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Approximately 1500 different spoken languages currently  
   exist, with ~100 of the most commonly used ones making  

up the great majority of global human conversation. Language 
is not only an important part of one’s identity and cultural 
background, but is also a prerequisite for social interactions, 
social behavior, and a functioning society. However, species 
other than humans also “talk”, and this chatter is not limited to 
the terrestrial world. Underwater communication is bountiful 
although somewhat alien to us because it relies on means of 
communication that extend well beyond the audible clicking 
sounds produced by dolphins or the “singing” of whales. For 
example, glows and flashes from the light-producing organs of 
deep-sea fishes attract prey and mates or stun and confuse 
prey and predators (Haddock et  al. 2010). Although sharks 

employ a range of sensory systems that include vision, touch, 
electroreception, and specialized organs (lateral lines) that 
detect water turbulence (Gardiner 2012), they also exploit 
chemical cues to locate prey over distances of several hundred 
meters (see Panel  1 for a glossary of terms; Gardiner et  al. 
2014). In the marine realm, use of such cues is not limited to 
top predators but is also very common among organisms at 
the microscopic scale. For instance, plankton rely on chemi-
cals to deter enemies or synchronize mutual as well as inhibi-
tory or “allelopathic” interactions that critically affect marine 
community structure and ecosystem function (reviewed by 
Hay [2009]). The study of such chemical interactions among 
organisms and their environment is referred to as “chemical 
ecology”, which aims to translate this chemical “language” so 
as to interpret behaviors, processes, and functions (Hay 2014). 
Over the past 50 years, research on chemical ecology in 
marine ecosystems has improved our understanding of eco-
logical functionality and aided in the development of tools 
required for the conservation and management of marine 
systems (Hay 2014).

The enormous diversity of very small organisms (sub-
millimeter sizes) that form the basis of the marine food web 
strongly influences carbon and nutrient cycling, and provides 
the scaffold for stable, healthy ecosystems and fisheries. 
Despite harboring an immense gene pool, microscopic marine 
biota lack many of the sensory organelles or organs found in 
larger organisms, including auditory and acoustic sensors and 
complex vision. Instead, their communication is dominated by 
“infochemicals”: multifaceted compounds (both volatile and 
non-volatile, as well as polar and non-polar [Mollo et  al. 
2017]) that convey information (Figure 1). A variety of com-
pounds influence organismal interactions either positively or 
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In a nutshell:
•	 In marine environments, species interactions that form 

the basis of food webs and shape ecosystem functioning 
are dependent on chemical communication

•	 “Infochemistry” is already used to manage agricultural 
processes in terrestrial contexts, but applications in marine 
systems are underexplored

•	 We highlight two distinct challenges to sustainable growth 
in marine aquaculture and maritime operations, and pro-
pose solutions that require major interdisciplinary efforts, 
the development of a strengthened knowledge base, im-
proved innovation and predictive capacity, and adaptive 
management plans for sustainable use of marine 
resources
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negatively at intra- and interspecific levels (eg John et al. 2015). 
Notably, these compounds may function as intentional “sig-
nals” (eg a sexual attractant released by a sender) or as 

unintentionally released “cues” (eg prey-specific chemicals that 
attract predators [Steiger et al. 2011] or warn prey of predator 
presence [Selander et al. 2015, 2019]).

Here, we explore the socioeconomic poten-
tial of marine chemical ecology. We focus on 
two distinct research challenges that illustrate 
the utility of chemical ecology within a “blue 
growth” framework for the future (the sustaina-
ble use of ocean resources for economic growth, 
improved livelihoods, and jobs [ie for human 
health and well-being], while preserving the 
health of ocean ecosystems). We illustrate the 
power of chemical communication that, in con-
trast to the spoken words of humans, readily 
transmits across taxonomic lineages and even 
kingdoms of life, including communication 
between the simplest unicellular organisms 
(Figure  1b) and more complex multicellular 
plants (Figure 1d) and animals (Figure 1, a and 
e; eg Joint et al. 2007). For instance, corals use 
chemical cues to attract mutualistic fishes to 
assist them with the removal of nuisance algae 
(Dixson and Hay 2012); a better understanding 
of this language would provide crucial insights 
into the evolutionary history of this chemically 
mediated communication that underpins criti-
cal ecological interactions. We emphasize that 
deciphering at least part of the multitude of 
chemical “words” will substantially enhance our 
understanding and so provide potential avenues 
to facilitate novel management strategies to 
improve food safety and security, mitigate 
harmful impacts on humans and the environ-
ment, and enhance blue growth.

