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eVIDENCE: a practical variant 
filtering for low-frequency variants 
detection in cell-free DNA
Kei Mizuno1,2, Shusuke Akamatsu1, Takayuki Sumiyoshi1, Jing Hao Wong2,6, Masashi Fujita   3,  
Kazuaki Maejima3, Kaoru Nakano3, Atushi Ono4, Hiroshi Aikata4, Masaki Ueno5, 
Shinya Hayami5, Hiroki Yamaue5, Kazuaki Chayama4, Takahiro Inoue1, Osamu Ogawa1, 
Hidewaki Nakagawa3* & Akihiro Fujimoto2,6*

Plasma cell-free DNA (cfDNA) testing plays an increasingly important role in precision medicine for 
cancer. However, circulating cell-free tumor DNA (ctDNA) is highly diluted by cfDNA from non-cancer 
cells, complicating ctDNA detection and analysis. To identify low-frequency variants, we developed 
a program, eVIDENCE, which is a workflow for filtering candidate variants detected by using the 
ThruPLEX tag-seq (Takara Bio), a commercially-available molecular barcoding kit. We analyzed 27 
cfDNA samples from hepatocellular carcinoma patients. Sequencing libraries were constructed and 
hybridized to our custom panel targeting about 80 genes. An initial variant calling identified 36,500 
single nucleotide variants (SNVs) and 9,300 insertions and deletions (indels) across the 27 samples, but 
the number was much greater than expected when compared with previous cancer genome studies. 
eVIDENCE was applied to the candidate variants and finally 70 SNVs and 7 indels remained. Of the 
77 variants, 49 (63.6%) showed VAF of < 1% (0.20–0.98%). Twenty-five variants were selected in an 
unbiased manner and all were successfully validated, suggesting that eVIDENCE can identify variants 
with VAF of ≥ 0.2%. Additionally, this study is the first to detect hepatitis B virus integration sites and 
genomic rearrangements in the TERT region from cfDNA of HCC patients. We consider that our method 
can be applied in the examination of cfDNA from other types of malignancies using specific custom 
gene panels and will contribute to comprehensive ctDNA analysis.

Precision medicine in cancer treatment is an approach to select the most accurate and effective therapeutic 
agents to treat each patient’s cancer based on a genetic understanding of the tumor, as well as the individual. 
Next-generation sequencing (NGS) enables multiplex genomic testing from a single tissue sample, which assists 
clinicians in choosing the most appropriate targeted treatment. In hepatocellular carcinoma (HCC), however, 
diagnosis is often done in the absence of tumor biopsy, and on the basis of imaging studies such as multiphasic 
helical computed tomography or magnetic resonance imaging. Therefore, in patients with advanced HCC, prev-
alent adoption of tissue-based NGS testing for precision medicine remains challenging.

Recently, analysis of circulating cell-free tumor DNA (ctDNA) is gaining significant attention as a 
minimally-invasive tool for biomarker discovery. CtDNA is released into the blood by apoptosis and necrosis of 
cancer cells, and is a constituent of circulating cell-free DNA (cfDNA)1. CfDNA testing is theoretically available 
to any patient and can be sequentially performed to observe the current genetic profile of tumor that may change 
during treatment2. Furthermore, ctDNA could capture inter- and intra-tumor heterogeneity, unlike tissue biopsy 
from only one region3,4. Therefore, ctDNA analysis could be an effective tool for molecular profiling in unresect-
able HCC with multiple intrahepatic lesions. However, ctDNA is highly diluted by cfDNA from non-cancer cells 
and can be present at allele fractions below 0.5%, complicating ctDNA detection and analysis5. Although NGS 
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of ctDNA can reveal comprehensive genomic alterations, it is a key challenge to distinguish variants at such low 
fraction from background errors of sequencing.

In recent years, several reports have showed improved detection limits of ctDNA using targeted sequencing 
approaches6–17. In 2012, Forshew et al.6 reported TAm-seq, which is a polymerase chain reaction (PCR) ampli-
con deep sequencing targeting 6 genes, and the analytical sensitivity of this technology was shown to be down 
to 0.14% variant allele frequency (VAF). Gale et al.7 developed an enhanced version of TAm-seq technology 
(eTAm-seq), targeting hotspots of 31 genes and entire coding regions of 4 genes. This assay achieved a detection 
limit of 0.02% in cfDNA. Furthermore in 2014, Newman et al.8 described a method for quantifying ctDNA by 
capture enrichment sequencing, called CAPP-seq. With information about recurrently mutated regions in the 
cancer of interest and tumor genotypes from sequencing of tumor biopsies, this method identified variants with 
VAF of 0.02%. Moreover, the technology was improved by molecular barcoding and characterizing the stereo-
typed background artifacts for error suppression and showed a detection limit down to 0.0025%, tenfold below 
the original method9. Molecular barcoding was developed18 to identify original fragments by de-duplicating the 
sequencing reads that might contain PCR amplification and/or sequencing errors, and has been applied to several 
ctDNA analysis methods9–12.

