
 

Instructions for use

Title On a class of explicit Cauchy‒Stieltjes transforms related to monotone stable and free Poisson laws

Author(s) Arizmendi, Octavio; Hasebe, Takahiro

Citation Bernoulli, 19(5B), 2750-2767
https://doi.org/10.3150/12-BEJ473

Issue Date 2013

Doc URL http://hdl.handle.net/2115/75993

Type article

File Information Bernoulli19-5B_2750-2767.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Bernoulli 19(5B), 2013, 2750–2767
DOI: 10.3150/12-BEJ473

On a class of explicit Cauchy–Stieltjes
transforms related to monotone stable and
free Poisson laws
OCTAVIO ARIZMENDI1 and TAKAHIRO HASEBE2

1Universität des Saarlandes, FR 6.1-Mathematik, 66123 Saarbrücken, Germany.
E-mail: arizmendi@math.uni-sb.de
2Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
E-mail: thasebe@math.kyoto-u.ac.jp

We consider a class of probability measures μα
s,r which have explicit Cauchy–Stieltjes transforms. This

class includes a symmetric beta distribution, a free Poisson law and some beta distributions as special cases.
Also, we identify μα

s,2 as a free compound Poisson law with Lévy measure a monotone α-stable law. This
implies the free infinite divisibility of μα

s,2. Moreover, when symmetric or positive, μα
s,2 has a representation

as the free multiplication of a free Poisson law and a monotone α-stable law. We also investigate the free
infinite divisibility of μα

s,r for r �= 2. Special cases include the beta distributions B(1 − 1
r ,1 + 1

r ) which are
freely infinitely divisible if and only if 1 ≤ r ≤ 2.

Keywords: beta distribution; free infinite divisibility; free Poisson law; monotone stable law

1. Introduction

In random matrix theory, a Marchenko–Pastur law describes the asymptotic behavior of the spec-
trum of the so-called Wishart matrices [11]. In free probability, a Marchenko–Pastur (or free
Poisson) law plays the role that a Poisson distribution does in probability theory: it is the limiting
distribution of ((1 − λ

N
)δ0 + λ

N
δ1)

�N when N → ∞. For this reason, it is called a free Poisson
law in the context of free probability. On the other hand, an arcsine law appears in probability
theory as the law of the proportion of the time during which a Wiener process is nonnegative.
In monotone probability, an arcsine law plays the role of a Gaussian law [13]. In particular, an
arcsine law is a monotone stable law with stability index α = 2 [9].

Arizmendi et al. [3] found an interplay between Marchenko–Pastur and arcsine laws. They
introduced a class FTA of freely infinitely divisible distributions whose Lévy measures are mix-
tures of a symmetric arcsine law. The building block of this class is a symmetric beta distribution

bs(dx) = 1

π
√

s
|x|−1/2(√s − |x|)1/2 dx, −√

s ≤ x ≤ √
s.

The free Lévy measure of bs coincides with an arcsine law. Moreover, bs is equal to the free
multiplicative convolution of an arcsine law with a Marchenko–Pastur law, and hence, is freely
infinitely divisible. Moreover, its Cauchy–Stieltjes transform (or Cauchy transform for short) can
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be calculated explicitly as

Gbs (z) = −
√

2

s

√
1 −

√
1 − sz−2, s > 0. (1.1)

This paper studies a class of Cauchy–Stieltjes (or Cauchy for short) transforms related to
Marchenko–Pastur laws and monotone stable laws. We deform the above Cauchy transform (1.1)
to introduce a family of probability measures which include the symmetric beta distribution bs ,
Marchenko–Pastur and some other beta distributions as special cases. More explicitly, for 0 <

α ≤ 2, we define

Gα
s,r (z) = −r1/α

(
1 − (1 − s(−1/z)α)1/r

s

)1/α

, r > 0, s ∈ C \ {0}. (1.2)

The branches of powers have to be defined carefully and the precise definition is presented in
Section 3. It can be shown that the function (1.2) defines the Cauchy transform of a probability
measure μα

s,r for 1 ≤ r < ∞ and (α, s) satisfying what we call an admissible condition. This
condition is related to stable distributions.

The reciprocal Cauchy transforms Fα
s,r = 1

Gα
s,r

satisfy

Fα
s,r ◦ Fα

us,u = Fα
us,ur .

We note that the same relation appears for probability measures introduced by Młotkowski [12].
This relation enables us to calculate the inverse map explicitly:

(
Fα

s,r

)−1 = Fα
s/r,1/r . (1.3)

The inverse map of the reciprocal Cauchy transform, which is hard to calculate in general, is
crucial to investigate free infinite divisibility. Therefore, the explicit form of (Fα

s,r )
−1 is quite

useful and we can prove the free infinite divisibility of μα
s,r for some parameters.

The probability measure μα
s,2 turns out to be a free compound Poisson distribution with Lévy

measure a monotone α-stable law aα
s/4. From Proposition 4 of [14], if symmetric or positive,

μα
s,2 coincides with the free multiplicative convolution of a Marchenko–Pastur law m and the

monotone α-stable distribution aα
s/4:

μα
s,2 = m � aα

s/4.

