

Implementing support for

managing DHIS2 large

scale deployments

Institution: Barcelona School of Informatics (FIB)

Studies: Bachelor’s degree in Informatics Engineering

Speciality: Software Engineering

Year: 2018-19 Q2

Student: Alexis Rico Carreto (alexisrico@essi.upc.edu)

Director: Petar Jovanovic (petar@essi.upc.edu)

Ponent: Alberto Abelló Gamazo (aabello@essi.upc.edu)

Abstract

This is the report for the thesis “Implementing support for managing DHIS2 large scale deployments”. The

thesis consists on the creation of three applications that will be used by the IT team that provides support

to the department “Neglected Tropical Diseases” of the “World Health Organization” (WHO).

This project is backed up by the “Database Technologies and Information Management Group” and the

“Department of Service and Information System Engineering” of the “Polytechnic University of Catalonia”.

We have also been in collaboration with the “World Health Organization”, the “WHO Information System to

Control and Eliminate Neglected tropical diseases” and the “WHO Integrated Data Platform”.

Esta es la memoria para el trabajo “Implementing support for managing DHIS2 large scale deployments”.

El trabajo final de grado tiene como base la creación de tres aplicaciones que serán usadas por el equipo

de IT que proporciona soporte al departamento de “Enfermedades Tropicales Minoritarias” de la

“Organización Mundial de la Salud” (OMS).

Este proyecto está respaldado por el “Grupo de Tecnologías de Bases de Datos y Gestión de la

Información” y el “Departamento de Ingeniería de Servicios y Sistemas de Información” de la “Universidad

Politécnica de Cataluña”. Además hemos estado colaborando con la “Organización Mundial de la Salud”,

el “Sistema de Información de la OMS para controlar y eliminar enfermedades tropicales minoritaria” y la

“Plataforma integrada de datos de la OMS”.

Aquesta és la memòria pel treball "Implementing support for managing DHIS2 large scale deployments".

El treball de fi de grau té com a base la creació de tres aplicacions que seran usades per l'equip d'IT que

proporciona suport al departament de "Malalties Tropicals Minoritàries" de l'Organització Mundial de la

Salut (OMS).

Aquest projecte està recolzat pel "Grup de Tecnologies de Bases de Dades i Gestió de la Informació" i el

"Departament d'Enginyeria de Serveis i Sistemes d'Informació" de la "Universitat Politècnica de

Catalunya". A més hem estat col·laborant amb l'Organització Mundial de la Salut, el "Sistema d'Informació

de l'OMS per controlar i eliminar malalties tropicals minoritàries" i la "Plataforma integrada de dades de

l'OMS".

Implementing support for managing DHIS2 large scale deployments 1

Glossary

WHO: Acronym for World Health Organization, a specialized agency of the United Nations that is

concerned with international public health.

NTD: ​Acronym for Neglected Tropical Diseases, a department of WHO that studies 21 different

diseases with diverse, multidimensional natures, that affect low income and rural areas around

the world.

UPC: ​Acronym for ​Polytechnic University of Catalonia, the largest engineering university in

Catalonia, Spain.

ESSI: Acronym for Department of Service and Information System Engineering, an

interdisciplinary unit of UPC that focuses on the common ground between service science,

management, engineering, information systems and technology.

WISCENTD: Acronym for WHO Information System to Control/Eliminate Neglected Tropical

Diseases, a project of the NTD department at WHO focused in innovating the research of data

management.

WIDP: Acronym for WHO Integrated Data Platform, a project at WHO focused in creating a

global data platform.

DHIS2: ​Acronym for District Health Information System 2, an open source software platform for

reporting, analysis and dissemination of data for health programs.

HISP: Acronym for Health Information Systems Programme, a global network of people, entities

and organisations that design, implement and sustain Health Information Systems.

UiO: ​Acronym for University of Oslo, the oldest university in Norway, located in the Norwegian

capital of Oslo.

Metadata​: A set of data that describes and gives information about other data. In DHIS2 we

understand it as the internal schema for the data stored in the database.

Implementing support for managing DHIS2 large scale deployments 2

Contents

1. Introduction 8

2. Context 9
2.1. Areas of interest 9
2.2. Stakeholders 10

2.2.1. The World Health Organization 10
2.2.2. Polytechnic University of Catalonia 10
2.2.3. Affected population 10
2.2.4. External DHIS2 users and developers 11
2.2.5. DHIS2 core developers (University of Oslo) 11

3. Problem formulation 12
3.1. Packaging of bundled metadata 13
3.2. Bulk importing of data 14
3.3. Version tracking of metadata changes 15

4. Specific objectives of the thesis 16

5. State of the art 17
5.1. Existing applications and research 17
5.2. Available technologies 18
5.3. Helper libraries 18
5.4. DHIS2 community 19
5.5. DHIS2 core developers 19

6. Initial project planning 20
6.1. Scope of the project 20
6.2. Potential obstacles 20

6.2.1. Fixed timing 20
6.2.2. New requirements 21
6.2.3. Technical issues 21
6.2.4. Research and innovation 21

6.3. Methodology and rigor 22
6.3.1. Overview 22
6.3.2. Development tools 22
6.3.3. Development cycles 23
6.3.4. Integration tests 23

6.4. Monitoring tools and validation 24
6.5. Development phases 25

Implementing support for managing DHIS2 large scale deployments 3

6.5.1. Initial Planning and Scope 25
6.5.2. Viability analysis 25
6.5.3. Application development 25
6.5.4. Thesis documentation 25

6.6. Temporal planning 26
6.6.1. Task planning 27
6.6.2. Gantt diagram 28
6.6.2. Action Plan 29

6.7. Resources and budget 30
6.7.1. Hardware resources 30
6.7.2. Software resources 31
6.7.3. Human resources 32
6.7.4. Budget monitoring 33
6.7.5. Unexpected and contingency costs 33
6.7.6. Cost distribution across development tasks 34
6.7.7. Total estimated budget 35

7. Sustainability report 36
7.1. Sustainability matrix 36
7.2. Social sustainability 36
7.3. Environmental sustainability 37
7.4. Economic sustainability 37

8. Design and implementation 38
8.1. Advanced Export App 38

8.1.1. Main objectives 38
8.1.2. Technical overview 38
8.1.3. Application evolution 40
8.1.4. Conclusions 44

8.2. Bulk Load App 45
8.2.1. Original application 45
8.2.2. Main objectives 46
8.2.3. Technical overview 46
8.2.4. Application features 49
8.2.5. Conclusions 51

8.3. Metadata Repository Script 52
8.3.1. Original scripts 52
8.3.2. Main objectives 52
8.3.3. Technical overview 53
8.3.4. Conclusions 54

Implementing support for managing DHIS2 large scale deployments 4

8.4. Local development environment 55
8.5. Application testing and requirement acceptance 56

8.5.1. Development team 56
8.5.2. Field IT personnel 56
8.5.3. WHO Program managers 56
8.5.4. External DHIS2 users 56

9. Conclusions 57
9.1. Overview 57
9.2. Objective fulfillment 58
9.3. Planning deviations 59
9.4. Future work 60

9.4.1. Synchronization wizard in the Advanced Export App 60
9.4.2. Dependency blacklisting in the Advanced Export App 60
9.4.3. Tracker programs in the Bulk Load App 61
9.4.4. Advanced validation in the Bulk Load App 61
9.4.5. Slave Synchronization in the Metadata Repository Script 61

References 62

Implementing support for managing DHIS2 large scale deployments 5

Table of figures

Figure 1. DHIS2 Web interface 9
Figure 2. Different instances used by the WHO for the global data platform 12
Figure 3. DHIS2 Official web application to import metadata packages 13
Figure 4. DHIS2 Official web application to fill data forms 14
Figure 5. Initial objectives of the thesis 16
Figure 6. DHIS2 core development decisions made in May 2019 19
Figure 7. Redmine dashboard used by WHO and UPC 24
Figure 8. Estimated time dedication table 26
Figure 9. Initial task planning 27
Figure 10. Gantt diagram 28
Figure 11. Action Plan Stages 29
Figure 12. Hardware resources budget 30
Figure 13. Software resources budget 31
Figure 14. Human resources budget 32
Figure 15. Cost distribution table with task description 34
Figure 16. Total estimated budget 35
Figure 17. Sustainability matrix 36
Figure 18. Advanced Export App’s Extractor public methods 39
Figure 19. Advanced Export App’s Extractor library dependencies 39
Figure 20. Advanced Export App v0.1.0 40
Figure 21. Advanced Export App v0.2.0 41
Figure 22. Advanced Export App v0.2.1 41
Figure 23. Advanced Export App v0.2.2 42
Figure 24. Advanced Export App showcasing the “Options menu” 43
Figure 25. Advanced Export App showcasing the “Admin menu” 43
Figure 26. Original Bulk Load App developed in 2016 45
Figure 27. Bulk Load App methods for template creation 47
Figure 28. Bulk Load App methods for spreadsheet parsing 48
Figure 29. Bulk Load App methods for back-end connection 48
Figure 30. Bulk Load Application web front-end 49
Figure 31. Example data entry sheet for a dataset with disaggregation 50
Figure 32. Example legend sheet for a program with field validation 50
Figure 33. Example metadata sheet for a dataset 50
Figure 34. Usage help of the Metadata Repository Script 53
Figure 35. Configuration options of the Metadata Repository Script 53
Figure 36. Remote GitHub repository pushed by the Metadata Repository Script 54
Figure 37. DHIS2 System Settings to whitelist CORS domains 55
Figure 38. Final objectives of the thesis 58
Figure 39. Final task planning 59
Figure 40. Advanced Export App’s new Wizard mock-up 60

Implementing support for managing DHIS2 large scale deployments 6

This page is intentionally empty

Implementing support for managing DHIS2 large scale deployments 7

1. Introduction

Neglected Tropical Diseases (NTD) is a department at the World Health Organization (WHO)

that studies 21 different diseases with diverse, multidimensional natures, that affect low income

and rural areas around the world.

