ∈ [−L,L]

∆i = ∆ · L
(159)

We will also consider the time-step ∆t.
The only other parameters our simulation has are the already discussed a0 , H0 and t0, which
respectively the initial scale factor, Hubble parameter and cosmological time.

We have taken for this parameters

L = 10 , ∆ = 0.05 , ∆t = 0.5 · 2−5 ,

a0 = 1 , H0 = 1 , t0 = 1
(160)

We evolve the system from t = t0M to t = 45M, and the results can be found in figure 6 and
7, that show the evolution of some variables and their errors respect of the analytical solutions
respectively. The three variables have been chosen because they represent the system fully:

• chi represents fully the evolution of the spacial metric, since the conformal metric is flat
(both in theory and in our simulation). Moreover, because of (142) we have that chi is
closely related to the scale factor a(t) and therefore correct evolution can be induced by
the correct evolution of χ.

9Coded using Kranc [8, 42]
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Figure 6: Evolution of χ (top left) , u (top right) and K (bottom) obtained through the
simulation of a flat and radiation-dominated FLRW universe. In every case, the data is
paired with a dotted curve showing the analytical evolution of that variable.
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Figure 7: Error plots for χ (top) , u (middle) and K (bottom) obtained through the
simulation of a flat and radiation-dominated FLRW universe. For every variable, we have
the absolute error (left) and the relative error (right).
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• K represents fully the extrinsic metric, because the traceless curvature Aij is null and
remains null throughout the evolution. Moreover, K also gives the evolution of the Hubble
parameter H(t) because of (169).

• u represents fully the matter, because it is a nontrivial combination of ρ and ε and the
evolution of P is imposed by the equation of state from the evolution of those two variables.

Looking at figure 6, we can see the theoretical curve fits beautifully the evolved data.

However, to better appreciate the magnitude of the errors we have to take a look at figure 7.
For the three variables we have on the left the absolute error and on the right the relative error.
We can clearly see that K and u have much better results than χ. Their relative error stays
under 1% during the whole simulation. It is significantly worse for χ, where the relative error
gets to 7%.
The other significant observation is that the relative error seems to keep augmenting as the sim-
ulation progresses. This is normal with numerical methods, and could further be justified by the
fact that the rate of change of the variables slows down progressively, so floating point errors
become more important.

4.6.2 Non-spining black hole in a radiation-dominated FLRW flat background

The second step would be to test our puncture-designed gauge equations with the simplest met-
ric containing punctures. This corresponds to the case of a single non-spining black hole, also
known as the Schwarzschild metric.

For this runs, we evolve the initial data provided by FLRWBackground (hydro) and TwoPuncturesFLRW

(metric) using our own implementation of the BSSN system 10 paired with GRHydro [55] for the
evolution of the hydro variables. We use fourth order finite differencing for the metric variables
and second order diferencing for the hydro variables.
We use the PPM reconstruction method [31] and the Riemann solver HLLE [74], both coded into
GRHydro, to convert the conserved hydro variables E,D, Si, V i back to the primitive variables
and solve the evolution system (89).
We use EOS_Base and EOS_Omni to implement the equation of state (138).
As gauge conditions, we use constant shift and our lapse condition (132) that we code into our
BSSNOK evolution code. For the boundary conditions, we also modify our evolution thorn to
provide the metric boundary conditions seen in (142) using the dynamic implementation seen in
(149). The hydro boundary conditions will be implemented using FLRWBackground.

Unfortunately we have not yet been capable of successfully evolving our initial conditions:
Although the initial conditions are set as we need them to be, we are having big problems evolv-
ing the hydro variables at the puncture. This problem is known and has nothing to do with the

10Coded using Kranc [8, 42]
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physics. It is purely a numerical problem that we are currently trying to solve.
This is also a know problem that has been solved in [74]. The numerical fix is known as ’Faber
Trick’ in reference to the author and is normally implemented in GRHydro. We have however
been unsuccessfully so far trying to use it.