Moreover, μα
s,r is freely infinitely divisible for other parameters, not only for r = 2. An interest-

ing case of μα
s,r is μ1−1,r which is a beta distribution with the density r sin(π/r)

π x−1/r (1−x)1/r on
(0,1). We prove that this is freely infinitely divisible if and only if 1 ≤ r ≤ 2. We also mention
that, while an arcsine law is not freely infinitely divisible, some monotone stable laws are. This
fact was implicitly proved by Biane in a different context; see Corollary 4.5 of [8].
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2. Preliminary results

2.1. The Voiculescu transform and the R-transform

In this paper, C+ and C−, respectively, denote the upper half-plane and the lower half-plane
of C.

An additive free convolution μ � ν of compactly supported probability measures μ and ν

on R is the probability distribution of X + Y , where X and Y are self-adjoint free independent
random variables with distributions μ and ν, respectively, [17]. This convolution was extended
to all Borel probability measures in [7]. A probability measure μ on R is said to be �-infinitely
divisible if for any n ∈ N, there is μn such that μ = μ�n

n .
For a probability measure μ on R, let us denote by Gμ the Cauchy transform and by Fμ

its reciprocal: Gμ(z) = ∫
R

μ(dx)
z−x

and Fμ(z) = 1
Gμ(z)

. Bercovici and Voiculescu [7] proved the

existence of η,η′ > 0 and M,M ′ > 0 such that Fμ is univalent in �η,M := {z ∈ C+: Im z >

M, | Im z| > η|Re z|} and �η′,M ′ ⊂ Fμ(�η,M). The Voiculescu transform φμ is defined in �η′,M ′
to be F−1

μ (z) − z. The free convolution μ � ν is characterized by

φμ�ν(z) = φμ(z) + φν(z)

in �η′′,M ′′ for some η′′,M ′′ > 0. Rμ(z) := zφμ( 1
z
) is called an R-transform. A probability mea-

sure μ is �-infinitely divisible if and only if φμ is the restriction of an analytic map from C+
into C− ∪ R [7]. This is also equivalent to the Lévy–Khintchine type representation suggested
in [4]

Rμ(z) = cz + az2 +
∫

R

(
1

1 − xz
− 1 − xz1{|x|≤1}(x)

)
ν(dx), (2.1)

for some c ∈ R, a ≥ 0 and a nonnegative measure ν satisfying ν({0}) = 0 and
∫

R
min{1, x2} ×

ν(dx) < ∞. We call ν the Lévy measure of μ.
The following is useful to calculate the Lévy measure. For a �-infinitely divisible measure μ,

its Voiculescu transform can be written as

φμ(z) = γ +
∫

R

(
1

z − x
− x

1 + x2

)(
1 + x2)τ(dx)

for some γ ∈ R and a nonnegative finite measure τ [7]. The measure τ can be calculated, by
using the Stieltjes inversion formula [1,16], as∫ v

u

(
1 + x2)τ(dx) = − 1

π
lim
y↘0

∫ v

u

Imφμ(x + iy)dx (2.2)

for all continuity points u,v of τ . Considering the relation Rμ(z) = zφμ( 1
z
) and (2.1), we obtain

1+x2

x2 τ |R\{0} = ν|R\{0} and τ({0}) = a, where a is the real number of (2.1). In particular, if the

functions f
y
μ(x) := − 1

π
Imφμ(x + iy) converges uniformly to a continuous function fμ(x) (y ↘
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0) on an interval [u,v], then τ is absolutely continuous in [u,v] with density fμ(x). Hence, ν is
also absolutely continuous in [u,v] with density

1 + x2

x2
fμ(x). (2.3)

Regarding atoms, the following formula holds: τ({x}) = 1
1+x2 limy↘0 iyφμ(x + iy) for any

x ∈ R.

2.2. The S-transform

Multiplicative free convolution � for probability measures on [0,∞) was investigated in [7,
18]. This convolution corresponds to the probability distribution of X1/2YX1/2, or equivalently
Y 1/2XY 1/2, where X and Y are positive free independent random variables. This convolution
is characterized by S-transforms defined as follows. For a probability measure μ on R, we
let ψμ(z) := ∫

R

zx
1−zx

μ(dx). ψμ coincides with a moment generating function if μ has finite
moments of all orders. In [7], ψμ was proved to be univalent in the left half-plane iC+ for
a probability measure μ on [0,∞) with μ({0}) < 1. Moreover, ψμ(iC+) contains the inter-
val (1 − μ({0}),0). Then a map χμ: ψμ(iC+) → iC+ is defined by the inverse of ψμ. The
S-transform is defined as

Sμ(z) := 1 + z

z
χμ(z), z ∈ ψμ(iC+). (2.4)

