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ABSTRACT

Evaluation of regression model is very much influenced by the choice of accurate 
estimation method since it can produce different conclusions from the empirical results. 
Thus, it is important to use appropriate estimation method in accordance with the type of 
statistical data. Although reliable for a single or a few outliers, standard diagnostic 
techniques from wild bootstrap fit can fail while the existing robust wild bootstrap based on 
MM-estimator is not resistant to high leverage points. The presence of high leverage points 
introduces multicollinearity while the MM-estimator is also not resistant to the presence of 
multicollinearity in the data. This research proposes new methods that deal with 
heteroscedasticity, multicollinearity, outliers and high leverage points more effectively than 
currently published methods. The proposed methods are called modified robust wild 
bootstrap, modified robust principal component (PC) with wild bootstrap and modified 
robust partial least squares (PLS) with wild bootstrap estimations. These methods are based 
on weighted procedures that incorporate generalized M-estimator (GM-estimator) with initial 
and scale estimate using S-estimator and MM-estimator. In addition, the multicollinearity 
diagnostics procedures of PC and PLS were also used together with the wild bootstrap 
sampling procedure of Wu and Liu. Empirical applications of data for national growth, 
income per capital data of the Organisation of Economic Community Development (OECD) 
countries and tobacco data were used to compare the performance between wild bootstrap, 
robust wild bootstrap, modified robust wild bootstrap, modified robust PC with wild 
bootstrap and modified robust PLS with wild bootstrap methods. A comprehensive 
simulation study evaluates the impacts of heteroscedasticity, multicollinearity outliers and 
high leverage points on numerous existing methods. A selection criterion is proposed based 
on the best model with bias and root mean squares error for the simulated data and low 
standard error for real data. Results for both real data and simulation study suggest that the 
proposed criterion is effective for modified robust wild bootstrap estimation in 
heteroscedasticity data with outliers and high leverage points. On the other hand, the 
modified robust PC with wild bootstrap estimation and modified robust PLS with wild 
bootstrap estimation is more effective in multicollinearity, heteroscedasticity, outliers and 
high leverage points. Moreover, for both methods, the modified robust sampling procedure 
of Liu based on Tukey biweight with initial and scale estimate from MM-estimator tend to 
be the best. While the best method for data with multicollinearity, heteroscedasticity, outliers 
and high leverage points is the modified robust PC with wild bootstrap estimation. This 
research shows the ability of the computationally intense method and viability of combining 
three different weighting procedures namely robust GM-estimation, wild bootstrap and 
multicollinearity diagnostic methods of PLS and PC to achieve accurate regression model. In 
conclusion, this study is able to improve parameter estimation of linear regression by 
enhancing the existing methods to consider the problem of multicollinearity, 
heteroscedasticity, outliers and high leverage points in the data set. This improvement will 
help the analyst to choose the best estimation method in order to produce the most accurate 
regression model.



