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Robust conclusions require rigorous statistics. In 2009 a seminal paper described the dangers and 

prevalence of double dipping in neuroscience. Ten years on I consider progress towards statistical 

rigour in neuroimaging.   

 

The human mind struggles with probabilistic reasoning, tending instead towards mental-shortcuts 

that leave us prone to cognitive bias and logical fallacies. The scope for these errors increases with 

the complexity of the analytical pipeline, where decision is layered upon decision, assumption upon 

assumption. Circularity in analysis is a logical fallacy that occurs where the same data are used twice 

(or more) in the same analysis: once to select a subset of data of interest and again to test how 

interesting those same data are. Such double dipping into the data violates the assumption of 

independence, undermining statistical inferences, inflating effect estimates, and increasing the 

chance of false positive results. The dangers of double dipping in statistical analyses are well 

documented. Yet circularity is a seductive trap, beautifying results and feeding our confirmation 

bias. Methodological precautions can protect us from its allure, but how widely are they employed?  

In 2009 Kriegeskorte and colleagues1 examined 134 functional MRI (fMRI) articles published the year 

before in Nature, Nature Neuroscience, Science, Journal of Neuroscience and Neuron. They found 

that an astonishing 42% contained circular analyses, with the analyses of an additional 14% of 

papers unclear. Circular analysis is not unique to fMRI, yet Kriegeskorte and colleagues' findings 

shook the fMRI community to its core. I put this down to several reasons. First, their analysis 

provided a prevalence estimate that unequivocally demonstrated the ubiquity of this error even in 

the most prestigious publications. Second, their detailed examples of double dipping in the context 

of fMRI and electrophysiology experiments provided a tangible way for readers to conceptualise the 

problem as directly applied to imaging research. That is, they made an abstract problem concrete. 

Third, and most importantly, they captured the Zeitgeist.  

During this time, the high prevalence of double dipping in fMRI studies could be viewed as a 

symptom of the growing pains of a relatively young 'big-data' discipline, and the wider 

irreproducibility milieu bubbling away across the biomedical sciences2. Since its development as a 

technique in the early 1990s, fMRI saw two decades of exponential growth, from around 350 articles 

published in 1998 to over 2600 a decade later in 2008 (Figure 1). At this point the field saw rapid 

developments in analytic methods and imaging procedures, moving from a diversity of locally 

developed analysis software to converge on the few open-source analysis packages widely used 

today3. The complexity and high-dimensionality of fMRI data coupled with the myriad analytical 

packages and pipelines raised a plethora of statistical conundrums. How best to pre-process the 

data, control for multiple comparisons, or select regions of interest? 
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In 2005 John Ioannidis published his seminal paper "Why most research findings are false"2, calling 

into question the reliability of findings across the biomedical sciences. He demonstrated that 

widespread use of shoddy research practices such as reliance on underpowered studies, undisclosed 

flexibility in analyses, and selective reporting of positive results can lead to a worryingly high 

proportion of false positive results. 2009 was a similar watershed year for the neuroimaging 

community. Alongside Kriegeskorte et al's1 'Double Dipping' paper and Vul et al's4 related 'Voodoo 

Correlations' paper, Bennett and colleagues5 published their Ig Noble prize-winning demonstration 

of how poor control for multiple comparisons could lead to (false positive) evidence of neural 

activation during a social perspective-taking task in the brain of a dead salmon. The fMRI community 

embarked on a period of intense methodological introspection. Ten years on, how far have we come 

in making commonplace double dipping and related questionable research practices a thing of the 

past? 

As suggested by Kriegeskorte et al., perhaps the simplest way to prevent circular analysis is to split 

one's data into two independent samples, one for exploration, the other for confirmation. fMRI is 

expensive and sample sizes have been traditionally very small. While there is some evidence that 

sample sizes are on the rise, the average sample size in fMRI studies in 2015 was still only 19 

participants 3. Splitting a sample of this size is clearly problematic in terms of loss of statistical 

power6. Individual fMRI studies have therefore instead tended to opt for retaining the full sample in 

a single confirmatory study (ostensibly at least) and used selection criteria that are demonstrably 

independent of the hypothesis test, such as using anatomical atlases or functional localiser tasks to 

define brain regions of interest.  

Both have limitations; anatomical selection works well for small, clearly defined anatomical regions 

such as the amygdala, but less well for large structures such as the medial prefrontal cortex. 

Functional localisers, where regions of interest are identified using a separate task thought to 

activate the same neural processes as those under investigation, are often preferred for larger 

anatomical areas. However, functional localisers are subject to several assumptions and suffer the 

same issues of signal-to-noise in small datasets as do the tests of hypothesis6. So how do you achieve 

separation of exploration and confirmation in a field that has been traditionally dominated by small, 

expense-constrained datasets? One answer is through better data-sharing, collaboration, and data 

reporting.  

Historically there has been little tradition of data-sharing in fMRI. Even the data in fMRI papers, 

presented in the form of peak voxel coordinates, were of limited use to other researchers wishing to 

replicate or build from an initial study's finding, as they provide a poor summary of the vast amounts 

of data and analysis performed in the typical fMRI experiment. However recent years have seen a 

growing number of tools for supporting open fMRI data-sharing, and their use is gaining in 

popularity. For example, the COINS service currently hosts data on over 50,000 participants in 702 

studies (http://coins.mrn.org) and the NeuroVault repository (http://neurovault.org) hosts over 

1000 public collections. Neurosynth (http://neurosynth.org) provides a data-synthesis service that 

summarizes available evidence from published peak voxel data, which is ideal for independently 

selecting regions of interest.  

