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ABSTRACT

Heart rate variability (HRV) is one of the common biological markers for
developing a diagnostic system of cardiovascular disease. HRV analysis is used to
extract statistical, geometrical, spectral and non-linear features in such diagnostic
system. The diagnostic accuracy can be maximized by applying a feature selection
step that selects an optimal feature subset from the extracted features. However, there
are shortcomings in using only the feature selection for optimizing a diagnostic system
that is based on HRV analysis. One of the main limitations is that the parameters
of HRV feature extraction algorithms are not optimized for maximal performance.
In addition, the feature selection process does not consider the feature cost and
misclassification error of the selected optimal feature subset. Therefore, this thesis
proposes a multi-objective optimization method that is based on the non-dominated
sorting genetic algorithm to overcome these shortcomings in a cardiac arrhythmia
prediction system. It optimizes the HRV feature extraction parameters, selects the
best feature subset, and tunes the classifier parameters simultaneously for maximum
prediction performance. The proposed optimization algorithm is applied in two
cardiac arrhythmia cases, namely the prediction of the onsets of paroxysmal atrial
fibrillation (PAF) and ventricular tachyarrhythmia (VTA). In the proposed approach,
trade-off between multiple optimization objectives that contradict to each other are
also analyzed. The optimization objectives include the feature count, measurement
cost, prediction sensitivity, specificity and accuracy rate. The following results
prove the effectiveness of the proposed optimization algorithm in the two arrhythmia
cases. Firstly, the PAF onset prediction achieves an accuracy rate of 89.6%, which
significantly outperforms most of the previous works. This accuracy rate is achieved
even with the HRV signal length being reduced from the typical 30 minutes to just 5
minutes (a reduction of 83%). In the case of VTA onset prediction, the accuracy rate
of 78.15% is achieved with 5-minute signal length. This result outperforms previous
works. Another significant result is the sensitivity rate improvement with the trade-
off of lower specificity and accuracy rate for both PAF and VTA onset predictions.
For instance, the sensitivity rate of the VTA onset prediction system improved from
81.48% to 92.59% while the accuracy rate reduced from 78.15% to 72.59%.
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ABSTRAK

Kebolehubahan kadar jantung (HRV) adalah salah satu penanda biologi yang
popular untuk membangunkan sistem diagnostik penyakit kardiovaskular. Analisis
HRV digunakan untuk mengekstrakkan ciri-ciri statistik, geometri, spektrum dan
tidak-linear dalam sistem diagnostik. Ketepatan diagnostik boleh dimaksimumkan
dengan menggunakan kaedah pemilihan ciri yang menentukan subset ciri-ciri
optimum daripada ciri-ciri yang telah diekstrak. Walau bagaimanapun, terdapat
beberapa kelemahan jika hanya menggunakan pemilihan ciri untuk mengoptimumkan
sistem diagnostik yang berasaskan analisis HRV. Salah satu kelemahan utama
ialah parameter-parameter dalam algoritma pengekstrakan ciri-ciri HRV tidak
dioptimumkan untuk mencapai prestasi yang maksimum. Selain itu, proses pemilihan
ciri tidak mengambil kira kos ciri dan ralat salah pengelasan dalam subset ciri
optimum yang dipilih. Oleh yang demikian, tesis ini mencadangkan kaedah
pengoptimuman pelbagai objektif berasaskan algoritma genetik isihan bukan dominan
untuk mengatasi kekurangan tersebut dalam sistem ramalan aritmia jantung. Ia
mengoptimumkan parameter pengekstrakan ciri HRV, memilih subset ciri yang terbaik
dan menala parameter pengelas dengan serentak untuk prestasi ramalan yang maksima.
Algoritma pengoptimuman yang dicadangkan digunakan dalam dua kes jantung
aritmia, iaitu ramalan permulaan fibrilasi atrial paroksismal (PAF) dan takiaritmia
ventrikel (VTA). Dalam pendekatan yang dicadangkan, tukar-ganti antara pelbagai
objektif pengoptimuman yang bercanggah antara satu sama lain juga dianalisis.
Objektif pengoptimuman merangkumi bilangan ciri, kos pengukuran, kadar ramalan
sensitiviti, spesifisiti, dan ketepatan. Hasil berikut membuktikan keberkesanan
algoritma pengoptimuman yang dicadangkan dalam dua kes aritmia. Pertama, ramalan
permulaan PAF mencapai kadar ketepatan 89.6%, dan kadar ini lebih tinggi daripada
kebanyakan kerja sedia ada. Kadar ketepatan ini dicapai walaupun panjang isyarat
HRV dikurangkan dari tempoh tipikal 30 minit kepada hanya 5 minit (pengurangan
sebanyak 83%). Dalam kes ramalan permulaan VTA, kadar ketepatan sebanyak
78.15% telah dicapai dengan isyarat HRV sepanjang 5 minit. Keputusan ini adalah
lebih baik daripada kerja sedia ada. Satu lagi hasil yang penting ialah peningkatan
kadar sensitiviti dengan pengurangan kadar spesifisiti dan ketepatan untuk kedua-dua
ramalan permulaan PAF dan VTA. Contohnya, kadar sensitiviti dalam ramalan VTA
dipertingkatkan dari 81.48% kepada 92.59% sementara kadar ketepatan berkurang dari
81.48% kepada 72.59%.
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CHAPTER 1