ABSTRAK

Penilaian model regresi sangat dipengaruhi oleh pilihan kaedah anggaran tepat 
kerana ia boleh menghasilkan kesimpulan yang berbeza dari hasil empirikal. Oleh itu, adalah 
penting untuk menggunakan kaedah yang sesuai mengikut jenis data statistik. Walaupun ia 
boleh dipercayai bagi satu atau beberapa titik terpencil, teknik diagnostik piawai dari 
cangkuk liar boleh gagal manakala teknik cangkuk liar teguh berdasarkan penganggar MM 
yang sedia ada juga tidak mempunyai daya tahan terhadap titik leveraj yang tinggi. 
Tambahan pula, kehadiran titik leveraj yang tinggi akan mewujudkan kolinearan berganda 
dan penganggar MM juga tidak mempunyai daya tahan untuk menangani kewujudan 
kolinearan berganda dalam data. Kajian ini mencadangkan kaedah barn yang menangani 
heteroskedastisiti, kolinearan berganda, titik terpencil dan titik leveraj yang tinggi dengan 
lebih berkesan berbanding dengan kaedah terkini yang pemah diterbitkan. Kaedah yang 
dicadangkan dipanggil sebagai penganggar cangkuk liar teguh terubahsuai, komponen utama 
(PC) teguh terubahsuai dengan cangkuk liar dan kuasa dua terkecil separa (PLS) teguh 
terubahsuai dengan cangkuk liar. Kaedah-kaedah ini adalah berdasarkan kepada prosedur 
wajaran yang menggabungkan penganggar M (penganggar GM) terubahsuai dengan 
anggaran awal dan skala menggunakan penganggar S dan penganggar MM. Di samping itu, 
prosedur diagnostik kolinearan berganda PC dan PLS juga digunakan hersama-sama 
dengan prosedur persampelan cangkuk liar Wu dan Liu. Penggunaan empirikal bagi data 
pertumbuhan negara, pendapatan perkapita bagi data negara-negara Organisasi 
Pembangunan Ekonomi Masyarakat (OECD) dan data tembakau telah digunakan untuk 
membanding prestasi antara cangkuk liar, cangkuk liar teguh, cangkuk liar teguh 
terubahsuai, PC teguh terubahsuai dengan cangkuk liar dan PLS teguh terubahsuai dengan 
kaedah cangkuk liar. Satu kajian simulasi yang menyeluruh dilakukan untuk menilai kesan 
heteroskedastisiti, kolinearan berganda, titik terpencil dan titik leveraj terhadap kaedah yang 
ada pada masa kini. Satu kriteria pemilihan telah dicadangkan berdasarkan model terbaik 
dengan nilai pincang dan ralat punca min kuasa dua yang terkecil bagi data simulasi dan ralat 
piawai terkecil bagi data sebenar. Keputusan bagi kedua-dua data sebenar dan simulasi 
menunjukkan bahawa kriteria yang dicadangkan itu adalah berkesan untuk anggaran 
cangkuk liar teguh terubahsuai dalam data heteroskedastisiti bersama titik terpencil dan titik 
leveraj. Sebaliknya, anggaran PC teguh terubahsuai dengan cangkuk liar dan anggaran PLS 
teguh terubahsuai dengan cangkuk liar adalah lebih berkesan dalam kolinearan berganda, 
heteroskedastisiti, titik terpencil dan titik leveraj tinggi. Tambahan pula, bagi kedua-dua 
kaedah, prosedur persampelan teguh terubahsuai Liu yang berdasarkan Tukey biweight 
dengan anggaran awal dan skala dari penganggar MM cenderung untuk menjadi yang 
terbaik. Manakala kaedah terbaik untuk data mengandungi kolinearan berganda, 
heteroskedastisiti, titik terpencil dan titik leveraj tertinggi adalah PC teguh terubahsuai 
dengan anggaran cangkuk liar. Kajian ini menunjukkan kebolehan kaedah pengiraan intensif 
dan daya maju menggabungkan tiga prosedur pemberat yang berbeza iaitu penganggar GM 
teguh, cangkuk liar dan kaedah diagnostik kolinearan berganda PLS dan PC untuk mencapai 
model regresi tepat. Kesimpulannya, kajian ini dapat meningkatkan anggaran parameter 
regresi linear dengan meningkatkan kaedah sedia ada untuk mengambil kira masalah 
kolinearan berganda, heteroscdastisiti, titik terpencil dan titik leveraj tinggi dalam set data. 
Peningkatan ini akan membantu penganalisis untuk memilih kaedah anggaran yang terbaik 
untuk menghasilkan model regresi yang paling tepat.
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CHAPTER 1

INTRODUCTION

This chapter is aimed at introducing the significance of this research. The 
research background will be described in Section 1.1 followed by Section 1.2 which 
discussed the statement of the problem. The research objective is presented in Section
1.3. In the proceeding section, it present the scope of the study. Section 1.5 and Section
1.6 will present thesis organization and the significance of the research respectively.