Using the S-transform, μ � ν is characterized as

Sμ�ν(z) = Sμ(z)Sν(z) (2.5)

in a common domain including an interval of the form (−ε,0).
More generally, a multiplicative convolution μ � ν can be defined if μ or ν is supported

on [0,∞). While (2.5) is expected to hold also in this case, it is not known whether an S-
transform can be defined for every probability measure. It was shown in [18] to hold for mea-
sures with bounded support and nonvanishing mean, while the bounded case when μ has van-
ishing mean was solved in [15]. For the unbounded case, as a partial solution, Arizmendi and
Pérez-Abreu [2] defined an S-transform of a symmetric probability measure as follows. For a
symmetric distribution μ �= δ0, there is a unique probability distribution μ2 �= δ0 on [0,∞) such
that ψμ(z) = ψμ2(z2) for z ∈ C+. Using a property of ψμ2 , we can conclude that ψμ is univalent
in H := {z ∈ C+: Im z > |Re z|}. Moreover, ψμ(H) contains the interval (1 − μ({0}),0). There-
fore, we can define χμ = ψ−1

μ : ψμ(H) → H and Sμ(z) := 1+z
z

χμ(z). Then (2.5) still holds if μ

or ν is symmetric and the other is supported on [0,∞).
Finally, we recall the analogues of compound Poisson distributions, which will be important

in this paper.

Definition 2.1. A probability measure μ is said to be free compound Poisson if Rμ(z) = λψν(z)

for a probability measure ν with ν({0}) = 0 and a λ ≥ 0. In this case, λν coincides with the Lévy
measure of μ.
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The Marchenko–Pastur law m with mean one belongs to the class of free compound Poisson
measures; the pair (λ, ν) is given by (1, δ1). m is also characterized by Sm(z) = 1

z+1 in terms of
the S-transform.

3. Probability measures μα
s,r

Let r > 0,2 ≥ α > 0 and s ∈ C \ {0}. For any η > 0, we will find an M > 0 such that the function

Gα
s,r (z) = −r1/α

(
1 − (1 − s(−1/z)α)1/r

s

)1/α

(3.1)

is defined as an analytic map in �η,M . To make the definition precise, we take branches of powers
z1/α , z1/r and zα as follows:

(1) z1/α and zα are, respectively, defined as e1/α log(1) z and eα log(1) z in C\[0,∞), where log(1)

denotes a logarithm satisfying Im(log(1) z) ∈ (0,2π);

(2) z1/r is defined to be e1/r log(2) z in C \ (−∞,0], where log(2) is a logarithm satisfying
Im(log(2) z) ∈ (−π,π).

We show that these branches enable us to define Gα
s,r as an analytic function in �η,M for an

M > 0 depending on η > 0, s ∈ C \ {0}, r > 0. Under the definition (2), the function (1 + w)1/r

is equal to the generalized binomial expansion
∑∞

n=0 1/rCnw
n for |w| < 1, where 1/rCn is the

generalized binomial coefficient 1/r(1/r−1)···(1/r−n+1)
n! . Therefore, for z ∈ C+ with large |z|, the

function 1−(1−s(−1/z)α)1/r

s
can be written as

1 − (1 − s(−1/z)α)1/r

s
=

(
−1

z

)α ∞∑
n=1

1/rCn(−s)n−1
(

−1

z

)(n−1)α

, (3.2)

where (− 1
z
)nα is defined by ((− 1

z
)α)n. For any η > 0, s ∈ C\ {0}, r > 0, there is an M > 0, inde-

pendent of α ∈ (0,2], such that the image of the map �η,M � z �→ (− 1
z
)α

∑∞
n=1 1/rCn(−s)n−1 ×

(− 1
z
)(n−1)α is contained in the sector {z ∈ C \ {0}: arg z ∈ (0, απ)}. Therefore, we can take the

power of (3.2) by 1/α and Gα
s,r is well-defined as an analytic map in �η,M .

We note that Gα
s,r (z) can be expanded in a series regarding (− 1

z
)α :

Gα
s,r (z) = −r1/α

((
−1

z

)α ∞∑
n=1

1/rCn(−s)n−1
(

−1

z

)(n−1)α
)1/α

= 1

z

(
1 + r

∞∑
n=1

1/rCn+1(−s)n
(

−1

z

)nα
)1/α

(3.3)

= 1

z

∞∑
n=0

cn(α, s, r)

(
−1

z

)nα

, z ∈ �η,M
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for some complex coefficients cn(α, s, r) with c0 = 1. In the second line, we used the formula
((− 1

z
)α(1 + o(1/z)))1/α = − 1

z
(1 + o(1/z))1/α . This formula is valid in �η,M if the function

(1 + o(1/z))1/α is understood to be the generalized binomial expansion.
Let us define Fα

s,r (z) := 1
Gα

s,r (z)
for z ∈ �η,M , where M > 0 is large enough depending on

(η, s, r). Then we have the following.

Theorem 3.1. Let r, u > 0,2 ≥ α > 0, η > 0 and s ∈ C \ {0}. Then

Fα
s,r ◦ Fα

us,u = Fα
us,ur

holds in �η,M for some M > 0.

