SEMANTIC FEATURE REDUCTION AND HYBRID FEATURE SELECTION FOR CLUSTERING OF ARABIC WEB PAGES

HANAN MUSAFER H. ALGHAMDI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Computer Science)

Faculty of Computing
Universiti Teknologi Malaysia

DECEMBER 2016

To the soul of my Father, may Allah forgive him.

To my beloved Mother, for her ongoing love and prayers to me.

To my Husband, for care, support and encouragement all the time.

And to my Children's, Faisel and Yousef with hope for proud future.

ACKNOWLEDGEMENT

I would like to acknowledge, and I wish to express my deep gratitude to my supervisor, Professor Ali bin Selamat for guidance, valuable time, technical and friendly dealing through out my study.

I would like to express my profound gratitude to Ministry of Education, Malaysia, Universiti Teknologi Malaysia (UTM), Umm Al-Qura University (UQU) and the Ministry of Higher Education, Saudi Arabia for supporting this research.

Finally but as important, my deepest gratitude is due to my family members and my friends for their loving support. Without their encouragement and understanding it would have been impossible for me to finish this work.

ABSTRACT

In the literature, high-dimensional data reduces the efficiency of clustering algorithms. Clustering the Arabic text is challenging because semantics of the text involves deep semantic processing. To overcome the problems, the feature selection and reduction methods have become essential to select and identify the appropriate features in reducing high-dimensional space. There is a need to develop a suitable design for feature selection and reduction methods that would result in a more relevant, meaningful and reduced representation of the Arabic texts to ease the clustering process. The research developed three different methods for analyzing the features of the Arabic Web text. The first method is based on hybrid feature selection that selects the informative term representation within the Arabic Web pages. It incorporates three different feature selection methods known as Chi-square, Mutual Information and Term Frequency-Inverse Document Frequency to build a hybrid model. The second method is a latent document vectorization method used to represent the documents as the probability distribution in the vector space. It overcomes the problems of high-dimension by reducing the dimensional space. To extract the best features, two document vectorizer methods have been implemented, known as the Bayesian vectorizer and semantic vectorizer. The third method is an Arabic semantic feature analysis used to improve the capability of the Arabic Web analysis. It ensures a good design for the clustering method to optimize clustering ability when analysing these Web pages. This is done by overcoming the problems of term representation, semantic modeling and dimensional reduction. Different experiments were carried out with k-means clustering on two different data sets. The methods provided solutions to reduce high-dimensional data and identify the semantic features shared between similar Arabic Web pages that are grouped together in one cluster. These pages were clustered according to the semantic similarities between them whereby they have a small Davies–Bouldin index and high accuracy. This study contributed to research in clustering algorithm by developing three methods to identify the most relevant features of the Arabic Web pages.

ABSTRAK

Dalam kajian lepas, data dimensi tinggi dapat mengurangkan kecekapan dalam algoritma pengklusteran. Pengklusteran teks Arab merupakan sesuatu yang mencabar kerana semantik dalam teks melibatkan pemprosesan semantik yang mendalam. Bagi mengatasi masalah ini, pemilihan ciri-ciri dan kaedah pengurangan menjadi penting dalam memilih dan mengenal pasti ciri-ciri yang bersesuaian bagi mengurangkan ruang dimensi yang tinggi. Terdapat keperluan untuk membangunkan reka bentuk yang bersesuaian dalam pemilihan ciri-ciri dan kaedah pengurangan yang akan menyebabkan perwakilan teks Arab yang lebih relevan, bermakna dan kurang bagi memudahkan proses pengklusteran. Kajian ini membangunkan tiga kaedah yang berbeza untuk menganalisis ciri-ciri teks bagi Web Bahasa Arab. Kaedah pertama adalah berdasarkan kepada pemilihan ciri-ciri hibrid yang memilih perwakilan jangka bermaklumat dalam halaman Web Bahasa Arab. menggabungkan tiga kaedah pemilihan ciri yang berbeza yang dikenali sebagai Khi-Kuasa Dua, Maklumat Bersama dan Frekuensi Dokumen Frekuensi Songsang Bertempoh untuk membina sebuah model hibrid. Kaedah kedua merupakan kaedah pemvektor dokumen terpendam yang digunakan untuk mewakili dokumen sebagai taburan kebarangkalian dalam ruang vektor. Ia mengatasi masalah dimensi tinggi dengan mengurangkan ruang dimensi. Bagi mengekstrak ciri-ciri yang terbaik, dua kaedah pemvektor dokumen telah dilaksanakan yang dikenali sebagai pemvektor Bayesian dan pemyektor semantik. Kaedah ketiga adalah analisis ciri-ciri semantik Arab yang digunakan untuk meningkatkan keupayaan analisis Web Bahasa Arab. Ia memastikan reka bentuk terbaik untuk kaedah pengklusteran bagi mengoptimumkan keupayaan pengklusteran apabila menganalisis laman Web ini. Ini dilaksanakan dengan mengatasi masalah perwakilan jangka, pemodelan semantik dan pengurangan dimensi. Penyelidikan yang berbeza telah dijalankan dengan pengklusteran k-cara ke atas dua set data yang berlainan. Kaedah ini dapat menyelesaikan pengurangan dimensi data yang tinggi dan mengenal pasti ciri-ciri semantik yang dikongsi bersama laman Web Bahasa Arab yang dikumpulkan bersama-sama dalam satu kluster. Laman ini telah diklusterkan mengikut persamaan semantik antara mereka di mana mereka mempunyai indeks terkecil Davies-Bouldin dan ketepatan yang tinggi. Kajian ini menyumbang kepada penyelidikan dalam pengklusteran algoritma dengan membangunkan tiga kaedah untuk mengenal pasti ciri-ciri yang paling relevan dalam laman Web Bahasa Arab.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	Γ OF TABLES	xiv
	LIST	Γ OF FIGURES	XX
	LIST	Γ OF ABBREVIATIONS	xxviii
	LIST	T OF APPENDICES	XXX
1	INT	1	
	1.1	Introduction	1
	1.2	Problem Background	2
	1.3	Problem Statement	5
	1.4	Goal of the study	5
	1.5	Research Questions	5
	1.6	Research Objectives	6
	1.7	Scope of the Study	6
	1.8	Contributions and Significance of the Study	7
	1.9	Outline of the Thesis	8
2	LITI	ERATURE REVIEW	9
	2.1	Text Mining	9
	2.2	Text Clustering	10

			viii
	2.2.1	Applications of Text Clustering	12
	2.2.2	Related Works in Text Clustering	13
	2.2.3	Related Works of Arabic Web Text Clustering	
		Techniques	16
2.3	Analys	sis of Arabic Web Pages Using Clustering	21
	2.3.1	URL Collection and Extraction	23
	2.3.2	Text Pre-processing	25
	2.3.3	Text Representation	28
	2.3.4	Term Weighting	29
	2.3.5	Feature Selection Methods	31
		2.3.5.1 Document Frequency (DF)	32
		2.3.5.2 Information Gain (IG)	33
		2.3.5.3 Chi-square (CHI)	33
		2.3.5.4 Term Strength (TS)	34
		2.3.5.5 Term Contribution (TC)	34
		2.3.5.6 Limitations of Feature Selection Methods	35
	2.3.6	Dimensionality Reduction Methods	36
		2.3.6.1 Principal Component Analysis (PCA)	37
		2.3.6.2 Probabilistic Latent Semantic Analysis	
		(PLSA)	38
		2.3.6.3 Latent Semantic Analysis (LSA)	40
		2.3.6.4 Limitations of Dimensionality Reduction	
		Methods	41
	2.3.7	Feature Hybridizations Methods	44
	2.3.8	Using Lexical Resources for Arabic Text	45
	2.3.9	Text Clustering Methods	46
		2.3.9.1 K-mean Clustering Algorithm	47
		2.3.9.2 Bisecting <i>K</i> -Means Algorithm	49
	2.3.10	Topic Relevance Scoring	50
	2.3.11	Evaluation	51
2.4	Dark V	Veb	54
	2.4.1	Terrorist Organizations based on Geographical	
		Regions	56
	2.4.2	Studies Discovering the Web's Hidden Side	58

			ix
		2.4.2.1 Detecting User Behaviour	58
		2.4.2.2 Sentiments and Affect Intensity Analysis	59
	2.4.3	Social Network Analysis	61
	2.4.4	Improved Explosive Devices (IEDs) Analysis	62
	2.4.5	Techniques to Detect Terrorist or Extremists on	
		The Web	63
		2.4.5.1 Textual Feature Set and Techniques	67
		2.4.5.2 Limitation of Text Analysis Methods for	
		Arabic Dark Web	69
2.5	Summ	nary	71
RESI	EARCH	I METHODOLOGY	72
3.1	Introd	luction	72
3.2	Resea	rch Methods	72
3.3	Web I	Page Text Analysis Approach with Hybrid Feature	
	Select	ion	75
	3.3.1	Web Page Retrieval and Pre-processing	76
		3.3.1.1 URL Collection and Extraction	76
		3.3.1.2 Pre-processing	82
	3.3.2	Term Weighting and Representation	90
	3.3.3	Hybrid Feature Selection	92
	3.3.4	Clustering	93
	3.3.5	Evaluation	94
	3.3.6	Experimental Design for Hybrid Feature	
		Selection Method	97
3.4	Web I	Page Text Analysis Approach with Latent	
	Docur	ment Vectorization	99

3.4.1 Latent Document Vectorization

Vectorization

Feature Analysis

3.5

3.4.2 Experimental Design for Latent Document

3.5.1 Arabic Semantic Feature Analysis (ASFA)

Web Page Text Analysis Approach with Arabic Semantic

99

101

103

103

3

		3.5.2	Experimental Design for Feature Hybridization	
			Methods	104
	3.6	Sumn	nary	105
4	НҮВ	RID FE	ATURE SELECTION METHOD FOR	
	ARA	BIC WI	EB CLUSTERING	106
	4.1	Introd	uction	106
		4.1.1	Hybrid Feature Selection Scheme as Feature	
			Selection Method	106
			4.1.1.1 Chi-square (χ2 Statistic)	109
			4.1.1.2 Mutual Information	109
			4.1.1.3 Term Frequency–Inverse Document	
			Frequency	110
		4.1.2	Term Feature Ranking	119
	4.2	Exper	iments Setting	120
		4.2.1	Term Weighting Scheme	120
		4.2.2	Implementing K-Means Clustering	121
	4.3	Exper	imental Results	122
		4.3.1	Experimental Results for Dataset_1	122
		4.3.2	Experimental Results for Dataset_2	126
		4.3.3	Term Features Patterns by Different Feature	
			Selection Schemes	130
		4.3.4	Validation of the Experimental Results	131
		4.3.5	Discussion and Analysis of Experimental Results	133
			4.3.5.1 Analysis of Dataset_1 using the	
			H_FS Method	136
			4.3.5.2 Analysis of Dataset_2 using the	
			H_FS Method	141
			4.3.5.3 Review of the Analysis of Dataset_1 and	
			Dataset_2 using the H_FS Method	149
	4.4	Summ	nary	152

5	LAT	LATENT DOCUMENT VECTORIZATION FOR ARABIC						
	WEB	CLUS'	TERIN	G	153			
	5.1	5.1 Introduction						
	5.2	Laten	t Docun	nent Vectorization	153			
	5.3	Bayes	ian Vec	ctorization	154			
	5.4	Semai	ntic Vec	ctorization	160			
		5.4.1	Extrac	ction of Semantic Class Feature	161			
		5.4.2	Docur	nent Vectorization	165			
			5.4.2.	1 Semantic Class Density	168			
			5.4.2.2	2 Semantic Class Probability Distribution	171			
		5.4.3	Cluste	ering and Annotation	174			
			5.4.3.	1 Clustering	174			
			5.4.3.	2 Semantic Annotation	174			
	5.5	Exper	riments	Setup	176			
	5.6	Exper	erimental Results					
		5.6.1	Exper	imental Results for Dataset_1	177			
			5.6.1.	1 Semantic Annotation according to the				
				Semantic Vectorization using Semantic				
				Class Density	182			
			5.6.1.2	2 Semantic Annotation according to the				
				Semantic Vectorization using Semantic				
				Class Probability Distribution	186			
			5.6.2	Experimental Results for Dataset_2	189			
				5.6.2.1 Semantic Annotation according to				
				the Semantic Vectorization using				
				Semantic Class Density	193			
			5.6.3	Validation of the Experimental Results	197			
			5.6.4	Discussion and Analysis of the				
				Experimental Results	201			
				5.6.4.1 Analysis of Dataset_1 using the				
				Latent DocumentVectorization				
				Method	203			