1.1 Research Background

The common objective in statistics is to identify an appropriate transformation 
idea from a sample to relate a dependent variable to a set of independent variables. 
Linear regression is the customary method used to mathematically model a dependent 
variable as a function of the independent variables. The term regression analysis 
is a statistical technique used in all fields of engineering, science, and management 
that require fitting a model to sets of data. There are several methods available 
in the literature to estimate the parameter in regression model. The ordinary least 
squares (OLS) method is the most popular method in statistics application because of 
its optimal properties and ease of computation. The OLS estimator was discovered 
independently by Gauss in 1795 and Legendre in 1805 which minimizes the sum 
of the squared distances for all points from the actual observation to the regression 
surface. From the theorem of Gauss-Markov, OLS is always the best linear unbiased 
estimator (BLUE). The word BLUE means that among all unbiased estimators, OLS 
has the minimum variance. If the error e is assumed to be normally, independently 
distributed with mean 0 and variance a21, least squares is considered as the uniformly 
minimum variance unbiased estimator. The assumption of constant variance is one 
of the basic requirements of regression model. Under this assumption, inference 
procedures such as hypothesis tests, confidence intervals, and prediction intervals are
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powerful. However, if the error term e is not normally distributed, then the OLS 
parameter estimates and inferences can be flawed. A common reason for the violation 
of this assumption is for the response variable to follow a probability distribution in 
which the variance is functionally related to the mean Wisnowski et al. (2003). This 
condition is known as heteroscedasticity and can also have detrimental effects on the 
OLS estimates of the coefficients.

However, real data like economic, engineering, sciences and medical data, 
usually does not completely satisfy the assumptions often made by researchers which 
result in a dramatic effect on the quality of statistical analysis. In the presence of 
of heteroscedasticity, the OLS estimator will remain unbiased. However, the most 
harmful consequence of heteroscedasticity would be the parameter covariance matrix 
(CM) of the OLS. As a result, the elements in the diagonal matrix that are utilized to 
estimate the standard errors of the regression coefficient become biased and unreliable. 
In addition, the t-tests for individual coefficients are generally too liberal or too 
conservative depending on the form of heteroscedasticity and bias in the confidence 
intervals. Consequently, the OLS estimator is no longer BLUE (Midi et al., 2009a). 
There are several methods proposed in the literature to address the heteroscedasticity 
problem Rana et al. (2012), Midi et al. (2009c), Cribari-Neto and Ferrari (1995),, Liu 
et al. (1988),Wu (1986) and White (1980a). However, another challenging assumption 
that invalidates the OLS estimator is when assumption of independence between the 
explanatory variables is violated, thus bringing about the existance of Multicollinearity. 
Multicollinearity is a situation in which a set of data have two or more regressor 
variables that are redundant and contain similar information. The linear dependencies 
among the regressors can affect the model ability to estimate regression coefficients. 
The violation of independence assumption usually occurs right from the method of 
data collection. This situation can occur when the researchers only sample subspace 
of the region for regressor variables, or the model constraints in the population being 
sampled, which can also cause multicollinearity problems.

The redundant information describe what the regressor variable explains about 
the response variable, which is exactly the same as what the other regressor variable 
explains. In such situation, the two or more redundant regressor variables would be 
completely unreliable since the coefficient would measure the same effect of those 
regressor variables. The major problem that may greatly influence the estimate of 
regression model is when there is correlation between the regressor variables which is 
defined as multicollinearity. However, the problems of multicollinearity in regression 
model is that the variances of the parameter estimates become very large which resulted
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from producing wrong sign of the parameter estimate. In addition, the standard error of 
the estimate becomes inflated and unstable Rai et al. (2013). Although in the presence 
of multicollinearity, the OLS estimator still remains unbiased, its estimates become 
inefficient Midi et al. (2010). There is now evidence that multicollinearity problems 
have a great impact on regression model. Violation of the NID distribution of the 
error term can occur when there are one or more outliers or extreme outliers in the 
X-direction (high leverage outliers) in the data set. Multicollinearity problems are 
very common in the areas of medical, economics and management. The principal 
component analysis regression (PCR) and partial least squares regression (PLSR) 
methods, which are commonly used, become unreliable in the presence of outliers. 
The methods of PCR and PLSR are based on OLS method and thus outliers may affect 
the PCR and PLSR model Candes et al. (2011). The identification of multicollinearity 
and its remedial measures have been discussed by many standard books and a number 
of articles Phatak and De Jong (1997), Maitra and Yan (2008), Hubert and Branden 
(2003), and Ahmad et al. (2006).

