
        

Citation for published version:
Martinez Hernandez, U, Cedeno-Campos, V & Rubio-Solis, A 2019, Active visual object exploration and
recognition with an unmanned aerial vehicle. in International Joint Conference on Neural Networks (IJCNN).,
8851738, Proceedings of the International Joint Conference on Neural Networks, vol. 2019-July, IEEE, U. S. A.
https://doi.org/10.1109/IJCNN.2019.8851738

DOI:
10.1109/IJCNN.2019.8851738

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Nov. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/237151384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/IJCNN.2019.8851738
https://doi.org/10.1109/IJCNN.2019.8851738
https://researchportal.bath.ac.uk/en/publications/active-visual-object-exploration-and-recognition-with-an-unmanned-aerial-vehicle(0f3407cf-ffde-4555-9070-286027cb634c).html


Active visual object exploration and recognition
with an unmanned aerial vehicle

Uriel Martinez-Hernandez
EEE Department

University of Bath, Bath, UK
u.martinez@bath.ac.uk

Victor Cedeno-Campos
MEng Department

University of Sheffield, Sheffield, UK
v.cedeno-campos@sheffield.ac.uk

Adrian Rubio-Solis
ACSE Department

University of Sheffield, Sheffield, UK
a.rubiosolis@sheffield.ac.uk

Abstract—In this paper, an active control method for visual ob-
ject exploration and recognition with an unmanned aerial vehicle
is presented. This work uses a convolutional neural network for
visual object recognition, where input images are obtained with
an unmanned aerial vehicle from multiple objects. The object
recognition task is an iterative process actively controlled by a
saliency map module, which extracts interesting object regions
for exploration. The active control allows the unmanned aerial
vehicle to autonomously explore better object regions to improve
the recognition accuracy. The iterative exploration task stops
when the probability from the convolutional neural network
exceeds a decision threshold. The active control is validated
with offline and real-time experiments for visual exploration and
recognition of five objects. Furthermore, passive exploration is
also tested for performance comparison. Experiments show that
the unmanned aerial vehicle is capable to autonomously explore
interesting object regions. Results also show an improvement
in recognition accuracy from 88.14% to 95.66% for passive
and active exploration, respectively. Overall, this work offers a
framework to allow robots to autonomously decide where to move
and look next, to improve the performance during a visual object
exploration and recognition task.

I. INTRODUCTION

Aerial robotics has shown a rapid progress in the last
decade, mainly due to technological advances in unmanned
aerial vehicles (UAVs). Maneuverability, lightweight, low cost,
high efficiency and robust control are some characteristic that
have made UAVs attractive for research in many areas of
robotics [1], [2]. Applications for human-robot interaction,
surveillance, aerial recording, search and rescue, exploration
and manipulation in hazardous environments have received
special attention from researchers [3], [4], [5].

Machine learning has played a key role for the development
of intelligent robots. Particularly, probabilistic methods have
shown to be robust for exploration and decision-making with
multimodal sensors and robot platforms [6], [7], [8]. Deep
learning techniques have also shown their potential for high
accuracy in data analysis and scalability in robotics compared
to the performance from traditional numerical methods [9],
[10], [11]. Specially, convolutional neural networks (CNNs)
have become popular, in recent years, for applications in
image classification, speech and object recognition in real-time
environments [12], [13], [14], [15], [16].

In this work, an active control approach for object ex-
ploration and recognition with a UAV robot is presented
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Fig. 1. Active control framework for visual object exploration and recognition
with a UAV. Input images are preprocessed and analysed by a CNN and
saliency map models. Interesting regions for object exploration and recogni-
tion are represented by white colour circles.

(Figure 1). First, a CNN module is used for object recognition
with input images obtained by the robotic platform. Input
images are preprocessed to segment the object to be explored.
Second, a saliency map module is used to extract interesting
object regions for active exploration and improvement of
the recognition accuracy. The active exploration of relevant
object regions is iteratively performed by the UAV until the
recognition accuracy from the CNN exceeds a threshold. This
process mimics the capability of the human visual system for
continuously analysing images, while changing the points of
visual fixation according to relevant information [17]. Thus,
the fixation point from the UAV camera is autonomously
and actively moved to extract better object information for
recognition. This bioinspired exploration capability has also
been studied using multimodal sensors and robotic platforms
for multiple tasks [18], [19], [20], [21], [22], [23].

