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Estimation of Three-dimensional Grain Size Distribution
in Polycrystalline Material

Kiyotaka Matsuura® and Youichi Itoh*

A new method has been proposed for the estimation of the three-dimensional grain size distribution from the two-
dimensional distribution measured on the cross section of polycrystalline material. In this method, twelve types of
polyhedra were employed as the grain models. The distributions of the cross-sectional diameters of the individual
polyhedra were expressed as probability density functions. On the basis of the functions for each polyhedron, the suppos-
ed grain size distribution on the cross section of the material was calculated, and it was compared with the measured one.
The comparison was repeated until the agreement between the both distributions. By operating this two-dimensional
distribution reversely, the three-dimensional grain size distribution was estimated.

The distribution of the vertex number of polygon-shaped grains on the cross section and that of the face number of
polyhedron-shaped grains in three dimensions were calculated from the obtained results and were compared with the
measured distributions. There was a good agreement between these distributions.

(Received March 28, 1991)
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I. Introduction

It is well known that the grain size in polycrystalline
material plays an important role in controlling its
mechanical properties such as strength or toughness.
When the relation between the grain size and the prop-
erties is disscused, the average grain size measured on a
cross section is generally employed. However, the infor-
mation of the grain size distribution may be much more
important than that of the average grain size to predict
the fracture initiation and the crack propagation in a
material, as pointed out by Wasén and Warren®.

Takayama et al.? proposed a method to estimate the
three-dimensional grain size distribution from the
measured linear intercept length distribution. Their
method is based on the assumption that the grain size
distribution in three dimensions is a log-normal one. This
assumption will be valid for the general structure in
polycrystalline material. However, the grain size distribu-
tion after an abnormal grain growth or the artificial grain
size distribution in a green compact in a powder metal-
lurgy process, for example, may not be a log-normal one.

The purpose of the present paper is to propose a new
method for the estimation of the three-dimensional grain
size distribution in polycrystalline material from the
measured two-dimensional grain size distribution on the
cross section without any assumption of the distribution
type.

Many reseachers have often employed tetrakaidecahe-
dron (type 14-C in Fig. 1) as the grain model® ¥, in spite
of the fact that the actual shape is various and complex®.
On the contrary, we employed many types of polyhedra
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and introduced mathematical formulae for the cross-sec-
tional diameter distributions of those polyhedra.

II. Procedure

1. Model of grain shape

In this work, twelve types of polyhedra given in Fig. 1
were employed to comply the variety of the grain shape
in actual material. These are regular polyhedra or semi-
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Fig. 1 Twelve types of polyhedra employed as the grain model.
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regular ones (truncated regular ones). Because each
polyhedron has each circumscribing sphere and the all
edge lengths of each polyhedron are the same, the applica-
tion of the present method is effective for materials with
equiaxed grains.

On the basis of those grain models in Fig. 1, the
present authors® have proposed the relation between
the number of the grain faces, m, and the relative grain
size, D/ D.

m=17D/D—-3 @®

where D is the diameter of the individual grains and D is
the average one. The diameter of a grain was defined as
the equivalent volume diameter. Equation (1) can be ob-
tained from the calculation of the ratio of the radii of the
two spheres in contact with each other, one of which is
placed at the center of a polyhedron and another of
which is placed on the corner of the polyhedron, and the
diameter of the latter sphere is equal to the edge length of
the polyhedron.

Rhines and Patterson® measured the weights of in-
dividual grains after disintegrating the sample into
separate grains, and they investigated the relation be-
tween the weight W and the number of the grain faces m.
Their result showed the following relation:

log (W)=a-log(m)+b 2)
Equation (2) can be rewritten as
log (V)=a-log (m)+b~—log (p) (3)

where @ and b are constants, V is the volume of a grain
and p is the density.

Equation (1) can be changed into the similar type to
eq. (3), which shows that the relation between the
logarithms of the volume of a grain and the number of
the faces is linear. Equation (4) is derived from eq. (1):

log (V)=3log (m+3)+3log D—log {3(17%2)*/(4m)}
@)

Equations (3) and (4) are essentially equivalent in a
sense that the relation between the logarithms of the
volume of a grain and the number of the faces is linear.
Consequently, eq. (1) which was derived from the
geometrical features of several polyhedra agrees with the
experimental result.

2. Basic distribution functions of the size and the
shape of the cross section of the polyhedron-
shaped grains

Each polyhedron in Fig. 1 was cut mathematically by
arbitrary planes (5000 planes produced by the generation
of random numbers in a computer), and the distributions
of the cross sectional diameters were obtained for each
polyhedron. The diameter was defined as the equivalent
area diameter, and it was normalized by dividing by the
polyhedron’s diameter in three dimensions. Some ex-
amples of the distributions are given in Fig. 2.