These tropical diseases affect millions of people around the world but it is especially important

in countries of Africa, South America and Central America.

As an example, one of these neglected diseases is Chagas disease, caused by Trypanosoma

cruzi parasite, endemic of rural countries, but present worldwide and currently estimated to

affect more than 7 million people.

Detection of new cases, transmission routes and follow-up treatment rely on collaborations with

official sources, remote institutions and isolated health care providers. That is why one of the

biggest handicaps for the researchers at WHO is data collection.

To address that issue, a collaboration effort was established between WHO and UPC in the form

of two different, yet related, projects named “WHO Information System to Control/Eliminate

Neglected Tropical Diseases” (WISCENTD) and “WHO Integrated Data Platform” (WIDP).

Since that initial agreement, several researchers from UPC and a handful of students have

received grants to build a common aggregated data platform that helps data collection of new

and follow-up cases for the NTD department at WHO.

In February 2018, a collaboration grant was offered by the “Department of Service and

Information System Engineering” (ESSI) at UPC. The main objective of the grant was designing

and developing three new applications to solve different problems the joint project was facing.

In September 2018, the grant was renewed by the same department at UPC with the possibility

to develop a final degree thesis. The thesis was established under a curricular practices

agreement with the main purpose of documenting the software required by the joint project.

Hence, this is not a regular final degree project. The software presented here has a strong

societal impact as it will likely help in the research for the diseases studied by the NTD

department.

Implementing support for managing DHIS2 large scale deployments 8

2. Context

2.1. Areas of interest

The official tool WHO uses to study diseases in the field is called “District Health Information

System 2” (DHIS2). It is part of “WHO Integrated Data Platform” (WIDP) and is used by many

programs such as Hepatitis, Health Workforce or Emergency Care.

DHIS2 is an open source software platform for reporting, analysis and dissemination of data for

health programs, used in more than 60 countries and helping healthcare facilities around the

globe. It was originally built by the “Health Information Systems Programme” (HISP) and

nowadays the core development is coordinated by the “University of Oslo” (UiO).

Re-using such a big platform allows us to enjoy a lot of functionalities backed-up by rock solid

software. But having all those functionalities for free has a hidden cost: generic software does

not always fit specific requirements.

To solve and fill the requirements the project faces, we need to build internal DHIS2 forms and

front-end applications. Most of our requirements are still not available in the core platform but

we are eager to collaborate with the University of Oslo to bring the functionalities to upcoming

releases of DHIS2 as an open source project.

Figure 1. DHIS2 Web interface

Implementing support for managing DHIS2 large scale deployments 9

2.2. Stakeholders

2.2.1. The World Health Organization

The main stakeholder we can observe is the World Health Organization. Inside the organization

we include the IT personnel that manages their DHIS2 instances, the program managers and the

researchers assigned to the Neglected Tropical Diseases department.

They directly benefit from the result of this project as end-users and provide the main software

and system requirements. We could refer to them as the target audience of the project.

The IT personnel behind World Health Organization also participate in our testing pipeline and

provide feedback of the applications developed in this thesis. They test the internal releases of

the applications and update or review the global requirements.

2.2.2. Polytechnic University of Catalonia

Another important stakeholder is the Polytechnic University of Catalonia who is assigned to

develop and maintain the tools that the World Health Organization needs for the whole project.

In a sense, the Polytechnic University of Catalonia acts as technical and development

consultant to those working in the project. They sponsor this final degree thesis and are

involved in the correct development of the tasks assigned to it.

Among others working in the project, we can include Petar Jovanovic as the director of the

thesis, Alberto Abelló as the faculty representative and Alexis Rico as a software engineer.

2.2.3. Affected population

A sometimes underestimated and indirect stakeholder group are the people that are suffering

from one of the 21 Neglected Tropical Diseases we are working for in the NTD department.

Even though they do not always participate on the project directly, they will largely benefit from

the research of the NTD department. They are also the source of data that our platform

consumes and it provides the required motivation for this project to succeed.

Implementing support for managing DHIS2 large scale deployments 10

2.2.4. External DHIS2 users and developers

Since DHIS2 is a global open source platform and it is not exclusive of our research group, we

build software that could be used by others in many health institutions.

We always have external DHIS2 users and developers in mind as we try to make our

applications generic enough that can be abstracted to other projects at WHO or even in other

organizations.

On the other hand, we also benefit from the development done by external DHIS2 developers by

reading their documentation or using libraries that are useful to us.

The main communication tool with external developers that use DHIS2 is the official community

forum . We actively participate in that forum to investigate what others are accomplishing in 1

DHIS2 and to share our latest results of application development.

2.2.5. DHIS2 core developers (University of Oslo)

The University of Oslo (UiO) handles the core development of the DHIS2 platform. As they are

building an open platform, they usually show interest in third-party development of new

applications that use their tools and technologies.

There are high chances that upcoming releases of DHIS2 include the functionality introduced by

the applications we have developed in this thesis.

To ensure UiO benefits from this thesis, we report back any issue we discover in their

infrastructure and we have constant communication with the official channels they provide,

such as Jira or GitHub . 2 3

We also regularly review the internal discussions of the web development team . That includes 4

reading the agenda and memorandums of their weekly meetings and trying to follow any

recommendations they have for external developers.

1 ​https://community.dhis2.org
2 ​https://jira.dhis2.org
3 ​https://github.com/dhis2/dhis2-docs
4 ​https://github.com/dhis2/notes

Implementing support for managing DHIS2 large scale deployments 11

https://community.dhis2.org/
https://jira.dhis2.org/
https://github.com/dhis2/dhis2-docs
https://github.com/dhis2/notes

3. Problem formulation

The normal usage for DHIS2 are local deployments that handle national or regional data. 5

The main problem with DHIS2 is that it heavily relies on internal metadata and WHO is facing

important issues when trying to scale DHIS2 to their complex infrastructure.

Instead of working with regional data, WHO provides support for a global platform. This involves

sharing information across seven different DHIS2 instances and every instance needs to keep

the internal data and metadata in sync with the rest.

Figure 2. Different instances used by the WHO for the global data platform

Since this problem is too big for a single final degree thesis, we have selected three smaller

problems that the student should be able to solve and that will contribute to reduce the

complexity of the background problem.

5 ​As an example, South Africa adopted DHIS2 as their main health information system

Implementing support for managing DHIS2 large scale deployments 12

3.1. Packaging of bundled metadata

The first problem that this thesis should solve is the packaging of bundled metadata. By design,

DHIS2 was built to be deployed in remote areas where Internet connection is unreliable. So

instead of providing a centralized solution stored in data centers in Europe or America, they

used a decentralized “build your own server” approach.

This enables anyone to deploy his own instance of DHIS2 and start collecting data without even

having a reliable Internet connection. But the problem comes when sharing the collected data

as you are forced to use the same internal schema if you are willing to share data to another 6

DHIS2 server.

Since the web interface creates internal unique identifiers during runtime, having exact copies of

the metadata is not trivial and the internal references between metadata cannot be maintained

manually.

Even though there’s an official application for exporting metadata, it does not respect the

dependencies. The only solution to share exact copies of forms between DHIS2 instances is to

query the web API and manually compile the shareable files that should be imported into the

destination instances.

Figure 3. DHIS2 Official web application to import metadata packages

6 ​The DHIS2 schema is called “metadata” and we will extensively use this term.
 We could understand metadata as the internal abstraction of any form presented to the user

Implementing support for managing DHIS2 large scale deployments 13

3.2. Bulk importing of data

Another problem the stakeholders face is to bulk import data collected in the field into DHIS2.

Even though DHIS2 is the best option when it comes to analyze and study health-related data, it

is not designed to be a reporting platform. At least not when it comes down to a global

infrastructure such as the one WHO works with.

Instead data collection has been traditionally done through surveys and spreadsheet files. This

is a much easier way to share aggregated data in remote areas and underdeveloped countries.

Even though DHIS2 allows importing data from comma separated value files. Those files are

not user friendly and it is impossible to import full featured excel files.

Also with complex forms, such as the ones that support disaggregation, the import procedure

fails when the data is malformed.

Most countries end up using human staff to fill the data manually through the web interface.