INTRODUCTION

Over the last few decades, there has been a widespread interest in the study
of variations in the beat-to-beat timing of the heart, known as heart rate variability
(HRV). The analysis of HRV has been used to develop the automated classification
algorithm that is able to diagnose various types of cardiovascular diseases. This chapter
introduces the overview of HRV analysis, defines research problems, objectives as well
as research contribution and novelty of the work.

1.1 Heart Rate Variability Analysis - Overview

Heart rate (HR) represents the number of contractions per minute that occurs
in the heart. The heart rate variation (HRV) occurs because of the rising and falling of
heart rate that are affected by various factors such as human activity or cardiovascular
related diseases. The irregularity of time interval in human heartbeats was first noted
in the early 1600s. However, its physiological importance was only appreciated in
1965 when Hon and Lee [1] found that the changes in pattern of HR pattern preceded
the fetal distress before changes in the baseline heart rate (average heart rate over 60
seconds). In late 1980, clinical importance of HRV became apparent when it was
confirmed that the HRV was a strong and independent predictor of mortality following
an acute myocardial infarction [2].

Today, there are active research interests in using the HRV as a biological
marker to diagnosis various cardiovascular related diseases such as arrhythmia,
diabetes and heart failure. Such interests arise because researchers have proved that
the HRV is one of the most promising marker to assess the autonomic nervous system
(ANS) activity [3], which can be correlated to the cardiovascular disease.
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ANS is peripheral nervous system of the human body that is able to influence
the activity of the internal organs below the level of consciousness. It affects digestion,
heart rate, respiratory rate, salivation, perspiration pupillary dilation sexual arousal,
urination and etc. There are two subsystems in ANS: parasympathetic nervous system
(PNS) and sympathetic nervous system (SNS). Both subsystems operate independently
in some responses and work co-operatively in others [4]. Researchers have found
that the increased SNS activity or decreased PNS activity is associated with heart rate
acceleration and vice versa. The relationship between ANS and HRV has encouraged
the development of HRV markers.

The HRV markers can be obtained through HRV analysis [3]. The HRV
analysis involves the use of different techniques or algorithms to evaluate the variation
of the heart rate mathematically. These techniques can be divided into three categories:
time domain, frequency domain, and non-linear analysis. Based on these techniques,
various features are extracted and studied for the application in various medical
research problems. The main objective is to use the HRV features to diagnose the
patient, to detect occurrence of the disease event in real-time and even predict such
event before it happens.

1.2 Cardiac Arrhythmia

Among the HRV based research problems, the interest of this thesis is focus on
improving the algorithm that uses the HRV analysis to predict the onset of the cardiac
arrhythmia [3, 5]. Cardiac arrhythmia is a condition in which the electrical impulses
that regulate dilation and contraction of heart do not function properly. This will cause
the abnormal heart rhythm in which the heart beat too fast, too slow or irregularly
(erratically). When this happens, the heart may not pump enough blood to the body
and consequently damage the brain, heart and other organs.