Although these reported methods identifying low-frequency variants represented high analytical perfor-
mance, the main limitation is that most of them interrogated hotspots or limited loci, which might result in 
missing variants in genes that lack hotspots such as tumor suppressors. On the other hand, Lanman et al.10 devel-
oped a highly sensitive and highly specific platform for comprehensive ctDNA analysis, called Guardant360. 
Guardant360, at the time of this study, targets complete exons of 73 cancer-related genes. It was recently reported 
that the 95% limit of detection of the platform for single nucleotide variants (SNVs) and insertions and dele-
tions (indels) was 0.25% and 0.2% VAF, respectively, and its reportable range for SNVs and indels was ≥0.04% 
and ≥0.02% VAF, respectively19. However, a recent study comparing Guardant360 with PlasmaSELECT, another 
highly accurate, specific and sensitive platform reported that concordance of reported gene alterations in the same 
patients with prostate cancer was very low20, suggesting that the analysis method for detecting rare variants from 
comprehensive genomic testing of cfDNA has yet to be well-established. We therefore sought to develop a ctDNA 
analysis method using molecular barcodes and optimized bioinformatics methods to detect low-frequency vari-
ants from sequencing data targeting about 80 genes.

In the current study, we introduce eVIDENCE (enhanced Variant IDENtifier for CEll-free DNA), an approach 
to reduce false positive calls and identify low-frequency variants from cfDNA sequencing data with high specific-
ity and sensitivity, using the ThruPLEX tag-seq (Takara Bio), a commercially-available molecular barcoding kit. 
To examine our algorithm, we performed sequencing of an artificial library generated by mixing three libraries 
with different fractions. Then, we applied this method for the analysis of targeted sequencing data of cfDNA 
from HCC patients and identified variants. A portion of the detected variants were selected in an unbiased man-
ner and subjected to validation experiments to assess the method’s specificity. We also compared the identified 
variants with the sequencing results of the matched tumor DNA samples to validate its sensitivity. Additionally, 
we analyzed known important structural variations (hepatitis B virus (HBV) integration sites and genomic rear-
rangements in the TERT region). This study shows that our method can be clinically utilized for ctDNA analysis 
in the HCC field. The source code of eVIDENCE is freely available at https://github.com/mizunokei/eVIDENCE.

Results
Targeted capture sequencing.  We sequenced cfDNA from HCC patients and artificial library (see below). 
The input DNA fragments were uniquely tagged and NGS libraries with Illumina adapters were constructed using 
ThruPLEX Tag-seq (Takara Bio) (Supplementary Fig. S1). We analyzed targeted exonic regions and splice sites 
of 79 genes and the TERT promoter region (Supplementary Table S1). Sequencing reads were mapped to the 
human reference genome, and the BAM files were processed using Connor (https://github.com/umich-brcf-bi-
oinf/Connor), an open source software for combining sequences where the alignment structure and molecular 
barcodes match resulting in a new BAM file with consensus sequences.

Development of eVIDENCE method and its evaluation.  We describe here the eVIDENCE method, 
designed to identify low-frequency variants and reduce false positive calls from sequencing data of the ThruPLEX 
tag-seq library. We developed two bioinformatics approaches in our method (Fig. 1a). First, we found that most 
candidate variants detected from the processed BAM file using Connor were located at either end of reads. As 
shown in Supplementary Fig. S1, unique molecular tags (UMTs) and stem sequences are ligated to both ends of 
DNA molecules. When a part of these artificial sequences is marked “alignment match”, instead of “soft-clipping” 
in the BAM CIGAR field, sequence mismatches can be introduced in the region. Therefore, we removed UMT and 
stem sequences and matched base qualities from raw BAM files and extracted UMT information (see “Methods” 
and Supplementary Methods). We kept the extracted UMT information by adding it to the read name. Using 
the new read names, new segment sequences and base qualities, we created new FASTQ files and mapped these 
to the reference genome sequence to generate new BAM files. Second, from the newly-produced BAM files, we 
extracted reads covering each position of the candidate variant and their UMT information, and grouped them 
into “UMT families”. A “UMT family” is a group of reads which have the same UMT, considered to originate from 
the same DNA molecule. If there were two or more reads that do not support the consensus base call within each 
UMT family, the candidate variant was discarded.

In order to validate the algorithm for this filtering, we generated an artificial library by mixing three librar-
ies with different proportions (0.5% of RK442, 1.0% of RK443 and 98.5% of RK445). There were a total of 150 
known single nucleotide polymorphisms (SNPs) that were present in either or both RK442 and RK443, but not in 
RK445. Theoretically, the VAF of the 150 SNPs in the mixed library was 0.25–1.5%. We analyzed the sequencing 
data of this library with eVIDENCE. Of the 150 positions, 144 were covered by variant-supporting raw reads, 
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and the reads were grouped into UMT families. 105 positions had UMT families which contained two or more 
variant-supporting raw reads (see “Supplementary Methods”). We examined the base calls within each UMT 
family at these 105 positions, and detected UMT families which had two or more reads that do not support the 
consensus base call at seven positions. However, we succeeded in consensus base calling at 98 (93.3%) positions 
and our algorithm properly worked for making consensus reads.

