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ABSTRACT 

 In the literature, high-dimensional data reduces the efficiency of clustering 

algorithms. Clustering the Arabic text is challenging because semantics of the text 

involves deep semantic processing. To overcome the problems, the feature selection 

and reduction methods have become essential to select and identify the appropriate 

features in reducing high-dimensional space. There is a need to develop a suitable 

design for feature selection and reduction methods that would result in a more 

relevant, meaningful and reduced representation of the Arabic texts to ease the 

clustering process. The research developed three different methods for analyzing the 

features of the Arabic Web text. The first method is based on hybrid feature selection 

that selects the informative term representation within the Arabic Web pages. It 

incorporates three different feature selection methods known as Chi-square, Mutual 

Information and Term Frequency–Inverse Document Frequency to build a hybrid 

model. The second method is a latent document vectorization method used to 

represent the documents as the probability distribution in the vector space. It 

overcomes the problems of high-dimension by reducing the dimensional space. To 

extract the best features, two document vectorizer methods have been implemented, 

known as the Bayesian vectorizer and semantic vectorizer. The third method is an 

Arabic semantic feature analysis used to improve the capability of the Arabic Web 

analysis. It ensures a good design for the clustering method to optimize clustering 

ability when analysing these Web pages. This is done by overcoming the problems 

of term representation, semantic modeling and dimensional reduction. Different 

experiments were carried out with k-means clustering on two different data sets. The 

methods provided solutions to reduce high-dimensional data and identify the 

semantic features shared between similar Arabic Web pages that are grouped 

together in one cluster. These pages were clustered according to the semantic 

similarities between them whereby they have a small Davies–Bouldin index and high 

accuracy. This study contributed to research in clustering algorithm by developing 

three methods to identify the most relevant features of the Arabic Web pages.
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ABSTRAK 

 Dalam kajian lepas, data dimensi tinggi dapat mengurangkan kecekapan 

dalam algoritma pengklusteran. Pengklusteran teks Arab merupakan sesuatu yang 

mencabar kerana semantik dalam teks  melibatkan pemprosesan semantik yang 

mendalam.  Bagi mengatasi masalah ini, pemilihan ciri-ciri dan kaedah pengurangan 

menjadi penting dalam memilih dan mengenal pasti ciri-ciri yang bersesuaian bagi 

mengurangkan ruang dimensi yang tinggi. Terdapat keperluan untuk membangunkan 

reka bentuk yang bersesuaian dalam pemilihan ciri-ciri dan kaedah pengurangan 

yang akan menyebabkan perwakilan teks Arab yang lebih relevan, bermakna dan 

kurang bagi memudahkan proses pengklusteran. Kajian ini membangunkan tiga 

kaedah yang berbeza untuk menganalisis ciri-ciri teks bagi Web Bahasa Arab. 

Kaedah pertama adalah berdasarkan kepada pemilihan ciri-ciri hibrid yang memilih 

perwakilan jangka bermaklumat dalam halaman Web Bahasa Arab. Ia 

menggabungkan tiga kaedah pemilihan ciri yang berbeza yang dikenali sebagai Khi-

Kuasa Dua, Maklumat Bersama dan Frekuensi Dokumen Frekuensi Songsang 

Bertempoh untuk membina sebuah model hibrid. Kaedah kedua merupakan kaedah 

pemvektor dokumen terpendam yang digunakan untuk mewakili dokumen sebagai 

taburan kebarangkalian dalam ruang vektor. Ia mengatasi masalah dimensi tinggi 

dengan mengurangkan ruang dimensi. Bagi mengekstrak ciri-ciri yang terbaik, dua 

kaedah pemvektor dokumen telah dilaksanakan yang dikenali sebagai pemvektor 

Bayesian dan pemvektor semantik.  Kaedah ketiga adalah analisis ciri-ciri semantik 