Validation of this work is performed with visual object
recognition tasks in offline and real-time modes. Image data
for all experiments are collected with the UAV Bebop robot
(Figure 1). This robot performs the recognition of five objects
while actively moving and visually exploring relevant object
regions. For comparison of recognition accuracy, a passive ex-
ploration method is also used by the UAV robot. Experiments
show the capability of the robot to autonomously move during
the object exploration task to improve the accuracy. Results
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Fig. 2. Objects used for data collection, feature learning and classification with CNN and saliency map models. These objects are also employed for exploration
and recognition with a UAV robot.

also show that the UAV with active exploration achieves
an accuracy of 95.66%, which improves over the 88.14%
accuracy with passive exploration. Overall, the active control
method has the potential to develop robots capable to make
autonomous decisions, about where to move and look next,
for exploration and recognition tasks.

II. METHODS

A. Robotic platform
In this work, the UAV Bebop was used for data collection

and all experiments. This UAV robot is a lightweight quad-
copter with a 856 × 480 pixels fish-eye camera and 3-axes
image stabilization. The UAV transmits the live video stream
of its front facing camera and pose information to a central
computer over WiFi. The central computer runs the core
software components of the proposed active control method
for object exploration and recognition. Similarly, feedback and
control commands are sent over the same WiFi link to the
UAV. Figure 1 shows an example of the UAV robot while
collecting an image for object recognition.

B. Data collection and preprocessing
For training the proposed method for visual object explo-

ration and recognition, multiple datasets were collected with
the camera of the UAV robot. For the data collection process,
the UAV was placed at random locations closed to the objects
used for exploration while flying. In total, 10,000 images
with a resolution of 856 × 480 pixels were collected from a
pen, box, circle, rectangle and mug (Figure 2). The collected
datasets were split into training (7,000 images) and testing
(3,000 images) for training and validation of the proposed
method for active exploration.

The images collected with the UAV robot were preprocessed
to remove the background. This segmentation process was
carried out using OpenCV built-in functions. Figure 3 shows
the original image from the mug, captured by the UAV, and
the output image from the segmentation process. The object
recognition module, implemented in the proposed active explo-
ration method, was trained and validated using the segmented
images. The object recognition process is described in the
following Section II-C.

C. Active object exploration and recognition

1) Object recognition with CNN: Convolutional Neural
Networks (CNN) have shown their potential for speech recog-
nition and image classification [11], [24], [25], [26], [27].
In this work, a CNN is developed and applied to object
exploration with UAV robot. The proposed CNN architecture
is shown in Figure 4. The first layer uses 32 kernels of 5
× 5 and 3 × 3 sizes for convolution and max-pooling. The
second layer uses 16 kernels of 3 × 3 and 3 × 3 sizes for
convolution and max-pooling. The features obtained from the
second layer are vectorised by the flatten and fully connected
layer. Then, the softmax layer estimates the probability of
the current object visually explored by the UAV robot. The
CNN receives preprocessed images, of size 856 × 460, from 5
different objects collected with the UAV camera (see Figure 3).
The output map from each convolutional layer in the CNN is
obtained as follows:

xlij = bj +

m−1∑
a=0

m−1∑
b=0

kab ∗ yl−1
(i+a)(j+b) (1)

where xlij is the output of the l convolutional layer of the j-
th feature map on the i-th unit. The operator * denotes the
convolution between the m×m kernel kab and the nonlinear
output yl−1