The challenge of having outliers in the data set is another focus that this thesis 
is going to emphasize. Outliers, is one of the earliest statistical interests, since nearly 
all data sets contain outliers of varying percentages, and it continues to be one of the 
most important issues in regression analysis. Sometimes outliers can grossly distort 
the statistical analysis, at other times their influence may not be as noticeable. An 
outlier is an observation that is inconsistent with the remainder of the data and it is 
not unusual to see an average of 10% outliers in data sets for some processes Leroy 
and Rousseeuw (1987), Shevlyakov and Vilchevski (2001), Barnett and Lewis (1994) 
and Hampel et al. (1986). Some of the sources of outliers are errors in data entry 
or measurement, the inadvertent inclusion of an observation from another population 
or a plausible event. Outliers can also be due to genuine long tailed distributions. 
Outliers can be found in the response variable (y-variable) or the regressor variables (x- 
variables). Regardless of the origin, the outliers with respect to the regressor variables 
are referred to as a leverage outliers. In this thesis, two outliers ie. high leverage 
outliers and residuals outliers, would both be referred to as outliers. According to Midi 
et al. (2010), high leverage outliers may decrease or increase multicollinearity problem 
of a collinear data matrix X . A single sufficiently outlying observation in a data set 
can render least squares estimation approach inappropriate. Alma (2011) points out 
that the effect of these outlying observations both in the direction of the response and 
regressor variables to the regression model is that they have a strong adverse effect 
on the estimates and sometimes may remain unnoticed. In practice there are certain 
situations in which the outliers cannot be seen. But as described by Hampel et al.
(1986), Leroy and Rousseeuw (1987) and Shevlyakov and Vilchevski (2001) the OLS
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estimator will perform poorly when there are multiple outliers in the data or gross 
error in the y-direction. This situation as described by Huber and Ronchetti (2009) 
,Hadi (1992) and Rousseeuw and van Zomeren (1991) is usually as a result of masking 
and swamping problems. In swamping problem, the clean observations are considered 
as outliers Barnett and Lewis (1984). Conversely, in masking problem, the outliers are 
identified as clean data points.

There have been a number of literature in recent years developing the theory 
and practice of robust regression estimators and some have been successfully used in 
practice, but the results obtained still need to be improved. Typically, these estimators 
require significant computational resources because of nonlinear solutions or the 
requirement to search numerous subsets of the data to satisfy a constrained objective 
function. Outliers diagnostic methods and its remedial measures have been discussed 
in many standard books and articles. Rosseeuw and Yohai (1984), Kafadar and Morris
(2002) and Tukey and Tukey (1988). The behavior of statistical data set make it very 
important for the researchers to identify the efficiency of an estimator in evaluating 
the precision of an estimated regression coefficient. In regression model, bootstrap 
techniques is applied when dealing with data designs that have limited experimental 
unit or sample size such as life human subjects. Other than that, it helps to approximate 
the distribution of the coefficients and the distribution of the prediction errors when the 
regressors are data Stine (1985) or random variable McCullough (1996). The situation 
of the regression model structure will differ and the Bootstrap estimate produces sub- 
optimal or even wrong inferential statement with inaccurate forecasting. The most 
common approach to this situation is the wild bootstrap technique. However, different 
wild bootstrap have been proposed in literature Wu (1986) and Liu et al. (1988). 
According to Rana et al. (2012), the existing wild bootstrap methods are computed 
based on OLS method and can be duly affected in the presence of outliers. The most 
often used robust wild bootstrap with high-breakdown estimator and high efficient is 
the MM-estimator introduced by Yohai (1987).