Figure 4. DHIS2 Official web application to fill data forms

Implementing support for managing DHIS2 large scale deployments 14

3.3. Version tracking of metadata changes

The last problem this thesis aims to solve is the tracking of metadata changes in the forms

available in our DHIS2 instances.

To ensure we have the highest uptime possible, we rely on a complex infrastructure that runs in

powerful machines operated by WHO IT department. We are currently using seven different

instances that replicate and expose the same metadata.

The problem comes when trying to maintain the same metadata synchronized across instances

in a platform that was not designed for parallel execution. If we recall “Figure 2”, this issue is

represented in the arrows 6 and 7.

Figure 2. Different instances used by the WHO for the global data platform

Since the metadata can be introduced in different instances and DHIS2 does not support a 7

version control system that tracks metadata changes, we can only detect anomalies by

manually examining the internal “last updated” date properties of the database.

We end up doing direct database clones of the SQL environment to secure metadata integrity

and be able to roll-back the systems if any issues arise.

This approach does not allow traceability of the issues found and sometimes leads to data loss.

7 Most team members, including program managers, work in “Development” and when the form is ready
they push to “Pre-production”. If there are not found any blocking issue, the form appears in “Production”.

Implementing support for managing DHIS2 large scale deployments 15

4. Specific objectives of the thesis

As we have seen in the previous section, we face a huge problem that can not be contained in a

single final degree thesis. So, instead of targeting an unfeasible objective we have selected

three smaller problems that will help to reduce the impact of the main problem.

After reviewing the viability of the project, we have determined that each of the three problems

of this thesis requires the creation of a software application. The goals behind the development

of the applications is to automate the tasks that are currently done manually by IT personnel.

We expect the student to fully integrate with the team at UPC and coordinate the

implementation of the new applications with other members from the NTD department at WHO.

Before introducing the state of the art and initial project planning, we would like to introduce the

specific objectives that this thesis is based on. In the final chapter of this thesis, we will also

review the fulfilment of these specific objectives.

- O1. Create a new application to Export Metadata

- O1.1. Allow the user to select any metadata of the running DHIS2 instance

- O1.2. Recursively fetch metadata dependencies

- O1.3. Create importable metadata packages in JSON format

- O2. Create a new application to Bulk Import Data

- O2.1. Mirror the capabilities of the old “Bulk Data Upload” application

- O2.2. Allow the user to create an excel template for datasets and programs

- O2.3. Allow the user to import a previously created template

- O2.4. Build user friendly excel files that include a legend with usage instructions

- O3. Create new scripts to handle Metadata Synchronization

- O3.1. Traverse the entire metadata collection of a master DHIS2 instance

- O3.2. Track changes to the metadata in a remote git repository

- O3.3. Allow configuration for multiple synchronizations through a JSON file

- O3.4. Update slave DHIS2 instances with the changes detected to master

Figure 5. Initial objectives of the thesis

Implementing support for managing DHIS2 large scale deployments 16

5. State of the art

5.1. Existing applications and research

The problems we are facing are well-known issues in DHIS2 and there are currently no

alternative solutions to look at yet.

We are building tools that might either become core functionalities of future versions of DHIS2

or supported as official apps in the app store . 8

Since we are not the only ones facing metadata management issues, we are making our

research open source and we are willing to collaborate.

It is worth mentioning that the HISP South Africa institution is currently developing an

application for metadata synchronization. We have investigated their approach to extract

metadata from DHIS2 and it is very similar to the one we have developed in this thesis for the

Advanced Export App.

The biggest difference between our applications is that we want to allow end users, that are not

technical, to bundle and package their metadata in JSON files for public distribution.

Since the application of HISP South Africa is still in the works, we are constantly monitoring the

improvements they achieve in their public GitHub . In case they create something we can 9

benefit we will introduce it to our own research.

As the collaboration with WHO has lasted several years, we have some older applications

developed at UPC that are useful to the topics we research in this thesis. We reviewed the

solutions presented in those previous applications and extracted some useful insight.

Finally, we have reviewed two different final degree projects that are relevant for our project 10

and we tried to learn as much as we could from their research, the titles of the TFGs are:

“Parametrization of the chagas disease surveillance system for the WHO” and “Performing data

lineage for an ingestion system to a data lake”

8 ​https://play.dhis2.org/appstore
9 ​https://github.com/EyeSeeTea/metadata-synchronization-blessed
10 The reports are available in the Bibliography section of this thesis.

Implementing support for managing DHIS2 large scale deployments 17

https://play.dhis2.org/appstore/
https://github.com/EyeSeeTea/metadata-synchronization-blessed

5.2. Available technologies

The development of applications for DHIS2 has a very well defined scaffolding. Their back-end

offers a powerful Web API to access internal data and metadata. 11

In order to maximize the results, the University of Oslo recommends to use the same

technologies and libraries they are using in their core applications. That includes JavaScript and

TypeScript as main development languages, React as front-end web framework or Cypress and

Jest as testing frameworks.

In case of doubt about the methodologies to follow, they recommend to visit their GitHub and

read the publicly available code of their apps such as the “Maintenance App” or the “Maps App”.

5.3. Helper libraries

To speed-up the development of third party apps we have available two main libraries built by

the University of Oslo that help to streamline the development of new applications. This makes

possible to build third party applications that act and feel the same as the official applications

and that with little to none effort can be later included in upcoming releases of DHIS2.

The first library is called d2 and provides a JavaScript connector for the Web Api, this allows to 12

access easily in an asynchronous way the back-end without needing to build custom methods

and communications. It is really helpful to center the development only in the application

without worrying of how it works beneath.

The second library has a similar name and is called d2-ui and provides a toolbelt of React 13

components that mimic the look and feel of the official applications. In fact, all the new core

applications use this exact library and we can build streamlined applications with ease in the

same direction the University of Oslo does. They offer an always up-to-date documentation

webpage for these two libraries that serves as the entry point for any developer willing to work 14

with third party applications for DHIS2.

11 ​https://docs.dhis2.org/master/en/developer/html/dhis2_developer_manual_full.html
12 ​https://github.com/dhis2/d2
13 ​https://github.com/dhis2/d2-ui
14 ​https://d2-ci.github.io/d2

Implementing support for managing DHIS2 large scale deployments 18

https://docs.dhis2.org/master/en/developer/html/dhis2_developer_manual_full.html
https://github.com/dhis2/d2
https://github.com/dhis2/d2-ui
https://d2-ci.github.io/d2

5.4. DHIS2 community

One of the strong points of DHIS2 as a platform is the big community that is backing the

project. Hundreds of individuals are building third party applications for DHIS2, and we greatly

benefit by tools provided by developers around the globe who are working hand to hand.

There are different non-gubernamental health institutions around the globe, such as HISP

Tanzania and HISP India , that provide loads of open source utilities around DHIS2. 15 16

And even some private companies share their products as open source software. For example,

one of the main contributors to the community is EyeSeeTea , a company that maintains part 17

of the WHO infrastructure and builds applications for WHO, non gubernamental organizations

and other end-users. They host a large repository of projects that can be reused and freely

reviewed.

5.5. DHIS2 core developers

The core team behind DHIS2 takes a strong stance in what open source means. They do not

only create free to use, modify or redistribute software, instead they publicly share all the

internal discussions and decisions they make.

They have created a big knowledge base where anyone is able to view, review and participate in

any ongoing discussion topics for current and future development.

Figure 6. DHIS2 core development decisions made in May 2019

15 ​https://github.com/hisptz
16 ​https://github.com/hispindia
17 ​https://github.com/EyeSeeTea

Implementing support for managing DHIS2 large scale deployments 19

https://github.com/hisptz
https://github.com/hispindia
https://github.com/EyeSeeTea

6. Initial project planning

6.1. Scope of the project

Since my personal collaboration started in February 2018 we could say the scope is bigger than

a normal final degree thesis.

The main objective of the project is building up to three different Web Applications that attack

the problems mentioned before.

In any case, we do not limit the project to the design and software implementation, we also

contemplate deployment and end-user feedback tasks in the thesis.

6.2. Potential obstacles

6.2.1. Fixed timing

The main concern we have is that the development is fixed to finish on June 2019. Since our

objectives are very extensive we are worried that any change to the requirements could

potentially lead to unexpected delays.

Every application development starts sequentially after the previous one but multiple

applications coexists during the integration testing with end-users and the documentation

phases. If a blocking issue appears then, the next iteration could be delayed.

If we end up with multiple delays that could lead to missed objects and rendering a complete

failure to the project.

Commonly final degree thesis attack one major problem but during this thesis we will try to

solve three different problems and create three different applications that will be tested by

end-users.

It is more than probable that due to the agile nature of the project we face deviations from the

initial project planning.

Implementing support for managing DHIS2 large scale deployments 20

6.2.2. New requirements

We work on-demand with WHO requirements and the planning is always subject to change. The

thesis was approved with the current planning back in September but if a rising development is

more urgent, the whole project could suffer from a complete redesign.

We do not expect this to happen because the problems that this thesis attacks are high priority

at the World Health Organization. But since the applications to be developed will be used in

ongoing operations by IT personnel, we expect new requirements to arise.