Arab yang digunakan untuk meningkatkan keupayaan analisis Web Bahasa Arab. Ia 

memastikan reka bentuk terbaik untuk kaedah pengklusteran bagi mengoptimumkan 

keupayaan pengklusteran apabila menganalisis laman Web ini.  Ini dilaksanakan 

dengan mengatasi masalah perwakilan jangka, pemodelan semantik dan pengurangan 

dimensi. Penyelidikan yang berbeza telah dijalankan dengan pengklusteran k-cara ke 

atas dua set data yang berlainan. Kaedah ini dapat menyelesaikan pengurangan 

dimensi data yang tinggi dan mengenal pasti ciri-ciri semantik yang dikongsi 

bersama laman Web Bahasa Arab yang dikumpulkan bersama-sama dalam satu 

kluster. Laman ini telah diklusterkan mengikut persamaan semantik antara mereka di 

mana mereka mempunyai indeks terkecil Davies-Bouldin dan ketepatan yang tinggi. 

Kajian ini menyumbang kepada penyelidikan dalam pengklusteran algoritma dengan 

membangunkan tiga kaedah untuk mengenal pasti ciri-ciri yang paling relevan dalam 

laman Web Bahasa Arab. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 Abundant amounts of Arabic text are currently available on the World Wide 

Web (WWW) in electronic form. The unorganized information in these textual data 

(Elarnaoty, et al., 2012) has encouraged various new studies on managing this vast 

information to classify relevant information and to accordingly enhance the 

organization of text available on the WWW. 

 Document clustering is among the methods employed to group documents 

containing related information into clusters, which facilitates the allocation of 

relevant information. This technique can efficiently enhance the search process of a 

retrieval system (Alsulami et al., 2012), aids with the process of identifying crime 

patterns (Nath, 2006), helps extract types of crimes from documents (Alruily et al., 

2010), and can facilitate determining hidden or unknown affiliations within a social 

network (Qi et al., 2010). Clustering is a method of grouping data items that have 

similar characteristics, while samples in different groups are dissimilar.  

 An effectively built clustering algorithm must transform free running text into 

structured data using a document representation model. The Vector Space Model 

(VSM) is the most widely used approach for this purpose and adopts Bag-of-Words 

(BOW) to express text. With VSM, text content is represented as vectors in a specific 

feature space using a word index, where each vector value corresponds to the 

occurrence or absence of a selected feature. The most commonly employed features 
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in VSM are words, while other techniques use characters and phrases as features 

(Zhang and Zhang, 2006). 

 Although considerable work has been published on Arabic Web page 

classification, little published research related to Arabic Web page clustering is 

available (Abuaiadah, 2016; Froud et al., 2013; Ghanem, 2014). Arabic is a 

morphologically rich (Al-Khalifa and Al-Wabil, 2007) and highly inflectional 

language (Beseiso et al., 2011); consequently, many clustering algorithms developed 

for the English language perform poorly when applied to Arabic (Abuaiadah, 2016). 

Developing a machine-understandable system for Arabic involves discriminating and 

deeply semantic processing. Accordingly, interest in research on Arabic language 

processing has been increasing. 

1.2 Problem Background 

 The fundamental challenges with clustering Arabic Web pages include 

identifying the most informative features to best represent original content and 

designing feature discriminating vectors in order to analyze large volumes of 

unstructured Arabic text. The performance of text-based systems is highly dependent 

on the representation of text in the input space (Leopold and Kindermann, 2002; 

Lewis, 1990). A number of studies have been done to address these difficulties in 

terms of Arabic Web page clustering and proposing solutions. 

 A problem with identifying relevant features is derived from treating terms as 

independent from each other and neglecting the semantic relations and category 

popularity among terms, which often leads to synonym and polysemy problems (Hu 

et al., 2008) or missing category problems (Hu et al., 2009). Such problems can 

produce very low similarity scores for related documents because two samples with a 

semantic or category relation and two other samples without this relation are grouped 

similarly. Consequently, the effectiveness of the document clustering method is 

reduced. Some studies have investigated Arabic text representation and used several 

approaches based on language-dependent techniques. Bsoul and Mohd (2011), 
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Froud et al. (2010), Ashour (2012), Al-Omari (2011), Amine et al.(2013), Ahmed 

and Tiun (2014) and Ghanem (2014) have utilized the word stemming approach to 

represent manipulated texts. Stemming is the process of removing morphological 

affixes from words to get the word root. Other researchers, such as Sahmoudi et al. 