Application of eVIDENCE to cfDNA analysis from HCC patients.  In the current study, 27 
plasma samples were collected from 26 patients with HCC. A summary of patient characteristics is shown in 
Supplementary Table S2. Plasma was obtained at the time of recurrence or prior to liver resection, and cfDNA 
was extracted. Mean cfDNA concentration in plasma was 76.8 ng/mL. For each sample, 10 ng of cfDNA was used 
for library preparation. Each library was hybridized to our custom capture panel (Supplementary Table S1), and 
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Figure 1.  (a) Summary of the eVIDENCE pipeline. An input BAM file is converted to the BAM file with 
consensus alignment pairs using Connor. Candidate variants are called using the converted BAM file. 
eVIDENCE removes unique molecular tag (UMT) and stem sequences from a raw BAM file and creates new 
FASTQ files while retaining the UMT information. These FASTQ files are converted into a new BAM file and for 
each candidate variant, eVIDENCE performs filtering using the new BAM file. (b) Number of detected single 
nucleotide variants (SNVs) and insertions and deletions (indels) from cell-free DNA (cfDNA) sequencing data 
processed by Connor (left) and after applying eVIDENCE (right). The expected number of SNVs and indels are 
indicated by blue and red dotted line (70 and 5, respectively). (c) Number of detected variants among 6 cfDNA 
samples in which matched tumor sequencing data were available. An initial variant calling using the processed 
data by Connor detected 11806 variants containing 14 tumor variants (left). After applying eVIDENCE, a large 
number of candidate variants were discarded, but 12 tumor variants remained (right), showing that eVIDENCE 
efficiently filtered candidate variants.

https://doi.org/10.1038/s41598-019-51459-4


4Scientific Reports |         (2019) 9:15017  | https://doi.org/10.1038/s41598-019-51459-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

sequencing was performed at 6,800x average coverage (Supplementary Table S3). After removing duplicates, the 
average sequencing depth of each sample was 550x (Supplementary Table S3). We then identified candidate SNVs 
and short indels with VAF of ≥0.1% and with consensus reads to support the alteration of ≥3 using the processed 
BAM file. We detected a mean of 1,354 SNVs and 345 indels per sample (Supplementary Fig. S2). The average 
number of somatic point mutations and short indels were previously reported as 4.2 and 0.3 per megabase from 
whole-genome analysis of 27 HCCs21 and the targeted region of our custom panel was about 0.63 megabase. 
Therefore, the expected number of SNVs and indels were 2.6 and 0.19 per sample, respectively. This implies that 
the detected candidate variants retained a large number of false positives.

Application of eVIDENCE filter removed a large number of candidates, and finally, 50 nonsynonymous, 3 
splice-site variants, 7 short coding indels and 13 synonymous variants were detected from the 27 samples. We also 
identified four TERT promoter hotspot (chr5: 1295228) variants (Fig. 2, Table 1 and Supplementary Table S4). The 
numbers of the remaining SNVs and indels were highly consistent with those expected (70 and 5, respectively) 
(Fig. 1b). Of the 26 tumor samples, whole-exome sequencing (WES) was performed on RK258 and targeted 
sequencing was conducted for RK436, RK441, RK442, RK444 and RK445. These tumor sequencing data revealed 
that an initial variant calling of the cfDNA samples contained 14 tumor variants. Of the 14 variants, 12 remained 
after applying eVIDENCE method (Fig. 1c). These findings showed that eVIDENCE could reduce the number of 
candidate variants efficiently.

Of the 77 variants identified across the 27 cfDNA samples, 49 (63.6%) showed VAF of <1% (0.20–0.98%) 
(Table 1). TP53 was the most frequently altered gene and all the nine variants were located in the DNA binding 
domain that is encoded by exons 5 to 8 (Supplementary Table S4). Distribution of the VAF of driver genes of 
HCC22–25 are also shown in Table 2. About half of the driver gene variants were with VAF < 1%.

Validation of detected variants.  To validate the identified variants, 25 SNV positions were selected in 
an unbiased manner and analyzed by targeted amplicon sequencing of matched tumor and lymphocyte samples 
(Table 3 and Supplementary Table S5). The validation revealed that four variants with VAF range of 0.21–0.67%, 
and eight with VAF of ≥1% were observed in tumor samples. However, 13 SNVs with VAF of <1% were not 
detected. To further validate these variants, we selected eight variants with VAF range of 0.25–0.80% and tested 
them by digital PCR of cfDNA and genomic DNA from matched tumor and lymphocyte. This analysis showed 
that all the tested variants were identified in cfDNA (Table 3 and Supplementary Fig. S3). Importantly, two of the 
eight variants were also detected in lymphocyte DNA (Supplementary Fig. S3), suggesting that these variants in 
cfDNA were not tumor-derived, but normal lymphocyte-derived. Nevertheless, we found no false positives, indi-
cating that eVIDENCE had high specificity for detecting variants with 0.2% minimum allele fractions in cfDNA.