Arrhythmia needs to be treated by specialist physician. There are many
types of arrhythmia and can be classified according to the heart rate and mechanism.
Arrhythmia is called tachycardia when heart beats too fast (over 100 beats per
minute) and called bradycardia when heart beats that is too slow (less than 60 beats
per minute). Other examples of arrhythmia include premature atrial contractions
(PACs), Atrial Fibrillation (AF), ventricular fibrillation (VF), premature ventricular
contractions (PVCs), heart block (First, Second and Third Degree) and more.
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Arrhythmia can also be divided into life threatening and non-life-threatening
arrhythmia. Occurrence of life-threatening arrhythmia such as ventricular
tachyarrhythmia (VTA) can cause immediate death to a patient. Non-life threatening
arrhythmia has no immediate threat to health and life of patient. However, it has
long term negative impact on the health of patient. One of the more common non-
life threatening arrhythmia is Atrial Fibrillation (AF). The AF increases the risk in
mortality rate, stroke, heart failure and also leads to impaired cognitive function [6].
They are three types of AF, namely paroxysmal AF (PAF), persistent AF, and chronic
AF. Patients often start with PAF and slowly evolving to persistent AF and chronic AF.

One of the popular equipment that can treat the arrhythmia is Implantable
cardioverter defibrillator (ICD) [7]. It has small form factor (2cm-3cm) and is battery-
powered device. It is implanted in the human body through clinical surgery. Its primary
function is to detect the arrhythmia and restore it back to normal rhythm by using an
electrical pulse to shock the heart muscle. It is used to treat prevalence arrhythmia such
as atrial fibrillation and ventricular tachyarrhythmia.

1.3 Problem Statement

Two major research problems are considered in this thesis. The first issue is
about the optimization of the HRV based prediction methods, and the second is about
overcoming weaknesses of existing arrhythmia prediction methods.

The block diagram in Figure 1.1 shows the overview of the classification
system that uses the HRV analysis for diagnosis. It shows stages of data acquisition,
pre-processing, HRV feature extraction, and a supervised classifier. Initially,
electrocardiogram (ECG) signal is acquired and fed to the pre-processing stage.
During the pre-processing, QRS complexes of the ECG signal are detected for HRV
quantification. The quantified HRV are also corrected and HRV sequences are
resampled to certain frequency. Then, different HRV features are extracted in feature
extraction stage. Optionally, the feature selection process is applied to select the best
HRV features that can lead to high prediction performance. Finally, the supervised
classification model is trained with extracted HRV features for disease diagnosis.

There are several research gaps regarding the feature selection algorithms,
which have been used to optimize the performance of the HRV based classification
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Figure 1.1: Simplified block diagram of HRV based classification system.

system.

The first outstanding issue in the optimization process is the parameter
values and settings in both HRV pre-processing and feature extraction stages are not
optimized (tuned) for maximum classification performance. Most previous works
based on HRV analysis simply adopt the pre-defined parameter values and settings
from other works. To maximize the discrimination capability of the extracted features,
parameters of feature extraction algorithm should be tuned for different application
and database [8]. This issue arises mainly because of the lack of automatic methods
to simultaneously tune different algorithms except either by grid search or trial
and error. For example, it is difficult to optimize both pre-processing and feature
extraction stages at the same time. Therefore, an optimization algorithm that is
able to simultaneously tune the parameters and settings in both stages for maximum
classification performance is required.

Another research issue is that feature cost is not minimized explicitly during
feature selection process. In previous works [9, 10], the main objective of the feature
selection is to optimize (select) a HRV feature subset with respect to a single objective
only. Therefore, the feature cost may be reduced but not minimized. Feature cost can
be divided into two types: feature count (number of features in the selected subset) and
measurement cost (time taken to extract all features in the selected subset). Both costs
are important factors that affect the complexity and implementation of the classification
algorithm, especially when it operates in real-time. Minimization of the measurement
cost can reduce the feature extraction time in HRV feature extraction stage while
minimizing the feature count can reduce complexity of the trained supervised classifier.