Recent years have also seen the development of successful neuroimaging consortia such the 

ENIGMA (Enhancing Neuro Imaging Genetics by Meta-Analysis) consortium7 and the 1000 Functional 

Connectomes Project and its International Neuro-Imaging Data-Sharing Initiative (INDI)8. These 

initiatives pave the way for the creation of large datasets, such as The Human Connectome Project 

(http://www.humanconnectomeproject.org/), the UK Biobank (http://imaging.ukbiobank.ac.uk/), 

and prospective cohort studies such as Imagen (https://imagen-europe.com/about/project/) which 
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make their datasets freely available to academic researchers. These datasets can be used for 

exploratory hypothesis generation and independent selection criteria, confirmatory replication, or 

both.  

However, while a selection method that ensures independence, such as split and/or shared datasets, 

is necessary to prevent circular analysis, it is not sufficient. It must also be demonstrated that the 

selection method was chosen before data collection to ensure that a presumably independent 

selection criterion is not applied retrospectively after having seen a potentially interesting result. 

This is akin to Hypothesising After the Results are Known (HARKing), a similar form of circular 

thinking where hypotheses are retrofitted to exploratory findings.  Preregistration is widely 

recognised as the most powerful way of preventing HARKing and demonstrating that selection 

criteria are independent of subsequent analysis 3,6,9. It involves registering the study with a detailed 

pre-specification of the study design, primary outcome, and analysis plan in advance of data-

collection. In this way, confirmatory research testing a priori hypotheses (i.e., those made before 

data collection) are clearly differentiated from exploratory post-hoc analyses which are used to 

generate hypotheses after the data are observed.  

Preregistration has been standard practice in clinical trials many years10 . However, despite its wide 

advocation3,6,9-11, preregistration has yet to gain traction within the neuroimaging community. In 

2013 the Open Science Framework (http://osf.io/) provided a service to preregister studies across 

various fields of science, including neuroscience. Since then more than 28,500 studies have been 

registered on OSF. Of these, only 102 relate to “fMRI” (search date 21 March 2019). To put this into 

context, searching Web of Science found 26,068 “fMRI” articles were published over the same 

period. By contrast, the field of “eye-tracking” registered 328 studies on OSF, and published 5,029 

articles. 

Transparent reporting of results and methods is the bedrock for reproducible science, yet 

historically, reporting standards in fMRI studies have been inconsistent12,13. To address this the 

Organisation for Human Brain Mapping (OHBM) convened a Committee on Best Practices in Data 

Analysis and Sharing (COBIDAS) in 2015-16, which issued a detailed set of reporting guidelines 

(hhtp://www.humanbrainmapping.org/COBIDAS)9. Relative to other reporting checklists such as 

those for clinical trials (http://www.equator-network.org/reporting-guidelines/consort-abstracts), 

the COBIDAS MRI checklist is formidable. This reflects the length and complexity of analytic pipelines 

and the extent of information required for another researcher to be able to replicate an fMRI finding 
14.  

By adopting stringent statistical criteria, independent replication, large collaborative consortia, 

complete reporting of statistical results, and routine sharing of fine-grained statistical results, fields 

such as genetics have seen a step-change in their rate of scientific discovery15. Many hundreds more 

reproducible findings have been found in recent years since whole-genome methods were 

developed than were produced in 15 years of small-scale candidate-gene studies. Similarly, clinical 

trials, which have widespread adoption of preregistration and adherence to transparent reporting 

guidelines (at least in the top journals), have resulted in a flourishing field of evidence-synthesis, 

with high-quality systematic reviews and meta-analysis forming the basis of national and global 

healthcare policies.  

So is double dipping in fMRI research is a thing of the past? The pessimistic answer is, no. A more 

optimistic answer is, not yet but it soon could be. Recent years have seen the technological 

ingredients for rigorous and reproducible functional brain imaging fall into place. Widespread 

adoption of practices such as preregistration for confirmatory analyses, adherence to recommended 



best-practices in analysis and data-sharing, transparent reporting of results, large-scale 

collaboration, and a cultural-shift towards independent replication have the potential to bring about 

a step-change in the reproducibility of fMRI findings. With a shift in the reward structures to 

promote routine use of such rigorous methods over the next ten years, commonplace errors such as 

double dipping may indeed become a thing of the past. 
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Figure 1. 

Number of fMRI articles published per year from 1990 to 2018. The graph depicts exponential 

growth until 2014, after which growth flattens. The curve is overlaid with examples of key papers 

that signalled field-wide concerns about reliability of research findings, as well as key initiatives to 

address these concerns and promote reproducible science. This is not an exhaustive list, but it serves 

to illustrate the emergence of the key ingredients for reproducible science, such as platforms to 

support open data-sharing, automatic evidence-synthesis of published results, and preregistration of 

study protocols, as well as the publication of standardised guidance for data-analysis and 

transparent reporting of methods and results. Widespread adoption of these practices could bring 

about a step-change in the reliability of fMRI findings, protecting against errors such as circular 

analysis and other related dubious practices that were common in 2008.  Searches performed on 11 

March 2019 on Web of Science ((TS = (fMRI OR functional Magnetic Resonance Imaging)) AND 

DOCUMENT TYPES: (Article))        

 