Assessment of analytical sensitivity.  We performed WES on one tumor sample and targeted sequenc-
ing on five samples and reviewed the tumor sequencing data to assess the sensitivity of our method. Among 
these six samples, we detected 16 variants in the genes of the tumor samples with our custom capture panel 
(Supplementary Table S6). On the other hand, a total of 26 variants were identified among the cfDNA samples 
(Fig. 3). Of the 16 variants identified in tumor samples, 12 (75%) were also detected in cfDNA, suggesting that 
our pipeline properly worked in identifying variants in tumor. In the 14 cfDNA specific variants, one TP53 variant 
was subjected to validation by targeted amplicon sequencing of the tumor, and was successfully validated (see 
above). In the remaining 13 variants that were detected only in cfDNA, four variants were validated by digital 
PCR (Supplementary Fig. S3). Since the validation experiments by amplicon sequencing and digital PCR showed 
high specificity of our workflow, the rest of nine variants were likely to be true.

Detection of HBV integration sites and rearrangements in the TERT region.  We detected HBV 
integration sites and genomic rearrangements in the TERT region using read-pair information (See “Methods”). 
Across the 27 samples, seven HBV integration breakpoints and four structural variations in the TERT region were 
identified (Supplementary Tables S7 and S8). All the HBV integration was validated by breakpoint PCR, but only 
one TERT rearrangement was validated (Supplementary Fig. S4). Although validated translocation was supported 
by read pairs covering the rearrangement breakpoint, the others were supported by only two UMT families and 
their reads did not cover the breakpoints (Supplementary Table S8), which suggests that these calls might be false 
positives.

Discussion
The analysis of ctDNA is an emerging strategy for noninvasive cancer diagnosis, monitoring of disease as well as 
molecular profiling. Although there are several reports that detect ctDNA with high sensitivity and specificity, 
effective analysis methods for identifying low-frequency variants of cfDNA have yet to be established. In the 
present study, we performed targeted capture sequencing of cfDNA from HCC patients using a custom gene 
panel and analyzed the data with eVIDENCE to detect rare variants. We used a commercially-available molec-
ular barcoding kit (ThruPLEX Tag-seq) and the customized gene panel for creating sequencing libraries. The 
sequencing data were processed by an open source software specific for the kit (Connor), and candidate variants 
were detected from the processed data. Since the ThruPLEX tag-seq library has UMT and stem sequences on 
both 5′ and 3′ ends as shown in Supplementary Fig. S1, a large number of false positive calls were found in stem 
sequences instead of biological sequences. Each sequencing read contains the barcode and stem region on one 
end, and there are some reads which cover several bases of the stem region on the other side because cfDNA is 
highly fragmented. In the current study, 8.0% of the total number of consensus reads had stem sequences on 
the other side. Since it is very difficult to remove all exogenous sequence from such reads before alignment, we 
removed artificial sequences from the raw BAM file. We then examined whether the candidate variants existed in 
the newly-created BAM files. In addition, we performed further filtering by examining the base calls within each 
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UMT family at the positions of the candidate variants because it has been reported that sequencing errors can 
be identified by comparing the reads containing the same barcode26. In our workflow, if there were two or more 
reads that do not support the variant call within each UMT family, the candidate variant was considered an error 
and discarded. The sequencing analysis of the mixed library revealed that consensus base calling was correctly 
done at 98 of 105 (93.3%) known variant positions, suggesting that the algorithm for this filtering was practical.