The existing HRV based works typically does not take into account the
misclassification cost. The misclassification cost can affect both classification
sensitivity and specificity rate. In medical applications, sensitivity rate is more
important than specificity rate and accuracy rate because it is the success rate in
recognizing the patient with disease. The failure to diagnose a patient has larger
negative consequences than a failure to diagnose healthy person. Therefore, it is
desired that the HRV based classification algorithms have higher sensitivity rate while
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maintaining the good accuracy rate.

Genetic algorithm (GA) is usually adopted to solve multi-objective
optimization problem. However, the simple GA, which is employed in previous related
works, is not suitable for this work because multiple-objective optimization is required.
One of the reason is that the multiple fitness functions need to be linearly combined
with different weights in simple GA. Trial and error is required to tune the weights
values in order to obtain a solution with desired performance. It is further complicated
by the need to combine different fitness functions with difference units. Moreover,
trade-off analysis between multiple fitness functions is required during the solution
selection in multiple objective optimization.

In previous works based on HRV analysis, there is a shortcoming in the feature
selection model of the GA: the possibility to select a feature that is affected by noisy
data. This issue is well known in feature selection methods based on heuristic search
such as GA. In non-HRV research works, hybrid simple GAs have been proposed to
reduce this possibility. Under this model, the statistical significance test or mutual
information (a types of correlation measures) of the feature is examined before it
is selected to form the final feature subset. This hybrid feature selection model is
integrated into the proposed optimization algorithm.

In the case of PAF onset prediction, most of the existing HRV based methods
require a 30 minutes signal duration for feature extraction in order to achieve
acceptable prediction accuracy levels (80% and above). Although there have been
some research [11, 12, 13] that investigated the use of shorter HRV signal duration
for PAF onset prediction, their prediction accuracy rates were significantly lower
than 80%, as achieved by other previous works that employed 30 minutes signal
[14, 5, 15, 16]. Long time duration of signal for feature extraction process is
not suitable when the prediction system is implemented in implantable cardioverter
defibrillator (ICD). Using the ICD to restore the PAF back to normal rhythm [17]
through electrical pulse is one of the main treatments for PAF patient. A PAF onset
predictor enable ICD to continuously predict the PAF onset, and possibly allowing it
to be terminated early.

In recent years, much research [7, 18, 19] have shown interest in addressing
the power consumption issue of the battery powered device such as ICD or similar
devices, which use the HRV analysis for real time disease diagnosis. In the case of
PAF onset prediction methods, the main concern is that long duration of signal and
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compute-intensive HRV analysis may burden the ICD battery life, and consequently
shortening its operation time. It can lead to more frequent surgery processes for battery
replacement, which can affect the health of the patient [7]. (Generally, the ICD device
is expected to operate for more than 5 years after it is implanted in the human body).
Therefore, one of the research problem in this thesis is to reduce the required HRV
signal length from 30 minutes to 5 minutes, while achieving acceptable prediction
accuracy rate. The idea of the signal length reduction is also inspired by Chesnokov
et al [20], who have suggested one of their future work is to examine the use of 5-15
minutes HRV signal for PAF onset prediction. Furthermore, HRV signal length of 5
minutes is the minimum length that can produce reliable HRV spectral features [4, 21].

1.4 Objective

The goal of this research is to propose a multi-objective GA based optimization
algorithm for application in cardiac arrhythmia prediction system that requires shorter
signal length for HRV analysis. In detail, the objectives are:

1. To propose an optimization method, based on the non-dominated sorting
genetic algorithm III (NSGA-III), that can simultaneously optimize the
parameters and settings in stages of HRV feature extraction, feature selection,
and classifier of a cardiac arrhythmia prediction system.

2. To analyze and demonstrate the effectiveness of the proposed optimization
algorithm by applying it in the prediction of the onset of cardiac arrhythmia in
two cases: (a) paroxysmal atrial fibrillation (PAF) using HRV signal duration
shorter than the typical 30 minutes, and (b) ventricular tachyarrhythmia (VTA).