			5.6.4.2 Analysis of Dataset_2 using the	
			Latent Document Vectorization	
			Method	209
			5.6.4.3 Review of the Analysis of Dataset_	_1
			and Dataset_2 using the Latent	
			Document Vectorization Method	215
	5.7	Summ	nary	219
6	ARA	BIC SE	MANTIC FEATURE ANALYSIS FOR	
	ARA	BIC WI	EB CLUSTERING	220
	6.1	Introd	luction	220
	6.2	Arabio	c Semantic Feature Analysis Method	220
		6.2.1	Feature Relation Strength	223
		6.2.2	Feature Combination	228
	6.3	Exper	imental Procedure	231
	6.4	Exper	imental Results	233
		6.4.1	The Experimental Results of the Arabic Semantic	
			Feature Analysis	234
		6.4.2	The Comparison Results of the Arabic Semantic	
			Feature Analysis Method with Probability Latent	
			Semantic Analysis Method	237
		6.4.3	The Comparison Results of the Hybridization	
			Method with Various Feature Selection Method	242
		6.4.4	The Comparison Results of the Arabic Semantic	
			Feature Analysis Method , BV-SV as Document	
			Vectorization and H_FS as Feature Selection	
			Method	250
		6.4.5	Semantic Annotation of ASFA	258
		6.4.6	The Impact of Finding Semantic Annotation for	
			the Cluster	266
		6.4.7	Validation of the Experimental Results	272
			6.4.7.1 Validation of the Experimental Results	
			for Dataset 1	272

	٠	٠	٠
X	1	1	1

		6.4.7.2	Validation of the Experimental Results	
			for Dataset_2	275
		6.4.8	Discussion and Analysis of the	
			Experimental Results	277
			6.4.8.1 Analysis of Dataset_1 using the	
			Arabic Semantic Feature Analysis	
			Approach	280
			6.4.8.2 Analysis of Dataset_2 using the	
			Arabic Semantic Feature Analysis	
			Approach	285
			6.4.8.3 Review of the Analysis of Dataset_1	=
			and Dataset_2 using the Arabic	
			Semantic Feature Analysis Method	290
	6.5	Summary		292
7	CONC	CLUSION		294
	7.1	Introduction		294
	7.2	Researchs Fine	ding and Contribution	295
	7.3	Limitations of	Work	298
	7.4	Future Works		299
REFERENC	ES			300
Appendices A	B		323-	326

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Summary of the related works in Arabic text clustering	17
2.2	Comparison of three Web extractor tools	24
2.3	Comparison of three Arabic stemmers	27
2.4	Summary of single and hybrid feature selection methods	35
2.5	Semantic frames found in Arabic VerbNet	46
2.6	Summary of studies showing characteristics of Middle Easter	rn
	group with other groups	57
2.7	Web mining techniques and their usage to perform tasks	64
2.8	Types of feature set and techniques used for text analysis	67
2.9	Summary of features and techniques used for text analysis	68
3.1	Dataset_1 collected from achieve of online newspaper	77
3.2	Dataset_2 of Arabic Dark Web forums	80
3.3	Rules for tagging nouns (Al-Shalabi and Kanaan, 2004)	84
3.4	Rules identified verb	85
3.5	Advantages and weakness of applied stemmer	86
3.6	Arabic prefixes and affixes used in the stemmer	88
3.7	Example of finding local stem	89
3.8	Example of implementing a proposed stemmer	90
3.9	Numbers of features found in datasets after pre-processing p	hase 90
4.1	DBI measurement results for different feature selection	
	methods compared to H_FS in dataset_1	124
4.2	Purity measurement results for different feature selection	
	methods compared to H_FS in dataset_1	125
4.3	F-measure results for different feature selection methods	
	compared to H FS in dataset 1	125

4.4	F-measure results for different feature selection methods	
	compared to H_FS in dataset_2	128
4.5	Purity results for different feature selection methods	
	compared to H_FS in dataset_2	128
4.6	DBI results for different feature selection methods	
	compared to H_FS in dataset_2	129
4.7	Top ten words according to different feature selection	
	methods using dataset_1	130
4.8	Paired Samples Test on purity for dataset_1 using H_FS	
	vs. different feature selection methods	131
4.9	Paired Samples Test on F-measure for dataset_1 using	
	H_FS vs. different feature selection methods	132
4.10	Paired Samples Test on purity for dataset_2 using	
	H_FS vs. different feature selection methods	132
4.11	Paired Samples Test on F-measure for dataset_2 using	
	H_FS vs. different feature selection methods	133
4.12	Top ten terms in each cluster for dataset_1	138
4.13	Top ten terms in Cluster 2 with related categories for dataset_1	138
4.14	Top ten terms in Cluster 3 with related categories for dataset_1	139
4.15	Top ten terms in Cluster 4 with related categories for dataset_1	140
4.16	Top ten terms in Cluster 6 with related categories for dataset_1	141
4.17	Top ten terms in each cluster for dataset_2	143
4.18	Top ten terms in Cluster 1 with related categories for dataset_2	144
4.19	Top ten terms in Cluster 2 with related categories for dataset_2	145
4.20	Top ten terms in Cluster 3 with related categories for dataset_2	146
4.21	Top ten terms in Cluster 4 with related categories for dataset_2	147
4.22	Top ten terms in Cluster 5 with related categories for dataset_2	148
4.23	Top ten terms in Cluster 6 with related categories for dataset_2	149
4.24	Top ten terms in each category using the H_FS method for	
	dataset_1	150
4.25	Top ten terms in each category using the H_FS method for	
	dataset_2	151
5.1	Semantic class probability distribution calculation	171

5.2	DBI measurement results for different latent vectorization	
	methods by using dataset_1	179
5.3	Purity measurement results for different latent	
	vectorization methods by using dataset_1	180
5.4	F-measure results for different latent vectorization	
	methods by using dataset_1	181
5.5	The top five topics associated with clusters using the SVa and	
	calculated according to mean score among cluster in dataset_1	185
5.6	The top five topics associated with clusters using the SVa and	
	calculated according to mean ratio among clusters in dataset_1	185
5.7	The top five topics associated with clusters using the SVb and	
	calculated according to mean score among cluster in dataset_1	189
5.8	The top five topics associated with clusters using the SVb and	
	calculated according to mean ratio among clusters in dataset_1	189
5.9	DBI measurement results for different latent vectorization	
	methods by using dataset_2	191
5.10	Purity measurement results for different Latent vectorization	
	methods by using dataset_2	192
5.11	F-measure results for different Latent vectorization methods	
	by using dataset_2	193
5.12	The top five topics associated with clusters using the SVa and	
	calculated according to mean score among cluster in dataset_2	196
5.13	The top five topics associated with clusters using the SVa and	
	calculated according to mean ratio among clusters in dataset_2	197
5.14	Paired Samples Test on DBI for dataset_1 using the proposed	
	latent vectorization methods vs. VSM	197
5.15	Paired Samples Test on DBI for dataset_2 using the proposed	
	latent vectorization methods vs. VSM	198
5.16	Paired Samples Test on purity for dataset_1 using the	
	proposed latent vectorization methods vs. VSM	198
5.17	Paired Samples Test on F-measure for dataset_1 using the	
	proposed latent vectorization methods vs. VSM	199
5.18	Paired Samples Test on purity for dataset_2 using the	
	proposed latent vectorization methods vs. VSM	199

		xvii
5.19	Paired Samples Test on F-measure for dataset_2 using the	
	proposed latent vectorization methods vs. VSM	200
5.20	Semantic features for categories in dataset_1 using the	
	SVa method	216
5.21	Semantic features for categories in dataset_2 using the	
	SVa method	217
6.1	Purity Measurement results of the ASFA(H_FS-BV-SV)	
	for dataset_1 and dataset_2	236
6.2	DBI measurement results of the ASFA(H_FS-BV-SV)	
	for dataset_1 and dataset_2	236
6.3	F-measure results of the ASFA(H_FS-BV-SV) for	
	dataset_1 and dataset_2	236
6.4	Purity measurement results of the ASFA(H_FS-BV-SV)	
	and TF-PLSA in dataset_1	238
6.5	F-measure results of the ASFA(H_FS-BV-SV) and	
	TF-PLSA in dataset_1	239
6.6	Purity measurement results of the ASFA(H_FS-BV-SV)	
	and TF-PLSA in dataset_2	240
6.7	F-measure results of the ASFA(H_FS-BV-SV) vs.	
	TF-PLSA in dataset_2	241
6.8	Purity Measurement results of the ASFA(H_FS-BV-SV),	
	TF-BV-SV and TFIDF-BV-SV in dataset_1	244
6.9	F-measure results of the ASFA(H_FS-BV-SV),	
	TF-BV-SV and TFIDF-BV-SV in dataset_1	244
6.10	DBI measurement results of the ASFA(H_FS-BV-SV),	
	TF-BV-SV and TFIDF-BV-SV in dataset_1	245
6.11	Purity Measurement results of the ASFA(H_FS-BV-SV),	
	TF-BV-SV and TFIDF-BV-SV in dataset_2	247
6.12	F-measure results of the ASFA(H_FS-BV-SV),	
	TF-BV-SV and TFIDF-BV-SV in dataset_2	248
6.13	DBI Measurement results of the ASFA(H_FS-BV-SV),	
	TF-BV-SV and TFIDF-BV-SV in dataset_2	248
6.14	Purity measurement results of the ASFA(H_FS-BV-SV),	
	BV-SV and H_FS in dataset_1	252

		xviii
6.15	F-measure results of the ASFA(H_FS-BV-SV), BV-SV	
	and H_FS in dataset_1	253
6.16	DBI measurement results of the ASFA(H_FS-BV-SV),	
	BV-SV and H_FS in dataset_1	254
6.17	Purity measurement results of the ASFA(H_FS-BV-SV),	
	BV-SV and H_FS in dataset_2	256
6.18	F-measure results of the ASFA(H_FS-BV-SV), BV-SV	
	and H_FS in dataset_2	257
6.19	DBI measurement results of the ASFA(H_FS-BV-SV),	
	BV-SV and H_FS in dataset_2	258
6.20	The top five topics associated with clusters using SVa and	
	calculated according to mean score among cluster with	
	10% of the features in dataset_1	266
6.21	The top five topics associated with clusters using SVa and	
	calculated according to mean score among cluster with	
	50% of the features in dataset_1	266
6.22	The top five topics associated with clusters using SVa and	
	calculated according to mean ratio among corpus with	
	10% of the features in dataset_1	267
6.23	The top five topics associated with clusters using SVa and	
	calculated according to mean ratio among corpus with	
	50% of the features in dataset_1	268
6.24	The top five topics associated with clusters using SVa and	
	calculated according to mean score among cluster with	
	20% of the features in dataset_2	269
6.25	The top five topics associated with clusters using SVa and	
	calculated according to mean ratio among corpus with	
	20% of the features in dataset_2	269
6.26	Semantic Annotations for output clusters of dataset_2 with	
	related verbs	271
6.27	Paired Samples Test on purity for dataset_1 using the	
	proposed ASFA vs. other methods	272
6.28	Paired Samples Test on F-measure for dataset_1 using	
	the proposed ASFA vs. other methods	273

		xix
6.29	Paired Samples Test on DBI for dataset_1 using	
	the proposed ASFA vs. other methods	274
6.30	Paired Samples Test on purity for dataset_2 using	
	the proposed ASFA vs. other methods	275
6.31	Paired Samples Test on F-measure for dataset_2	
	using the proposed ASFA vs. other methods	276
6.32	Paired Samples Test on DBI for dataset_2 using	
	the proposed ASFA vs. other methods	277
6.33	Similar semantic features among documents from dataset_1	
	and dataset_2	291