In Fig. 2, the relative diameter 1.0 shows the poly-
hedron’s diameter in three dimensions. The reason why
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Fig. 2 Diameter distributions of the cross section of some polyhedra.
(a), (b) and (c) are those of types 4, 14-C and 32-C in Fig. 1, respec-
tively.

some ralative diameters are larger than the value of 1.0
is related to the definition that the polyhedron’s diameter
in three dimensions is the equivalent volume diameter.

The distribution was broad when the number of the
faces of a polyhedron was small. The distribution,
however, became sharper with the increasing number of
the faces, and the position of the peak moved toward the
value of 1.0. At the same time, the value of the maximum
diameter decreased toward 1.0.

The characteristic features of the distribution curves in
Fig. 2 are as follows:

(1) P;>0 for 0=!= v, where [ is the relative cross
sectional diameter, /vax 1S the maximum relative diameter
and P; is the probability density for the diameter /.

(2) P,~0, when /=0 and /= lyax.

(3) The curve has only one peak at (/p, K;), and /p is
comparatively near the maximum relative diameter.

After trial and error, we found that eq. (5) fitted the
characteristic features (1) to (3) of the distribution curves
in Fig. 2. Although there may be some other functions
which can describe the curves in Fig. 2, eq. (5) was
employed as the probability density function for the
distribution of the cross-sectional diameters of a
polyhedron because eq. (5) is simple and it fits very well
to the curves.

P=Krexp | — {2l 1 5
= K" exp {nlMax(l—lp)} ®)

The values of K}, Iy, and Ip are respectively dependent
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Fig. 3. Relation between m and K, (a), /v, (b) and /» (c). m: number
of faces of a polyhedron, K;: maximum probability density, /y,,: max-
imum relative diameter, /p: peak position in the distribution.

on the type of the polyhedron, as seen in Fig. 2. Figure 3
shows the relations between these values and the number
of polyhedron’s faces, m. Equations (6) to (8) are the
regression formulae for Figs. 3(a) to (c), respectively.

K/=1.22m°"5 (6)
hia=0.31m=%% +1.0 0
Ir=—0.4Tm %% +1.0 (8)

The probability density P; becomes the function of m
and / by substituting egs. (6) to (8) into eq. (5). In Fig. 4,
several curves of / vs. P, are drawn for the representative
values of m.

One can calculate the number of the faces of a grain
from its relative size in eq. (1) and the values of K, hax
and /r from the number of the faces in egs. (6) to (8),
and draw the distribution curve of the cross-sectional
diameters of the grain by eq. (5) after substituting eqgs. (6)
to (8) into eq. (5). Therefore, one can calculate the
probability density function of diameters of polygons
observed on the cross section of a sample for any
polyhedron-shape grain from the relative grain size in
three dimensions.

On the other hand, the distribution of the shape (the
vertex number) of the cross section of each polyhedron in
Fig. 1 was also expressed by similar way to the distribu-
tion of the equivalent area diameter. The results were
given in egs. (9) to (12) and in Fig. 5.
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Fig. 4 Relation between the relative cross sectional diameter of
polyhedra and the probability density.
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Fig. 5 Relation between the vertex number of polygons on the cross
sections of polyhedra and the probability density.

P,=K, exp [{ln Foves = K }{ln k_ZH ©)
kvax(1—kp) kp—2
K=1.22m™%" (10)
kvax=0.32m+4.8 (11)
kp=0.55kwmax (12)
where

k : vertex number of the polygon on the cross section
of a polyhedron
P, : probability density of the vertex number
K, : maximun probability density of the vertex
number
kmax ¢ maximun vertex number
kp : peak position in the grain shape distribution
m : number of grain’s faces
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3. Compounding of the several basic distribution
functions of the cross-sectional diameters

Figure 6(a) shows the schematic distributions of the
equivalent area diameter from eq. (5). The distribution
curve of C;, for example, is regarded as the apparent
grain size distribution observed on an arbitrary cross sec-
tion of a polycrystalline material which is composed
of grains with the equivalent volume diameter D,
Therefore, if the curves of C; to C, are compounded and
if the compounding ratios of fi to f, are chosen to make
the cpompounded curve, Ceomp, correspond to the mea-
sured one, Cpes, in Fig. 6(b), then the relation between
D; and f; indicates the distribution of the equivalent
volume diameter. This is the fundamental idea of the
present method.

The procedure of the estimation of the three-dimen-
sional grain diameter distribution is as follows.

Process 1

(a) Measurment of the distribution of the equivalent
area grain diameter on a cross section of the material.

(b) Preparation of the histogram as the diameter /;
vs. the measured frequency g;.

Process 2

(@) Determination of m values for each class in the
histogram of the grain size distribution from eq. (1).

(b) Substitution of the values into egs. (6) to (8) in
order to obtain the values of K}, lvax and Ip.

(c) Substitution of these values into eq. (5) in order

T T T
a)
C] - _gcomp
”f \\\
’l ‘\‘\
'l' \\‘ Ci
’ Y
ll \“ Cn
l’ \\\
’
’ \‘
ll p .

> Il ~‘~~

Q K4 Seel

GC) i A .