After implementing these modified bioinformatics approaches, we finally detected 70 SNVs and 7 indels 
across the 27 samples and 49 of them (63.6%) showed VAF of <1% (0.20–0.98%). The validation tests revealed 
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the limit of variant detection of eVIDENCE was as low as 0.2%. In the sensitivity assessment of our method, 
we detected four tissue-specific variants among 16 detected in tumor DNA. We reviewed the sequencing data 
of the cfDNA samples for these four variants, and revealed that the depth of consensus reads was 90 for the 
PTEN variant, and the TERT promoter variant had one supporting UMT family (the cutoff value of the depth 
of consensus reads and the number of supporting UMT family was 100 and 3, respectively; see “Methods”). If 
there were more sequencing bases or more input cfDNA, these two variants would be identified in the cfDNA 
samples. The other two tumor specific variants were not listed as candidate variants due to low VAF in raw cfDNA 
sequencing data and therefore not found in cfDNA variants. In the analysis of the mixed library, we found most 
variant-supporting UMT families had one or two raw reads due to the very low proportions of RK442 and RK443, 
making it difficult to correctly perform variant calling (see “Supplementary Methods”). Although it was difficult 
to assess the sensitivity of our workflow with the artificial library sequencing, it revealed that consensus base call-
ing was accurately done, suggesting that our pipeline properly worked in filtering candidate variants. These results 
demonstrate that eVIDENCE is highly accurate for detecting variants with 0.2% minimum allele fractions from 
comprehensive cfDNA sequencing data targeting about 80 genes using a custom panel. Our workflow provided 
filtering for errors caused by short fragment length of cfDNA and the structure of the ThruPLEX tag-seq library. 
Analysis of the filtered data with additional statistical methods considering base error type and sequence context 
may improve the sensitivity for low frequency variant detection. Furthermore, many other methods identifying 
rare variants6–11,13,14 interrogated a limited number of loci or targeted fixed genomic regions, while our pipeline 
can be applied to ctDNA analysis using barcoded sequencing libraries prepared with the ThruPLEX tag-seq kit 
and any custom gene panel targeting a large number of loci.

We identified 13 variants that existed in cfDNA, but not in tumor DNA from comparison analysis, and three 
of these were located in driver genes (ARID1A, NFE2L2 and PIK3CA; Fig. 3). This indicates that ctDNA variants 
reflected a more comprehensive genomic profile of cancer patients, and that ctDNA examination using eVI-
DENCE could be more clinically useful than tissue analysis. However, lymphocyte variants can also be detected 
(ATM gene; Fig. 3). Importantly, in the current study, not all the detected variants in cfDNA were derived from 
tumors as two variants confirmed by digital PCR were also detected in matched normal lymphocyte samples 
(Supplementary Fig. S3). Mayrhofer et al.27 recently examined genomic profiles of cfDNA and matched lym-
phocyte DNA from 217 metastatic prostate cancer patients and showed that clonal hematopoiesis with somatic 
mutations caused false positive findings in cfDNA in 14.6% of patients. Therefore, careful assessment of variants 
is required when applying ctDNA analysis to clinical practice. If the variants detected are located in hotspots or 
annotated variants in reference databases such as the Catalog of Somatic Mutations in Cancer (COSMIC) (https://
cancer.sanger.ac.uk/cosmic), they are likely to be tumor variants. If not, it can be helpful to examine whether 
identified variants are distributed in functionally important domains. For example, in the current study, all TP53 
variants were located in the DNA binding domain and known variant patterns in COSMIC, suggesting they are all 

type

VAF (%)

total<0.5 0.5–1.0 1.0–5.0 5.0<

nonsynonymous 22 15 8 5 50

synonymous 4 3 5 1 13

splice-site 0 2 0 1 3

indels 1 1 1 4 7

TERT promoter 0 1 3 0 4

total 27 22 17 11 77

Table 1.  The variant allele frequency (VAF) distribution of the detected variants.

Gene

VAF (%)

total<0.5 0.5–1.0 1.0–5.0 5.0<

TERT 0 1 3 0 4

TP53 2 4 1 2 9

CTNNB1 2 0 1 0 3

ARID1A 1 0 2 0 3

ARID2 0 0 1 0 1

JAK1 1 0 1 0 2

ACVR2A 0 0 1 1 2

NFE2L2 0 2 0 0 2

PIK3CA 1 0 0 0 1

RB1 0 0 0 1 1

RPS6KA3 0 0 1 1 2

total 7 7 11 5 30

Table 2.  The variant allele frequency (VAF) distribution of driver genes of hepatocellular carcinoma.
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tumor-derived variants. Additionally, it may be informative to estimate functional effects of non-hotspot variants 
by identifying mutation clusters in the protein tertiary structure as it has been reported that tumor mutations are 
enriched in the 3D protein structure among known driver genes28,29. On the other hand, understanding the muta-
tion profile of white blood cells (WBC) is also important. Xia et al.30 examined the background somatic mutations 
in cfDNA from non-cancer individuals and reported the average mutant allele frequency of 50 cancer-associated 
genes in cfDNA. They showed the 7th most mutated gene was ATM, which is in line with our present finding. It 
may be possible to distinguish tumor mutations from somatic mutations of WBC according to the location of the 
variants if more data on background WBC mutations is made available.