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Clustering stages	11
2.2	The framework of Web text mining for application of clustering	ng 23
2.3	Web extraction and pre-processing steps	25
2.4	LSA Matrix Factorization	40
2.5	Single or multiple feature selection methods with clustering	44
2.6	Architecture diagram of k-mean clustering	
	(Rokach and Maimon, 2005)	48
2.7	Bisecting k-means algorithm	50
3.1	Research framework	73
3.2	Description of three Web text analysis proposed approaches	
	based on research framework. (a) Hybrid Feature selection	
	approach (b) latent document vectorization approach and	
	(c) Arabic semantic feature analysis.	74
3.3	Web page retrieval and pre-processing steps	76
3.4	Dark Web forum example (hawaworld)	79
3.5	Easy web extractor tool	81
3.6	Documents categorical distribution for dataset_1 and dataset_	2 82
3.7	Algorithm of stemmer applied in this study	87
3.8	Algorithm of stemmer applied in this study-continue	88
3.9	A diagram showing the steps of a text corpus being	
	converted into a TF*IDF weighted term-document matrix	91
3.10	DBI, within cluster distance and between cluster	
	distance in 2-D clustering example	96
3.11	Experimental design for hybrid feature selection method	98
3.12	Experimental design for latent document vectorization	102

		xxi
3.13	Experimental design of Arabic semantic feature analysis	
	approach	105
4.1	An overview of hybrid feature selection method	108
4.2	The detail methodology for proposed hybrid feature	
	selection method	111
4.3	The algorithm of the hybrid feature selection	118
4.4	The illustration of Feature Ranking	120
4.5	Standard k-means clustering algorithm	122
4.6	Comparison results based on DBI for different feature	
	selection methods by using dataset_1	123
4.7	Comparison results based on purity value for different	
	feature selection methods by using dataset_1	123
4.8	Comparison results based on F-measure for different	
	feature selection methods by using dataset_1	123
4.9	Comparison results based on DBI for different feature	
	selection methods by using dataset_2	127
4.10	Comparison results based on purity for different feature	
	selection methods by using dataset_2	127
4.11	Comparison results based on F-measure for different	
	feature selection methods by using dataset_2	127
4.12	F1, purity and DBI measurements for five different of	
	feature selection methods by using two datasets	134
4.13	Category distribution among clusters for dataset_1	
	using the H_FS method with k-means clustering	137
4.14	Category distribution among clusterss for dataset_2	
	using the H_FS method with k-means clustering	142
5.1	The illustration of the Bayesian vectorization	155
5.2	The algorithm for Bayesian vectorization step 1	157
5.3	The algorithm for Bayesian vectorization step 2-continue	158
5.4	Overview of the semantic vectorization model	161
5.5	Process of extracting features of semantic classes	162
5.6	Arabic VerbNet page	162
5.7	List of verbs starting with letter " "	163
5.8	Given information related to verb "حرض"	163

		xxii
5.9	Process of semantic features extraction with inputs and outputs	165
5.10	Document vectorization	166
5.11	Illustration of semantic vectorization	167
5.12	Algorithm of semantic vectorization using semantic class	
	density	169
5.13	Semantic vectorization with semantic class probability	
	distribution	172
5.14	Comparison results based on DBI for different latent	
	vectorization methods by using dataset_1	178
5.15	Comparison results based on purity value for latent	
	vectorization methods by using dataset_1	178
5.16	Comparison results based on F-measure for different	
	latent vectorization methods by using dataset_1	178
5.17	Semantic features based on relevance scores for	
	Cluster 1 and 10% of the features in dataset_1	183
5.18	Semantic features based on relevance scores for	
	Cluster 2 and 10% of the features in dataset_1	183
5.19	Semantic features based on relevance scores for	
	Cluster 3 and 10% of the features in dataset_1	183
5.20	Semantic features based on relevance scores for	
	Cluster 4 and 10% of the features in dataset_1	184
5.21	Semantic features based on relevance scores for	
	Cluster 5 and 10% of the features in dataset_1	184
5.22	Semantic features based on relevance scores for	
	Cluster 6 and 10% of the features in dataset_1	184
5.23	Semantic features based on relevance scores for	
	Cluster 1 and 10% of the features in dataset_1	186
5.24	Semantic features based on relevance scores for	
	Cluster 2 and 10% of the features in dataset_1	187
5.25	Semantic features based on relevance scores for	
	Cluster 3 and 10% of the feature in dataset_1	187
5.26	Semantic features based on relevance scores for	
	Cluster 4 and 10% of the features in dataset 1	187

		xxiii
5.27	Semantic features based on relevance scores for	
	Cluster 5 and 10% of the features in dataset_1	188
5.28	Semantic features based on relevance scores for	
	Cluster 6 and 10% of the features in dataset_1	188
5.29	Comparison results based on DBI for different latent	
	vectorization methods by using dataset_2	190
5.30	Comparison results based on purity value for different	
	latent vectorization methods by using dataset_2	190
5.31	Comparison results based on F-measure for different	
	latent vectorization methods by using dataset_2	190
5.32	Semantic features based on relevance scores for	
	Cluster 1 and 10% of the features in dataset_2	194
5.33	Semantic features based on relevance scores for	
	Cluster 2 and 10% of the features in dataset_2	194
5.34	Semantic features based on relevance scores for	
	Cluster 3 and 10% of the features in dataset_2	195
5.35	Semantic features based on relevance scores for	
	cluster 4 and 10% of the features in dataset_2	195
5.36	Semantic features based on relevance scores for	
	cluster 5 and 10% of the features in dataset_2	195
5.37	Semantic features based on relevance scores for	
	cluster 6 and 10% of the features in dataset_2	196
5.38	Category distribution among clusters using the BV	
	method for dataset_1	203
5.39	Category distribution among clusters using the SVa	
	method in dataset_1	204
5.40	Semantic features for different categories assigned to	
	Cluster 1 in dataset_1	205
5.41	Semantic features for different categories assigned to	
	Cluster 2 in dataset_1	205
5.42	Semantic features for different categories assigned to	
	Cluster 3 in dataset_1	206
5.43	Semantic features for different categories assigned to	
	Cluster 4 in dataset_1	207

		xxiv
5.44	Semantic features for different categories assigned to	
	Cluster 5 in dataset_1	207
5.45	Semantic features for different categories assigned to	
	Cluster 6 in dataset_1	208
5.46	Category distribution among clusters using the BV	
	method for dataset_2	210
5.47	Category distribution among clusters using the SVa	
	method for dataset_2	210
5.48	Semantic features for different categories assigned to	
	Cluster 1 in dataset_2	211
5.49	Semantic features for different categories assigned to	
	Cluster 2 in dataset_2	212
5.50	Semantic features for different categories assigned to	
	Cluster 3 in dataset_2	212
5.51	Semantic features for different categories assigned to	
	Cluster 4 in dataset_2	213
5.52	Semantic features for two different categories assigned to	
	Cluster 5 in dataset_2	214
5.53	Semantic features for different categories assigned to	
	Cluster 6 in dataset_2	214
6.1	Arabic semantic feature Analysis using the feature	
	hybridization of hybrid feature selection with SV-BV	222
6.2	The flow for feature relation strength	223
6.3	Algorithm of feature relation strength	226
6.4	The flow for feature combination	229
6.5	Feature Combination methods: (a) H_FS-BV-SV;	
	(b) TF-BV-SV (c) TFIDF-BV-SV; (d) H_FS;	
	(e) Topic model: TF-PLSA; (f) BV-SV	232
6.6	Measurement results for ASFA (H_FS-V-SV) by using	
	different datasets. (a) dataset_1 (b) dataset_2	235
6.7	Purity and F measurement results of the ASFA	
	(H_FS-BV-SV) and TF-PLSA in dataset_1	238
6.8	Purity and F measurement results of the ASFA	
	(H_FS-BV-SV) and TF-PLSA for dataset 2	240

6.9	Measurement results of the ASFA(H_FS-BV-SV),	
	TF-BV-SV and TFIDF-BV-SV for dataset 1	243
6.10	Measurement results of the ASFA(H_FS-BV-SV),	
	TF-BV-SV and TFIDF-BV-SV in dataset_2	246
6.11	Measurement results of the ASFA(H_FS-BV-SV),	
	BV-SV and H_FS in dataset_1	251
6.12	Measurement results of the ASFA(H_FS-BV-SV),	
	BV-SV and H_FS in dataset_2	255
6.13	Semantic features based on relevance scores for	
	Cluster 1 and 10% of the features in dataset_1	259
6.14	Semantic features based on relevance scores for	
	Cluster 2 and 10% of the features in dataset_1	259
6.15	Semantic features based on relevance scores for	
	Cluster 3 and 10% of the features in dataset_1	260
6.16	Semantic features based on relevance scores for	
	Cluster 4 and 10% of the features in dataset_1	260
6.17	Semantic features based on relevance scores for	
	Cluster 5 and 10% of the features in dataset_1	260
6.18	Semantic features based on relevance scores for	
	Cluster 6 and 10% of the features in dataset_1	261
6.19	Semantic features based on relevance scores for	
	Cluster 1 and 50% of the features in dataset_1	261
6.20	Semantic features based on relevance scores for	
	Cluster 2 and 50% of the features in dataset_1	262
6.21	Semantic features based on relevance scores for	
	Cluster 3 and 50% of the features in dataset_1	262
6.22	Semantic features based on relevance scores for	
	Cluster 4 and 50% of the features in dataset_1	262
6.23	Semantic features based on relevance scores for	
	Cluster 5 and 50% of the features in dataset_1	263
6.24	Semantic features based on relevance scores for	
	Cluster 6 and 50% of the features in dataset_1	263
6.25	Semantic features based on relevance scores for	
	Cluster 1 and 20% of the features in dataset_2	264

		XXV1
6.26	Semantic features based on relevance scores for	
	Cluster 2 and 20% of the features in dataset_2	264
6.27	Semantic features based on relevance scores for	
	Cluster 3 and 20% of the features in dataset_2	264
6.28	Semantic features based on relevance scores for	
	Cluster 4 and 20% of the features in dataset_2	265
6.29	Semantic features based on relevance scores for	
	Cluster 5 and 20% of the features in dataset_2	265
6.30	Semantic features based on relevance scores for	
	Cluster 6 and 20% of the features in dataset_2	265
6.31	Category distribution among clusters using the ASFA	
	(H_FS-BV-SV) approach in dataset_1	280
6.32	Semantic features for two categories assigned to Cluster 1	
	in dataset_1	281
6.33	Semantic features for one category assigned to Cluster 2	
	in dataset_1	281
6.34	Semantic features for one category assigned to Cluster 3	
	in dataset_1	282
6.35	Semantic features for one category assigned to Cluster 4	
	in dataset_1	282
6.36	Semantic features for two categories assigned to Cluster 5	
	in dataset_1	283
6.37	Semantic features for three categories assigned to Cluster 6	
	in dataset_1	283
6.38	Category distribution among clusters using the	
	ASFA(H_FS-BV-SV) approach in dataset_2	285
6.39	Semantic features for one category assigned to Cluster 1	
	in dataset_2	286
6.40	Semantic features for one category assigned to Cluster 2	
	in dataset_2	286
6.41	Semantic features for one category assigned to Cluster 3	
	in dataset_2	287
6.42	Semantic features for one category assigned to Cluster 4	
	in dataset_2	287

		xxvii
6.43	Semantic features for one category assigned to Cluster 5	
	in dataset_2	288
6.44	Semantic features for two categories assigned to Cluster 6	
	in dataset_2	288

LIST OF ABBREVIATIONS

ACM - Association for Computing Machinery

AI - Artificial Intelligence

ASD - Average Shortest Distance

ASFA - Arabic Semantic Feature Analysis

ATC - Anti-terrorism Coalition

ATDS - Advanced Terror Detection System

BV - Bayesian Vectorization

BV-SV - Hybrdization of Baysian Vectorization and Semantic

Vectorization

CCA - Content and Composition Analysis

CHI - Chi-square

DBI - Davies-Bouldin index

DF - Document Frequency

EM - Expectation-Maximization Estimator

FF - Feature Frequency

FRS - Feature Relation Strength

GA - Genetic Algorithm

H.L. - High Level of attribute

H_FS - Hybrid feature Selection

H_FS-BV-SV - Hybrdization of Hybrid feature Selection with Baysian

Vectorization and Semantic Vectorization

IDF - Inverse Document Frequency

IEDs - Improvised Explosive Devices

IEEE - Institute of Electrical and Electronics Engineers

IG - Information Gain

KL - Kullback-Leibler distance

L.A. - Latin American groups

L.L. - Low Level of attribute

LDA - Latent Dirichlet Allocation

LSA - Latent Semantic Analysis

LSI - Latent Semantic Indexing

M.E. - Middle Eastern groups

M.L. - Medium Level of attribute

MEMRI - Middle East Media Research Institute

MI - Mutual Information

N/A - Not Applicable

PCA - Principal Component Analysis

SLR - Systematic Literature Review

SNA - Social Network Analysis

SV - Semantic Vectorization

SVa - Semantic Vectorization using Semantic Class Density

SVb - Semantic Vectorization using Semantic Class Probability

Distribution

SVM - Support Vector Machine

TC - Term Contribution

TF - Term Frequency

TF-BV-SV - Hybrdization of Baysian vectorization and semantic

vectorization using term frequency feature selection

TFIDF - Term Frequency–Inverse Document Frequency Weight

TFIDF-BV-SV - Hybrdization of Baysian Vectorization and Semantic

Vectorization using Term Frequency-Invers Document

Frequency Feature Selection

TF-PLSA - Probability Latent Semantic Analysis using Term Frequency

Feature Selection

TS - Term Strength

U.S. - U.S. Domestic groups

VSM Vector Space Model

WWW World Wide Web

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Contents of output clusters using semantic	
	vectorization with semantic class density and semantic	
	class vectorization using dataset_1 and dataset_2	323
В	Contents of output clusters using semantic vectorization	
	with semantic class density using dataset_1 and	
	dataset_2	326

CHAPTER 1

INTRODUCTION

1.1 Introduction

Abundant amounts of Arabic text are currently available on the World Wide Web (WWW) in electronic form. The unorganized information in these textual data (Elarnaoty, *et al.*, 2012) has encouraged various new studies on managing this vast information to classify relevant information and to accordingly enhance the organization of text available on the WWW.