Proof. We note that (−Gα
us,u(z))

α is equal to 1−(1−us(−1/z)α)1/u

s
in �η,M with large M > 0. Also,

we note that ((1 + w)1/r )1/u = (1 + w)1/(ru) for small |w|. Then

−r1/α

(
1 − (1 − s(−Gα

us,u(z))
α)1/r

s

)1/α

= −(ur)1/α

(
1 − (1 − us(−1/z)α)1/(ru)

us

)1/α

for z ∈ �η,M . �

Under further conditions on (r,α, s), the function Gα
s,r is well-defined in C+ with values in

C−, and therefore defines a probability measure.

Theorem 3.2. Suppose 1 ≤ r < ∞, 0 < α ≤ 2 and s ∈ C \ {0}. Assume that either of the follow-
ing conditions is satisfied:

(1) 0 < α ≤ 1 and (1 − α)π ≤ arg s ≤ π;
(2) 1 < α ≤ 2 and 0 ≤ arg s ≤ (2 − α)π.

Then Gα
s,r is the Cauchy transform of a probability measure, which we denote by μα

s,r . More-
over, Gα

s,r is univalent in C+. If (α, s) satisfies (1) or (2), it is said to be admissible.

Proof. Let r ≥ 1. We can immediately check that zGα
s,r (z) → 1 as z → ∞, z ∈ C+, nontangen-

tially. Therefore, what needs to be proved is that Gα
s,r analytically maps the upper half-plane to

the lower half-plane.
We first focus on the case 0 < α ≤ 1 and θ := arg s ∈ [π(1−α),π]. Then the image of the map

1−(1−s(−1/z)α)1/r

s
in C+ can be described as in Figure 4 after some steps described in Figures 1–3.

Figure 1. The image of C+ under the map z �→ (− 1
z )α .
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Figure 2. The image of C+ under the map z �→ 1 − s(− 1
z )α . L1 and L2 are half lines contained in the

upper half-plane and the lower half-plane, respectively. L−3 and L−4 are preimages of L3 and L4 of
Figure 3 for the map z �→ z1/r , respectively.

Figure 3. The image of C+ under the map z �→ (1− s(− 1
z )α)1/r . θ1 and θ2 are defined by θ1 = θ−(1−α)π

r

and θ2 = π−θ
r . L1 and L2 are the same half lines as in Figure 2. L3 and L4 are starting at 0. l1 is tangent

to L1 at 1 since z1/r is a conformal mapping. Moreover, it approaches L3 asymptotically. l2 is tangent to
L2 at 1 from the same reason and approaches L4 asymptotically.

We can see that the image of the map 1−(1−s(−1/z)α)1/r

s
is contained in the sector {z ∈ C: 0 <

arg z < απ}. This implies the desired conclusion.
In the case 1 < α ≤ 2, we draw similar pictures; see Figure 5–8. In Figure 8, the image of

1−(1−s(−1/z)α)1/r

s
is contained in the sector {z ∈ C: 0 < arg z < απ}. Therefore, the image of the

map (
1−(1−s(−1/z)α)1/r

s
)1/α is contained in C+.

Figure 4. The image of C+ under the map z �→ 1−(1−s(−1/z)α)1/r

s which can be obtained from the rotation
and the translation of Figure 3. l1’ is tangent to L and l2’ is tangent to the x axis at 0.
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Figure 5. The image of C+ under the map z �→ (− 1
z )α .

Figure 6. The image of C+ under the map z �→ 1 − s(− 1
z )α . L1 and L2 are half lines starting at 1. L−3

and L−4 are preimages of L3 and L4 of Figure 7 for the map z �→ z1/r , respectively.

In each step described in the figures, a new univalent map is added, so that after all the steps,
the map Gα

s,r is also univalent in C+. �

Remark 3.3. (i) The admissible condition is related to monotone stable distributions as men-
tioned in the next section.

Figure 7. The image of C+ under the map z �→ (1 − s(− 1
z )α)1/r . θ1 and θ2 are defined by θ1 = π−θ

r and

θ2 = π(α−1)+θ
r . L1 and L2 are the same half lines as in Figure 6. L3 and L4 are starting at 0. l1 is tangent

to L1 at 1 and approaches L3 asymptotically. l2 is tangent to L2 at 1 and approaches L4 asymptotically.
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Figure 8. The image of C+ under the map z �→ 1−(1−s(−1/z)α)1/r

s which can be obtained from the rotation
and the translation of Figure 7. l1’ is tangent to the x axis and l2’ is tangent to L at 0.

(ii) We have μα
s,1 = δ0 for any admissible (α, s). Therefore, the right inverse of Fα

s,r can be

calculated as (Fα
s,r )

−1 = Fα
s/r,1/r from Theorem 3.1.

(iii) From the relation (F α
s,r )

−1 = Fα
s/r,1/r , we can conclude that Gα

s,r does not define a proba-
bility measure for 0 < r < 1 and admissible (α, s). The reason is as follows. If μ is a probability
measure and not a point mass, then ImFμ(z) > Im z for any z ∈ C+; see Corollary 5.3 of [7].
Hence, ImF−1

μ (z) < Im z if z = Fμ(w) and Fμ is univalent around w. Therefore, F−1
μ cannot be

written as Fν for a probability measure ν on R.
(iv) The measure μα

s,r satisfies self-similarity with respect to s as follows. If μ is a probability
distribution of a random variable X, then let Dcμ denote the distribution of cX. For c > 0, we
have

μα
cs,r = Dc1/αμ

α
s,r .