35 O Dl D1 Dn
8 L) T

< |b)
L

Cmeas

Two Dimensional Diameter

Fig. 6 Shematic curves (a) drawn from egs. (1) and (5), and the
measured grain diameter distribution on the cross section (b).
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to obtain basic distribution function of the cross-sec-
tional diameters for each class.

Din eq. (1) is the average equivalent volume diameter,
but the value is unkown at first. Therefore, the measured
average equivalent area diameter is taken as a temporary
value.

Process 3

Integration of eq. (5) in order to evaluate the com-

pounded frequency 4; of each class such that

0w 0w

Prdl

(i=w

Pidl+- - +f,,-S

(i—w

[

I Max
pidl

(i—Dw

(13)

where
i : class number between 1 to n
w : class width
n : total class number
Process 4
Seeking of the compounding ratios, fi to f., to
minimize the value of

Az - Z (h,'_gi)z.
i=1

The ratios, f; to f,, indicate the values of the frequency
for each class in the histogram of the three-dimensional
grain diameter distribution. It should be, however,
recollected that the average diameter used to obtain the
m value in Process 2 was the equivalent area diameter.
The m value should be determined from the equivalent
volume diameter as described in Sec. II-1.

Process 5

Calculation of the average equivalent volume diameter

as
D1=Z; i) (14)
and feeding it back to Process 2.

The subscripted number of D in eq. (14) is the number
of the feed-back. The operation from Processes 2 to 5
was repeated until the change in D; with the number of
the feed-back was very small.

III. Results

The austenitic structure of a low carbon steel quenched
after holding 18.0 ks at 1473 K was used as a sample to be
analyzed. The number of the measured grains was ap-
proximately 1700.

The measured and the compounded distributions on
the cross section are given in Fig. 7(a). There was a fairly
good agreement between them. The distribution of the
compounding ratios (the estimated three-dimensional
diameter distribution) was given in Fig. 7(b).

The average grain diameters in the measured and the es-
timated distributions were 164.8 and 170.0 um, while the
values of the standard deviation were 75.8 and 69.7 um,
respectively.
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Fig. 7 Measured and compounded equivalent area diameter distribu-
tions (a) and the estimated equivalent volume diameter distribution

().

IV. Discussion

The method described in Sec. II contains some proc-
esses of approximation. The first one is the grain model
shown in Fig. 1, the second is the transformation from
the statistical data to the mathematical equations given in
Figs. 2 to 5 and eqs. (1) to (12), and the third is the curve
fitting process described in Sec. II-3. These processes
may have produced an error. We will discuss the ac-
curacy of the result.

In Fig. 7, the average grain diameter of the estimated
three-dimensional distribution was larger than that of the
measured one, while the value of the standard deviation
in the former was smaller than that in the latter. This
result seemed to be reasonable from Fig. 2 or Fig. 4.
These figures show that a grain with a certain equivalent
volume diameter can be observed as grains with various
equivalent area diameters on a cross section and that in
most cases grains on the cross section are recognized as
smaller ones than their true diameters in three dimen-
sions. The features shown in those figures seemed to
result in the larger average diameter and the smaller
standard deviation in the distribution of equivalent
volume diameters than of the equivalent area diameters.

The relations between the cumulative frequency and
the measured and estimated vertex numbers on the cross
section were plotted on a log-normal paper and are
shown in Fig. 8. The latter relation was calculated from
eq. (1) and egs. (9) to (12) and from the estimated three-
dimensional grain diameter distribution shown in Fig.
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Fig. 8 Cumulative frequency of the vertex number of grains on the
cross section.
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Fig. 9. Cumulative frequency of the face number of grains in three
dimensions.

7(b). As a whole, there was a good agreement between
these relations, and the respective average vertex
numbers of 5.6 and 5.5 were very close.

Figure 9 shows that the distribution of the grain
face number is almost perfect log-normal. Rhines and
Patterson® reported a similar result. In their work, pure
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Al annealed 0.9 ks at 873 K after 6% tensile deforma-
tion was used as a sample. The distribution in their work
was analyzed by disintegrating the sample into separate
grains, while the present result was calculated from eq.
(1) and the three-dimensional grain diameter distribution
shown in Fig. 7(b). The both distributions seemed to be
fairly close.

From the results shown in Figs. 8 and 9, it was sug-
gested that the present method for the estimation of the
three-dimensional grain size distribution was valid and
that the error in the result was not considerable.

V. Conclusions

A new method has been proposed for the estimation
of the three-dimensional grain size distribution from
the measured distribution on the cross section of a
polycrystalline material. This method is characterized
by the employment of many types of polyhedra as the
grain model and by the introduction of the formula for
the apparent grain size distribution on the cross section
of the material.
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As an example of the application of this method, the
three-dimensional grain size distribution was estimated
for an austenitic structure in low carbon steel. The result
seemed to be valid from the comparison between the esti-
mated and the measured distributions of the vertex
number on the cross section and the face number of
grains in three dimensions.
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