Panel 1. Glossary of terms

Biofilms: surface-associated microbial (including bacteria, archaea, 
and microalgae among others) communities encased in a self-secreted 
matrix of extracellular polymeric substances (natural polymers of high 
molecular weight).

Chemical cues: unintentionally released compounds that supply infor-
mation.

Chemical ecology: a cross-disciplinary field of research that inves-
tigates chemically mediated interactions among organisms and their 
environment.

Chemical signals: intentionally released compounds that supply spe-
cific information.

Epibiosis: the spatial association between a substrate organism (“basi-
biont”) and a sessile organism (“epibiont”) attached to the basibiont’s 
outer surface without being trophically dependent on it.

Fouling: colonization process of a solid surface (living or non-living).

Holobiont: a collective biological entity including the host, its microbi-
ome, and other associated symbionts.

Infochemicals: information-conveying chemicals (semiochemicals) 
including allelochemicals and pheromones that mediate interspecific 
and intraspecific communication, and population- and ecosystem-level 
interactions.

Metabolic fingerprinting: qualitative description of an internal or 
external metabolome.

Metabolic footprinting: characterization of metabolites excreted/
secreted by and/or consumed by a biological system.

Metabolome: the complete set of typically low-molecular-weight mol-
ecules found within a biological sample.

Volatolome: the volatile subset of metabolites produced by the 
collective metabolism(s) of organism(s), communities, or entire eco-
systems.

Figure 1. The role of infochemical gradients (indicated by the diffused red shading emanating from 
the point sources) in guiding marine interactions among living organisms and with non-living sub-
strates. (a) Parasites on farmed salmon: salmon release infochemicals that enable host finding in 
parasitic sea lice. (b) Cell-to-cell communication: quorum sensing using, for example, N-acyl homo-
serine lactone (AHL) in bacteria, results in settlement and biofilm formation. (c) Biofouling: ship hulls, 
oil rigs, and wind farm turbine foundations are prone to fouling that can cause detrimental biocorro-
sion. (d) Epibiosis on farmed seaweeds: micro- and macrofouling by bacteria and filamentous green 
algae is triggered by infochemicals. (e) Larval settlement: larvae of oysters, mussels, and corals are 
attracted to infochemicals from conspecifics, as well as specific flora and fauna living on the sea-
floor surface, leading to gregarious larval settlement. Persistent chemical gradients act as a direc-
tional cue to these colonizing organisms. Graphics prepared by G Gorick.

(a) (b) (c)

(d) (e)
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Challenge 1: sustainable aquaculture

Understanding infochemical communication provides oppor-
tunities for targeted manipulation of behaviors benefiting 
sustainable aquaculture. Marine aquaculture is dominated by 
the salmon industry in Europe and the Americas (Figure  1a; 
Figure  2a). Ectoparasitic “sea lice”, including copepod crus-
taceans such as Caligus elongatus and Lepeophtheirus salmonis, 
infect salmon (Figure  2, b and c) and cause annual economic 
losses of approximately €300 (~US$330) million worldwide. 
Infectious stages spread from farms and threaten wild pop-
ulations of salmon and trout, and may also be pathogenic to 
wild fishes under natural conditions (Costello 2009). Current 
treatment of sea lice infection relies on a combination of 
mechanical cleaning, use of the often wild-caught cleaner wrasse 
(Labridae) fish that feed on the parasites, and application of 
chemotherapeutic agents (eg macrocyclic lactones) that are 
toxic to many invertebrates and that can be damaging to 
aquatic food webs. Meanwhile, sea lice have developed resist-
ance to three of the five compound groups used in chemical 
remedies (Aaen et  al. 2015) and, with more than 18 million 
cleaner fish used annually in Norwegian salmon farms alone, 
wild populations of cleaner fish cannot support the industry, 
and wrasse stocks are now in decline in many fished areas 
(Halvorsen et  al. 2017). As such, there is an urgent need for 
new, sustainable methods for sea lice control.