4. A relation to monotone stable and free Poisson laws

Let aα
s be a monotone (strictly) α-stable distribution [9] characterized by

Faα
s
(z) = (

zα + (−1)α−1s
)1/α

, z ∈ C+,

where (α, s) satisfies the admissible condition. a2
s is the centered arcsine law with variance s/2

and a1
s is a Cauchy distribution or a delta measure. The following properties are valuable to note

here.

(1) aα
s is supported on [0,∞) if and only if 0 < α ≤ 1 and arg s = π.

(2) aα
s is symmetric if and only if arg s = (1 − α

2 )π.

(3) Both a
1/2
Ri and a

1/2
−R are free 1

2 -stable distributions, but not strictly stable.
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The proofs are as follows. Let s := reiθ , r > 0. From the Stieltjes inversion formula, the density
pα

s (x) of aα
s is given by

pα
s (x) =

⎧⎪⎪⎨
⎪⎪⎩

sin[(1/α) arg(|x|α + rei(απ−π+θ))]
π(|x|2α − 2r|x|α cos(απ + θ) + r2)1/(2α)

, x > 0,

sin[(1/α) arg(|x|α + rei(π−θ))]
π(|x|2α − 2r|x|α cos θ + r2)1/(2α)

, x < 0,

where arg z is defined in (C+ ∪ R) \ {0} so that it takes values in [0,π]. Now the properties (1)
and (2) can be proved easily.

(3) It was proved in [7] that free 1
2 -stable distributions are characterized in terms of the

Voiculescu transform φμ(z) = bz1/2 + c, where c ∈ R and argb ∈ [π,3π/2]. Moreover, strictly
stable laws correspond to the case c = 0. Since F

a
1/2
s

(z) = (z1/2 − is)2, we have φ
a

1/2
s

(z) =
F−1

a
1/2
s

(z)− z = 2isz1/2 − s2, which for s = −R or s = iR means that a
1/2
s is free 1

2 -stable, but not

strictly stable.
The main theorem of this section is the following.

Theorem 4.1. μα
s,2 is a free compound Poisson distribution for any admissible (α, s). Moreover,

its Lévy measure να
s,2 is given by the monotone stable distribution aα

s/4.

Proof. Thanks to Proposition 4 of [14], it suffices to prove that Rα
s,2(z) = ψaα

s/4
(z), or equiva-

lently, φα
s,2(z) = z2Gaα

s/4
(z) − z, in an open set of the form �η,M .

As in (3.3), a naive relation (zw)α = zαwα may not be valid. To avoid this problem, we un-
derstand that (1 − s

4 (− 1
z
)α)1/α , appearing below, is defined by using the generalized binomial

expansion (1 + w)1/α = ∑∞
n=0 1/αCnw

n for |w| < 1. Then for any η > 0, the following calcula-
tion is correct in �η,M with large M > 0:

Faα
s/4

(z) =
(

zα + s

4
(−1)α−1

)1/α

=
(

zα − s

4
(−1)α

)1/α

=
(

zα

(
1 − s

4zα
(−1)α

))1/α

=
(

zα

(
1 − s

4

(
−1

z

)α))1/α

= z

(
1 − s

4

(
−1

z

)α)1/α

.



2760 O. Arizmendi and T. Hasebe

Therefore,

z2Gaα
s/4

(z) − z = z

(1 − (s/4)(−1/z)α)1/α
− z.

On the other hand, the Voiculescu transform of μα
s,2 is given as

φα
s,2(z) = Fα

s/2,1/2(z) − z

= − 1

((1 − (1 − (s/2)(−1/z)α)2)/s)1/α
− z

= − 1

((s(−1/z)α − (s2/4)(−1/z)2α)/s)1/α
− z

= − 1

((−1/z)α(1 − (s/4)(−1/z)α))1/α
− z

= z

(1 − (s/4)(−1/z)α)1/α
− z

in �η,M . Therefore, we have proved φα
s,2(z) = z2Gaα

s/4
(z) − z. �

With Proposition 4 of [14], the above result implies μα
s,2 = m � aα

s/4 if μα
s,2 and aα

s/4 are sym-
metric or supported on [0,∞). We do not know if this holds for any admissible pair (α, s) since
S-transforms are not defined for probability measures which are not symmetric or supported on
[0,∞).

Theorem 4.2. Let (α, s) satisfy either of the following conditions: 0 < α ≤ 1 and arg s ∈ {(1 −
α/2)π,π}; 1 < α ≤ 2 and arg s = (1 − α/2)π. Then μα

s,2 = m � aα
s/4.

Example 4.3. In general, the density of μα
s,2 is difficult to calculate. In some cases, however, the

density is explicit as we show below.

(1) Let us consider (α, s, r) = (1, i,2). Then μ1
i,2 is the free multiplicative convolution of the

Marchenko–Pastur law and a symmetric Cauchy distribution. This is absolutely continuous with
a strictly positive density on R written as

√
2

π

(√
1 +

√
1 + 1

x2
− √

2

)
.