We will always try to take into consideration those new requirements and build the solution that

better fits into the current organization. Still, if any of these requirement changes are faced in

the final stages of the thesis we might be unable to include them into the project.

6.2.3. Technical issues

The thesis has as a main objective to develop brand new applications that offer a functionality

that has never done before.

That means that the development could be restricted by limitations imposed by third party

technologies such as DHIS2 or React.

But to make sure this thesis was viable, we did an initial proof of concept during the first half of

2018. The proof of concept assessment was done to ensure the viability of the thesis and there

are no signs of any blocking technical issues.

6.2.4. Research and innovation

There are no existing solutions for the problems presented in this thesis, we expect the student

to perform an in-depth research task.

This is a potential obstacle as we can not guarantee or account the time dedicated for

innovation. We are confident that DHIS2 allows us to fulfil all our expectations and produce

software that establishes the future of the platform.

Implementing support for managing DHIS2 large scale deployments 21

6.3. Methodology and rigor

6.3.1. Overview

The working methodology is an agile based methodology to quickly adapt to changes and we

have regular meetings with the director of the project and monthly meetings with WHO

representatives.

All the feedback is gathered through a management platform called Redmine, that acts as a

project management and issue tracker. Inside Redmine we use a per-application Kanban board

that handles the task status, feature development, functional requirements and detected bugs

or issues.

Since we collaborate with dozens of developers and researchers across Europe we heavily rely

on this project management utilities in a day-to-day basis.

6.3.2. Development tools

The development of the different applications is based on JavaScript based technologies such

as NodeJS and ReactJS. Each application is intended to be a Single Page Application that is

packaged into a release zip that can be installed on a DHIS2 instance.

We plan to test the applications locally through Webpack, a JavaScript tool that builds a

development http server that hosts and emulates a real scenario. We have already built a set of

functions that allow to work localhost with remote DHIS2 instances.

Even though we could develop the applications directly on a text editor we have chosen to use

IntelliJ suite, specifically WebStorm as an IDE (Integrated development environment) to improve

the performance of the software engineer.

We will also use Docker to create isolated environments that host local DHIS2 instances. To

prevent incompatibility with local machine requirements we will build a virtualized container that

replicates the same resources the production servers have.

Finally we will use Insomnia, an open source REST API client to manually communicate with the

web API that DHIS2 exposes.

Implementing support for managing DHIS2 large scale deployments 22

6.3.3. Development cycles

To reduce the probability of failure we have planned short development cycles with continuous

feedback from the stakeholders. Weekly meetings ensure that the requirements are being met

and that progress is happening.

Every iteration also allows us to do a brief retrospective and keep improving the quality as a

whole. We focus on functionality but code quality is a must in this project since we want to

make it as maintainable as possible.

This thesis will provide new applications that might be used by researchers during the next five

years, or even more.

6.3.4. Integration tests

Every time a new functionality is implemented we tag a new version release and notify the

end-users they can test the new features. We also build a production ready package to be

offered publicly on GitHub.

We also keep updated the three different development DHIS2 instances with the latest version

of the applications so that we can receive all the feedback possible.

The end-users do not only test new features, they also provide create issues through Redmine

and assign them directly to the software engineer.

Those issues on Redmine include detected bugs and feature requests to be implemented during

the next iteration of the development.

Also during the regular face-to-face meetings we collect and discuss the overall user experience

and review the evolution of the applications over time.

The development team is always eager to introduce new features that could make the

applications developed more useful to the required needs.

Implementing support for managing DHIS2 large scale deployments 23

6.4. Monitoring tools and validation

To monitor the changes to the code base we use Git and GitHub as main tools, we have an

organisation prepared to host the different projects for each application. 18

On GitHub we will find the main source branch, multiple development branches for new features

and release tagging when the milestones are reached.

To communicate between the different members of the project we use institutional mail

addresses and Cisco WebEx for online video calling.

To monitor the functional requirements we use Redmine with tickets that allow feature

discussion between team members and end-users. It allows task definition, time estimation,

automatic gantt chart building and kanban board management. We regularly log hours in the

Redmine and monthly review the progress achieved.

Figure 7. Redmine dashboard used by WHO and UPC

18 ​https://github.com/WISCENTD-UPC

Implementing support for managing DHIS2 large scale deployments 24

https://github.com/WISCENTD-UPC/

6.5. Development phases

6.5.1. Initial Planning and Scope

In September, with the director of the thesis we discussed an initial planning of the tasks that

could potentially fit inside the thesis and defined a global scope that would allow us to start the

development before building the refined planning of the GEP course.

Note that the GEP course happens in the middle of the thesis with the development started

months before. The documents and presentations of GEP include a revised thesis planning.

6.5.2. Viability analysis

After we decided the project scope and which applications we had to develop before June 2019

as per the requirements of WHO, we began a viability study of the existing solutions and how

they could be improved.

6.5.3. Application development

The development of the three applications will happen at the same time but since they address

WHO deadlines the priority of them is decided in each Milestone.

Each application requires a separate design phase that includes both a brainstorming with the

stakeholders the features of the application and the decision of which technologies are going to

be used.

As soon as we have usable versions of the application, we build beta testing releases and

distribute them internally to the rest of the team members. We always try to fix the issues

introduced as soon as possible.

6.5.4. Thesis documentation

When all the features have been implemented, a final documentation phase happens so that

everything can be later reviewed. That final documentation will also include a future work

planning and road-map with a list of new features worth implementing by the thesis student or

future project members.

Implementing support for managing DHIS2 large scale deployments 25

6.6. Temporal planning

The collaboration between the student and the UPC for the WISCENTD project started the 19th

of February 2018. Still, the real start date for the thesis is the 1st of September 2018 and

finishes the 30th of June 2019 for a total of 10 months dedicated to the research and study of

the thesis.

The contract associated with this thesis determines that the amount of dedication for the

collaboration is of a total of 735 hours with a 20 hour per week dedication. The estimation does

not account additional time spent writing the thesis memory and other management tasks.

Stage Estimated dedication (in hours)

Initial Planning and Scope 30

Viability analysis 60

Advanced Metadata Export Application 245

Bulk Load Application 220

Metadata Repository Application 180

Total time 735

Thesis documentation 275

GEP Course 75

Figure 8. Estimated time dedication table

Implementing support for managing DHIS2 large scale deployments 26

6.6.1. Task planning

To begin with the temporal planning estimation we are going to resume all the different tasks

we have identified for this thesis.

We have grouped the development specific tasks with their respective application. We have also

given a two month estimation for probable delays and thesis documentation.

TASK HOURS START END

Initial Planning and Scope 30.00 3-Sep 20-Sep

Viability analysis 60.00 14-Sep 15-Feb

Advanced Metadata Export 245.00 20-Sep 19-Apr

Initial design and set-up 20.00 20-Sep 28-Sep

Feature development 150.00 1-Oct 28-Jan

Integration test with users 60.00 5-Nov 19-Apr

Final documentation 15.00 15-Apr 19-Apr

Bulk Load 220.00 22-Nov 26-Apr

Initial design and set-up 15.00 22-Nov 28-Nov

Feature development 130.00 28-Nov 15-Mar

Integration test with users 60.00 27-Feb 26-Apr

Final documentation 15.00 22-Apr 26-Apr

Metadata Synchronization 180.00 2-Jan 3-May

Initial design and set-up 10.00 2-Jan 4-Jan

Feature development 120.00 7-Jan 1-Mar

Integration test with users 40.00 1-Apr 3-May

Final documentation 10.00 29-Apr 3-May

Total development 735.00 3-Sep 3-May

Product Management 120.00 3-Sep 28-Jun

Figure 9. Initial task planning

Implementing support for managing DHIS2 large scale deployments 27

6.6.2. Gantt diagram

With the task planning in mind, we have also elaborated an initial Gantt diagram that shows the

overlapping of the different tasks over the thesis lifespan.

In the gantt chart we can observe both the two month estimation for delays and the overlapping

of development tasks to match the project’s internal deadlines for the applications.

Figure 10. Gantt diagram

Implementing support for managing DHIS2 large scale deployments 28

6.6.2. Action Plan

The agile methodologies we use in this thesis are always subject to change and the schedule is

always changing. Some of the tasks do not happen sequentially and the next task is sometimes

decided by external priorities.

If the tasks are concluded before the expected date, the next programmed task is set to start

before planned to maximize the performance of the thesis.

At least once a week a meeting with the director is arranged to review the work done since the

previous meeting and to program the pending tasks. Any other relevant topics to discuss are

handled in thess weekly meetings.

Additional meetings happen when more follow-up is needed or when the whole team behind

WISCENTD has the Sprint Review meeting, usually every one or two months.

Although we have not prepared a detailed alternative plan the whole project is based on an agile

approach and we continuously update and improve the way to proceed.

STAGES

Initial Planning and Scope

Viability analysis

Advanced Metadata Export

Bulk Load

Metadata Synchronization

Thesis documentation

GEP Course

Figure 11. Action Plan Stages

Implementing support for managing DHIS2 large scale deployments 29

6.7. Resources and budget

The project is developed using the resources of an European fund to the research of neglected

diseases and a research fund of Generalitat de Catalunya assigned to the UPC as a research

institution.