However, the robust wild bootstrap methods developed to this level have 
weaknesses under certain outlier scenarios or in the presence of multicollinearity. 
The problem with these robust wild bootstrap of MM-estimator is that they can 
fail if the outliers have extreme values in the regressor variables high leverage 
outliers) in the data. In addition, in the presence of multicollinearity, the robust wild 
bootstrap methods will produce sub-optimal solution. This study attemps to solve this 
problems by introducing a parameter estimation methods that is able to simultaneously 
estimate regression model in a situation when residual outliers, high leverage points
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and heteroscedasticity error variance are presence. Moreover, in the presence of 
multicollinearity, residual outliers, high leverage points and heteroscedasticity error 
variance in data set. The ability of a robust estimator to accommodate high 
leverage points is called bounded-influence estimators. On the other hand, the 
most pronouns diagnostics measures of multicollinearity problems, is the principal 
component analysis (PCA) and partial least squares (PLS) approaches. However, 
different classes of robust regression that are bounded-influence estimators has been 
proposed that simultaneously achieve all the three properties of robust estimation 
Krasker and Welsch (1982), Staudte and Sheather (1990), Simpson and Montgomery
(1998) and Thomas (1997). One of these bounded influence estimator is the GM- 
estimators introduced by Krasker and Welsch (1982) and modified by Midi et al. 
(2010) to overcome the limitation of GM-estimators. However, different researchers 
use the objective function of Krasker and Welsch (1982) which down weights outliers 
with high leverage points only if the corresponding residual is large Samkar and Alpu 
(2010). These GM-estimators have the potential not only to identify a wide range of 
multiple outliers, but also to accommodate them in a model.

Many of the existing robust estimators that are bounded-influence which can be 
easily combined with wild bootstrap estimators, using the multicollinearity diagnostic 
measures of PC and PLS approach. The GM-estimator used in this research was 
modified in pattern of modified GM-estimator approach of Midi et al. (2010) which 
was based on the initial S-estimator introduced by Rosseeuw and Yohai (1984). The 
modified GM-estimator of Walker (1984) based on the initial and scale estimate of S- 
estimator and the MM-estimator of Yohai (1987) were also used by Samkar and Alpu 
(2010) to estimate the parameter of the model. The approach of Samkar and Alpu
(2010) was also adopted in this research to estimate the parameters of the regression 
model. Application of modified robust GM-estimator wild bootstrapping method and 
multicollinearity diagnostic method of PC and PLS can provide stable coefficients 
estimates with computational ease. The goal of this thesis is to estimate the parameter 
of regression model in the presence of residual outliers, high leverage point and 
heteroscedasticity error variance. Moreover, this research estimate the parameter of 
regression model in the presence of multicollinearity, residuals outliers, high leverage 
point and heteroscedasticity error variance. However, from now on, in this thesis, the 
modified GM-estimator based on Krasker and Welsch (1982) is considered as modified 
robust wild bootstrap based on GM-estimator, modified robust wild bootstrap with PC 
based on GM and modified robust wild bootstrap with PC based on GM-estimator 
respectively.
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1.2 Statement of Problem

Generally, difficulties may arise usually when researchers try to apply 
appropriate regression estimation techniques to estimate the regression coefficient. 
The traditional view is that the ordinary least squares (OLS) method estimation is 
robust to deviations from the assumptions of normality and thus discourage users from 
applying other methods. Literature have shown that the regression model diagnostics 
procedure produced a wrong regression fit due to the presence of residual outliers. 
The researchers have not often been able to properly fit the regression model as the 
literature of robust estimation method for parameter estimation of regression model 
in the presence of residual outliers are very limited. Presence of residual outliers is 
the most common situation in statistical data. The frequent increases of observational 
data with numerous residual outliers make it necessary to introduce other techniques of 
robust estimation methods that will handle the problems of residual outliers According 
to Hampel et al. (1986), the sources of residual outliers are errors in data entry or 
measurement and about 1-10% of every routine data set are residual outliers. The 
presence of residual outliers can result in producing invalid inferential statement, the 
residual outliers outliers diagnostic for linear regression model is vital in regression 
analysis. Some outliers diagnostic have been proposed in the literature. However it is 
suspect that they may not perform well in the presence of high leverage points.