Document clustering is among the methods employed to group documents containing related information into clusters, which facilitates the allocation of relevant information. This technique can efficiently enhance the search process of a retrieval system (Alsulami *et al.*, 2012), aids with the process of identifying crime patterns (Nath, 2006), helps extract types of crimes from documents (Alruily *et al.*, 2010), and can facilitate determining hidden or unknown affiliations within a social network (Qi *et al.*, 2010). Clustering is a method of grouping data items that have similar characteristics, while samples in different groups are dissimilar.

An effectively built clustering algorithm must transform free running text into structured data using a document representation model. The Vector Space Model (VSM) is the most widely used approach for this purpose and adopts Bag-of-Words (BOW) to express text. With VSM, text content is represented as vectors in a specific feature space using a word index, where each vector value corresponds to the occurrence or absence of a selected feature. The most commonly employed features

in VSM are words, while other techniques use characters and phrases as features (Zhang and Zhang, 2006).

Although considerable work has been published on Arabic Web page classification, little published research related to Arabic Web page clustering is available (Abuaiadah, 2016; Froud *et al.*, 2013; Ghanem, 2014). Arabic is a morphologically rich (Al-Khalifa and Al-Wabil, 2007) and highly inflectional language (Beseiso *et al.*, 2011); consequently, many clustering algorithms developed for the English language perform poorly when applied to Arabic (Abuaiadah, 2016). Developing a machine-understandable system for Arabic involves discriminating and deeply semantic processing. Accordingly, interest in research on Arabic language processing has been increasing.

1.2 Problem Background

The fundamental challenges with clustering Arabic Web pages include identifying the most informative features to best represent original content and designing feature discriminating vectors in order to analyze large volumes of unstructured Arabic text. The performance of text-based systems is highly dependent on the representation of text in the input space (Leopold and Kindermann, 2002; Lewis, 1990). A number of studies have been done to address these difficulties in terms of Arabic Web page clustering and proposing solutions.

A problem with identifying relevant features is derived from treating terms as independent from each other and neglecting the semantic relations and category popularity among terms, which often leads to synonym and polysemy problems (Hu *et al.*, 2008) or missing category problems (Hu *et al.*, 2009). Such problems can produce very low similarity scores for related documents because two samples with a semantic or category relation and two other samples without this relation are grouped similarly. Consequently, the effectiveness of the document clustering method is reduced. Some studies have investigated Arabic text representation and used several approaches based on language-dependent techniques. Bsoul and Mohd (2011),

Froud *et al.* (2010), Ashour (2012), Al-Omari (2011), Amine *et al.*(2013), Ahmed and Tiun (2014) and Ghanem (2014) have utilized the word stemming approach to represent manipulated texts. Stemming is the process of removing morphological affixes from *words* to get the *word root*. Other researchers, such as Sahmoudi *et al.* (2013) and El-beltagy (2006) have used keyphrase extraction, which is defined as a process of identifying a set of words or phrases that express a document using the Suffix Tree algorithm, after which these words are used for text representation.

Stemming and keyphrase extraction approaches focus on the morphological aspect of text and ignore the semantics of terms and the semantic or category relations. Manual keyphrase assignment can be time consuming, especially when large volumes of Web pages are involved (Ali and Omar, 2014). Additionally, each generated keyphrase may be attached to a number of keyphrases that are part of this keyphrase, and the difficulty arises in selecting the relevant ones (Sahmoudi and Lachkar, 2016). In the literature, the benefits of using stemming to identify the relevant features for Arabic text clustering are debated. Al-Anzi and AbuZeina (2016), Al-Omari (2011) and Said et al. (2009) have reported that stemming is not always beneficial for Arabic text-based tasks, since many terms may be combined with the same root form. In addition, multiple entries may be created in the text representation model for different words that carry the same meaning (Awajan, 2015a). On the other hand, Said et al. (2009) demonstrated that using stemming in combination with a good feature selection method improves the performance of Arabic text clustering. Feature selection is aimed at selecting the most relevant subset of existing features without transformation and then using these subset features for text representation. A better feature selection method is desired to identify informative features, and which is able to consider semantic and category relations to represent high-similarity Arabic Web content in computer-understandable form.

The problem of high dimensionality stems from the large number of variables considered in text clustering methods. All terms found in a document are included in the clustering process, which leads to a very large number of dimensions in the vector representation of the document. Therefore, high-dimensional data reduces the efficiency of clustering algorithms and maximizes execution time. Some researchers have suggested solutions for the high dimensionality problem in clustering Arabic

Web page content. Awajan (2015a, 2015b) proposed a semantically enriched and reduced vector space model (VSM). Harrag *et al.* (2010) used a feature selection technique with VSM to reduce high-dimensional data. Their results showed that the DF, TFIDF and LSI techniques are more effective and efficient than stemming techniques. The Frequent Itemset-based Hierarchical Clustering (FIHC) approach proposed by Al-sarrayrih and Al-Shalabi (2009) involves finding frequent word sets, which are then used to cluster documents.

However, FIHC may produce low-quality clusters due to considering the number of word occurrences in a document as part of the clustering criteria (Backialakshmi, 2015). The high dimensionality of document representation using VSM is a potential problem, since not all documents in a collection contain all words used in the representation, and therefore sparseness occurs extensively in the document vectors (Ampazis and Perantonis, 2004; Zhang et al., 2010). Furthermore, considering keywords alone cannot capture all the similar information between documents, such as word proximity, semantic features and word distributions among categories (Osinski, 2004; Shaban, 2009). A study by Turney and Pantel (2010) revealed that the main alternative to VSM is a probabilistic model based on creating a probabilistic language model for text vectorization and document clustering according to the measured probability in that model. Accordingly, there is a need for a vectorization technique that transforms existing features into a lower-dimensional space, taking into account background information such as feature probability distribution and semantic information in order to compact and enrich the document representation for clustering.

Another problem faced in clustering Arabic Web pages is the architecture design of the respective clustering method. A challenging task is to realize how to enhance the clustering performance. In general, the aptitude of Arabic Web page clustering is highly based on the input features' characteristics. The performance of a Web page clustering technique is only effective when the appropriate feature selection and feature reduction methods are integrated with a proper clustering method (Ghanem, 2014). Improving clustering performance requires computational algorithms that adapt appropriate feature selection or reduction methods to well-established clustering approaches capable of achieving higher performance (Jain

and Murty, 1999). Thus, there is a need to develop a suitable design for feature selection and feature reduction methods for more relevant and reduced Arabic text representation, which can facilitate optimizing the clustering ability for Arabic Web page analysis.

1.3 Problem Statement

The ideal Arabic Web page clustering depends on features representative of the content. However, Web pages contain a vast number of distinct features that produce high-dimensional data, which makes the clustering process more difficult. Therefore, it is important to enhance feature selection and reduction methods in order to solve the issue of high-dimensional data and identify the most informative feature set to enhance Arabic Web page clustering performance.

1.4 Goal of the study

The goal of this research is to develop and enhance feature reduction and feature selection methods that can be used to improve Arabic Web page clustering.

1.5 Research Questions

According to the research problem presented above, the following research questions are introduced:

- Q 1. How can Arabic Web pages be represented for optimized clustering?
- Q 2. How can the feature sets generated by different feature selection methods be hybridized to obtain the most relevant features?

- Q 3. What is an appropriate dimensional reduction algorithm to use in solving the problem of high-dimensional data taking into account semantic and category information?
- Q 4. How can a feature selection and reduction method be designed that is adaptable to a clustering approach?
- Q 5. Do the proposed methods produce accurate clustering results?

1.6 Research Objectives

This study comprises three main objectives.

- i. To improve the feature selection ability of Arabic Web page clustering by proposing a hybrid feature selection method.
- ii. To propose a latent document vectorization model for enhancing document representation for Arabic Web clustering.
- iii. To propose an Arabic semantic feature analysis method by hybridizing the proposed hybrid feature selection with the proposed latent document model to efficiently reduce feature space dimensionality as well as achieve higher clustering performance.

1.7 Scope of the Study

The scope of this research is limited to the following:

- i. The study focuses on feature selection and reduction methods for Arabic Web page clustering.
- ii. Focus is on Arabic text without using any machine translation.
- iii. This research specifically focuses on Arabic language textual content obtained from Arabic newspaper and Dark Web site archives.

- iv. The K-means clustering method is used for Arabic Web content analysis.
- v. The evaluation of the proposed methods' ability to cluster Arabic Web pages is based on information retrieval measurements, i.e., purity, DBI and F-measure.

1.8 Contributions and Significance of the Study

- The first contribution is in proposing a hybrid feature selection method that integrates three different selection methods, namely Chi-square (CHI), Mutual Information (MI) and Term Frequency-Inversed Document Frequency (TF-IDF).
- ii. The second contribution is in proposing three different latent document vectorization methods. The first method is semantic vectorization using semantic class density (SVa). The second method is semantic vectorization using estimated probability distribution of semantic classes (SVb). The third method is Bayesian vectorization (BV) using estimated probability distribution of categories.
- iii. The third contribution is in developing an algorithm called Arabic Semantic Feature Analysis (ASFA) that enhances feature selection and reduction for analyzing Web textual content using the k-means clustering method.
- iv. The fourth contribution is in revealing the importance of the feature selection and feature reduction methods for improving Arabic Web page clustering.
- v. The fifth contribution is in performing an empirical investigation and revealing how the proposed methods are useful for analyzing Arabic Web pages.

1.9 Outline of the Thesis

This chapter provided an overview of the aims of conducting this research. It comprises an introduction, problem statement, objectives, research questions, scope and contributions. The summary and organization of this thesis are as follows:

- i. Chapter 1 presents the research with an introduction, problem statement, objectives, research questions, scope and contributions.
- ii. Chapter 2 reports a review of literature on Arabic text clustering.
- iii. Chapter 3 provides the methodology used to achieve the objectives of this research.
- iv. Chapter 4 describes the methodology, implementation and experimental results of the first Arabic Web page text clustering approach with the proposed feature selection method.
- v. Chapter 5 demonstrates the methodology, implementation and experimental results of the second Arabic Web page text clustering approach with the document vectorization method.
- vi. Chapter 6 presents the methodology, implementation and experimental results of the third Arabic Web page text clustering approach with the proposed hybrid method.
- vii. Chapter 7 presents the conclusions of this study.

REFERENCES

- Abbasi, A., and Chen, H. (2005). Applying Authorship Analysis to Extremist-Group Web Forum Messages. *Homeland Security*. 20(5), 67–75.
- Abbasi, A., and Chen, H. (2007). Affect Intensity Analysis of Dark Web Forums. In *The International Conference on Intelligence and Security Informatics*. New Brunswick, NJ: IEEE, 282–288.
- Abbasi, A., and Chen, H. (2008). Analysis of Affect Intensities in Extremist Group Forums. In H. Chen, E. Reid, J. Sinai, A. Silke, and B. Ganor (Eds.), *Intelligence and Security Informatics* (pp. 285–307). Springer US.
- Abbasi, A., Chen, H., and Salem, A. (2008). Sentiment Analysis in Multiple Languages: Feature Selection for Opinion Classification in Web Forums. *ACM Transactions on Information Systems*. 26(3), 1–34.
- Abuaiadah, D. (2016). Using Bisect K-Means Clustering Technique in the Analysis of Arabic Documents. *ACM Trans. Asian Low-Resour. Lang. Inf. Process.* 15(3), 1–13.
- Ahmed, M. H., and Tiun, S. (2014). K-Means based Algorithm for Islamic Document Clustering. *International Journal on Islamic Applications in Computer Science and Technologies*. 2(3), 1–8.
- Ahmed, Z. (2009). *Domain Specific Information Extraction for Semantic Annotation*. Diploma Thesis, Charles University of Prague and University of Nancy.
- Al-Anzi, F. S., and AbuZeina, D. (2015). Stemming Impact On Arabic Text Categorization Performance: A Survey. In *Information and Communication Technology and Accessibility*. Marrakech, Morocco: IEEE, 1–7.
- Al-Anzi, F. S., and AbuZeina, D. (2016). Big Data Categorization for Arabic Text Using Latent Semantic Indexing and Clustering. In *International Conference on Engineering Technologies and Big Data Analytics*. Bangkok, Thailand: IIE, 1–4.