The main costs are derived from human resources, hardware equipment and software licenses

but other unexpected costs can happen at any time.

6.7.1. Hardware resources

First of all, a development laptop will be required with enough power to handle the development

environment tools and multiple DHIS2 instances at the same time. We plan to use for this

specific part a MSI PS63 with 8th generation i7, 16GB of RAM and 512GB SSD.

Secondly, we require a development server hosted at UPC to deploy the applications for alpha

testing before releasing the milestones required by WHO. The server is rented by UPCnet and

hosted at ​http://who-dev.essi.upc.edu:8081​.

Finally, we will use an integration testing server hosted at WHO to release the milestones and

coordinate the beta testing with end users. The server is rented by WHO IT and hosted at

https://extranet.who.int with different instances: Production (​https://extranet.who.int/dhis2​),

Develop (​https://extranet.who.int/dhis2-dev​) and Training

(​https://extranet.who.int/dhis2-demo​).

Product Price Useful life Amortization

Development Laptop 1.500,00 € 5 years 150,00 €

UPC Server 1.850,00 € 5 years 185,00 €

WHO Server 2.350,00 € 5 years 235,00 €

Total 5.700,00 € 570 €

Implementing support for managing DHIS2 large scale deployments 30

http://who-dev.essi.upc.edu:8081/
https://extranet.who.int/
https://extranet.who.int/dhis2
https://extranet.who.int/dhis2-dev
https://extranet.who.int/dhis2-demo

Figure 12. Hardware resources budget

6.7.2. Software resources

The main software used for the development of the project is an IDE (Integrated development

environment) built by JetBrains Inc. The software suite is called IntelliJ IDEA and the main utility

used in the thesis is called WebStorm. The applications are built using NodeJS, ReactJS,

Javascript, TypeScript and other web technologies.

The operating system for the servers is a Linux based Ubuntu distribution that allows the

execution of the PostgreSQL database and the java runtime for DHIS2.

To automate the execution of the web services we use Docker community and other utilities

such as Git and GitHub.

Product Price Useful life Amortization

JetBrains Suite (WebStorm) Free for Open Source Projects N/A N/A

NodeJS and ReactJS Free N/A N/A

JavaScript and TypeScript Free N/A N/A

Ubuntu Server Free N/A N/A

PostgreSQL Free N/A N/A

Docker Community Free with Registration N/A N/A

Git and GitHub Free for Open Source Projects N/A N/A

Total 0,00 € 0,00 €

Implementing support for managing DHIS2 large scale deployments 31

Figure 13. Software resources budget

6.7.3. Human resources

The main development of the project is done by a software engineer and a product manager.

The software engineer will take care of the design and implementation of the required

applications while the Product Manager will organize the tasks of the Engineer while following

and adapting the project management.

The software engineer should be competent enough to fulfill all the tasks alone without any

major guidance other than researching the available knowledge base or asking the Product

Manager.

The product manager should have expertise guiding software development teams, and natural

ability to coordinate and improve the performance of the software engineer.

Role Estimated hours Price per hour Total cost

Project Manager 120 45 €/hour 19 5.400,00 €

Software Engineer 735 30 €/hour 20 22.050,00 €

Total 855 27.450,00 €

Figure 14. Human resources budget

The price per hour is estimated using actual data from LinkedIn Salaries in Barcelona for each

role, these salaries do not account the real state tax nor the social security fee.

These hidden costs are handled either by the employee, in the case of the real state tax as a

retention, or the company, in the case of the social security fee, but never by the project.

19 ​https://www.linkedin.com/salary/explorer?countryCode=es®ionCode=5064&titleId=4
20 ​https://www.linkedin.com/salary/explorer?countryCode=es®ionCode=5064&titleId=9

Implementing support for managing DHIS2 large scale deployments 32

https://www.linkedin.com/salary/explorer?countryCode=es®ionCode=5064&titleId=4
https://www.linkedin.com/salary/explorer?countryCode=es®ionCode=5064&titleId=9

6.7.4. Budget monitoring

The approved budget is monitored every month to avoid unexpected costs and update the

usage of the remaining budget. The development strategy could be easily modified and the

budget assigned recalculated.

Hardware costs are not expected to change because the equipment is enough for the project

and it still has a valid warranty agreement.

In the unlikely case that the hardware malfunctions we would only need to mitigate the

downtime with rented hardware until a replacement from the manufacturer happens.

Software costs should stay at zero and are not subject to change as everything we use is free

and redistributable. Anyway the costs of any potential license that we could need is covered

under the unexpected costs budget.

The only part we need to extensively monitor is human resources as any change in the task

estimation directly produces unexpected costs that affect the budget.

The following formula can be used to express the deviations:

Cost deviation = (Estimated cost − Real cost) · Real hours

Consumption deviation = (Estimated hours − Real hours) · Estimated cost

6.7.5. Unexpected and contingency costs

In all projects there are always hidden costs that appear during the development and cannot be

predicted beforehand.

Those hidden costs are normally because of extraordinary hours, hardware malfunctioning and

repair, additional software licenses or external services.

To allocate enough budget for these unpredicted costs we establish of the total required budget

a 15% margin for unexpected costs and a 5% margin for contingency costs.

Implementing support for managing DHIS2 large scale deployments 33

6.7.6. Cost distribution across development tasks

With the estimation of hours and the price per hour we can estimate the cost for each task.

TASK HOURS START END COST

Initial Planning and Scope 30.00 3-Sep 20-Sep 900.00 €

Viability analysis 60.00 14-Sep 15-Feb 1,800.00 €

Advanced Metadata Export 245.00 20-Sep 19-Apr 7,350.00 €

Initial design and set-up 20.00 20-Sep 28-Sep 600.00 €

Feature development 150.00 1-Oct 28-Jan 4,500.00 €

Integration test with users 60.00 5-Nov 19-Apr 1,800.00 €

Final documentation 15.00 15-Apr 19-Apr 450.00 €

Bulk Load 220.00 22-Nov 26-Apr 6,600.00 €

Initial design and set-up 15.00 22-Nov 28-Nov 450.00 €

Feature development 130.00 28-Nov 15-Mar 3,900.00 €

Integration test with users 60.00 27-Feb 26-Apr 1,800.00 €

Final documentation 15.00 22-Apr 26-Apr 450.00 €

Metadata Synchronization 180.00 2-Jan 3-May 5,400.00 €

Initial design and set-up 10.00 2-Jan 4-Jan 300.00 €

Feature development 120.00 7-Jan 1-Mar 3,600.00 €

Integration test with users 40.00 1-Apr 3-May 1,200.00 €

Final documentation 10.00 29-Apr 3-May 300.00 €

Total development 735.00 3-Sep 3-May 22,050.00 €

Product Manager 120.00 3-Sep 28-Jun 5,400.00 €

Thesis documentation 275.00 1-Apr 28-Jun - €

GEP Course 75.00 11-Feb 29-Mar - €

Figure 15. Cost distribution table with task description

Implementing support for managing DHIS2 large scale deployments 34

6.7.7. Total estimated budget

After reviewing the human, hardware, software and unpredicted costs we can estimate the total

budget required for the project.

Concept Estimated cost

Human Resources 27.450,00 €

Hardware 5.700,00 €

Software 0,00 €

Unexpected and contingency costs (15% + 5%) 6.630,00 €

Total 39.780,00 €

Figure 16. Total estimated budget

Implementing support for managing DHIS2 large scale deployments 35

7. Sustainability report

7.1. Sustainability matrix

Overall the student is more than happy with the results of this report. In collaboration with the

stakeholders we have taken into consideration several aspects that ensure the sustainability of

the project.

 Project development Exploitation Risks

Social 10 20 0

Environmental 7 16 0

Economic 9 16 0

Sustainability score 26 (over 30) 52 (over 60) 0 (between -60 and 0)

Figure 17. Sustainability matrix

The explanation of the results can be found in the following sections.

7.2. Social sustainability

This thesis will largely aid the research for neglected tropical diseases and will improve the

distribution of medicines to patients worldwide. We are indirectly helping thousands of people

that deserve a cure for deadly diseases.

Also the software built under this project is open source and will be used and reviewed by third

parties in the future, enabling others to benefit even more people with our applications.

And finally the project is part of the education of the student and the lessons learnt during the

development of his thesis will contribute to his personal development and work experience.

Implementing support for managing DHIS2 large scale deployments 36

7.3. Environmental sustainability

The main improvements to the environmental dimension of the project are the hardware

investments.

We have an estimated product life of 5 years for each equipment taking as reference studies on

hardware amortization.

Since we already accounted a part of the budget for these hardware equipments and we might

not completely use the equipment.

To improve the environmental sustainability, we have reused all the hardware from different

entities.

- Development laptop: The student will use his own laptop for development since his

machine is powerful enough and he will maximize the usage of the equipment.

- UPC Server: Instead of investing on our own server for development purposes we asked

“Laboratori de Calcul” for a virtual machine in one of their servers called “Leon”. The

server provides resources for dozens of other projects for the ESSI department at UPC.