We mention that this probability measure belongs to a class proposed in [10].
(2) Let (α, s, r) = ( 1

2 ,−1,2). Then the corresponding probability measure is supported on
[0,∞) with a density

4
√

2

π

(
1√
2x

−
√

−1 +
√

1 + 1

x

)
.
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(3) As shown in [3], μ2
s,2 for s > 0 is a symmetric beta distribution:

μ2
s,2(dx) = 1

π
√

s
|x|−1/2(√s − |x|)1/2 dx, −√

s ≤ x ≤ √
s.

In addition to μα
s,2, some monotone stable distributions are also �-infinitely divisible. This

property was essentially proved by Biane [8].

Proposition 4.4. aα
s is �-infinitely divisible if and only if (α, s) satisfies either of the following

conditions:

(1) 1
2 ≤ α < 1 and arg s ∈ {(1 − α)π,π};

(2) α = 1.

In fact, Biane considered only special values for arg s, but the same proof can be applied to the
above result.

Finally, we note the S-transforms of μα
s,2 and aα

s .

Proposition 4.5. Let (α, s) satisfy either of the following conditions: 0 < α ≤ 1 and arg s ∈
{(1 − α/2)π,π}; 1 < α ≤ 2 and arg s = (1 − α/2)π. Then

(1) Saα
s
(z) = − 1

z
(
(1+z)α−1

s
)1/α , z ∈ (−1,0),

(2) Sμα
s,2

(z) = − 41/α

z(z+1)
(
(1+z)α−1

s
)1/α = Sm(z)Saα

s/4
(z), z ∈ (−1,0).

Proof. The Voiculescu transform φaα
s

can be calculated as φaα
s
(w) = F−1

aα
s

(w) − w = (wα +
(−1)αs)1/α − w. Let us define z := Raα

s
(w) = wφaα

s
( 1
w

). Then (1 + z)α = 1 + s(−w)α . Since
Raα

s
(zSaα

s
(z)) = z holds, the desired formula follows. A similar calculation is possible for μα

s,2. �

5. More on free infinite divisibility of μα
s,r

In the previous section, we proved that μα
s,r is �-infinitely divisible whenever r = 2. In this

section we will determine infinite divisibility for r �= 2. We found the general case is too difficult
to treat, so that we only consider the problem for some parameters. The main results of this
section are the following.

(1) If 0 < α ≤ 1 and 1 ≤ r ≤ 2, then μα
s,r is �-infinitely divisible.

(2) If 1 ≤ α ≤ 2 and 1 ≤ r ≤ 2
α

, then μα
s,r is �-infinitely divisible.

(3) μ1
s,3 is �-infinitely divisible if and only if arg s = π

2 .
(4) If α > 1, there exists an r0 = r0(α, s) > 1 such that μα

s,r is not �-infinitely divisible for
r > r0.

We also show that some beta distributions are �-infinitely divisible, and some are not.
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5.1. The case 1 ≤ r ≤ 2

To prove the free infinite divisibility of μα
s,r , we introduce a subclass of �-infinitely divisible

distributions.

Definition 5.1. A probability measure μ is said to be in class U I 1 if Fμ is univalent in C+ and,
moreover, F−1

μ has an analytic continuation from Fμ(C+) to C+ as a univalent function.

The following property was implicitly used in [6].

Proposition 5.2. μ ∈ U I implies that μ is �-infinitely divisible.

Proof. The Voiculescu transform φμ has an analytic continuation to C+ defined by F−1
μ (z) − z.

If there existed a point z0 ∈ C+ such that Imφμ(z0) > 0, then ImF−1
μ (z0) = Im(z0 + φμ(z0)) >

Im z0 > 0. Since ImFμ(w) ≥ Imw for w ∈ C+, ImF−1
μ (z) ≤ Im z for z ∈ Fμ(C+). Therefore,

z0 never belongs to Fμ(C+). However, since F−1
μ is univalent in C+ and F−1

μ (Fμ(C+)) = C+,
z0 must satisfy ImF−1

μ (z0) ≤ 0, which contradicts the inequality ImF−1
μ (z0) > 0. Therefore, φμ

maps C+ into C− ∪ R. �

Remark 5.3. If μ is �-infinitely divisible, then Fμ is always univalent in C+. This can be proved
for instance by using the so-called subordination functions. Let μ be �-infinitely divisible and
μt = μ�t be the probability measure corresponding to the Voiculescu transform tφμ. For s ≤ t ,
an analytic function ωs,t : C+ → C+ exists so that it satisfies Fμs ◦ ωs,t = Fμt . ωs,t is called a
subordination function. The reader is referred also to equation (5.4) of [5], where the following
replacements are required: μ by μ�s and t by t/s. The relation Fμs ◦ ωs,t = Fμt is equivalent to

Fμt (z) = t/s

t/s − 1
ωs,t (z) − z

t/s − 1
. (5.1)

Moreover, it is proved in Theorem 4.6 of [5] that∣∣ωs,t (z1) − ωs,t (z2)
∣∣ ≥ 1

2 |z1 − z2|, z1, z2 ∈ C+.