- Alelyani, S., Tang, J., and Liu, H. (2016). Feature Selection for Clustering: A Review. In C. C. Aggarwal and C. K. Reddy (Eds.), *Data Clustering: Algorithms and Applications* (pp. 29–60). CRC Press.
- Al-Harbi, S., Almuhareb, A., Al-Thubaity, A., Khorsheed, M. S., and Al-Rajeh, A. (2008). Automatic Arabic Text Classification. In *The International Conference on the Statistical Analysis of Textual Data*. Lyon, France, 77–84.
- Ali, N. G., and Omar, N. (2014). Arabic Keyphrases Extraction Using a Hybrid of Statistical and Machine Learning Methods. In *International Conference on Information Technology and Multimedia*. Putrajaya, Malaysia: IEEE, 281–286.
- Aljlayl, M., and Frieder, O. (2002). On Arabic Search: Improving the Retrieval Effectiveness via a Light Stemming Approach. In *International conference on Information and Knowledge Management*. New York, USA: ACM, 340–347.
- Al-Khalifa, H., and Al-Wabil, A. (2007). The Arabic language and the Semantic Web: Challenges and Opportunities. In *The International Symposium on Computers and Arabic Language and Exhibition*. Riyadh, Saudi Arabia, 1–9.
- Almeida, L. G. P., Vasconcelos, A. T. R., and Maia, M. A. G. (2009). A Simple and Fast Term Selection Procedure for Text Clustering. *Intelligent Text Categorization and Clustering*. *164*, 47–64.
- Al-Omari, O. (2011). Evaluating The Effect Of Stemming In Clustering Of Arabic Documents. *Academic Research International*. *1*(1), 284–291.
- Alrahabi, M., Ibrahim, A., and Desclés, J.-P. (2006). Semantic Annotation of Reported Information in Arabic. In *FLAIRS 2006*. Floride: AAAI Press, 263–268.
- Alruily, M., Ayesh, A., and Al-Marghilani, A. (2010). Using Self Organizing Map to Cluster Arabic Crime Documents. In *International Multiconference on Computer Science and Information Technology*. Wisla, Poland: IEEE, 357–363.
- Alsaleem, S. (2011). Automated Arabic Text Categorization Using SVM and NB. International Arab Journal of E-Technology. 2(2), 124–128.
- Alsaleem, S. M. (2013). Neural Networks for the Automation of Arabic Text Categorization. In *International Conference on Computer Applications Technology (ICCAT)*. Sousse, Tunisia: IEEE, 1–6.
- Al-sarrayrih, H., and Al-Shalabi, R. (2009). Clustering Arabic Documents Using Frequent Itemset-based Hierarchical Clustering with an N-Grams. In *The International Conference on Information Technology*. Jordan, Amman, 1–8.

- Al-Shalabi, R., and Kanaan, G. (2004). Constructing an Automatic Lexicon for Arabic Language. *International Journal of Computing and Information Sciences*. 2(2), 114–128.
- Al-shammari, E. (2010). Improving Arabic Document Categorization: Introducing Local Stem. In *International Conference on Intelligent Systems Design and Applications*. Cairo, Egypt: IEEE, 385–390.
- Al-Shammari, E., and Lin, J. (2008). Towards an Error-Free Arabic Stemming. In *Proceeding of the 2nd ACM workshop on Improving non English web searching iNEWS '08*. California, USA: ACM Press, 9–15.
- Al-shawakfa, E., Al-Badarneh, A., Shatnawi, S., Al-Rabab'ah, K., and Bani-Ismail,
 B. (2010). A comparison Study of Some Arabic Root Finding Algorithms.
 Journal of the American Society for Information Science and Technology.
 61(5), 1015–1024.
- Alsulami, B. S., Abulkhair, M. F., and Essa, F. A. (2012). Semantic Clustering Approach Based Multi-agent System for Information Retrieval on Web. *International Journal of Computer Science and Network Security*. *12*(1), 41–46.
- Amine, A., Mohamed, O. A., Bellatreche, L., Biskri, I., Rompré, L., Jouis, C., Achouri, A., Descoteaux, S., Bensaber, B. A. (2013). Clustering with Probabilistic Topic Models on Arabic Texts. In Amine, A., Otmane, A. M., Bellatreche, L. (Ed.) *Modeling Approaches and Algorithms for Advanced Computer Applications* (pp. 37–46). Switzerland: Springer International Publishing.
- Ampazis, N., and Perantonis, S. J. (2004). LSISOM A Latent Semantic Indexing Approach to Self-Organizing Maps of Document Collections. *Neural Processing Letters*. *19*(2), 157–173.
- Andrews, N. O., and Fox, E. A. (2007). *Recent Developments in Document Clustering*. Technical Report TR-07-35, Computer Science, Virginia Tech.
- Antony, D. A., Singh, G., Leavline, E. J., Priyanka, E., and Sumathi, C. (2016). Feature Selection Using Rough Set For Improving the Performance of the Supervised Learner. *International Journal of Advanced Science and Technology*. 87, 1–8.
- Anwar, T., and Abulaish, M. (2012). Identifying cliques in dark web forums An agglomerative clustering approach. In *International Conference on Intelligence and Security Informatics*. Washington, D.C., USA: IEEE, 171–173.

- Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., and Perona, I. (2013). An extensive comparative study of cluster validity indices. *Pattern Recognition*. *46*(1), 243–256.
- Ashour, O., Ghanem, A., and M., W. (2012). Stemming Effectiveness in Clustering of Arabic Documents. *International Journal of Computer Applications*. 49(5), 1–6.
- Awadalla, M. H., and Alajmi, A. F. (2011). Dewy index based Arabic Document classification with Synonyms Merge Feature Reduction. *International Journal of Computer Science Issues*. 8(6), 46–54.
- Awajan, A. (2015a). Semantic Similarity Based Approach For Reducing Arabic Texts Dimensionality. *International Journal of Speech Technology*. 19(2), 191–201.
- Awajan, A. (2015b). Semantic Vector Space Model For Reducing Arabic Text Dimensionality. In *Digital Information and Communication Technology and its Applications*. Beirut, Lebanon: IEEE, 129–135.
- Ayadi, R., Maraoui, M., and Zrigui, M. (2014). Latent Topic Model for Indexing Arabic Documents. *International Journal of Information Retrieval Research*. 4(1), 29–45.
- Backialakshmi, P. (2015). Knowledge Discovery In Text Mining With Big Data Using Clustering Based Word Sequence. *International Journal Of Advanced Research In Datamining And Cloud Computing*. *3*(3), 35–52.
- Barresi, S., Nefti, S., and Rezgui, Y. (2008). A Concept Based Indexing Approach for Document Clustering. In *The IEEE International Conference on Semantic Computing*. Washington, DC, USA: IEEE Computer Society, 26–33.
- Benjamin, V., Chung, W., Abbasi, A., Chuang, J., Larson, C. A., and Chen, H. (2013). Evaluating Text Visualization: An Experiment in Authorship Analysis. In *IEEE Intelligence and Security Informatics*. Seattle, Washington, USA, 16–20.
- Benjamin, V., Chung, W., Abbasi, A., Chuang, J., Larson, C. a, and Chen, H. (2014). Evaluating Text Visualization For Authorship Analysis. *Security Informatics*. *3*(10), 1–13.
- Bermingham, A., Conway, M., McInerney, L., O'Hare, N., and Smeaton, A. F. (2009). Combining Social Network Analysis and Sentiment Analysis to Explore the Potential for Online Radicalisation. In *International Conference on Advances in Social Network Analysis and Mining*. Athens Greece: IEEE Computer

- Society, 231–236.
- Beseiso, M., Ahmad, A. R., and Ismail, R. (2010). A Survey of Arabic Language Support in Semantic Web. *International Journal of Computer Applications*. *9*(1), 24–28.
- Beseiso, M., Ahmad, A. R., and Ismail, R. (2011). An Arabic Language Framework for Semantic Web. In *International Conference on Semantic Technology and Information Retrieval*. Putrajaya, Malaysia: IEEE, 7–11.
- Bouchard, M., Joffres, K., and Frank, R. (2014). Preliminary Analytical Considerations In Designing A Terrorism And Extremism Online Network Extractor. In Mago, V. K., Dabbaghian, V. (Ed.). Computational Models of Complex Systems, Springer International Publishing, Switzerland. 171-184.
- Brahmi, A., Ech-Cherif, A., and Benyettou, A. (2011). Arabic Texts Analysis for Topic Modeling Evaluation. *Information Retrieval*. *15*(1), 1–21.
- Bsoul, Q. W., and Mohd, M. (2011). Effect of ISRI Stemming on Similarity Measure for Arabic Document Clustering. In *The Asia Information Retrieval Societies Conference*. Dubai, United Arab Emirates, 584–593.
- Buntine, W. (2009). Estimating Likelihoods for Topic Models. In *Asian Conference* on *Machine Learning: Advances in Machine Learning*. Nanjing China: Springer-Verlag, 51–64.
- Buntine, W., and Jakulin, A. (2004). Applying Discrete PCA in Data Analysis. In *Conference on Uncertainty in Artificial iIntelligence*. Banff, Canad: AUAI Press Arlington, 59–66.
- Buntine, W., Perttu, S., and Tuulos, V. (2004). Using Discrete PCA on Web Pages. In *Proceedings of the workshop Statistical Approaches to Web Mining*. Pisa, Italy, 99–110.
- Cha, S. (2007). Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. *International Journal of Mathematical Models and Methods in Applied Sciences*. *1*(4), 300–307.
- Chalothorn, T., and Ellman, J. (2013). Affect Analysis of Radical Contents on Web Forums Using SentiWordNet. *International Journal of Innovation, Management and Technology*. 4(1), 122–124.
- Chang, F., and Liu, C. (2012). Ranking and Selecting Features Using an Adaptive Multiple Feature Subset Method. Technical Report No. TR-IIS-12-005, Institute of Information Science, Academia Sinica.

- Chantar, H. K., and Corne, D. W. (2011). Feature Subset Selection for Arabic Document Categorization using BPSO-KNN. In *The World Congress on Nature and Biologically Inspired Computing*. Salamanca, Spain: IEEE, 546–551.
- Chawla, S., and Gionis, A. (2013). K-Means: A Unified Approach To Clustering And Outlier Detection. In *The International Conference on Data Mining*. Austin, Texas, USA: SIAM, 189–197.
- Chen, C. H. (2015). Feature selection for clustering using instance-based learning by exploring the nearest and farthest neighbors. *Information Sciences*. *318*, 14–27.
- Chen, H. (2006). *Intelligence and Security Informatics for International Security: Information Sharing and Data Mining.* London: Springer.
- Chen, H. (2007). Exploring Extremism and Terrorism on the Web: The Dark Web Project. In C. Yang, D. Zeng, M. Chau, K. Chang, Q. Yang, and X. Cheng (Eds.), *Intelligence and Security Informatics*, 1–20. Springer Berlin Heidelberg.
- Chen, H. (2008a). IEDs in the Dark Web: Genre Classification of Improvised Explosive Device Web Pages. In *IEEE International Conference on Intelligence and Security Informatics*. Taipei, Taiwan: IEEE, 94–97.
- Chen, H. (2008b). Sentiment and Affect Analysis of Dark Web Forums: Measuring Radicalization on the Internet. In *International Conference on Intelligence and Security Informatics*. Taipei, Taiwan: IEEE, 104–109.
- Chen, H. (2009). IEDs in the Dark Web: Lexicon Expansion and Genre Classification. In *Intelligence and Security Informatics Conference*. TX, USA: IEEE, 173–175.
- Chen, H. (2011). From Terrorism Informatics to Dark Web Research. In U. K. Wiil (Ed.). *Counterterrorism and Open Source Intelligence* (pp. 317–341). Vienna: Springer.
- Chen, H., Qin, J., Reid, E., and Zhou, Y. (2008). Studying Global Extremist Organizations' Internet Presence Using the Dark Web Attribute System. In Chen, H., Reid, E., Sinai, J., Silke, A., Ganor, B. (Ed.). *Terrorism Informatics* (pp. 237–266). US: Springer.
- Chen, H., Thoms, S., and Fu, T. (2008). Cyber Extremism in Web 2.0: An Exploratory Study of International Jihadist Groups. In *International Conference on Intelligence and Security Informatics*. Taipei, Taiwan: IEEE, 98–103.
- Cheng, W., Ni, X., Sun, J., and Jin, X. (2011). Measuring Opinion Relevance in Latent Topic Space. In *International Conference on Social Computing, Privacy*,

- Security, Risk, and Trust. Minneapolis, Minnesota, USA: IEEE Computer Society, 323–330.
- Corbin, J. (2003). *Al-Qaeda: In Search of the Terror Network that Threatens the World*. Thunder Mouth Press/Nation Books.
- Dai, P., Iurgel, U., and Rigoll, G. (2003). A Novel Feature Combination Approach for Spoken Document Classification with Support Vector Machines. In *Multimedia Information Retrieval Workshop*. Toronto, Canada, 1–5.
- Deelers, S., and Auwatanamongkol, S. (2007). Enhancing K-means Algorithm with Initial Cluster Centers Derived from Data Partitioning Along the Data Axis with the Highest Variance. *International Journal of Electrical and Computer Engineering*. 2(4), 247–252.
- Demiriz, A., Bennett, K., and Embrechts, M. (1999). Semi-Supervised Clustering Using Genetic Algorithms. In *Artificial Neural Networks In Engineering*. St. Louis, Missouri: ASME Press, 809–814.
- Deng, X. (2011). Measuring Influence by Including Latent Semantic Analysis in Twitter Conversations. University of Agder.
- Deza, M. M., and Deza, E. (2016). Distances in Probability Theory. In *Encyclopedia of Distances*. Berlin, Heidelberg: Springer Berlin Heidelberg, 259–274.
- Do, T., and Hui, S. (2006). Associative Feature Selection for Text Mining. *International Journal of Information Technology*. 12(4), 59–68.
- Dong, H., Hui, S. C., and He, Y. (2006). Structural Analysis of Chat Messages for Topic Detection. *Online Information Review*. *30*(5), 496–516.
- Dumais, S., Letsche, T., Littman, M., and Landauer, T. (1997). Automatic Cross-Language Retrieval using Latent Semantic Indexing. In *Proceeding of AAAI Spring Symposuim on Cross-Language Text and Speech Retrieval*. 115–132.
- Elarnaoty, M., AbdelRahman, S., and Fahmy, A. (2012). A Machine Learning Approach for Opinion Holder Extraction in Arabic Language. *International Journal of Artificial Intelligence and Applications*. *3*(2), 45–63.
- El-beltagy, S. R. (2006). KP-Miner: A Simple System for Effective Keyphrase Extraction. In *Innovations in Information Technology*. Dubai, UAE: IEEE Computer Society, 1–5.
- Elovici, Y., Kandel, A., Last, M., Shapira, B., and Zaafrany, O. (2004). Using Data Mining Techniques for Detecting Terror-Related Activities on the Web. *Journal of Information Warfare*. *3*(1), 17–29.