This problem has inspired the development of a new robust method for 
residuals outliers diagnostic that is resistant to high leverage point called outliers. 
However, the situation becomes worse when there is heteroscedasticity in the data. 
Presence of residual outliers and high leverage point together with heteroscedasticity 
will invalidate the model parameter by producing wrong statistical inferences. Not 
many works have been developed which focused on the issues when residual outliers, 
high leverage points and heteroscedasticity occur at the same time. Therefore there 
is a need to develop a new robust method for linear regression which is resistant to 
residual outliers, high leverage points, and heteroscedasticity errors. However, the 
situation becomes more complex when high leverage points, and multicollinearity 
occur simultaneously with heteroscedasticity in the data. In this regard, it is important 
to investigate their impact on linear regression model. Based on our knowledge, 
regression model with heteroscedasticity errors in the presence of residual outliers 
and high leverage points and heteroscedasticity errors in the presence of outliers, high 
leverage point, and multicollinearity were not given much attention in the literature. 
Thus, that is the reasons why this research is of interest and the contribution will be 
very significant in the field of statistics. The problems mentioned above present a
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challenging to the regression user. On the one hand, extra effort is often required 
to get the appropriate methods that will handle these problems in order to obtain 
better parameter estimates. In this thesis the wild bootstrap techniques proposed by 
Wu (1986) and Liu et al. (1988) which are efficient both under homoscedasticity and 
heteroscedasticity of unknown form will be used to estimate the model parameter. But 
these wild bootstrap methods are based on OLS and hence the estimator can be affected 
in the presence of outliers. Under this scenario the robust wild bootstrap methods 
which are resistant to outliers is introduced. The robust wild bootstrap methods 
introduce by Rana et al. (2012) are based on MM-estimator and our investigation 
revealed that the robust wild bootstrap techniques are resistant to presence of residuals 
outliers but not resistant to leverage points, Simpson (1995a). These motivate the 
introduction of a new robust wild robust bootstrap technique that is not sensitive to 
high leverage points. Based on this understanding of the limitation of robust wild 
bootstrap methods, the GM-estimator .which was described by Wilcox Rand (2005) 
and Andersen (2008) as highly efficient and bounded influence estimator will be 
consider in this study. The GM-estimator will be applied in two different techniques. 
The first technique involves the GM-estimator based on the initial estimate of high 
efficient and high break down point of MM-estimators. While the second technique 
involve the GM-estimator based on the initial estimate of high efficient and high break 
down point of S-estimator. Moreover, the robust wild bootstrap techniques are resistant 
to residuals outliers and heteroscedasticity but not resistant to multicollinearity. This 
is another challenge faced by the robust wild bootstrap and no work in the literature 
addresses the combined problems of multicollinearity and heteroscedasticity in the 
presence of residuals outliers and high leverage points using the wild bootstrap 
approach. The multicollinearity diagnostic method of PC and PLS with a bounded 
influence GM-estimator which was introduced by Krasker and Welsch (1982) will be 
explored.

1.3 Research objectives

1. To standardize three weighting procedures of Tukey bisquare, Huber and 
Andrews sin weighted function that will provides same efficient and rejection 
point which will be used for comparisons of the proposed methods in multiple 
linear regression model.

2. To develop two alternative robust wild bootstrap estimation techniques for 
multiple linear regression model that will include residual outliers, high leverage 
points and heteroscedastic error variance. The first method will be achieved by
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combining GM-estimator of Krasker and Welsch (1982) with initial estimate 
of MM-estimator and wild bootstrap of Wu’s and Liu’s with three different 
weighting procedures, while the second method is by substituting the initial 
estimate of S-estimator.

3. To propose new approaches of modified robust wild bootstrap estimation
techniques for multiple linear regression model in the presence of residual 
outliers, high leverage points and heteroscedastic error variance with three 
different weighting procedures and then compared it with the existing methods.

4. To formulate a new modified robust wild bootstrap method for multiple linear
regression model with principal component and partial least squares procedures 
for handling the multicollinearity problem in the presence of residual outliers, 
high leverage points and heteroscedasticity error with different weighting 
procedures.