- WHO Server: The dedicated server we have acquired will be reused for other projects

after the finalization of this thesis.

7.4. Economic sustainability

We have presented a detailed planning and an estimated cost for the project, where it has been

included human and material resources.

The project already consists of the minimum required human resources, such as one product

manager and one software engineer with an average rate per hour.

The project also tries to use the cheapest hardware available that offers the performance we

need and all the software licenses used in the project are free for open source projects as ours.

Implementing support for managing DHIS2 large scale deployments 37

8. Design and implementation

8.1. Advanced Export App

8.1.1. Main objectives

The main objective of the application is to browse the metadata of the running DHIS2 instance,

select the desired objects to be exported, review the dependencies bundled with the selected

objects and download a shareable package.

The resulting package is compliant with DHIS2 sharing standard so that it can be later imported

in another instance whilst keeping the dependencies and relations of the database.

The application is also configurable so that advanced users can choose which dependencies

should be included or ignored. These configurations are different for every export.

8.1.2. Technical overview

The advanced export app is built in modern JavaScript using the React framework to design

declarative UI web components. To build the application template we used the official

command line utility “Create React App” provided by Facebook and that allowed us to 21

quickstart the initial development set-up.

Since the application runs on-top of an existing DHIS2 instance we use the official “d2” to

communicate with the core back-end and maintain the look-and-feel of the instance where it is

being executed. To maintain the look and feel of DHIS” we also use the official UI components

that are available in the “d2-ui” library.

To manage the communication between the different layers for the advanced export app we use

a shared-state store service called Redux . This communication layer synchronizes the state of 22

the foreground user interface and the background logic services while reducing the coupling

between components.

21 ​https://github.com/facebook/create-react-app
22 ​https://github.com/reduxjs/redux

Implementing support for managing DHIS2 large scale deployments 38

https://github.com/facebook/create-react-app
https://github.com/reduxjs/redux

All the logic to fetch metadata elements and obtain the dependencies is handled by a single

service called “Extractor”. We keep the extraction as a single source of truth by using the

“Singleton Design Pattern”. This design pattern reduces any possibility for data inconsistencies.

We provide public methods for initial set-up, element fetching and concurrency synchronization.

All these methods act as an internal API for the application asynchronous logic.

Figure 18. Advanced Export App’s Extractor public methods

In the Extractor class we also use different external libraries. For example, we use “lodash” as a

helper library to manipulate the resulting package, “axios” to perform the API calls between the

application and the DHIS2 instance or “traverse” to visit the metadata tree’s nodes.

Figure 19. Advanced Export App’s Extractor library dependencies

Implementing support for managing DHIS2 large scale deployments 39

8.1.3. Application evolution

Since the project is agile-based, we released an initial version of the application showcasing the

user interface and basic functionality. We only included in that release the creation of a package

that included the selected elements without any dependency fetching.

Figure 20. Advanced Export App v0.1.0

That initial version allowed us to verify with the stakeholders that we understood the

requirements behind the application. We also received feedback on what features we should

focus on.

The main feature the stakeholders needed was to browse the metadata catalog with ease.

Some metadata collections in the WHO DHIS2 instances contain more than 100.000 objects

and our application should be able to visualize over 250.000 objects at the same time.

We were also asked to implement collection grouping and filtering over the internal DHIS2 id

and the display name of the object. That would simplify the selection of any object of the

instance while reducing the complexity of a paginated table as originally intended.

As a side effect of the feedback obtained, we decided to use modern table react components

instead of traditional HTML tables. That improved both the user experience and performance.

Implementing support for managing DHIS2 large scale deployments 40

The second version we released to the stakeholders already included the grouping and filtering

to browse the metadata collection and the main objective of the release was to verify the user

experience evolved as expected.

Figure 21. Advanced Export App v0.2.0

The feedback obtained from that second version was good but some end-users pointed out that

since we could potentially hide selected items due to filtering and/or grouping we could

introduce again the two tables approach of the first release. That change would allow the user

to verify the selected objects before exporting.

Figure 22. Advanced Export App v0.2.1

Implementing support for managing DHIS2 large scale deployments 41

The front-end interface was pretty much decided after that release but we lacked the ability to

visualize which dependencies the algorithm had included in the resulting package. We decided

to adapt the checkbox to include a three state icon (user-selected, dependency, ignored).

Figure 23. Advanced Export App v0.2.2

Even though we finally had a version the user felt comfortable to use, we only included the core

functionality based on the stakeholder requirements. We still had to focus on the advanced

features that we were missing.

We introduced two different panels to accommodate the missing features, a basic options

menu meant for any user of the app and an admin menu that allowed in-depth app

configuration.

The first “options” menu includes the ability to remove user related identifiers or organisation

units of the resulting metadata package so it can be successfully imported on any DHIS2 23

instance. Since the user could also create a metadata package for a compatible DHIS2 instance

we allowed them to configure it per export.

23 An organisation unit is a DHIS2 concept for hierarchical institutions (ie: countries, hospitals…) WHO
uses organisation units to manage the medical centers of all the world by country and region. The
organisation unit collection consists of 109,075 different entities.

Implementing support for managing DHIS2 large scale deployments 42

Figure 24. Advanced Export App showcasing the “Options menu”

The second “admin” menu allows the user to select the include rules that the application

algorithm will use to determine if a dependency should be fetched or ignored. This menu allows

to create completely different metadata packages depending on the advanced user needs. We

allow to store the rules for later usage in an instance-shared DHIS2 store called DataStore so

that an advanced user is able to create advanced rules that anyone can later re-use.

Figure 25. Advanced Export App showcasing the “Admin menu”

Implementing support for managing DHIS2 large scale deployments 43

8.1.4. Conclusions

The advanced export app application development has provided the stakeholders with 11

different releases that contained new features and bug fixes.

In the last sprint meeting held in Barcelona (13th of June 2019) the stakeholders asked for

some improvements that directly affect the algorithm and before concluding the thesis we will

provide a final release.

Some of the new improvements include the addition of a new configuration option that allows

to filter the properties included in the bundled metadata package.

Starting with version 0.2.5 (released the 6th of December 2018) we open sourced the

application under the project GitHub organisation meaning any interested DHIS2 user or 24

developer has been able to download and use the application for the last 6 releases.

The application was also used as the main tool for the last data migration of the project DHIS2

instances. End users of WHO, UPC and external contractors used the application in a production

environment with ease and provided helpful feedback.

The quality of the application allowed us to submit it to the “2019 DHIS2 Annual Conference”

app competition.

Even though we were not selected as one of the three final finalists, the project stakeholders

were able to showcase the application during the session WHO held in the conference . 25

The next steps for the application include improving the admin panel to browse existing

blacklisting rules instead of accessing them by name, improve the logic for edge cases on

complex metadata structures or simplifying the usage of the application by introducing a

step-by-step wizard that allows any non-experienced user to benefit of the advanced features.

These improvements are discussed with more detail in the “Future work” section of this thesis.

24 ​https://github.com/WISCENTD-UPC/Advanced-Metadata-Export
25 ​https://www.dhis2academy.org/annual-conference-2019/

Implementing support for managing DHIS2 large scale deployments 44

https://github.com/WISCENTD-UPC/Advanced-Metadata-Export
https://www.dhis2academy.org/annual-conference-2019/

8.2. Bulk Load App

8.2.1. Original application

The Bulk Load application development began in 2016 by a former student during his master’s

thesis. He developed an initial version that implemented basic support to create and read excel

templates from DHIS2 forms. Even though the application was enough for the project’s needs

back in that time, the stakeholders determined the app needed a refresh.

Figure 26. Original Bulk Load App developed in 2016

The original application relied on the standards from older DHIS2 versions and stopped working

properly with recent updates to our instances. Since DHIS2 API endpoints have evolved

dramatically in recent years, we determined a new application was needed.

Even though we had to re-write most of the code, we used the source available as a reference to

determine the features we had to recreate in the new application.

Since the initial version was built using JQuery instead of React, we decided to re-use the same

codebase we had created for the Advanced Export App. This simplifies the maintenance for

both applications, as they share the same core and user interface.

Implementing support for managing DHIS2 large scale deployments 45

8.2.2. Main objectives

The main objective for this application is to insert data into DHIS2 instances with offline excel

spreadsheets. Since most of the users of the project live in third-world countries where Internet

is unreliable or non-existent, we need to provide a way to collect datasets from Hospitals and

field research institutions.

The application has two main features: building template spreadsheets and importing the data

written in the previously created template spreadsheets.

In order to be useful, the application has to adapt to any DHIS2 form and build a standardized

spreadsheet that mirrors the same look and feel. That includes creating disaggregation tables,

allowing data validation for fixed value forms or reporting data from different regions and

periods of time.

8.2.3. Technical overview

The bulk load app is also built in modern JavaScript using the React framework, in fact we

based the development on a simplified version of the advanced export app. That means we also

use the official “d2” and “d2-ui” libraries to communicate with the core back-end and maintain

the look-and-feel of the instance where it is being executed.