(2013) and El-beltagy (2006) have used keyphrase extraction, which is defined as a 

process of identifying a set of words or phrases that express a document using the 

Suffix Tree algorithm, after which these words are used for text representation.  

Stemming and keyphrase extraction approaches focus on the morphological 

aspect of text and ignore the semantics of terms and the semantic or category 

relations. Manual keyphrase assignment can be time consuming, especially when 

large volumes of Web pages are involved (Ali and Omar, 2014). Additionally, each 

generated keyphrase may be attached to a number of keyphrases that are part of this 

keyphrase, and the difficulty arises in selecting the relevant ones (Sahmoudi and 

Lachkar, 2016). In the literature, the benefits of using stemming to identify the 

relevant features for Arabic text clustering are debated. Al-Anzi and AbuZeina 

(2016), Al-Omari (2011) and Said et al. (2009) have reported that stemming is not 

always beneficial for Arabic text-based tasks, since many terms may be combined 

with the same root form. In addition, multiple entries may be created in the text 

representation model for different words that carry the same meaning (Awajan, 

2015a). On the other hand, Said et al. (2009) demonstrated that using stemming in 

combination with a good feature selection method improves the performance of 

Arabic text clustering. Feature selection is aimed at selecting the most relevant subset 

of existing features without transformation and then using these subset features for 

text representation. A better feature selection method is desired to identify 

informative features, and which is able to consider semantic and category relations to 

represent high-similarity Arabic Web content in computer-understandable form.  

 The problem of high dimensionality stems from the large number of variables 

considered in text clustering methods. All terms found in a document are included in 

the clustering process, which leads to a very large number of dimensions in the 

vector representation of the document. Therefore, high-dimensional data reduces the 

efficiency of clustering algorithms and maximizes execution time. Some researchers 

have suggested solutions for the high dimensionality problem in clustering Arabic 
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Web page content. Awajan (2015a, 2015b) proposed a semantically enriched and 

reduced vector space model (VSM). Harrag et al. (2010) used a feature selection 

technique with VSM to reduce high-dimensional data. Their results showed that the 

DF, TFIDF and LSI techniques are more effective and efficient than stemming 

techniques. The Frequent Itemset-based Hierarchical Clustering (FIHC) approach 

proposed by Al-sarrayrih and Al-Shalabi (2009) involves finding frequent word sets, 

which are then used to cluster documents.   

 However, FIHC may produce low-quality clusters due to considering the 

number of word occurrences in a document as part of the clustering criteria 

(Backialakshmi, 2015). The high dimensionality of document representation using 

VSM is a potential problem, since not all documents in a collection contain all 

words used in the representation, and therefore sparseness occurs extensively in the 

document vectors (Ampazis and Perantonis, 2004; Zhang et al., 2010). 

Furthermore, considering keywords alone cannot capture all the similar information 

between documents, such as word proximity, semantic features and word 

distributions among categories (Osinski, 2004; Shaban, 2009). A study by Turney 

and Pantel (2010) revealed that the main alternative to VSM is a probabilistic 

model based on creating a probabilistic language model for text vectorization and 

document clustering according to the measured probability in that model. 

Accordingly, there is a need for a vectorization technique that transforms existing 

features into a lower-dimensional space, taking into account background information 

such as feature probability distribution and semantic information in order to compact 

and enrich the document representation for clustering. 

 Another problem faced in clustering Arabic Web pages is the architecture 

design of the respective clustering method. A challenging task is to realize how to 

enhance the clustering performance. In general, the aptitude of Arabic Web page 

clustering is highly based on the input features‘ characteristics. The performance of 

a Web page clustering technique is only effective when the appropriate feature 

selection and feature reduction methods are integrated with a proper clustering 

method (Ghanem, 2014). Improving clustering performance requires computational 

algorithms that adapt appropriate feature selection or reduction methods to well-

established clustering approaches capable of achieving higher performance (Jain 
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and Murty, 1999). Thus, there is a need to develop a suitable design for feature 

selection and feature reduction methods for more relevant and reduced Arabic text 

representation, which can facilitate optimizing the clustering ability for Arabic 

Web page analysis. 