A possible explanation is the fact that so far (and to our our knowledge) thi strick has been
used to evolve both neutron starts and black holes with Bondi accretion. The first has high
density but it is not a real puncture, whereas the second is a puncture but has very low density
near it. We therefore think at this moment that the problem we are experiencing is caused by
our punctured space-time paired with high densities. This densities are due to our choice of
parameters a0, H0 and t0, and one option we will definitely explore in the future is trying to
reparametrize (basicaly rescale) our system so that such high densities are not obtained near the
puncture.
Another option could be to try to find a more stable thorn for the evolution of the hydro
variables: GRHydro is the free version of a more complex code named Whisky [10] that is in
constant improvement and could have better stability that it’s open-source counterpart. We
have also access to the hydro thorn developed by the Illinois Numerical Relativity Group [33,58].
The later is preferred by some of our colleagues working with neutron stars as it is believed by
them to be more stable. However, this code does not support symmetries yet and it is therefore
a lot more costly to implement (both in computational time and more importantly RAM).
In any case, progress on this matter is supposed to be made in the near future.
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5 Conclusions & Further work

We have explored how the Einstein equations have been treated to obtain a formulation suitable
for their numerical implementation. We have also discussed the problems that arise throughout
the process and have given the state-of-the-art solutions that are currently being used in the field
of Numerical Relativity.
We have presented an open-source code, the Cactus framework and the Einstein Toolkit, that
is being used and developed by Numerical Relativity groups around the world to implement the
Einstein equations.
We have also developed the theory for a new and more physically accurate background, the
Friedmann-Lemaître-Robertson-Walker metric, which is a homogeneous, isotropic, flat and ex-
panding universe.
Finally, we have successfully simulated this metric on it’s own and are close to successfully evolve
a single non-rotating puncture with this new background.

In the near future, we aim to finish implementing the single-puncture simulation. Once that
is done, the next objective would be to successfully evolve a system that is able to produce
gravitational waves, like a black hole binary. This would allow us to achieve the real goal of
this project, which is to study how the assumption of a Minkowski background is affecting our
simulations (if it is) and quantify error introduced (if there is any).
This would bring the Numerical Relativity community a step closer to understanding all the
possible sources of error in the simulations and therefore be able to keep up with the increase
in precision that will be necessary in the future when better Gravitational Wave detectors come
into play.
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A Extrinsic curvature for the FLRW metric

We will calculate the extrinsic curvature using the FLRW metric in cosmological time, so we will
have

gµν =

(
−1 0

0 a2ηij

)
nν =

(
1 0 0 0

)
nν =

(
−1 0 0 0

) (161)

The extrinsic curvature is given eq.(12)

Kµν = −∇µnν − nµnε∇εnν
= −∂νnν + Γεµνnε − nµnε∂εnν + nµn

εΓλενnλ

= Γεµνnε + nµn
εΓλενnλ

= −Γ0
µν − nµΓ0

0ν

(162)

We therefore have to calculate the Christoffel symbols of the form Γ0
µν , that are given by

Γµαβ =
1

2
gµν

[
∂gαν
∂xβ

+
∂gβν
∂xα

−
∂gαβ
∂xν

]
(163)

Because most of gµν is constant, we have that

Γµαβ = −1

2

∂gαβ
∂t

(164)

It is then trivial to see that
Γ0

00 = Γ0
i0 = Γ0

0i = 0 (165)

Γ0
ij = ȧa δij (166)

Using this expressions we can now calculate the values for Kµν : We can first see that

K00 = Ki0 = K0i = 0 (167)

as we expect since it should be a purely spatial tensor. We can also get that

Kij = −ȧa δij = −a2H δij (168)

Finally, we will also obtain the expression for the trace of the extrinsic curvature, which will be
given by

K = γijKij =
(
a−2 ηij

) (
−a2H δij

)
= −3H (169)
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