5. To compare the performance of modified robust wild bootstrap estimation
techniques based on principal component and modified robust wild bootstrap 
estimation techniques based on partial least squares approach for handling the 
multicollinearity problem in the presence of residual outliers, high leverage 
points and heteroscedasticity error.

This study aims at developing a robust regression methods that can remedy the 
situation for the violation of homoscedasticity and uncorrelation assumption of linear 
regression model in the presence of residual outliers and high leverage points. There 
are five primary objectives that address the research problem.

1.4 The Scope of the study

This research focuses on the robust estimation techniques, wild bootstrap, 
residual outliers, high leverage points, multicollinearity and heteroscedasticity in 
regression model, performance of the published techniques and also those proposed 
in this research. The selection of the techniques are limited to those that are 
promising and often referred to and those that performed well in the literature. 
For this research, the diagnostics procedures of residuals outliers, high leverage 
points, homoscedasticity, multicollinearity and heteroscedasticity identification will 
be given more emphasis. The robust estimation techniques, wild bootstrap method and 
multicollinearity diagnostics measures with three different weighting procedures are 
limited to multiple linear regression models. The nonlinear regression and generalized
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linear models are not considered, although, many of the concepts explored in this 
research can be easily extended to those classes of models. Real data and simulation 
studies are the primary tool used to accomplish the objectives outlined in Section
1.3. In most cases, the simulation studies are set up as design instruments to gain 
the maximum performance of each estimation method. In this thesis, there are enough 
replicates for the wild bootstrap procedures to get a clear indication of the performance 
of each estimator. The simulation study of 2, 5 and 10 covariance variables will be 
used to generate the random sample that will be used to measure the performance of 
the existing and proposed methods. Different levels of heteroscedasticity, percentage 
of residual outliers, high leverage points, and degree of multicollinearity are also 
generated from the simulation procedures. The real data containing relevant problems 
in different fields is used to illustrate the advantages of the proposed methods 
developed in this thesis. The performance measures of each estimator were done based 
on their bias and root mean squares error.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 1 briefly provides an overview 
of homoscedasticity, heteroscedasticity, multicollinearity, residual outliers and high 
leverage points in regression analysis and the need of bounded influence of GM- 
estimator methods Krasker and Welsch (1982), principal component analysis, partial 
least squares and robust wild bootstrap. The classical bootstrap, wild bootstrap 
and ordinary least squares are discussed and research objectives are well defined. 
The scope is discussed in detail. The research contribution is stated at the end of 
this chapter. Chapter 2 highlighted the literature review on the significant impact 
of multiple regression, violation of assumption of constant variance, violation of 
assumption of independent, residual outliers, high leverage points, robust estimation 
methods, redescent M-estimation weighted function and the sampling procedure of 
wild bootstrap estimation methods of Wu’s and Liu’s. In Chapter 3, the strengths 
and limitation of these methods are discussed. The proposed modified robust wild 
bootstrap, modified robust PC with wild bootstrap and modified robust PLS with 
wild bootstrap methods using three different weight are also introduced in Chapter 3. 
Chapter 4 discussed the application of three different weighting procedures of modified 
robust wild bootstrap based on S-estimators and modified robust wild bootstrap based 
on MM-estimator. Chapter 4, also discussed the application of modified robust PC 
and PLS with wild bootstrap based on S-estimators and modified robust PC and PLS 
with wild bootstrap based on MM-estimators. The application of the existing robust
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wild bootstrap based on MM-estimators and wild bootstrap based on OLS estimator 
procedure are also presented in Chapter 4. Chapter 4 also contains the numerical 
comparisons that characterized the performance between the proposed methods and 
the existing methods. In order to rigorously describe the performance of the proposed 
methods with different weighting procedures, in Chapter 5, the performance of 
modified robust wild bootstrap methods and modified robust wild bootstrap of PC and 
PLS methods will be compared. The comparative analysis will be performed with wild 
bootstrap based on the OLS and the robust wild bootstrap methods of MM-estimator 
based on Wu’s and Liu’s using the case study. The conclusion of the research findings, 
discussion and recommendations of additional improvement for future research are 
done in Chapter 6.