Taking the limit s → 0 in (5.1), we get∣∣Fμt (z1) − Fμt (z2)
∣∣ ≥ 1

2 |z1 − z2|, z1, z2 ∈ C+,

so that Fμt is univalent in C+.

For instance, the normal law 1√
2π

e−x2/2 dx is in U I from the result of [6]. Moreover, we can
easily prove that Wigner’s semicircle law, the Marchenko–Pastur law and the Cauchy distribution
belong to U I .

1The symbol U I stands for univalent inverse reciprocal Cauchy transforms.
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U I is closed under the weak topology. This is proved as follows. The convergence of μn

implies the local uniform convergence of the Voiculescu transforms φμn [7]. Since F−1
μn

(z) =
z+φμn(z) converges locally uniformly, the limit function is univalent. Also Fμn itself converges
to a univalent function. Therefore, the limit measure belongs to the class U I .

We note that U I is a proper subset of all �-infinitely divisible distributions. For instance,
let μ be a probability measure characterized by the Voiculescu transform φμ(z) = 1

z−1 + 1
z+1 .

Then F−1
μ (z) = z + φμ(z) = z + 1

z−1 + 1
z+1 . We can find two distinct points z1, z2 such that

F−1
μ (z1) = F−1

μ (z2) with z1 = iy for small y > 0 and z2 near to i. This example also proves that
U I is not closed under the free convolution, since the measures ν and λ, respectively, defined by
φν(z) := 1

z−1 and φλ(z) := 1
z+1 , both belong to U I .

From Theorem 3.2, the map Fα
s,r is univalent in C+ for any admissible (α, s) and r ≥ 1, so

that we only have to prove the inverse (Fα
s,r )

−1 is univalent in C+.

Theorem 5.4. Let (α, s) be an admissible pair. Then μα
s,r ∈ U I if either of the following condi-

tions holds:

(1) 0 < α ≤ 1 and 1 ≤ r ≤ 2;
(2) 1 ≤ α ≤ 2 and 1 ≤ r ≤ 2

α
.

Proof. By Remark 3.3, the explicit formula for (Fα
s,r )

−1(z) is

(
Fα

s,r

)−1
(z) = − 1

((1 − (1 − (s/r)(−1/z)α)r )/s)1/α
.

Let us define θ := arg s and Eα
s,r (z) := 1−(1−(s/r)(−1/z)α)r

s
. First, we consider 1 ≤ α ≤ 2. Since

the image of the function 1 − s
r
(− 1

z
)α for z ∈ C+ is contained in the sector {z ∈ C: z �= 0,−(π−

θ) < arg z < −(π−θ)+απ}, one can easily see that Eα
s,r (C+)c contains a half line starting from

0. In particular, Eα
s,r is univalent in C+. Therefore, we can take that line as a slit for the function

z �→ z1/α , which then becomes univalent outside the slit.
Let us focus on the case 0 < α ≤ 1. If 1 ≤ r ≤ 2, one can prove that Eα

s,r (C+) is contained in a
sector with central angle rαπ and therefore Eα

s,r is univalent in C+. Since rαπ ≤ 2απ, the map
z �→ z1/α can be defined as a univalent map in that sector. �

We take α = 1 and s = −1 as a special case. Then μ1−1,r is the beta distribution B(1− 1
r
,1+ 1

r
)

for 1 < r < ∞:

μ1−1,r (dx) = r sin(π/r)

π
x−1/r (1 − x)1/r dx, 0 < x < 1.

Indeed, now we have G1−1,r (z) = r(1 − (1 − 1
z
)1/r ). It holds that

lim
y↘0

ImG1−1,r (x + iy) = 0
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if x > 1 or x < 0 and

lim
y↘0

ImG1−1,r (x + iy) = −r Im

(
eiπ/r

(
1 − x

x

)1/r)
= −r sin(π/r)

(
1 − x

x

)1/r

if x ∈ (0,1). The Stieltjes inversion formula [1] μ(dx) = − 1
π limy↘0 ImG1−1,r (x+ iy)dx implies

the conclusion.
A consequence of Theorem 5.4 is that the beta distribution B(1 − 1

r
,1 + 1

r
) is �-infinitely

divisible for 1 < r ≤ 2. More strongly, we can prove the following.

Theorem 5.5. The beta distribution B(1 − 1
r
,1 + 1

r
) (1 < r < ∞) is �-infinitely divisible if and

only if 1 < r ≤ 2. The Lévy measure ν1−1,r for 1 < r < 2 can be calculated as

ν1−1,r (dx) = | sin(rπ)|
π

xr−2(1/r − x)r

(1/r − x)2r − 2xr(1/r − x)r cos(rπ) + x2r
dx, 0 < x <

1

r
.

Proof. By Remark 3.3(ii), (F 1−1,r )
−1 is calculated as

(
F 1−1,r

)−1
(z) =

(
1 −

(
1 − 1

rz

)r)−1

.