(i+a)(j+b) from the convolutional layer l−1. The bias
is represented by bj . The nonlinear function σ is applied to
the output from Equation (1) as follows:
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Fig. 3. Object segmentation for exploration and recognition performed with
OpenCV built-in functions. The left-hand side shows the original image,
captured by the camera of the UAV robot. The right-hand side shows the
resulting image from the segmentation process.
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Fig. 4. Convolutional neural network for visual object recognition. This process uses a CNN model composed of 1) an input data module with images from
the UAV robot, 2) a feature learning module with two convolutional and max-pooling layers and 3) a classification module with fully connected and softmax
layers. The probability, from the classification layer, is used by the active exploration module to decide whether the robot needs to actively explore more
interesting object regions, based on the saliency map module, in order to achieve a better recognition accuracy.

ylij = σ(xlij) (2)

where ylij is the nonlinear output from the l convolutional
layer and σ is the hyperbolic tangent function tanh. A down-
sampling process, for dimensionality reduction, is performed
with a max-pooling layer after each convolutional layer. This
process takes a u × u region (3 × 3 size for our proposed
CNN architecture) and outputs the maximum value from that
region as follows:

ylij = max
u×u

(yl−1
ij ) (3)

where ylij contains the maximum values from the nonlinear
output yl−1

ij from the previous layer. The process performed by
the convolutional and max-pooling layers is known as feature
learning, and its output from the second layer of the CNN are
connected to a 1-dimensional feature vector yc. This vector is
used by a softmax function for classification, as follows:

P (c|y) =
ey

Twc∑N
n=1 e

yTwn

(4)

saliency map

(OpenCV)

segmented image saliency map

Fig. 5. Saliency map genrated from the segmented image. The saliency map is
used to actively control the UAV during the object exploration and recognition
task. In this work, the spectral residual saliency map algorithm was employed
with OpenCV built-in functions.

ĉ = arg max
c

P (c|y) (5)

where P (c|y) contains the probabilities for all object classes
(pen, box, circle, rectangle and mug), given the sample vector
y. The parameters w and N represent the weight vector
and total number of classes, respectively. In Equation (5),
the recognition of the current object, ĉ, is obtained with the
maximum a posterior (MAP) estimate.

The output from the CNN is used to actively control
the movements performed by the UAV robot. This process,
described in Section II-C2, allows the robot to autonomously
explore an object while improving the recognition accuracy.

2) Active exploration with saliency maps: Visual saliency
has been used for different applications in robotics [28],
[29]. Most robot applications rely on the extraction of local
information of salient features. In this work, visual saliency
map is employed as an active method for extraction of
interesting object regions for active exploration with the

salient
target

image centre (Ic) for the UAV

camera of 480x856 resolution

Fig. 6. Estimation of the trajectory to be actively followed by the UAV based
on interesting object regions obtained with the saliency map model.



image

collection

image

processing

CNN

object probabilities

saliency map

active

visual exploration

probability

class

>

threshold?

recognised object

original

image

segmented image

object

probabilities

interesting

locations for

exploration

current

robot position

control commands

for novel locations

for exploration

YES

NO

decision-making

(A) Active UAV control architecture

/bebop_driver

/image_process

/cnn_clasifier

/active_control

/b
eb
op
/im
ag
e_
ra
w

/bebop/cm
d_vel

/image_segmented

/cnn_object /i
m
ag
e_
sa
li
en
cy

(B) ROS nodes and topics for communication and control

Fig. 7. Architecture for active UAV control. A) Processes implemented in the UAB for active object exploration and recognition using vision sensing. This
approach allows the UAV robot to autonomously identify and move towards interesting object regions to improve the recognition accuracy. B) ROS graph
composed by the nodes and topics used for all the processes during the active object exploration and recognition task.

UAV robot. Here, interesting object regions are represented
by groups of pixels with high intensity levels, which are
employed for active control and repositioning of the UAV
during the exploration process. Here, images from the UAV
Bebop camera are captured at every 30 ms. Then, the processes
for object segmentation and extraction of object regions for
active exploration, with saliency map method, are continuously
performed. Figure 5 shows an example of the saliency map
obtained from the mug object. In this work, the saliency map
was implemented using the spectral residual algorithm with
C++ language and OpenCV functions.