- Elovici, Y., Shapira, B., Last, M., Zaafrany, O., Friedman, M., Schneider, M., and Kandel, A. (2008). Content-Based Detection of Terrorists Browsing the Web Using an Advanced Terror Detection System (ATDS). In Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, Fei-Y., Chen, H., Merkle, R. C. (Ed.). *Terrorism Informatics* (pp. 365–384). US: Springer.
- Erisoglu, M., Calis, N., and Sakallioglu, S. (2011). A New Algorithm for Initial Cluster Centers in K-means Algorithm. *Pattern Recognition Letters*, 32(14), 1701–1705.
- Fabbri, R., Costa, L. D. F., Torelli, J. C., and Bruno, O. M. (2008). 2D Euclidean distance transform algorithms. *ACM Computing Surveys*. 40(1), 1–44.
- Farahat, A. K., and Kamel, M. S. (2011). Statistical Semantics for Enhancing Document Clustering. *Knowledge and Information Systems*, 28(2), 365–393.
- Fejer, H. N., and Omar, N. (2015). Automatic Arabic text summarization using clustering and keyphrase extraction. *Journal of Artificial Intelligence*. 8(1), 293–298.
- Forsati, R., Mahdavi, M., Shamsfard, M., and Meybodi, M. R. (2013). Eficient Stochastic Algorithms for Document Clustering. *Information Science*. 220, 269–291.
- Froud, H., Benslimane, R., Lachkar, A., and Ouatik, S. A. (2010). Stemming and Similarity Measures for Arabic Documents Clustering. In *International Symposium on Communications and Mobile Network*. IEEE, 1–4.
- Froud, H., Lachkar, A., and Ouatik, S. (2012). A Comparative Study Of Root-Based And Stem-Based Approaches For Measuring The Similarity Between Arabic Words For Arabic Text Mining Applications. *Advanced Computing An International Journal*. *3*(6), 55–67.
- Froud, H., Lachkar, A., and Ouatik, S. (2013). Arabic Text Summarization based on Latent Semantic Analysis to Enhance Arabic Documents Clustering. *International Journal of Data Mining and Knowledge Management Process*. 3(1), 79–95.
- Froud, H., Sahmoudi, I., and Lachkar, A. (2013). An Efficient Approach To Improve Arabic Documents Clustering Based On A New Keyphrases Extraction Algorithm. In *Second International Conference on Advanced Information Technologies and Applications*. Dubai, UAE, 243–256.
- Fu, T., Abbasi, A., and Chen, H. (2010). A Focused Crawler for Dark Web Forums.

- Journal of the American Society for Information Science. 61(6), 1213–1231.
- Fu, T., and Chen, H. (2008). Discovery of Improvised Explosive Device Content in the Dark Web. In *International Conference on Intelligence and Security Informatics*. Taipei, Taiwan: IEEE, 88–93.
- Gabrilovich, E. (2006). Feature generation for textual information retrieval using world knowledge. PhD Thesis, Israel Institute of Technology.
- Ghanem, O. (2014). Evaluating the Effect of Preprocessing in Arabic Documents Clustering. Master Thesis, Islamic University, Gaza, Palestine.
- Gharib, T. F., Fouad, M. M., Mashat, A., and Bidawi, I. (2012). Self Organizing Map_based Document Clustering Using WordNet Ontologies. *International Journal of Computer Science*. 9(1), 88–95.
- Ghwanmeh, S. (2005). Applying Clustering of hierarchical K-means-like Algorithm on Arabic Language. *International Journal of Information Technology*. 3(3), 467–471.
- Gryc, W., and Moilanen, K. (2010). Leveraging Textual Sentiment Analysis with Social Network modelling: Sentiment Analysis of Political Blogs in the 2008 US Presidential Election. In *From Text to Political Positions Workshop*. Amsterdam: Vrije University, 47–70.
- Gunal, S. (2012). Hybrid feature selection for text classification. *Turkish Journal of Electrical Engineering and Computer Sciences*. 20(2), 1296–1311.
- Guru, D. S., Harish, B. S., and Manjunath, S. (2010). Symbolic Representation of Text Documents. In *Third Annual ACM Bangalore Conference*. New York, NY: ACM, 1–4.
- Habib, M. B., Fayed, Z. T., and Gharib, T. F. (2006). A Hybrid Feature Selection Approach for Arabic Documents Classification. *Egyptian Computer Science Journal*. 28(3), 1–7.
- Harrag, F., El-Qawasmah, E., and Al-Salman, A. M. S. (2010). Comparing Dimension Reduction Techniques for Arabic Text Classification Using BPNN Algorithm. In *Integrated Intelligent Computing (ICIIC)*, 6–11. Bangalore.
- Hawwari, A., Zaghouani, W., O'Gorman, T., Badran, A., and Diab, M. (2013).
 Building a Lexical Semantic Resource for Arabic Morphological Patterns. In *International Conference on Communications, Signal Processing, and their Applications*. Sharjah, United Arab Emirates: IEEE, 1–6.
- He, J., Weerkamp, W., Larson, M., and Rijke, M. (2009). An Effective Coherence

- Measure to Determine Topical Consistency in User-Generated Content. *International Journal on Document Analysis and Recognition (IJDAR)*. 12(3), 185–203.
- Hoenkamp, E. (2011). Trading Spaces: On The Lore And Limitations Of Latent Semantic Analysis. In G. Amati and F. Crestani (Eds.). *Advances in Information Retrieval Theory*. (pp. 40–51). Berlin: Springer Berlin Heidelberg.
- Hofmann, T. (1999). Probabilistic Latent Semantic Analysis. In *International ACM SIGIR Conference On Research And Development In Information Retrieval*. Berkeley, CA, USA: ACM, 50–57.
- Hotho, A., Staab, S., and Stumme, G. (2003). Wordnet improves Text Document Clustering. In *Semantic Web Workshop*. 541–544.
- Hu, J., Fang, L., Cao, Y., Zeng, H.-J., Li, H., Yang, Q., and Chen, Z. (2008). Enhancing text clustering by leveraging Wikipedia semantics. In *The International Conference on Research and Development in Information Retrieval*, 179–188. New York, USA: ACM Press.
- Hu, X., Zhang, X., Lu, C., Park, E. K., and Zhou, X. (2009). Exploiting Wikipedia As External Knowledge For Document Clustering. In *International Conference* On Knowledge Discovery And Data Mining. Paris, France: ACM, 389–396.
- Huang, A. (2008). Similarity Measures for Text Document Clustering. In *The New Zealand Computer Science Research Student Conference*. Christchurch, New Zealand, 49–56.
- Is, A. C. E., and Woodward, W. A. (2006). Comparing One or Two Means Using the t-Test: With SPSS Examples. In *Statistical Analysis Quick Reference Guidebook*. SAGE Publications, 47–76.
- Isa, D., Hong, L., Kallimani, V. P., and RajKumar, R. (2009). Text Document Pre-Processing Using the Bayes Formula for Classification Based on the Vector Space Model. *Computer and Information Science*. *1*(4), 79–90.
- Isa, D., Kallimani, V. P., and Lee, L. H. (2009). Using the self organizing map for clustering of text documents. *Expert Systems with Applications* 36(5), 9584–9591.
- Isa, D., Lee, L. H., Kallimani, V. P., and RajKumar, R. (2008). Text Document Preprocessing with the Bayes Formula for Classification Using the Support Vector Machine. *Transactions on Knowledge and Data Engineering*. 20(9), 1264–1272.

- Jain, A. K., and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice Hall.
- Jain, A., and Murty, M. (1999). Data Clustering: A Review. *ACM Computing Surveys (CSUR)*. 31(3), 255–323.
- Javed, K., Babri, H. A., and Saeed, M. (2012). Feature Selection Based On Class-Dependent Densities For High-Dimensional Binary Data. *IEEE Transactions on Knowledge and Data Engineering*. 24(3), 465–477.
- Jing, L., Ng, M. K., and Huang, J. Z. (2010). Knowledge-based Vector Space Model for Text Clustering. *Knowledge and Information Systems*. 25(1), 35–55.
- Jing, L., Yun, J., Yu, J., and Huang, J. (2011). High-Order Co-clustering Text Data on Semantics-Based Representation Model. In *Advances in Knowledge Discovery and Data Mining*. Shenzhen, China, 171–182.
- Kamde, P. M., and Algur, D. S. P. (2011). A Survey on Web Multimedia Mining. The International Journal of Multimedia and Its Applications (IJMA). 3(3), 72–84.
- Kanaan, G., and Al-Shalabi, R. (2009). A Comparison of Text-Classification Techniques Applied to Arabic Text. *Journal of the American Society for Information Science and Technology*. 60(6), 1836–1844.
- Karima, A., Zakaria, E., and Yamina, T. G. (2012). Arabic Text Categorization: A Comparative Study Of Different Representation Modes. *Journal of Theoretical* and Applied Information Technology. 38(1), 1–5.
- Kaur, M., and Kaur, U. (2013). Comparison Between K-Mean and Hierarchical Algorithm Using Query Redirection. *International Journal of Advanced Research in Computer Science and Software Engineering*. *3*(7), 1454–1459.
- Kchaou, Z., and Kanoun, S. (2008). Arabic Stemming with Two Dictionaries. In International Conference on Innovations in Information Technology. Al-Ain, UAE: IEEE, 688–691.
- Khalifa, H. (2013). *New Techniques for Arabic Document Classication*. PhD Thesis, Heriot-Watt University.
- Khoja, S. (1999). Stemming Arabic Text. PhD Thesis, Lancaster University, UK.
- Kipper, K., Korhonen, A., Ryant, N., and Palmer, M. (2008). A large-scale classification of English verbs. *Language Resources and Evaluation Journal*. 42(1), 21–40.
- L'Huillier, G., Rios, S. A., Alvarez, H., and Aguilera, F. (2010). Topic-Based Social Network Analysis for Virtual Communities of Interests in the Dark Web. *ACM*

- SIGKDD Explorations Newsletter. 12(2), 66–73.
- Laender, A. H. F., Ribeiro-Neto, B. a., da Silva, A. S., and Teixeira, J. S. (2002). A Brief Survey of Web Data Extraction Tools. *ACM SIGMOD Record*. 31(2), 84–93.
- Landauer, T., Foltz, P., and Laham, D. (1998). An Introduction to Latent Semantic Analysis. *Discourse Processes*. 25(2–3), 259–284.
- Larkey, L., Ballesteros, L., and Connell, M. (2002). Improving Stemming for Arabic Information Retrieval: Light Stemming and Co-occurrence Analysis. In SIGIR'02. Tampere, Finland: ACM, 275–282.
- Larkey, L., Ballesteros, L., and Connell, M. (2007). Light Stemming for Arabic Information Retrieval. In A. Soud, A. van den Bosch, and G. Neumann (Eds.).
 Arabic Computational Morphology (pp. 221–243). Springer Netherlands.
- Larkey, L., and Connell, M. E. (2001). Arabic Information Retrieval at UMass in TREC-10. In *Text Retrieval and Evaluation Conference*. Gaithersburg, Maryland: Department of Commerce, National Institute of Standards and Technology, 562–570.
- Larkey, L. S., Feng, F., Connell, M., and Lavrenko, V. (2004). Language-specific Models in Multilingual Topic Tracking. In *Special Interest Group on Information Retrieval (SIGIR)*. Sheffield, UK.: ACM, 402–409.
- Larson, C., and Chen, H. (2009). Dark Web Forums Portal: Searching and Analyzing Jihadist Forums. In *IEEE International Conference on Intelligence and Security Informatics*. Richardson, TX, USA: IEEE, 71–76.
- Last, M., Markov, A., and Kandel, A. (2008). Multi-lingual Detection of Web Terrorist Content. In H. Chen and C. C. Yang (Eds.). *Intelligence and Security Informatics* (pp. 79–96). Springer Berlin Heidelberg.
- Lee, L. H., Rajkumar, R., and Isa, D. (2012). Automatic Folder Allocation System using Bayesian-support Vector Machines Hybrid Classification Approach. *Applied Intelligence*. *36*(2), 295–307.
- Leopold, E., and Kindermann, J. (2002). Text categorization with support vector machines. How to represent texts in input space? *Machine Learning*. 46(1–3), 423–444.
- Lewis, D. D. (1990). Representation Quality in Text Classification: An Introduction and Experiment. In Workshop on Speech and Natural Language. Stroudsburg, PA, USA, 288–295.