If r > 2, the function 1 − (1 − 1
rz

)r has a zero point in the upper half-plane, so that (F 1−1,r )
−1

never be defined as an analytic function. If r ≤ 2, (F 1−1,r )
−1 is analytic and univalent in the upper

half-plane.
For the Lévy measure, the Voiculescu transform is φ1−1,r (z) = (1 − (1 − 1

rz
)r )−1 − z. It holds

that Im(1 − (1 − 1
r(x+iy)

)r ) → 0 as y ↘ 0 if x > 1/r or x < 0 and that

1 −
(

1 − 1

r(x + iy)

)r

→ 1 − eirπ
(

x − 1/r

x

)r

, x ∈ (0,1/r)

as y ↘ 0. After some more calculations, one can see

τ(dx) = − 1

π(1 + x2)
lim
y↘0

Imφ1−1,r (x + iy)dx

=
⎧⎨
⎩

1

π(1 + x2)

| sin(rπ)|xr(1/r − x)r

(1/r − x)2r − 2xr(1/r − x)r cos(rπ) + x2r
dx, x ∈ (0,1/r),

0, otherwise,

where τ is the measure in (2.2). τ does not have an atom since limy↘0 iyφμ(x + iy) = 0 for any

x ∈ R. The Lévy measure ν1−1,r is equal to 1+x2

x2 τ as explained in Section 2. �
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If s = Reiθ is not real, the support of μ1
s,r is unbounded. The density for large |x| can be

calculated as

μ1
Reiθ ,r

||x|>R(dx) = − r

π

∞∑
n=1

(
1/r

n + 1

)
Rn sin(nθ)

xn+1
dx.

In particular, μ1
s,r belongs to a class introduced in [10].

5.2. The case α = 1, r = 3

In Section 5.1, the free infinite divisibility of μα
s,r was proved for some parameters in terms of

the class U I . In Section 3, we succeeded in proving the free infinite divisibility of μα
s,2 since

the Voiculescu transform had a quite explicit form. For other parameters, it is difficult to in-
vestigate the free infinite divisibility. A possible case is for α = 1 and r = 3. In this case, the
Voiculescu transform has a quite explicit form as in the case r = 2 and �-infinite divisibility can
be determined completely. Indeed, the Voiculescu transform is

φ1
3s,3(z) = −3s

1 − (1 + s/z)3
− z = −3sz2 − s2z

3z2 + 3zs + s2
.

In contrast to the case r = 2, infinite divisibility depends on the parameter s if r = 3.

Theorem 5.6. Let 0 ≤ arg s ≤ π. Then μ1
s,3 is �-infinitely divisible if and only if arg s = π

2 . The

Lévy measure ν1
3i,3 for μ1

3i,3 can be calculated as

ν1
3i,3(dx) = 9x2

π(9x4 + 3x2 + 1)
dx, x ∈ R.

Proof. Because of Remark 3.3(iv), let us consider s = eiθ for simplicity. After some calculations,
we get

Imφ1
3s,3(x + i0) = −9x4 sin θ + 3x3 sin 2θ

|3x2 + 3xs + s2|2 .

Therefore, if θ �= 0,π, π
2 , we can find a point x0 ∈ R such that Imφ3s,3(x0 + i0) > 0. If θ = π,

we can calculate

Imφ1−3,3(x + iy) = −y[6y2 + 6(x − 1/2)2 − 1/2]
|3x2 + 3xs + s2|2 ,

and therefore φ3s,3 takes a positive value at a point. By symmetry, also φ3,3 can take a positive
value. Therefore, μ3s,3 is not �-infinitely divisible for θ �= π

2 .
For θ = π

2 , after some calculations, it holds that

Imφ1
3i,3(x + iy) = −9x4 + 18x2y2 + 9y4 + 12x2y + 12y3 + 6y2 + y

|3x2 + 3xi − 1|2 < 0,
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so that μ1
3i,3 is �-infinitely divisible. The measure τ in (2.2) is absolutely continuous with respect

to the Lebesgue measure since

− 1

π
Imφ1

3i,3(x + iy) → 9x4

π|3x2 + 3ix − 1|2 = 9x4

π(9x4 + 3x2 + 1)

locally uniformly in R as y ↘ 0. The Lévy measure is given by 1+x2

x2 τ , where τ is defined
in (2.2). �

5.3. Noninfinite divisibility for 1 < α ≤ 2 and large r

We prove the following.

Proposition 5.7. For α > 1 and arg s ∈ [0, (2 − α)π], there exists an r0 = r0(α, s) > 1 such that
μα

s,r is not �-infinitely divisible for r > r0.

Proof. Let θ := arg s. It is sufficient to find a zero point of the function Eα
s,r (z) :=

1−(1−(s/r)(−1/z)α)r

s
. The function 1 − s

r
(− 1

z
)α maps C+ to a shifted sector � := {z ∈ C: z �=

0,−(π − θ) < arg(z − 1) < −(π − θ) + απ}. If α > 1, � and the unit circle {z ∈ C: |z| = 1}
have intersection which is an arc with an end point 1. Let us denote by ϕ ∈ (−π,π) \ {0} the
angle of the other end point of that arc. We can take r0(α, s) to be 2π

|ϕ| . �
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