Gene Sample Chr
Genomic 
position Reference Variant

AA 
change

Total number of 
consensus reads

Number of 
variant reads

VAF 
(%)

Validation with 
tumor DNA 
by amplicon 
sequencing

Validation with 
cfDNA by digital 
PCR

TERT promoter RK436 5 1295228 G A — 395 6 1.52 y —

TP53 RK432 17 7577120 C T R273H 884 7 0.79 n N/A

TP53 RK451 17 7577133 T C S269G 1,179 3 0.25 n y

TP53 RK258 17 7578503 C T V143M 1,216 106 8.72 y —

TP53 RK436 17 7578535 T G K132T 620 61 9.84 y —

CTNNB1 RK451 3 41274886 A G Q379R 1,376 22 1.60 y —

ARID1A RK445 1 27106316 C T S1976F 1,035 3 0.29 n y

ARID2 RK439 12 46231342 T G Y394X 816 17 2.08 y —

ACVR2A RK441 2 148657079 G T E106X 696 8 1.15 y —

NFE2L2 RK444 2 178098809 T C E79G 622 5 0.80 n y

NFE2L2 RK441 2 178098956 A C L30R 751 5 0.67 y —

RPS6KA3 RK439 X 20193353 T A S386C 397 10 2.52 y —

COL11A1 RK456 1 103405977 G A P1097L 1,264 4 0.32 n N/A

COL11A1 RK451 1 103488365 G T P393Q 1,384 10 0.72 n N/A

CTNNA2 RK445 2 80097000 G A R175H 1,079 4 0.37 y —

ROBO2 RK432 3 77571995 G T M292I 685 3 0.44 y —

CDH9 RK438 5 26902700 G T P380T 1,453 3 0.21 y —

APC RK456 5 112175232 G A R1314K 1,174 5 0.43 n y

EPHA7 RK433 6 93956601 C T E879K 615 4 0.65 n N/A

GLI3 RK456 7 42004860 C A A1271S 1,263 7 0.55 n N/A

PREX2 RK442 8 69104007 C T A1466V 857 27 3.15 y —

ATM RK442 11 108121480 T G C430G 677 5 0.74 n y

LRFN5 RK445 14 42356455 G C K209N 996 4 0.40 n y

IGF1R RK451 15 99251289 A G N198S 1,275 8 0.63 n y

PAK7 RK439 20 9561315 A C L156R 788 6 0.76 n y

Table 3.  Summary of 25 single nucleotide variants subjected to validation experiments. Note: AA, amino acid; 
VAF, variant allele frequency; cfDNA, cell-free DNA; y, successfully validated; n, NOT validated; N/A: not 
assessed due to a lack of sample volume for the experiment.

124 14

cfDNAtumor DNA
ARID1A.S1976F (0.29%) APC.L137L (2.99%)

NFE2L2.E79G (0.80%) APC.E2463E (1.28%)

PIK3CA.P449A (0.47%) LRFN5.K209N (0.40%)

CTNNA2.R175H (0.37%) AR.G456G (2.86%)

LRRTM1.C28C (0.66%) ATM.C430G (0.74%)

ROBO2.G88R (0.35%) ATM.P1235fs (0.70%)

MET.R580R (0.33%)

Figure 3.  Concordance of genomic alterations in tissue and cell-free DNA (cfDNA) among 6 samples. 
Twelve out of 16 variants in tumor DNA were detected in cfDNA. Of 26 variants in cfDNA, 14 were detected 
in cfDNA, but one TP53 variant was validated by the targeted amplicon sequencing of the tumor. Thirteen 
variants detected in cfDNA only and their variant allele frequency are shown. Driver gene variants such as 
AIRD1A.S1976F, NEE2L2.E79G and PIK3CA.P449A were also observed. ATM.C430G was detected in matched 
lymphocyte DNA by digital PCR.
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In the present study, we also detected and validated seven HBV integration and one rearrangement in the 
TERT region from cfDNA analysis. It is reported that HBV integration into host genome is an early event which 
occurs prior to tumor development31, and that TERT translocations activate TERT expression, likely promoting 
carcinogenesis24. To our knowledge, no study has examined HBV integration or TERT rearrangements using 
comprehensive cfDNA sequencing data from HCC patients. Our results might be underestimating HBV inte-
gration breakpoints and structural variations since we performed targeted panel sequencing, not whole-genome 
sequencing. Nonetheless, considering the importance of HBV DNA integration and TERT rearrangements in 
HCC carcinogenesis, detecting these aberrations with cfDNA could be a useful analysis which leads to early 
diagnosis of HCC.

Despite several advantages in this study, there are some limitations. First, our workflow is specific to the 
ThruPLEX tag-seq library analysis, and it cannot be applicable to analysis of other types of barcoded libraries 
whose UMT is not tagged at the end of the read or stem sequence is not contained. Second, we could not exper-
imentally validate 52 out of the 77 candidates due to a lack of sample volume. However, the VAF of the 52 candi-
dates were not significantly different from those of the validated candidates (Supplementary Fig. S5). Therefore, 
we consider that the 52 candidates would also be detected with high accuracy. Finally, the average depth of con-
sensus reads was relatively low (550x), which may not be sufficient to detect very low frequency variants. Despite 
the insufficient depth of coverage, our study successfully identified 12/16 variants found in tumor samples, sug-
gesting that our method can work properly for analyzing cfDNA. However, greater depth of consensus reads is 
required to achieve higher sensitivity.