- Li, N., and Wu, D. D. (2010). Using text mining and sentiment analysis for online forums hotspot detection and forecast. *Decision Support Systems*. 48(2), 354–368.
- Li, R. Z., and Zhang, Y. Sen. (2012). Study on the Method of Feature Selection Based on Hybrid Model for Text Classification. Advanced Materials Research. 433, 2881–2886.
- Li, Y., Luo, C., and Chung, S. (2008). Text clustering with feature selection by using statistical data. *IEEE Transactions on Knowledge and Data Engineering*. 20(5), 641–652.
- Lim, C., Eng, K. I., and Nugroho, A. S. (2010). Implementation of Intelligent Searching Using Self-Organizing Map for Webmining Used in Document Containing Information in Relation to Cyber Terrorism. In *International Conference on Advances in Computing, Control, and Telecommunication Technologies*. Jakarta, Indonesia: IEEE Computer Society, 195–197.
- Liu, L., Kang, J., Yu, J., and Wang, Z. (2005). A Comparative Study on Unsupervised Feature Selection Methods for Text Clustering. In *International Conference on Natural Language Processing and Knowledge Engineering*. Wuhan, China: IEEE, 597–601.
- Liu, T., Liu, S., and Chen, Z. (2003). An Evaluation on Feature Selection for Text Clustering. In *International Conference on Machine Learning*. Washington, DC, USA: AAAI Press, 488–495.
- Liu, Y., Wu, C., and Liu, M. (2011). Research of Fast SOM Clustering for Text Information. *Expert Systems with Applications*. *38*(8), 9325–9333.
- Lliu, X., Ma, F., and Lin, H. (2011). Topic Detection with Hypergraph Partition Algorithm. *Journal of Software*. *6*(12), 2407–2415.
- Lu, Y., Mei, Q., and Zhai, C. (2011). Investigating task performance of probabilistic topic models: An empirical study of PLSA and LDA. *Information Retrieval*. 14, 178–203.
- Lucia, A. De, Risi, M., Tortora, G., and Scanniello, G. (2007). Clustering Algorithms and Latent Semantic Indexing to Identify Similar Pages in Web Applications. In Proceedings of the 9th IEEE International Workshop on Web Site Evolution. Washington, USA: IEEE Computer Society, 65–72.
- Luo, C., Li, Y., and Chung, S. M. (2009). Text document clustering based on neighbors. *Data and Knowledge Engineering*. 68(11), 1271–1288.

- Lv, X., Wang, T., Shi, S., and Li, S. (2010). The Key Technology of Topic Detection based on K-means. In *International Conference on Future Information Technology and Management Engineering*. Changzhou, China: IEEE, 387–390.
- Machova, K., Szaboova, A., and Bednar, P. (2007). Generation of a Set of Key Terms Characterising Text Documents. *Journal of Information and Organizational Sciences*. 31(1), 1–7.
- Malik, S. K., and Rizvi, S. (2011). Information Extraction Using Web Usage Mining, Web Scrapping and Semantic Annotation. In *International Conference on Computational Intelligence and Communication Networks*. Gwalior, India: IEEE Computer Society, 465–469.
- Mesleh, A. (2007). Chi Square Feature Extraction Based Svms Arabic Language Text Categorization System. *Journal of Computer Science*. *3*(6), 430–435.
- Mesleh, A. M. (2007). Support Vector Machines based Arabic Language Text Classification System: Feature Selection Comparative Study. In *Int. Conf. On Applied Mathematics*. Cairo, Egypt: Springer, 11–16.
- Mihalcea, R., Corley, C., and Strapparava, C. (2006). Corpus-based and Knowledge-based Measures of Text Semantic Similarity. In *The National Conference on Artificial Intelligence*. Boston, Massachusetts: American Association for Artificial Intelligence, 775–781.
- Mohammad, S., Resnik, P., and Hirst, G. (2007). TOR, TORMD: Distributional Profiles of Concepts for Unsupervised Word Sense Disambiguation. In *Proceedings of the 4th International Workshop on Semantic Evaluations*. Stroudsburg, PA, 326–333.
- Monay, F., Quelhas, P., Gatica-Perez, D., and Odobez, J. M. (2006). Constructing Visual Models With A Latent Space Approach. In Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J. (Eds.). Lecture Notes in Computer Science (pp. 115–126). Springer Berlin Heidelberg.
- Montañés, E., Quevedo, J., Combarro, E. F., Diaz, I., and Ranilla, J. (2007). A Hybrid Feature Selection Method for Text Categorization. *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*. *15*(2), 133–151.
- Mousser, J. (2010). A Large Coverage Verb Taxonomy for Arabic. In *International Language Resources and Evaluation Conference*. Valetta, Malta: European Language Resources Association, 2675–2681.
- Mousser, J. (2011). Classifying Arabic verbs using sibling classes. In International

- Workshop on Computational Semantics. UK: Oxford, 355–359.
- Napoleon, D., and Pavalakodi, S. (2011). A New Method for Dimensionality Reduction using K- Means Clustering Algorithm for High Dimensional Data Set. *International Journal of Computer Applications*. *13*(7), 41–46.
- Nath, S. (2006). Crime Pattern Detection Using Data Mining. In *International Conference on Web Intelligence and Intelligent Agent Technology*. Hong Kong: IEEE Computer Society, 41–44.
- Nguyen, C., Phan, X., and Horiguchi, S. (2009). Web Search Clustering and Labeling with Hidden Topics. *ACM Transactions on Asian Language Information Processing*. 8(3), 1–40.
- Nwesri, A. F. a., Tahaghoghi, S. M. M., and Scholer, F. (2007). Answering English Queries in Automatically Transcribed Arabic Speech. In *International Conference on Computer and Information Science*. Melbourne, Australia: IEEE Computer Society, 11–16.
- Osinski, S. (2004). *Dimensionality Reduction Techniques For Search Results Clustering*. Master Thesis, The University of Sheffield.
- Park, S., and Lee, S. R. (2012). Text Clustering using Semantic Terms. *International Journal of Hybrid Information Technology*. *5*(2), 135–140.
- Patel, D., and Zaveri, M. (2011). A Review on Web Pages Clustering Techniques. In
 D. C. Wyld, M. Wozniak, N. Chaki, N. Meghanathan, and D. Nagamalai (Eds.),
 Trends in Network and Communications. Springer Berlin Heidelberg, 700–710.
- Patil, G. A., Manwade, K. B., and Landge, P. S. (2012). A Novel Approach for Social Network Analysis and Web Mining for Counter Terrorism. *International Journal on Computer Science and Engineering (IJCSE)*. 4(11), 1816–1825.
- Patil, G. A., Manwade, K. B., and Landge, P. S. (2013). A Novel Approach for Recognized and Overcrowding of Terrorist Websites. *International Journal of Engineering Trends and Technology*. 4(3), 463–470.
- Paulsen, J. R., and Ramampiaro, H. (2009). Combining Latent Semantic Indexing and Clustering to Retrieve and Cluster Biomedical Information: A 2-step Approach. In NIK-2009 conference. Trondheim, 131–142.
- Pedersen, T., and Kulkarni, A. (2005). Identifying Similar Words and Contexts in Natural Language with SenseClusters. In *The National Conference on Artificial InItelligence*. Pittsburgh, PA: American Association for Artificial Intelligence, 1694–1695.

- Perkio, J., Buntine, W., and Perttu, S. (2004). Exploring Independent Trends in a Topic-based Search Engine. In *International Conference on Web Intelligence*. Beijing, China: IEEE Computer Society, 664–668.
- Prasad, S., and Bruce, L. M. (2008). Limitations of Principal Components Analysis for Hyperspectral Target Recognition. *Geoscience and Remote Sensing Letters*. 5(4), 625–629.
- Prentice, S., Taylor, P. J., Rayson, P., Hoskins, A., and O'Loughlin, B. (2010). Analyzing the Semantic Content and Persuasive Composition of Extremist Media: A Case Study of Texts Produced During the Gaza Conflict. *Information Systems Frontiers*. *13*(1), 61–73.
- Qi, X., Christensen, K., Duval, R., Fuller, E., Spahiu, A., Wu, Q., and Zhang, C.-Q. (2010). A Hierarchical Algorithm for Clustering Extremist Web Pages. In *International Conference on Advances in Social Networks Analysis and Mining*. Odense, Denmark: IEEE Computer Society, 458–463.
- Qin, J., Zhou, Y., and Chen, H. (2010). A Multi-region Empirical Study on the Internet Presence of Global Extremist Organizations. *Information Systems Frontiers*. 13(1), 75–88.
- Qin, J., Zhou, Y., Reid, E., Lai, G., and Chen, H. (2007). Analyzing Terror Campaigns on the Internet: Technical Sophistication, Content Richness, and Web Interactivity. *International Journal of Human-Computer Studies*. 65(1), 71–84.
- Qu, S., Wang, S., and Zou, Y. (2008). Improvement of Text Feature Selection Method Based on TFIDF. In *International Seminar on Future Information Technology and Management Engineering*. Leicestershire, United Kingdom: IEEE, 79–81.
- Ramos, J. (2003). Using TF-IDF to Determine Word Relevance in Document Queries. In *International Conference on Machine Learning*. New Brunswick:NJ, USA: Rutgers University, 1–4.
- Rana, S., Jasola, S., and Kumar, R. (2010). A Hybrid Sequential Approach for Data Clustering using K-Means and Particle Swarm Optimization Algorithm. *International Journal of Engineering, Science and Technology*. 2(6), 167–176.
- Ray, S., and Turi, R. H. (1999). Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmentation. In *International Conference on Advances in Pattern Recognition and Digital Techniques*. Boca

- Raton, FL, USA: IEEE Computer Society, 137–143.
- Redmond, S. J., and Heneghan, C. (2007). A Method for Initialising the K-means Clustering Algorithm using kd-trees. *Pattern Recognition Letters*. 28(8), 965—973.
- Reid, E., Qin, J., Zhou, Y., Lai, G., Sageman, M., Weimann, G., and Chen, H. (2005). Collecting and Analyzing the Presence of Terrorists on the Web: A Case Study of Jihad Websites. In P. Kantor, G. Muresan, F. Roberts, D. D. Zeng, F.-Y. Wang, H. Chen, and R. C. Merkle (Eds.). *Intelligence and Security Informatics* (pp.402–411). Springer Berlin Heidelberg.
- Ren, W., and Han, K. (2014). Sentiment Detection of Web Users Using Probabilistic Latent Semantic Analysis. *Journal of Multimedia*. 9(10), 1194–1200.
- Rendón, E., and Abundez, I. (2011). Internal versus External cluster validation indexes. *International Journal of Computer and Communication*. *5*(1), 27–34.
- Ricca, F., Pianta, E., Tonella, P., and Girardi, C. (2008). Improving Web Site Understanding with Keyword-based Clustering. *Journal of Software Maintenance and Evolution: Research and Practice*. 20(1), 1–29.
- Roberts, N. C. (2010). Tracking and Disrupting Dark Networks: Challenges of Data Collection and Analysis. *Information Systems Frontiers*. *13*(1), 5–19.
- Rodner, E., and Denzler, J. (2009). Randomized probabilistic latent semantic analysis for scene recognition. In Bayro-Corrochano, E., Eklundh, J.(Ed.). *Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications* (pp. 945–953). Springer Berlin Heidelberg.
- Rokach, L., and Maimon, O. (2005). Clustering Methods. In O. M. and L. Rokach (Ed.). *Data Mining and Knowledge Discovery Handbook* (pp. 321–352). New York, NY: Spinger.
- Saad, E., Awadalla, M., and Alajmi, A. (2010). Arabic Verb Pattern Extraction. In International Conference on Information Science, Signal Processing and their Applications. Kuala Lumpur, Malaysia: IEEE, 642–645.
- Sabbah, T., and Selamat, A. (2014). Modified Frequency-Based Term Weighting
 Scheme for Accurate Dark Web Content Classification. In A. Jaafar, N.
 Mohamad Ali, S. A. Mohd Noah, A. F. Smeaton, P. Bruza, Z. A. Bakar, J.
 Nursuriati, T. M. T. Sembok (Eds.). *Information Retrieval Technology* (pp. 184–196). Springer International Publishing.
- Sabbah, T., and Selamat, A. (2015). Hybridized feature set for accurate Arabic dark