We have three main services on the application: the connector that acts as a middleware to the

current DHIS2 instance, the spreadsheet builder that creates the excel templates and the

spreadsheet parser that reads and imports the data from the templates.

Since there is no official library that reads or writes excel files from JavaScript, we are using two

different third party libraries to work with spreadsheets. For the template creation we use

Excel4Node and to read the data we use ExcelJS . 26 27

We are not tied to any excel management suite and if we find a better alternative, we could

refactor the existing code and adapt to any other library. Also, the services that create or read

the spreadsheets are independent and isolated from each other to support those changes.

26 ​https://github.com/natergj/excel4node
27 ​https://github.com/exceljs/exceljs

Implementing support for managing DHIS2 large scale deployments 46

https://github.com/natergj/excel4node
https://github.com/exceljs/exceljs

The service that handles the spreadsheet creation only exposes one method that from a given

builder that contains the metadata of a DHIS2 form fills the different sheets of the Excel file and

requests the browser to download the resulting file.

Figure 27. Bulk Load App methods for template creation

Even though the user only uses two of the sheets found in the excel file, we create four different

sheets. The first one is where the user inserts the form data and the second one includes a

legend that informs the user about the fields available in the DHIS2 form.

The last two sheets are protected and only used programmatically to implement the core

functionality. The third sheet contains all the validation formulas used by excel and the last one

includes the references and logic that allows the excel file to be imported back again into

DHIS2.

Implementing support for managing DHIS2 large scale deployments 47

Since most of the logic is done in the template building, the service that reads the spreadsheet

is much more simple. It consists of two different methods, the first one goes row by row in the

excel file and maps the values inserted with the form metadata. And the last one is a utility

function that given an internal DHIS2 unique identifier returns the associated metadata.

Figure 28. Bulk Load App methods for spreadsheet parsing

Finally we have the last service that performs the metadata gathering from DHIS2 forms and

performs the final data importing task. It consists in the following three public methods:

Figure 29. Bulk Load App methods for back-end connection

The first one requests the user information, that contains a list of forms the user has access to.

This allows the application to hide sensitive data that the user should not read or modify. The

second one provides the metadata related to one of the forms and the last one requests the

import task to the DHIS2 instance.

As you may have noticed, in both the Advanced Export and Bulk Load applications we have used

the “Prototype Design Pattern”. JavaScript is an object oriented language that does not require

classes. Instead of using classes you can build inheritance through a prototypical model.

Implementing support for managing DHIS2 large scale deployments 48

8.2.4. Application features

Since the complexity of the application we introduced the first milestone release to the

stakeholder when basic functionality was already implemented. DHIS2 supports two different

kinds of forms: “Datasets” and “Programs”. Even though these two forms share the procedure

to introduce data, they completely differ internally and include different features.

The users needed the application to provide support for both types of forms, so instead of

working with the two of them at the same time we focused first on one type and later moved to

include support for the other one.

Figure 30. Bulk Load Application web front-end

The user experience consists of two different front-ends: the web application and the excel file

the user interacts with. The web application is meant for system administrators and we decided

to use a minimal interface that included all the available options.

In the left pane we added all the components required to generate an excel template

spreadsheet. That includes filtering between “Datasets” and “Programs” and selecting the

desired form to use as base. We also show a tree that allows the user to select the organisation

units that the user will use to insert data . 28

28 As explained in the previous chapters, an organisation unit is a hierarchical data structure. In this
particular case we use the organisation units to select which medical institutions should introduce data.

Implementing support for managing DHIS2 large scale deployments 49

The second front-end we work with is the excel template the end-users will receive and fill with

patient data or investigation results. We focused on building a user-friendly template that could

be understood by any field investigator.

Figure 31. Example data entry sheet for a dataset with disaggregation

We also include a legend that explains the different form fields and showcases all the

possibilities available for data input.

Figure 32. Example legend sheet for a program with field validation

Finally we include the metadata with the internal DHIS2 instance unique identifiers to allow the

cross-matching required for the data importing.

Figure 33. Example metadata sheet for a dataset

Implementing support for managing DHIS2 large scale deployments 50

8.2.5. Conclusions

Even though the bulk load application has not been tested in production yet, we have provided

the stakeholders with 6 different releases.

The main functionality from the original application is already available and we have improved

the quality of both the web application and the template spreadsheets.

The original application lacked support for validation and the excel spreadsheet was mainly a

comma separated value document.

Now we have the application ready to deploy excel templates to external medical institutions

and receive data that the researchers can visualize and study.

Since version 2.1.0 (released the 4th of June 2019) we open sourced the application under the

project GitHub organisation . This means any user can benefit from the final application and 29

install it on any DHIS2 instance.

The application has drawn interest from different organisations, for example “Médecins Sans

Frontières” (MSF) has explicitly requested more information about the features implemented

and they will likely start using it for their internal projects. We expect the same to happen with

other companies and institutions.

During this thesis we have focused on mirroring the same functionality the old application had

but we expect the application to receive new features in upcoming releases.

Some improvement ideas can also be found in the “Future work” section of this document.

29 ​https://github.com/WISCENTD-UPC/Bulk-Load

Implementing support for managing DHIS2 large scale deployments 51

https://github.com/WISCENTD-UPC/Bulk-Load

8.3. Metadata Repository Script

8.3.1. Original scripts

The original script was one of the first applications developed by the UPC for the joint project

with WHO. It was built using Java, a language that is not recommended by DHIS2 anymore, and

it had several memory leaks that often ended in random application crashes.

It used Subversion to recreate a copy of the metadata found in the DHIS2 instance and had

major performance issues when generating the first local clone. It also was designed to use

older DHIS2 versions and does not handle metadata with the latest schema revisions.

8.3.2. Main objectives

The script main feature is to clone all the metadata into a local collection of JSON files, store

them in a version control system such as Git and track the remote changes made in the

metadata.

The script is based on two main parts:

- The first part of the script main purpose is to create independent copies of the metadata

stored in DHIS2. Those independent copies are organized in a Git repository and we are

able to differentiate what changes have been introduced over time.

- The second part of the script is to subscribe to metadata changes and update other

DHIS2 instances with the local Git repository. That allows us to synchronize different

instances in a regular basis with the latest changes following a master-slave pattern.

Since the original script already supported those functionalities we focused on migrating the

existing logic to a language that is supported by DHIS2.

We chose JavaScript as the new language for the script to unify the languages we use in the

project. That allows us to reuse code with ease between other applications such as the

Advanced Export or the Bulk Load.

Implementing support for managing DHIS2 large scale deployments 52

8.3.3. Technical overview

The Metadata Repository Script is built using NodeJS and uses the latest JavaScript standard.

We created the script as a command line interface application. Even though we only support

one command right now, it is expected to grow in the future with more features to manage

metadata copies.

Figure 34. Usage help of the Metadata Repository Script

All the script configuration is exposed through a JSON compliant file, we support configuring

the credentials for the remote DHIS2 instances, the remote Git repository credentials and the

metadata to be fetched in the DHIS2 master instance.

Figure 35. Configuration options of the Metadata Repository Script

Implementing support for managing DHIS2 large scale deployments 53

8.3.4. Conclusions

This script was the last task introduced into the thesis and has suffered major drawbacks in the

schedule. We mirrored most of the required functionality but it has not been used yet in

production environments.

We fully support the first part of the original script which includes creating mirrors of the

metadata stored in a master DHIS2 instance and detecting changes introduced to the JSON

files. We also include functionality to push the local mirror to remote Git repositories such as

GitHub.

Figure 36. Remote GitHub repository pushed by the Metadata Repository Script

Due to unexpected requirement changes in the other two apps we did not have enough time to

finish the second part of the script. That second part updates the slave servers with the

changes of the master instance. More details about the implementation of those functionalities

are detailed in the “Future work” section of this thesis.

Implementing support for managing DHIS2 large scale deployments 54

8.4. Local development environment

Since the three applications we had to build are meant to be executed in a remote server, we

had to design a working environment that allowed us to test and debug the applications locally.

The first problem we found is that a security feature in most browsers made our applications

unusable while being on localhost. The "Cross-Origin Resource Sharing" (CORS) blacklisted all

our network petitions to the remote DHIS2 instance. Luckily we are not the only ones that face

this issue and there is a configuration property in DHIS2 that allows to whitelist select domains.

Figure 37. DHIS2 System Settings to whitelist CORS domains

The second issue we faced was to read the user credentials when deployed in the remote

instance. The d2 library does not actually handle the authentication, instead you have to

manually parse them and set them up during the library initialization.

We built a set of utility methods that differentiated where the application was being run and 30

either read the credentials from the environment variables or re-used the session cookies set by

the DHIS2 instance.

Finally since we were working with public DHIS2 instances that other users relied on, we could

not perform certain destructive actions that modified or deleted data. So we created a 31

dockerized local development server that exposes an empty DHIS2 instance. We can also seed

the database with data obtained from the WHO and we can even open access to make it

publicly available on the web.