Once the saliency map is obtained from an input image, it is
used to actively control the exploration movements of the UAV
robot. This is an iterative process where the UAV position is
continuously updated, in x- and y-axes, to gradually reach the
object region. This process is based on the estimation of the
distance, D(xd, yd), between the centre of the camera of the
UAV robot, Ic(xc, yc) where xc = 856

2 and yc = 480
2 , and the

exploration region, Sr(xr, yr), obtained from the saliency map
(Figure 6). Then, the distance, D, and number of movements,
nSteps, performed by the UAV to reach the salient region Sr

is calculated as follows:

D(xd, yd) = Sr(xr, yr)− Ic(xc, yc) (6)

nSteps(xs, ys) = floor

(
xd

∆stepx
,

yd
∆stepy

)
(7)

where D is the distance between the centre of the UAV camera
and the object region for exploration, nSteps is the number
of movements to reach the salient region, and ∆stepx and
∆stepy are the step size in x- and y-axes performed by the
UAV robot. It was found that the smallest step that the UAV

robot can performed, in ∆stepx and ∆stepy , is 10 pixels. This
allows the robot to perform fast and smooth active exploration
movements.

Every time the UAV position is updated during the explo-
ration process, an object image is captured and sent to the
CNN model for recognition of the object being explored. This
exploration process is repeated until a decision threshold is
exceeded by the CNN model. The robustness of this threshold
crossing approach has been demonstrated with a variety robot
exploration tasks [30].

The control architecture, with all modules for active visual
object exploration and recognition with a UAV, is shown in
Figure 7A. This architecture also shows the interaction be-
tween all modules and iteration of processes for control of the
UAV in real-time. In this work, C++ and Python programming
language were used for implementation of the data collection
process, image segmentation, saliency map, object regions for
active exploration, CNN model and control commands. All
these processes were communicated and synchronised using
the Robot Operating System (ROS), which has become the
standard open-source middleware for robotics [31], [32]. The
nodes and topics employed for the control architecture are
shown in Figure 7B.

III. RESULTS

A. Offline visual object recognition
Validation of the object recognition process was performed

in offline mode. For this experiment, images collected with
the UAV Bebop robot were used for recognition of multiple
objects (see Section II-B). Input images from the UAV robot
were preprocessed removing the background to keep the object
to be explored only (see Figure 3).

The CNN model, proposed for object recognition is shown
in Figure 4. The performance of this CNN model was validated
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Fig. 8. Results from object recognition in offline mode. (A), (B) Accuracy and error of the CNN model, during the recognition of multiple objects, using
real data collected with the UAV robot. (C) Recognition accuracy results for each object using passive exploration in offline mode.

using 10,000 images of 5 different objects. In this experiment,
images were recognised in a passive mode, which means that
the robot did not move to different object regions, during the
exploration process, to improve the recognition accuracy. The
results from the accuracy recognition and loss function using
the CNN model are shown in Figures 8A and 8B, respectively.
These results were achieved with 100 epochs. The recognition
model achieved an accuracy of 98.95%, while the loss function
achieved an error of 2.2% using the training datasets. An
accuracy of 84.32% was achieved for recognition of all objects
using the testing datasets. Figure 8C shows the confusion
matrix with the accuracy results from the recognition of each
explored object: pen, box, circle, rectangle and mug. The
results show that recognition of the mug and box achieved the
highest and lowest accuracies with the UAV robot in offline
mode. The overall recognition accuracy could be affected by
the amount of data employed for training. However, nowadays,
it is possible to collect and have access to large datasets given
the advances in sensor technology.

The performance of this experiment, in passive mode, can be
improved by the used of the proposed active exploration mod-
ule. The experiments and results with the active module, which
allows the robot platform to autonomously explore interesting
object regions to achieve a better recognition accuracy, are
described in the following Section III-B.

B. Real-time visual object recognition

The CNN model together with the active exploration model
were validated with object recognition tasks in real-time.
For this experiment, the UAV robot performed the object
recognition task with the following procedure. The robot was
placed at random initial locations closed to the object to be
visually explored and recognised (Figure 9A). The images
collected in real-time, with the UAV camera, were used as
input to the CNN model for recognition. The saliency map
module was employed to identify interesting object regions
for exploration, in order to improve the recognition accuracy.