Tapping into infochemical cues of terrestrial predator–prey 
interactions has provided useful strategies for integrated pest 
management (Atsatt and O’Dowd 1976; Pickett and Khan 
2016). Such proven management strategies offer a blueprint for 
transfer to an aquatic setting. Sea lice are highly evolved to 
locate and attach to salmonid fishes using chemical cues 
(Mordue and Birkett 2009); stimuli-guided diversionary strate-
gies based on sexual pheromone traps or push–pull strategies 
(strategies for controlling agricultural pests by using repellent 
“push” plants and attractive “pull” plants) initially developed for 
herbivore management in agriculture (Pickett et al. 2014) could 

therefore be complementary tools for integrated sea  
lice management. For example, sea lice avoid turbot 
(Scophthalmus maximus), and host-finding success has been 
found to decrease in the presence of the turbot-derived com-
pound 2-aminoacetophenone, which eliminates activation and 
directional responses in sea lice (Hastie et al. 2013). By harness-
ing one or more species’ parasite-deterrent properties, chemical 
communication could be exploited to help manage multiple 
aquaculture species in a communal setting. In addition, cues 
that mediate parasite attraction can (once identified) be used to 
develop decoy traps to monitor parasite abundance or disrupt 
recognition of host cues, thereby reducing parasite infection. 
Thus, improving our understanding of the chemical ecology 
between hosts and their parasites can substantially benefit 
marine-based industries and enhance blue economic growth.

Protection of seaweed crops against pests, including over-
growth with epibionts (organisms that live on the surface of 
other living organisms, a process called epibiosis) that compete 
for nutrients and/or light (Figure  1d) and colonization by 
pathogens, is a major challenge faced by the intensive mono-
crop mariculture in East and Southeast Asia (Gachon et  al. 
2010). Perennial brown seaweeds (Phaeophyceae) such as 
Sargassum spp release chemicals that act as grazing deterrents, 
which protect crops from herbivores and improve growth (Yun 
et  al. 2012). In the Philippines, natural aqueous extracts of 
Ascophyllum sp previously used as plant biostimulants (Sangha 
et al. 2014) were successfully introduced as a pre-treatment to 
alleviate the epiphytic growth of the alga Neosiphonia in farm-
ing the highly valuable red seaweed crop Kappaphycus sp 
(Borlongan et al. 2011). This example suggests that “compan-
ion cropping” of brown seaweed lines with tropical red sea-
weeds may be of mutual benefit to both types of seaweeds. 
Release of inhibitory infochemicals by brown seaweeds may 
provide seaweed farmers with a useful strategy for protecting 
their commercially important crops, one that is analogous to 
the push–pull strategies used in agriculture (Pickett and Khan 
2016).

Figure 2. (a) High stocking density of caged salmon in an aquaculture farm. (b) Salmon infested with sea lice. (c) Female sea louse (Lepeophtheirus 
salmonis ) with egg sacs.
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Sustainable aquaculture of the green seaweed Ulva spp for 
the production of food additives or bioethanol is jeopardized 
by a switch in the seaweed’s life cycle from vegetative to sexual 
growth phases. This switch is characterized by the production 
of unicellular spores and their dispersal into the environment 
(ie sporulation), which results in a rapid reduction in seaweed 
biomass. Young individuals of this seaweed chemically sup-
press sporulation via the release of sporulation inhibitors, 
including low-molecular-weight compounds and glycopro-
teins and their degradation products (Vesty et al. 2015; Kessler 
et al. 2018a); these compounds synchronize sporulation within 
a population and effectively control the vegetative status in 
conspecifics and closely related species. Applying knowledge 
about seaweed chemical communication – for instance by inte-
grating seaweeds of different ages in the production process, 
breeding of seaweed stock cultures with increased levels and/
or continued release of inhibitors, or supplementing the aqua-
culture with an externally supplied inhibitor – would prolong 
the vegetative growth phase, thereby increasing biomass yields 
and reducing economic risks for aquaculturists.