30 ​https://gist.github.com/SferaDev/8eb56a10d067b1a3e40613c8ead02f9a
31 ​https://github.com/SferaDev/dhis2-backend

Implementing support for managing DHIS2 large scale deployments 55

https://gist.github.com/SferaDev/8eb56a10d067b1a3e40613c8ead02f9a
https://github.com/SferaDev/dhis2-backend

8.5. Application testing and requirement acceptance

Since the three applications generate artifacts that are difficult to test, such as JSON files from

external metadata, excel files from external forms or git repositories, we did not create any end

to end testing pipeline.

Instead of relying on automated tools that could ignore potential issues or detect false positives

in the artifacts generated, we implemented a testing pipeline that included human interaction.

During this testing pipeline we also included requirement acceptance with the stakeholders.

8.5.1. Development team

The development team, software engineer and UPC management, thoroughly tested the

artifacts produced with each new version of the applications. With their knowledge of DHIS2,

they verified if the artifacts were compliant with their specification and detected any newly

introduced issues.

8.5.2. Field IT personnel

As soon as a milestone version was released, field IT personnel from WHO and the NTD

department begin to use the new functionalities. They review the internal logic of the

applications and review that the artifacts work properly in the production environments.

8.5.3. WHO Program managers

During the regular sprint retrospective meetings, the WHO program managers verify the new

functionalities match the original requirements. They also test the application to review

non-functional aspects of the application such as look and feel or user experience.

8.5.4. External DHIS2 users

When the projects are open sourced, any user from WHO or other organizations have the

possibility to use and test the functionality in their specific domain. This serves as the final step

in the testing pipeline.

Implementing support for managing DHIS2 large scale deployments 56

9. Conclusions

9.1. Overview

The main objective of this final degree thesis was to integrate the student in the IT team that

provides support to WHO while he obtained the requirements to develop new tools and

applications the team required.

Even though the most important deadlines for the first application were met we have been

forced to alter part of the initial planning. This was already expected due to the agile and

constantly evolving nature of the project.

For example, we received feedback from our end-user testing team that required us to diverge

from the planned tasks and implement the new, and unaccounted, functionalities the

stakeholders needed.

To address those delays we have reduced the time planned for documentation and prioritized

the most important features instead of applying all the original ideas we had. In any case, we

have dedicated more than the estimated hour dedication for TFGs.

In any case, the thesis had three major problems to solve, the packaging of bundled metadata,

bulk importing of data and version tracking of metadata changes. We determined that the best

solutions to attack those three problems was by creating three different applications and we

have successfully created those three applications.

Also the student has worked on at least four other applications that were not part of the thesis

but that are critical for the project. As an example, he added some new functionality to an

application co-developed by the UPC and the “Health Management Information System” (HMIS).

Finally, thanks to the thesis the student gained enough understanding about the internals of

DHIS2 and he is now working as a private consultant for EyeSeeTea. EyeSeeTea is a leading

consultancy company for DHIS2 systems and the student got to know them thanks to different

collaborations during this project.

Implementing support for managing DHIS2 large scale deployments 57

9.2. Objective fulfillment

To review the dedication of the student towards the thesis and the project where he has been

working for over a year and a half, we would like to review the initial objectives for the thesis.

Due to the agile methodology of the project, new objectives have appeared since the beginning

of the collaboration.

- O1. Create a new application to Export Metadata

- O1.1. Allow the user to select any metadata of the running DHIS2 instance

- O1.2. Recursively fetch metadata dependencies

- O1.3. Create importable metadata packages in JSON format

- O1.4. Remove properties that can not be shared between DHIS2 instances

- O1.5. Allow creating rules to filter dependency fetching

- O1.6. Store filtering rules in a shared data store

- O2. Create a new application to Bulk Import Data

- O2.1. Mirror the capabilities of the old “Bulk Data Upload” application

- O2.2. Allow the user to create an excel template for datasets and programs

- O2.3. Allow the user to import a previously created template

- O2.4. Build user friendly excel files that include a legend with usage instructions

- O2.5. Validate values of dropdown lists and add conditional formatting

- O2.6. Add period selection and dataset options to the excel file

- O2.7. Protect sensitive sheets of the template excel file

- O3. Create new scripts to handle Metadata Synchronization

- O3.1. Traverse the entire metadata collection of a master DHIS2 instance

- O3.2. Track changes to the metadata in a remote git repository

- O3.3. Allow configuration for multiple synchronizations through a JSON file

- O3.4. Update slave DHIS2 instances with the changes detected to master

- O4. Add new features to other applications of the organization

- O4.1. Allow pagination in the “Data Collection Reminder” application

- O4.2. Refactor the “Data Sending” application to run with latest DHIS2 versions

- O4.3. Fix existing issues with the “HMIS Dictionary” application

Figure 38. Final objectives of the thesis

Implementing support for managing DHIS2 large scale deployments 58

9.3. Planning deviations

Overall we have respected the estimated hour assignment that we initially set for the thesis

development. But as we included new objectives, we also have seen an increment in the real

hours that have been finally dedicated on development and testing tasks.

TASK ESTIMATED HOURS REAL HOURS

Initial Planning and Scope 30.00 30.00

Viability analysis 60.00 55.00

Advanced Metadata Export 245.00 325.00

Initial design and set-up 20.00 20.00

Feature development 150.00 205.00

Integration test with users 60.00 90.00

Final documentation 15.00 10.00

Bulk Load 220.00 290.00

Initial design and set-up 15.00 15.00

Feature development 130.00 160.00

Integration test with users 60.00 100.00

Final documentation 15.00 15.00

Metadata Synchronization 180.00 75.00

Initial design and set-up 10.00 10.00

Feature development 120.00 50.00

Integration test with users 40.00 10.00

Final documentation 10.00 5.00

Other applications 0.00 55.00

Total development 735.00 830.00

Product Management 120.00 140.00

Figure 39. Final task planning

Implementing support for managing DHIS2 large scale deployments 59

9.4. Future work

9.4.1. Synchronization wizard in the Advanced Export App

As we have seen in section 7.1.4 of this thesis, the stakeholders have found out that the usage

of the application was too technical and that required additional training to use the advanced

features.

This wizard could be planned for the next big release (0.3.0) of the application and we would

separate the metadata and dependencies selection, allowing the user to limit the number of

dependencies to be exported.

Figure 40. Advanced Export App’s new Wizard mock-up

9.4.2. Dependency blacklisting in the Advanced Export App

The current way to exclude dependencies is through a blacklist that is available on the “Admin

menu”. But we do not currently support circular blacklisting of metadata dependencies.

This functionality was not originally accounted and we expect future versions of the application

to improve the whole “Admin menu” to make it even more powerful and user friendly.

Implementing support for managing DHIS2 large scale deployments 60

9.4.3. Tracker programs in the Bulk Load App

DHIS2 allows different types of forms, in chapter 8.2.4 of this thesis, we explained that the two

main forms we use in this project are “datasets” and “programs.

However there is a special type of program that allows registration and follow-up. It is called

“tracker program” and we do not currently support that kind of program. This is not a blocking

issue, since WHO does not use that kind of forms for the neglected tropical diseases.

But since the application is now open sourced and available to any user, we should allow this

kind of forms in the Bulk Load App to be fully compliant with the user’s needs.

9.4.4. Advanced validation in the Bulk Load App

In the excel templates that we generate through the bulk load application we currently support

validation of collection items (such as list dropdowns) but we do not verify that the dates or

numbers the user is inserting follow the DHIS2 standard format.

We have detected some issues with the application in some DHIS2 instances of Nepal because

they use a different calendar system and we should also try to fix this behaviour in future

releases of the application.

9.4.5. Slave Synchronization in the Metadata Repository Script

As we mentioned in chapter 8.3.4 of this thesis, we had not enough time to finish the second

part of the script. That second part pushes the detected changes to slave DHIS2 instances and

acts as a message broker.

We have partial support in the code and it’s almost finished, anyway before pushing it to

production additional testing is needed. We do not find this issue to be blocking because we still

have the original metadata synchronization scripts that are updating the slave instances

regularly.

Implementing support for managing DHIS2 large scale deployments 61

References

WHO NTD Official Page

https://www.who.int/neglected_diseases/en

WHO WISCENTD Official Page

https://www.who.int/neglected_diseases/disease_management/wiscentds/en

ESSI DTIM WISCENTD Official Page

http://www.essi.upc.edu/dtim/projects/wiscentd

ESSI DTIM WIDP Official Page

http://www.essi.upc.edu/dtim/projects/widp

Performing data lineage for an ingestion system to a data lake (Garnica Caparrós, Marc)

https://upcommons.upc.edu/handle/2117/99453

Parametrization of the chagas disease surveillance system for the WHO (Mourin Marin, Eric)

https://upcommons.upc.edu/handle/2117/100881

Implementing support for managing DHIS2 large scale deployments 62

https://www.who.int/neglected_diseases/en/
https://www.who.int/neglected_diseases/disease_management/wiscentds/en/
http://www.essi.upc.edu/dtim/projects/wiscentd
http://www.essi.upc.edu/dtim/projects/widp
https://upcommons.upc.edu/handle/2117/99453
https://upcommons.upc.edu/handle/2117/100881