1.5 Scope of Work

• HRV is the main signal in this work. It is converted from ECG signal or any
other type of source.

• This work is limited to two cardiac arrhythmia prediction problems: PAF and
VTA onset prediction.

• HRV feature extraction stage applies time domain, frequency domain, and non-
linear analyses. The classifier is based on the support vector machine (SVM)
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model. In this work, with some modification, the SVM is implemented by
using the open source library called LIBSVM.

• No new test datasets are created for the experimental work in this thesis.
Instead, standard databases are used for fair benchmarking and analysis.
They are Atrial Fibrillation Prediction Database (AFPDB) and Spontaneous
Ventricular Tachyarrhythmia Database (SVTAB).

• All algorithms are implemented in C/C++, and MATLAB is used for the
analysis of experimental works.

• During the optimization, the trade-off between multiple optimization objectives
that contradict to each other are also analyzed. The optimization objectives
include the feature count, measurement cost, prediction sensitivity, specificity
and accuracy rate.

• This research is confined to solving the HRV based arrhythmia prediction
problem, although the proposed optimization method can be used in any HRV
based research problem that uses the diagnostic system that is based on the
model shown in Figure 1.2.

Figure 1.2: Diagnostic system model in the HRV based research.

1.6 Contributions

The contributions of the thesis are

• A multi-objective optimization algorithm is proposed to improve the
performance of the HRV based prediction system. It is based on non-dominated
sort genetic algorithm III (NSGA-III), which is a state-of-the-art optimization
algorithm that employs the Pareto optimal concept. To our knowledge, it is the
first attempt to use NSGA-III in the optimization of the HRV based prediction
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system. Various modifications are proposed for the NSGA-III in order to tackle
the various optimization goals.

• By applying the proposed optimization algorithm, the shortcomings in two
arrhythmia prediction problems are overcome:

– In the PAF onset prediction, the required length of HRV signal for
the prediction is reduced by 83% from 30 minutes to 5 minutes, while
improving the accuracy rate to 89.62%. Even with stricter performance
evaluation approach, this accuracy rate is still higher than the previous
works, which cannot achieve the accuracy above 70% when using less
than 10 minutes HRV signal for prediction.

– In the VTA onset prediction, the prediction system achieves prediction
accuracy of 78.15%. It outperforms all previous works even with the
application of stricter performance evaluation.

• The improvements of the proposed optimization algorithm over existing
methods are:

– The optimization process is extended from feature selection only to
whole HRV based prediction system simultaneously, which include
HRV pre-processing, feature extraction and SVM classifier.

– The hybrid feature selection model is used to examine the quality
of the features before they are used to form the feature subset. It
increases the confidence level of the selected feature subset by reducing
the possibility to select the features that are affected by noisy data.

– A novel duplication handling algorithm that suits the hybrid selection
model is proposed to handle the duplicate chromosome issue when
adapting the NSGA-III. The end result is that the computation cost of
the optimization process is reduced by partially avoiding the redundant
evaluation of the duplicates, while the accuracy of the selected feature
subset is improved.

– The feature costs, which are represented by feature count and
measurement cost, are minimized during the feature selection.

– The optimization of the misclassification cost is taken into account.
The experimental results prove that the sensitivity rate of the prediction
system can be improved but at the expense of reduced specificity and
accuracy rate. It should be noted that the reduced accuracy rate is still
acceptable when compared to previous works.

– The optimization concept in the NSGA-III allows the HRV based
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system designer to analyze the trade-off between multiple optimization
objectives that contradict to each other. Furthermore, trial and error is
not required to tune the weight coefficients because different objectives
are not linearly combined into single composite objective.

1.7 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 summarizes the
literature reviews and comparisons of related previous works to clarify the research
rationale. Chapter 3 provides the fundamental background knowledge regarding
the research. Chapter 4 presents research methodology. Chapter 5 presents the
detail description of the HRV based arrhythmia prediction system and the proposed
optimization algorithm. Chapter 6 presents the analysis and discussion about the
verification and benchmarking of the algorithm. In the last chapter, the contribution of
the research work is summarized and the potential future works are stated.
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