The seaweed Ulva serves as the eukaryotic host for associ-
ated bacteria (Figure  3b) in a mutualistic relationship, and 
research demonstrates that chemical communication between 
Ulva and these taxa can result in more productive and healthy 
holobionts (Figure 3a) (Egan et al. 2013). Under bacteria-free 
conditions, Ulva develops into a callus (ie a hard formation of 
tissue that is characterized by slow growth and lacks cell dif-
ferentiation; Figure  3c). The release of the metabolite 
dimethylsulfoniopropionate in Ulva attracts associated 
microbes that induce normal seaweed morphogenesis by pro-
moting its growth and stimulating the development of a hold-
fast (anchoring structure; reviewed in Wichard et al. [2015]). 
In turn, the growing seaweed provides carbon sources, such as 
polysaccharides and glycerol, that are needed for bacterial 
heterotrophic metabolism (Kessler et al. 2018b). This mutual-

istic relationship can also result in the “sharing” of bacterial 
compounds known as siderophores that can promote bacte-
rial–algal interactions through enhanced iron acquisition 
(Amin et  al. 2009; Wichard 2016). By understanding this 
cross-kingdom chemical language, seed stock and associated 
microbiome combinations can be optimized, which has the 
potential to substantially improve the sustainable production 
of food additives, nutraceuticals (pharmaceutical alternatives 
that claim physiological benefits such as polyunsaturated fatty 
acids [PUFAs]), and biofuels acquired through intensive 
aquaculture.

Challenge 2: marine biofilms

Many maritime operations are directly or indirectly affected 
by biofilms through detrimental biofouling and biocorrosion 
(Figure  1c; Dobretsov et  al. 2009). Biofouling can be con-
trolled through toxic antifouling coatings that include tributyl 
tin (TBT) or copper oxide, but these compounds can affect 
other marine organisms via direct toxicity, causing imposex 
(development of male sexual organs in females), and through 
transfer and bioaccumulation within the food web (Bellas 
2006). In 2008, the International Maritime Organization 
introduced a complete ban on the use of TBT-based coat-
ings, and a gradual phasing-out of all metal-containing 
antifouling agents is expected; these actions have stimulated 
research into approaches that rely on or are inspired by 
natural antifouling compounds produced by organisms that 
are largely free of epibionts. However, making these com-
pounds durable, easy to use, cost effective in terms of pro-
duction, and non-toxic to marine biota is an ongoing challenge 
(Saha et  al. 2017), and as such the targeted prevention or 
detachment of marine biofilms via infochemicals has very 
high economic potential. A process known as “quorum sens-
ing” (QS) often initiates the onset of biofilm formation (Figure 1b; 

Figure  3. Ulva mutabilis (Chlorophyta, slender morphotype) and its cross-kingdom interactions with associated bacteria. (a) Adult specimens of a 
5-week-old culture. (b) Two-cell stage of the macroalga, with a settlement of Roseovarius sp (arrow) on the pole of the nearby germling. (c) Bacteria-free 
5-week-old culture with typical cell wall protrusions (arrow) indicating the lack of morphogen-producing bacteria. The photo in panel (a) was adapted from 
Wichard (2015) and is available under the terms of the Creative Commons Attribution License (CC BY 4.0).