The saliency map used the same input images as the CNN
architecture. Figures 9B-J shows examples of sequences of
object regions, from the mug, circle and box objects, obtained
by the saliency map model for active object exploration and
recognition with the UAV robot.

Outputs from the CNN and saliency map models were the
responsible to control the active exploration and decision-
making of the object employed for recognition. First, the
object probability from the CNN model was compared to a
predefined decision threshold. Second, if the object probability
did not exceed the predefined decision threshold, then, the
robot was actively moved to another object region in order to
improve the recognition probability from the CNN model. Ac-
tive movements or object regions for exploration were obtained
with the saliency map module for each image capture by the
UAV robot. Third, a decision about the object being explored
was made when the probability from the CNN exceeded
the decision threshold. Once the object being explored was
recognised, the robot landed and waited for the command to
start the active exploration of the next object.

Recognition accuracy results, from passive and active ob-
ject exploration, are presented by the confusion matrices in
Figure 10. In passive exploration mode, the robot was placed
at random initial locations closed to the object. However, the
robot performed the decision-making process without moving
to other object regions to improve the accuracy. Results from
the passive recognition approach achieved a mean accuracy of
88.14% (Figure 10A). In this passive exploration experiment,
the box and pen objects achieved the lowest and highest
accuracies with 80% and 95%, respectively. These results
contrast with the performance obtained by the UAV robot
using the active object exploring approach. In this case, the
robot was also placed at a random initial location closed to the
object. However, this time, the robot was capable to identify
interesting object regions for exploration, based on the saliency
map module, which were employed by the UAV to actively
move and improve the recognition accuracy. Results from the
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Fig. 9. (A) Real-time sequence of object regions used by the UAV robot
for active exploration and recognition. Object regions are represented by
white colour circles. (B)-(D) Object regions actively explored by the robot
for recognition of the mug. (E)-(G) Object regions actively explored by the
robot for recognition of the circle. (H)-(J) Object regions identified on the
box for active exploration and recognition.

active exploration and recognition process achieved a mean
accuracy of 95.66% (Figure 10B). In this experiment, the circle
and pen objects achieved the lowest and highest accuracies
with 92% and 100%, respectively. These results show that
active exploration allowed the UAV robot to improve the
recognition accuracy for all objects, over the results achieved
with passive exploration.

This active exploration approach is inspired by the way in
that humans explore an scene with their eyes, looking for key
locations to extract better information. Here, the UAV moves
towards salient object locations to extract information that
can improve the recognition accuracy. Overall, experiments
in offline and real-time showed that the object recognition
accuracy with the CNN model can be improved, actively
moving the UAV robot towards better object regions.
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Fig. 10. Confusion matrices with object recognition results from the real-time
experiment. (A) Passive object recognition accuracy with the UAV. (B) Active
object recognition improved with the active recognition approach.

IV. CONCLUSION

In this work, an approach for active object exploration
and recognition with vision sensing from an UAV robot was
presented. This approach, composed of multiple modules,
allowed the UAV robot to make autonomous decisions about
where to move and look next, during an object exploration
task, to obtain better information and improve the recognition
accuracy. First, input images from the robot were prepro-
cessed, segmenting the object to be explored and identifying
interesting object regions for exploration using a saliency map
module. Second, the object exploration task was implemented
in passive and active modes for comparison of performance.
For the experiment in passive mode, where the UAV robot
was not able to move to better object regions, recognition
accuracies of 84.32% and 88.14% were achieved in offline
and real-time modes, respectively. These low accuracies are
related to the inability of the robot to autonomously explore
object regions that contain better information. In contrast, in
the active exploration experiment, the UAV was capable to
make autonomous decisions about where to move and look



next to collect better information, and thus, to improve the
object recognition task. This capability offered by the active
process was reflected with the improved accuracy of 95.66%.
Overall, the proposed active object exploration method, offers
a framework suitable for the development of intelligent UAVs,
capable to make autonomous decisions and actions while
interacting with the environment.
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