- web pages classification. In H. Fujita and G. Guizzi (Eds.). *Intelligent Software Methodologies, Tools and Techniques* (pp. 175–189). Springer International Publishing.
- Sabbah, T., Selamat, A., Selamat, M. H., Ibrahim, R., and Fujita, H. (2016).
 Hybridized Term-weighting Method for Dark Web Classification.
 Neurocomputing, 173(3), 1908–1926. JOUR.
- Sahmoudi, I., Froud, H., and Lachkar, A. (2013). A New Keyphrases Extraction Method Based On Suffix Tree Data Structure. *International Journal of Database Management Systems (IJDMS)*. 5(6), 17–33.
- Sahmoudi, I., and Lachkar, A. (2016). Towards A Linguistic Patterns For Arabic Keyphrases Extraction. In *International Conference on Information Technology for Organizations Development* Fez, Morocco: IEEE, 1–6..
- Said, D. A., Wanas, N. M., Darwish, N. M., and Hegazy, N. H. (2009). A Study of Text Preprocessing Tools for Arabic Text Categorization. In *International Conference on Arabic Language Resources and Tools*. Cairo, Egypt: The MEDAR Consortium, 330–336.
- Saitta, S., Raphael, B., and Smith, I. F. C. (2007). A Bounded Index for Cluster Validity. In *International Conference on Machine Learning and Data Mining in Pattern Recognition*. Leipzig, Germany: Springer, 174–187.
- Saleh, L. M. B., and Al-Khalifa, H. (2009). AraTation: An Arabic Semantic Annotation Tool. In *International Conference on Information Integration and Web-based Applications and Services*. Kuala Lumpur, Malaysia: ACM, 447–451.
- SAM, L. Z. (2009). Enhanced Feature Selection Method for Illicit Web Content Filtering. PhD Thesis, Universiti Teknologi Malaysia.
- Scanlon, J. R. (2014). Automatic Detection and Forecasting of Violent Extremist Cyber-Recruitment. Master Thesis, University of Virginia.
- Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. *ACM Computing Surveys (CSUR)*, 34(1), 1–47.
- Selamat, A., Subroto, I. M. I., and NG, C.-C. (2009). Arabic Script Web Page Language Identification Using Hybrid-KNN Method. *International Journal of Computational Intelligence and Applications*. 8(3), 315–343.
- Seo, Y., Ankolekar, A., and Sycara, K. (2004). Feature Selection for Extracting Semantically Rich Words. Technial Report No. CMU-RI-TR-04-18, Carnegie

- Mellon University.
- Shaban, K. (2009). A Semantic Approach for Document Clustering. *Journal of Software*. 4(5), 391–404.
- Sharma, S., and Gupta, V. (2012). Recent Developments in Text Clustering Techniques. *International Journal of Computer Applications*. *37*(6), 14–19.
- Simanjuntak, D. A., Ipung, H. P., Lim, C., and Nugroho, A. S. (2010). Text Classification Techniques Used to Faciliate Cyber Terrorism Investigation. In International Conference on Advances in Computing, Control, and Telecommunication Technologies. Jakarta, Indonesia: IEEE Computer Society, 198–200.
- Smith, J. R., and Tesic, J. (2006). Semantic Labeling of Multimedia Content Clusters. In *International Conference on Multimedia and Expo*. Toronto, Canda: IEEE, 1493–1496.
- Soni, G. (2013). An automatic email mining approach using semantic non-parametric K-Means++ clustering. Master Thesis, University of Windsor.
- Sriurai, W. (2011). Improving Text Categorization By Using A Topic Model. *Advanced Computing: An International Journal (ACIJ)*. 2(6), 21–27.
- Steinbach, M., Karypis, G., Kumar, V., and others. (2000). A Comparison of Document Clustering Techniques. In *World Text Mining Conference*. Boston, 525–526.
- Sun, J., Wang, X., and Yuan, C. (2011). Annotation-aware Web Clustering Based on Topic Model and Random Walks. In *International Conference on Cloud Computing and Intelligence Systems (CCIS)*. IEEE, 12–16.
- Sutar, S. (2015). Feature Selection Algorithm Using Fast Clustering and Correlation Measure. *International Research Journal of Engineering and Technology* (*IRJET*). 2(7), 236–241.
- Syiam, M., and Fayed, Z. (2006). An Intelligent System for Arabic Text Categorization. *International Journal of Intelligent Computing and Information Science*. 6(1), 1–19.
- Taghva, K., Elkhoury, R., and Coombs, J. (2005). Arabic Stemming without a Root Dictionary. In *International Conference on Information Technology: Coding and Computing*. Las Vegas, Nevada: IEEE Computer Society, 152–157.
- Tan, F. (2007). *Improving Feature Selection Techniques for Machine Learning*. PhD Thesis, Georgia State University.

- Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Cluster Analysis: Basic Concepts and Algorithms. In P.-N. Tan, M. Steinbach, and V. Kumar (Eds.). *Introduction* to Data Mining (pp. 487–568). Pearson.
- TB, H., S, K., and NB, N. (2003). Documents Clustering Using Tolerance Rough Set Model and its Application to Information Retrieval. In Szczepaniak, P. S., Segovia, J., Kacprzyk, J., Zadeh, L. (Ed.) . Studies In Fuzziness And Soft Computing: Intelligent exploration of the web (pp. 181–196). Physica-Verlag HD.
- Thabtah, F., Eljinini, M., Zamzeer, M., and Hadi, W. (2009). Naive Bayesian based on Chi Square to categorize Arabic data. *Communications of the IBIMA*. 10, 4–6.
- Thanh, N., and Yamada, K. (2011). Document Representation and Clustering with WordNet Based Similarity Rough Set Model. *International Journal of Computer Science*. 8(5), 1–8.
- Thomas, S. W. (2011). Mining software repositories using topic models. In *International Conference on Software engineering*. New York, USA: ACM Press, 11–38.
- Tomar, G., Singh, M., Rai, S., Kumar, A., Sanyal, R., and Sanyal, S. (2013). Probabilistic Latent Semantic Analysis for Unsupervised Word Sense Disambiguation. *International Journal of Computer Science Issues*. 10(5), 127–133.
- Tsai, C.-F., and Hsiao, Y.-C. (2010). Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches. *Decision Support Systems*. *50*(1), 258–269.
- TU, N. C. A. M. (2008). Hidden Topic Discovery Toward Classification And Clustering In Vietnamese Web Documents. Master Thesis, Viet Nam National University.
- Turney, P., and Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. *Journal of Artificial Intelligence Research*. *37*, 141–188.
- Uysal, A. K., and Gunal, S. (2012). A Novel Probabilistic Feature Selection Method for Text Classification. *Knowledge-Based Systems*. *36*, 226–235.
- Wallach, H. (2006). Topic Modeling: Beyond Bag-of-Words. In *International Conference on Machine Learning*. Pittsburgh, USA: ACM, 977–984.
- Wang, S., Wei, Y., Li, D., Zhang, W., and Li, W. (2007). A Hybrid Method of

- Feature Selection for Chinese Text Sentiment Classification. In *International Conference on Fuzzy Systems and Knowledge Discovery*. Haikou, China: IEEE Computer Society, 435–439.
- Wasserman, S., and Faust, K. (1994). *Social Network Analysis: Methods and Applications*. Cambridge University Press.
- Wilbur, W., and Sirotkin, K. (1992). The Automatic Identification of Stop Words. *Journal of Information Science*. 18(1), 45–55.
- Wilson, A. T., and Chew, P. A. (2010). Term Weighting Schemes for Latent Dirichlet Allocation. In *Human Language Technologies: The Annual Conference of the North American Chapter of the ACL*. Los Angeles, California: Association for Computational Linguistics, 465–473.
- Wu, S., and Chow, T. W. S. (2004). Clustering of The Self-Organizing Map Using A Clustering Validity Index Based on Inter-Cluster and Intra-Cluster Density. *Pattern Recognition*. *37*(2), 175–188.
- Xu, C., Zhang, Y., Zhu, G., Rui, Y., Lu, H., and Huang, Q. (2008). Using Webcast Text for Semantic Event Detection in Broadcast Sports Video. *IIEEE Transactions on Multimedia*. 10(7), 1342–1355.
- Xu, J., and Chen, H. (2008). The Topology of Dark Networks. *Communications of the ACM*. 51(10), 58–65.
- Xu, J., Chen, H., Zhou, Y., and Qin, J. (2006). On the Topology of the Dark Web of Terrorist Groups. In *The International Conference on Intelligence and Security Informatics*. San Diego, USA: Springer Berlin Heidelberg, 367–376.
- Xu, Y., and Chen, L. (2010). Term-Frequency Based Feature Selection Methods for Text Categorization. In *International Conference on Genetic and Evolutionary Computing*. Shenzhen, China: IEEE Computer Society, 280–283.
- Yang, C., Tang, X., and Gong, X. (2011). Identifying Dark Web Clusters with Temporal Coherence Analysis. In *International Conference on Intelligence and Security Informatics*. Beijing, China: IEEE, 167–172.
- Yang, L., Liu, F., Kizza, J. M., and Ege, R. K. (2009). Discovering Topics from Dark Websites. In *IEEE Symposium on Computational Intelligence in Cyber Security*. IEEE, 175–179.
- Yang, Y. (1995). Noise Reduction in A Statistical Approach to Text Categorization.
 In The International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle, USA: ACM, 256–263.

- Yang, Y., and Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text Categorization. In *International Conference on Machine Learning*. Morgan Kaufmann Publishers Inc., 412–420.
- Yong-qing, W., Pei-yu, L., and Zhu, Z. (2008). A Feature Selection Method based on Improved TFIDF. In *International Conference on Pervasive Computing and Applications*. Alexandria, Egypt: IEEE, 94–97.
- Yu, L., and Liu, H. (2004). Efficient Feature Selection via Analysis of Relevance and Redundancy. *Journal of Machine Learning Research*. 5, 1205–1224.
- Zahran, B. M., and Kanaan, G. (2009). Text Feature Selection using Particle Swarm Optimization Algorithm. *World Applied Sciences Journal Special Issue of Computer and IT*. 7, 69–74.
- Zhang, D., Jing, X., and Yang, J. (2006). *Biometric Image Discrimination Technologies*. Idea Group Inc.
- Zhang, D., and Li, S. (2011). Topic Detection based on K-means. In *International Conference on Electronics, Communications and Control*. Mudanjiang, China: IEEE, 2983–2985.
- Zhang, W., Yoshida, T., and Tang, X. (2008). Text classification based on multi-word with support vector machine. *Knowledge-Based Systems*. 21(8), 879–886.
- Zhang, W., Yoshida, T., Tang, X., and Wang, Q. (2010). Text Clustering Using Frequent Itemsets. *Knowledge-Based Systems*. 23(5), 379–388.
- Zhang, Y., Zeng, S., Huang, C. N., Fan, L., Yu, X., Dang, Y., Larson, C., Denning, D., Roberts, N., Chen, H. (2010). Developing a Dark Web collection and infrastructure for computational and social sciences. In *International Conference on Intelligence and Security Informatics*. Vancouver, Canada: IEEE, 59–64.
- Zhang, Y., and Zhang, Q. (2006). A Text Classifier Based on Sentence Category VSM. In *The Pacific Asia Conference on Language, Information and Computation*. Wuhan, China, 244–249.
- Zhou, X. F., Liang, J. G., Hu, Y., and Guo, L. (2014). Text Document Latent Subspace Clustering by PLSA Factors. In *International Joint Conferences on Web Intelligence and Intelligent Agent Technologies*. Warsaw, Poland: IEEE, 442–448.
- Zhou, Y., Qin, J., Lai, G., and Chen, H. (2007). Collection of U.S. Extremist Online Forums: A Web Mining Approach. In *The Hawaii International Conference on System Sciences*. Waikoloa, USA: IEEE, 1–10.

- Zhou, Y., Reid, E., Qin, J., Chen, H., and Lai, G. (2005). US Domestic Extremist Groups on the Web: Link and Content Analysis. *IEEE Intelligent Systems*. 44–51.
- Zhou, Y., Yang, Y., Peng, W., and Ping, Y. (2010). A Novel Term Weighting Scheme With Distributional Coefficient For Text Categorization With Support Vector Machine. In *The Conference on Information Computing and Telecommunications*. Beijing, China: IEEE, 182–185.
- Zhu, X. (2007). Advanced NLP: Latent Topic Models Probabilistic Latent Semantic Analysis (pLSA). Lecturer Notes, University of Wisconsin–Madison.
- Zitouni, A., Damankesh, A., Barakati, F., Atari, M., Watfa, M., and Oroumchian, F. (2010). Corpus-Based Arabic Stemming Using N-Grams. In *The Sixth Asia Information Retrieval Societies Conference*. Taipei, Taiwan: Springer Berlin Heidelberg, 280–289.