(a) (b) (c)
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Figure  4a) and involves the density-dependent 
release of bacterial pheromones (Wirth et  al. 
1996), including N-acyl homoserine lactones 
(AHLs; reviewed in Dobretsov et  al. [2009]). 
AHLs accumulate in the diffusion-limited 
environment surrounding bacterial cells and 
trigger the expression of settlement-related 
genes that induce the transition from a sus-
pended to an attached bacterial phenotype 
(Waters and Bassler 2005). Several marine 
organisms, including the red seaweed Delisea 
pulchra, can counteract the formation of bio-
films on their surface by actively interfering 
with QS (Figure 4b). For example, halogenated 
furanones produced by D pulchra interfere 
with a universal bacterial QS receptor, thereby 
disrupting bacterial cell-to-cell communica-
tion (Givskov et  al. 1996; Manefield et  al. 
1999). In addition to furanones, seaweeds 
produce a multitude of chemical compounds 
with antibacterial, antifungal, antialgal, and 
antimacrofouling properties (reviewed in Saha 
et  al. [2017]) that dynamically shape the sea-
weed’s biofilm community. The translation of 
such infochemical research could facilitate the 
development of novel, natural strategies for 
suppressing biofilm growth. Furthermore, because unre-
stricted use of antibiotics often results in acquired antibiotic 
resistance that can be dangerous to human health, the 
development of nature-inspired strategies, including com-
panion cropping, can potentially overcome current limitations 
in the control of pathogens.

Scientists have only now begun to elucidate the molecular 
mechanisms controlling bacterial biofilm dispersal (Kaplan 
2010), but the targeted delivery of the biogenic infochemical 
nitric oxide (NO) to such biofilms has been shown to stimulate 
the dispersal of bacteria from an existing biofilm matrix 
(Barraud et al. 2015); this suggests that NO may be useful for 
treating biofilms in a variety of medical and industrial applica-
tions (Barnes et  al. 2015). NO also forms part of a stress-
surveillance system in diatoms (Vardi et al. 2006), and recent 
results suggest that signaling interference might also be a strat-
egy to control diatom biofilm formation. These unicellular 
algae respond to pheromones and inorganic nutrients with 
predictable movement patterns (Gillard et  al. 2013; Bondoc 
et  al. 2016); imprinting such molecular cues on surfaces 
through novel polymer technologies could be used to manipu-
late the behavior of biofilm-forming diatoms and thereby 
manage their settlement.

While the establishment of nuisance species may be delete-
rious or even eventually destructive, managed settlement of 
calcareous marine organisms (eg oysters, mussels, corals) may 
be both ecologically and economically desirable, as they may 
aid marine conservation, coastal protection, and fin- and shell-
fish husbandry. The larvae of most sessile invertebrates spend 

part of their life cycle as plankton before settling onto suitable 
substrates (Figure  1e). The suitability of these substrates is 
often determined by bacterial and algal metabolites (reviewed 
in Wahl et al. [2012]; Egan et al. 2013). Improved knowledge 
about these cues and their potential biotechnological applica-
tions provide opportunities for increasing the degree of 
targeted “spatfall” from the settlement of economically or 
ecologically valuable aquaculture species (eg commercially 
important bivalves) or reef-building hard corals in suitable 
habitats (Ladd et al. 2018). Infochemicals derived from crus-
tose coralline algal holobionts – a common settlement sub-
strate for many hard coral species (Heyward and Negri 1999) 
– have recently been shown to enhance coral recruitment on 
chemically imprinted artificial surfaces (Tebben et  al. 2015). 
More information about marine invertebrate larval settlement 
cues would benefit bivalve husbandry and mariculture, as well 
as the seeding of new or rehabilitated reefs, which can provide 
structural complexity and help to restore areas of the seafloor 
subjected to dredging.

Future challenge: learn and use the chemical 
language

An overarching challenge for marine chemical ecologists is 
to decipher the molecular signatures of the great pool of 
marine chemical signals and exploit this information to 
benefit blue growth. Such efforts should extend beyond the 
discovery of isolated active compounds that is often sup-
ported by metabolomic finger- and footprinting (Goulitquer 

Figure 4. (a) Biofilm formation on neutral surface (gray) versus (b) processes interfering with 
biofilm formation on macroalgal surface (green). Blue arrows = release of quorum sensing 
(QS) molecules (red stars) that initiate settling in conspecifics; orange arrows = release of 
compounds (pink squares) that may have antibiotic properties, interfere with QS receptors, or 
remove QS molecules.