1.3 Problem Statement 

The ideal Arabic Web page clustering depends on features representative of 

the content. However, Web pages contain a vast number of distinct features that 

produce high-dimensional data, which makes the clustering process more difficult. 

Therefore, it is important to enhance feature selection and reduction methods in order 

to solve the issue of high-dimensional data and identify the most informative feature 

set to enhance Arabic Web page clustering performance. 

1.4 Goal of the study 

The goal of this research is to develop and enhance feature reduction and 

feature selection methods that can be used to improve Arabic Web page clustering. 

1.5 Research Questions 

According to the research problem presented above, the following research 

questions are introduced: 

Q 1. How can Arabic Web pages be represented for optimized clustering? 

Q 2. How can the feature sets generated by different feature selection methods be 

hybridized to obtain the most relevant features? 
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Q 3. What is an appropriate dimensional reduction algorithm to use in solving the 

problem of high-dimensional data taking into account semantic and category 

information? 

Q 4. How can a feature selection and reduction method be designed that is 

adaptable to a clustering approach? 

Q 5. Do the proposed methods produce accurate clustering results? 

1.6 Research Objectives 

This study comprises three main objectives. 

i. To improve the feature selection ability of Arabic Web page clustering by 

proposing a hybrid feature selection method. 

ii. To propose a latent document vectorization model for enhancing document 

representation for Arabic Web clustering. 

iii. To propose an Arabic semantic feature analysis method by hybridizing the 

proposed hybrid feature selection with the proposed latent document model to 

efficiently reduce feature space dimensionality as well as achieve higher 

clustering performance. 

1.7 Scope of the Study 

The scope of this research is limited to the following:  

i. The study focuses on feature selection and reduction methods for Arabic Web 

page clustering. 

ii. Focus is on Arabic text without using any machine translation. 

iii. This research specifically focuses on Arabic language textual content 

obtained from Arabic newspaper and Dark Web site archives.  
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iv. The K-means clustering method is used for Arabic Web content analysis. 

v. The evaluation of the proposed methods‘ ability to cluster Arabic Web pages 

is based on information retrieval measurements, i.e., purity, DBI and F-

measure. 

1.8 Contributions and Significance of the Study 

i. The first contribution is in proposing a hybrid feature selection method that 

integrates three different selection methods, namely Chi-square (CHI), 

Mutual Information (MI) and Term Frequency-Inversed Document Frequency 

(TF–IDF). 

ii. The second contribution is in proposing three different latent document 

vectorization methods. The first method is semantic vectorization using 

semantic class density (SVa). The second method is semantic vectorization 

using estimated probability distribution of semantic classes (SVb). The third 

method is Bayesian vectorization (BV) using estimated probability 

distribution of categories. 

iii. The third contribution is in developing an algorithm called Arabic Semantic 

Feature Analysis (ASFA) that enhances feature selection and reduction for 

analyzing Web textual content using the k-means clustering method. 

iv. The fourth contribution is in revealing the importance of the feature selection 

and feature reduction methods for improving Arabic Web page clustering. 

v. The fifth contribution is in performing an empirical investigation and 

revealing how the proposed methods are useful for analyzing Arabic Web 

pages. 
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1.9 Outline of the Thesis 

 This chapter provided an overview of the aims of conducting this research. It 

comprises an introduction, problem statement, objectives, research questions, scope 

and contributions. The summary and organization of this thesis are as follows: 

i. Chapter 1 presents the research with an introduction, problem statement, 

objectives, research questions, scope and contributions.  

ii. Chapter 2 reports a review of literature on Arabic text clustering.  

iii. Chapter 3 provides the methodology used to achieve the objectives of this 

research.  

iv. Chapter 4 describes the methodology, implementation and experimental 

results of the first Arabic Web page text clustering approach with the 

proposed feature selection method.  

v. Chapter 5 demonstrates the methodology, implementation and experimental 

results of the second Arabic Web page text clustering approach with the 

document vectorization method.  

vi. Chapter 6 presents the methodology, implementation and experimental results 

of the third Arabic Web page text clustering approach with the proposed 

hybrid method.  

vii. Chapter 7 presents the conclusions of this study. 
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