1.6 Significance of the study

The wild bootstrap and robust wild bootstrap will provide the model that 
will produce the best parameter estimate of regression model. Existing wild 
bootstrap and Robust wild bootstrap handle the problems of heteroscedasticity and 
heteroscedasticity with residual outliers. The robust wild bootstrap of Generalize 
M-estimators (GM-estimators) which could conduct a simultaneous assessment 
on heteroscedasticity, residual outliers and high leverage points, as well as 
heteroscedasticity, multicollinearity, residual outliers and high leverage points, will 
cause such critical decision and conclusion be made with more precision and 
confidence. Previous studies showed that existing heteroscedasticity and outliers 
measures have their strengths and weaknesses. Most of the existing wild bootstrap 
method only focus on the problems of heteroscedasticity or heteroscedasticity with 
outliers. Thus, they are limited to one or two problems in the data sets. In contrast 
this study addresses three and four problems in the data sets. The behavior of each 
estimator was examined using simulation study, real data and modified real data. This 
could provide some guidelines so that researchers would be more conscious of which 
estimator or procedure to used especially when it involves parameter estimation in 
the presence of heteroscedasticity, residuals outliers and leverage points, or when 
heteroscedasticity, multicollinearity, residuals outliers and high leverage points, are 
present. It has been revealed that economic data usually contain heteroscedasticity, 
residual outliers and leverage points. Thus economic data will be used to illustrate 
the advantage of using the proposed methods. In this research, medical data is 
also used as most contains heteroscedasticity, multicollinearity, residual outliers and 
high leverage points, This data described the annual rates for varieties of domestic
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cigarettes according to their tar, nicotine, and carbon monoxide content. The main 
difference between this data and the previous data is the presence of multicollinearity. 
The efficiency of the model in the presence of heteroscedasticity, multicollinearity, 
residual outliers and high leverage points, is examined through comparative study. This 
will provide another beneficial guideline in deciding whether a particular estimation 
method is appropriate to be applied in parameter estimation of regression model 
whenever the historical data contains heteroscedasticity, multicollinearity, residual 
outliers and high leverage points.

This research attempts to fill this gap by examining whether the proposed 
methods in the presence of heteroscedasticity, residuals outlier and high leverage 
points measures such as RWGMBWu, and RWGMBLiu, can produce better 
parameter estimation of regression models. The proposed methods are based on the 
initial estimate of MM-estimator approach and the initial estimate of S-estimator 
techniques. Moreover, this research also examine the proposed methods in the 
presence of multicollinearity, heteroscedasticity, residual outliers and high leverage 
points, measures that include RPCGMBWu, RPCGMBLiu, RPLSGMBWu, and 
RPLSGMBLiu methods. The proposed methods are also based on two approaches. 
The first approach is GM-estimator Krasker and Welsch (1982) based on the initial 
estimate of MM-estimator and the second is GM-estimator based on the initial 
estimate of S-estimator. The approaches are expected to produce better parameter 
estimation of regression models. The existing methods considered for comparison 
are BootWu, BootLiu, RBootWu and RBootLiu. Simulation study is very important 
in order to identify the situation where the proposed methods performed best. 
However, according to Rana et al. (2012) the existing heteroscedasticity measures 
are based on OLS, so he introduced the robust heteroscedasticity measures which 
are resistant to heteroscedasticity and residual outliers. In contrast, the data in this 
research contains heteroscedasticity, residual outliers and high leverage points, as 
well as heteroscedasticity, multicollinearity, residual outliers and high leverage points. 
Moreover, the best model was also assessed through different measurement criteria, 
specifically in terms of bias and root mean squares errors (RMSE). Thus, it may 
provide a better conclusion in finding the most appropriate estimation method to 
estimate the economic and medical data. In the future, this proposed robust wild 
bootstrap method can be applied to other areas of research that contain data of such 
situations. Hence, it could establish a direction in research on linear regression model.
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