(a) (b)
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et al. 2012; Weber et al. 2013), and embrace the information 
included in complex infochemical mixtures that may elicit 
responses based on the mixing ratios (the abundance of 
one component of a mixture relative to that of all other 
components) of a large number of diverse components. For 
example, human behavior is affected by our ability to dis-
tinguish more than one trillion different tastes and smells 
using just several hundred types of olfactory receptors in 
the nasal cavity (Bushdid et  al. 2014). This suggests that, 
in addition to the concentrations of individual chemical 
components, the mixing ratios of infochemicals may have 
a profound effect on the chemical ecology of recipients: a 
phenomenon that – to our knowledge – is not well under-
stood and does not receive adequate attention in marine 
chemical ecology research.

Phytoplankton enrich the area surrounding their cells with 
organic substrates that structure the “phycosphere”, or micros-
cale physicochemical environment, which provides a setting 
characterized by intense interactions between phytoplankton 
and bacteria that controls nutrient cycling and biomass pro-
duction in aquatic environments (Seymour et  al. 2017). The 
resulting chemical gradients form a strong component of com-
munication in marine systems, but scientists lack adequate 
micro- (and even nano-) scale sampling and analytical tech-
niques to describe concentration gradients in the diffusion-
limited phycosphere, and struggle to identify the microscopic 
sources of these gradients. Moreover, current methodological 
approaches frequently overlook volatile organic compounds 
that are well suited for bridging diffusion-limited communica-
tion gaps in the phycosphere (Pohnert et al. 2007). Gases are 
produced in response to numerous biological processes 
(Steinke et al. 2002; Fink 2007), and the volatile metabolomes 
(ie volatolomes; Achyuthan et  al. 2017; Steinke et  al. 2018) 
should be considered in future efforts to decipher the marine 
chemical language.

Advances in marine chemical ecology are also impeded by 
uncertainty about how future ocean conditions (eg elevated 
sea-surface temperature that affects the solubility and volatility 
of infochemicals, spread of invasive species, ocean acidifica-
tion) will interfere with the perceptive abilities of receiver 
organisms: that is, how future ocean conditions will affect the 
functioning of sensors that “listen” to this chemical language. It 
is also possible that ongoing and projected environmental 
change and its effects on marine communities (eg Brodie et al. 
2014) will disrupt – and thereby deprive organisms from 
receiving – information transmitted by infochemicals. For 
instance, under low pH conditions, peptide signaling mole-
cules may undergo structural changes that affect the egg venti-
lation behavior of the green shore crab (Carcinus maenas; 
Roggatz et al. 2016); similarly, orange clownfish (Amphiprion 
percula) larvae reared under high pH conditions are incapable 
of distinguishing between chemical cues from suitable and 
unsuitable settlement sites and between kin and non-kin 
neighbors (Munday et al. 2009); and benthic and pelagic inver-
tebrates exhibit altered behavior in response to volatile forag-

ing cues under ocean acidification conditions (Zupo et  al. 
2016). It is therefore critical to address the degree to which 
ocean acidification and climate change will alter how species 
interact in the future environment.

Addressing these challenges requires an expanded knowl-
edge base, improved innovation and predictive capacity, and 
the development of adaptive management plans for sustainable 
exploitation and use of marine resources. Future research in 
marine chemical ecology must be more interdisciplinary, 
involving natural product chemists, ecologists, and ecoinfor-
maticians, among others. Blue growth industries, including 
seaweed, finfish, and shellfish aquaculturists, will have to pro-
vide access to facilities and assist with the collaborative devel-
opment of funding streams. Prior to its implementation, the 
knowledge derived from chemical ecology must also include 
an assessment of socioeconomic benefits and potential draw-
backs, and the application of relevant management strategies 
to address problems at the global scale will likely require input 
from lawyers and stakeholders in the maritime sector. 
Nevertheless, better understanding and utilization of the 
marine chemical language is critical for ensuring the future 
health of the marine realm.
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