In conclusion, we demonstrated the clinical utility of ctDNA analysis using our approach in the HCC field. In 
addition, eVIDENCE can be applied to examine cfDNA from other types of malignancies using any custom gene 
panel, and could be helpful for developing precision medicine for HCC and other tumor types through liquid 
biopsies.

Methods
Ethics statement.  This study was approved by the ethical committees at RIKEN, Hiroshima University and 
Wakayama Medical University (IRB approval numbers are 20–11, 26–13 and 66, respectively). All individuals 
have given written informed consent for research and publication. The experimental methods in this study were 
performed in accordance with the relevant guidelines and regulations.

Clinical samples.  Twenty-six patients with HCC were recruited at Hiroshima University and Wakayama 
Medical University during the period between 2014 and 2017. The patients’ clinical and pathological fea-
tures are in Supplementary Table S2. From each patient, a blood volume of about 10 ml was collected in an 
EDTA-containing tube and plasma was obtained by two-step centrifugation (3,500 rpm for 10 minutes and 
12,000 rpm for 10 minutes). The plasma was stored at −80 °C until cfDNA preparation. Plasma cfDNA was 
extracted from 1–2 ml of plasma using the QIAamp circulating nucleic acid kit (Qiagen) according to the manu-
facturer’s instructions. The concentration of the extracted cfDNA was measured by Qubit fluorometer (Thermo 
Fisher Scientific). Genomic DNA was also extracted from fresh-frozen tumor specimens and lymphocytes.

Library preparation and targeted cfDNA sequencing.  We prepared cfDNA sequencing libraries with 
unique molecular tags using ThruPLEX Tag-seq according to the manufacturer’s instructions. For each specimen, 
10 ng of cfDNA was used for library preparation. We performed targeted sequencing using Agilent SureSelect XT 
Custom (Agilent Technologies) and an Illumina HiSeq. Our custom gene panel captures the exonic regions of 
79 genes, TERT promoter region and chr18:56119000–56120500 (Supplementary Table S1). Then, 500–750 ng of 
purified library was hybridized to the capture panel for 16 or 24 hours at 65 °C. The subsequent library amplifica-
tion and purification were performed according to the Agilent SureSelect XT Custom protocols. Purified prod-
ucts were examined by Bioanalyzer 2100 (Agilent Technologies) to evaluate their quality and quantity. Targeted 
sequencing was performed using paired-end 2 × 150 bp sequencing on HiSeq2500 (Illumina).

Analysis of sequencing data.  Candidate somatic variants calling.  Sequencing reads were aligned against 
the human reference genome (GRCh37) using Burrows-Wheeler Aligner (BWA)32 and converted into BAM files 
by SAMtools33.

We processed the BAM files tagged by the ThruPLEX Tag-seq using Connor, an open source bioinformatics 
analysis tool. Connor de-duplicates a tagged BAM file and produces a new BAM file with consensus alignment 
pairs. The result files were converted into pileup format by SAMtools.

For candidate SNVs detection, the following criteria were applied; 1) VAF of ≥0.1% after removing base calls 
with base quality or mapping quality of <20; and 2) minimum number of variant-supporting consensus reads 
of 3. In addition, at each candidate SNV position, forward strand reference and variant alleles, as well as reverse 
strand reference and variant alleles were counted, respectively. Then, strand bias was calculated by two-sided 
Fisher’s exact test and candidate SNVs with the P-value of <0.001 were discarded. Candidate short indels were 
identified using the following criteria; (1) frequency of indels ≥0.1% after removing reads with mapping quality 
of <20; and (2) minimum supporting consensus reads of 3.

Production of new FASTQ files.  The ThruPLEX Tag-seq Kit adds two 6 nucleotide UMTs and two 8–11 nucle-
otide non-random stems on each end of the cfDNA fragment (Supplementary Fig. S1). Therefore, each query 
sequence begins with the leading UMT and stem sequences, followed by the target sequence region and then, 
occasionally, the stem on the other end. BWA marks the UMT and stem sequence regions as “S (soft clipping)” 
and the target area as “M (alignment match)” in the CIGAR field of BAM files. However, when a part of stem 
sequence adjacent to the target is highly consistent with the reference genome, the region can be labeled as “M” 
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with/without “I (insertion to the reference)” or “D (deletion from the reference)” operation. This behavior can 
introduce sequence mismatches in the stem regions whose origins are not biological molecules.

Therefore, we removed UMT and stem sequences and matched base qualities from the segment sequence 
and base quality fields of BAM files containing only reads covering the positions of the candidate variants. The 
UMT sequence was added to each read name for UMT information retention. New FASTQ files were produced 
using the new read names, sequences and base qualities. A detailed explanation is provided in the Supplementary 
Methods.

Filtering of candidate SNVs.  The new FASTQ files were converted into BAM files and each position of the candi-
date SNV was examined using this new BAM file. We extracted reads covering the positions of the candidates from 
the newly-produced BAM files. Then, base calls at candidate positions with quality of ≥20 and the same UMT were 
grouped into a “UMT family”. UMT families with less than three base calls were discarded. In the default setting for 
Connor, for each family, a consensus sequence requires a 60% majority in the base call sequence at each position. 
This means if there are six same-variant calls and four reference calls at a position within a UMT family, the con-
sensus sequence is determined as the variant. For more stringent criteria to reduce false positives, we discarded a 
candidate if there were two or more reads that did not support the variant call within each UMT family. Then, can-
didate SNVs with fewer than 100 UMT families or fewer than three support UMT families were excluded. After the 
filtering, candidates that were registered in dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) or the integrative Japanese 
Genome Variation Database (http://ijgvd.megabank.tohoku.ac.jp/) were excluded. We also discarded candidates 
with VAF of >20%. Finally, the remaining SNVs were functionally annotated with ANNOVAR34.

Filtering of candidate indels.  We filtered indels using the new BAM files in a similar approach used for the SNV 
filtering, and reads covering the candidate positions were selected. We then extracted the CIGAR values, as well 
as MD:Z tags, which describe mismatching positions and sequences and UMTs. Reads with the same UMT were 
grouped together and UMT families with fewer than three reads were discarded. Then, if there were two or more 
CIGAR values which did not support the majority CIGAR within each family, the candidate indel was discarded. 
The MD:Z tag was used to confirm if the UMT family supported the candidate indel or not. Finally, indels with 
100 or more UMT families and more than two supporting UMT families were included, and functionally anno-
tated with ANNOVAR.

Validation of the algorithm for consensus base calling.  To validate the algorithm for filtering candi-
date variants described above, we generated an artificial library by mixing three libraries with different propor-
tions (0.5% of RK442, 1.0% of RK443 and 98.5% of RK445). We performed sequencing with a depth of consensus 
reads of 1,000x, and analyzed the data using eVIDENCE. A detailed explanation is provided in the Supplementary 
Methods.

Validation of variants by targeted amplicon sequencing.  To validate the identified variants, tumor 
DNA and their corresponding lymphocyte DNA were amplified for the selected 25 SNVs using the primers 
shown in Supplementary Table S5, and amplicon libraries were prepared. Sequencing was performed on MiSeq 
(Illumina). The average read depth at the candidate positions was 351,400x and 325,000x for the tumor and lym-
phocyte samples, respectively. We measured the difference in the allele frequencies of the variants between the 
tumor and matched normal samples by one-sided Fisher’s exact test and the cutoff P-value for significance was 
determined as 0.001 (Supplementary Table S5).

Digital PCR analysis for validation.  For eight candidate SNVs that were not detected by targeted ampli-
con sequencing of the tumor DNA, the fractional abundance of variant alleles in cfDNA and genomic DNA 
from matched tumor and lymphocyte was analyzed by the QuantStudio 3D Digital PCR system (Thermo Fisher 
Scientific) according to the manufacturer’s protocols. The primers and probes are listed in Supplementary 
Table S9.

Whole-exome sequencing and targeted capture sequencing of tumor DNA.  To compare var-
iants of cfDNA with those of tumor DNA, we performed WES on one tumor sample and targeted sequencing 
on five samples. DNA was extracted from frozen tumor tissues and lymphocytes, and 1 μg of DNA was sheared 
to 200 bp peak target size. After adapter ligation and amplification, the purified library was hybridized to the 
Agilent SureSelect Human All Exon v6 chip (Agilent Technologies) or Agilent SureSelect XT Custom. Sequencing 
was performed on HiSeq2500 (Illumina) and mutation analysis was conducted using Genomon2 (https://
genomon-project.github.io/GenomonPagesR/).

HBV integration and TERT rearrangement calls.  To detect HBV integration, sequencing reads were 
mapped to the human (GRCh37) and HBV reference genome (GenBank accession: NC_003977.1). We discarded 
read pairs in which both reads were perfectly aligned to human or HBV genome and selected paired-end reads 
in which one read was mapped to the human genome and the other to the HBV genome. Read pairs that had the 
same UMT were grouped into UMT family and candidate integration sites supported by two or more families 
were used for validation. We performed breakpoint PCR validation of these candidates, and all of them were 
successfully validated.

To identify TERT rearrangements, we selected read pairs in which one read was mapped to TERT and its 
promoter region (chr5: 1253846–1305107) and the other was aligned to another chromosome or location with a 
distance from the paired read of >1 kb. We grouped alignment pairs that share the same UMT and UMT families 
within 300 bp were clustered. Clusters supported by two or more UMT families were determined as candidate 
TERT rearrangements. PCR validation test was performed and only one of four candidates was validated.
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Data availability
The source code of eVIDENCE is freely available from https://github.com/mizunokei/eVIDENCE (https://doi.
org/10.5281/zenodo.2567667).

The sequencing data is available upon request.
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