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Abstract: It is essential for modern high-performance computing systems and signal processing that a basic set of mathemati-
cal functions can be performed. Addition, subtraction and multiplication are well understood but less work has been reported on
square-rooting. The square-root function is particularly time and resource consuming. Traditional non-restoring algorithms pro-
duce a mantissa of half the length of the input mantissa, causing a loss of precision. This paper presents a method for increasing
the accuracy of the non-restoring algorithm. The algorithm is shown to work for all IEEE-754R standard floating-point numbers.
Error analysis shows an improvement in the normalised error of the algorithm of 57-fold for half-precision inputs and 134 x 108-
fold for double-precision inputs. This translates to a maximum error of 1 ULP. Resource and performance optimised variants are
presented and throughput is analysed. Performance optimised implementations on an Intel Stratix V device achieve through-
puts of 717 MFLOPs. Resource optimised implementations on a low-cost device requires only 127 Adaptive Logic Modules and
232registers with a throughput of 8.56 MFLOPs. All implementations are DSP block and memory free, saving valuable resources.
The maximum throughput of the presented design is 15.5 times greater than that proposed by Pimentel et. al. and two orders of

magnitude greater than typical multiply-accumulate methods.

1 Introduction

Modern applications: such as Computer Aided Design (CAD) and
3D graphics rendering, increasingly need support for a variety of
floating-point operations. It is also becoming increasingly common
to use half-precision floating-point numbers, as described by the
amended IEEE-754R standard, in applications such as artificial intel-
ligence and graphics rendering. Multiplication and addition are con-
sidered to be used more frequently whereas division and other oper-
ations are less frequent. Hence, development into optimisation for
floating-point operations reflects this. Pimentel ez. al. demonstrated
an increase in throughput for floating-point operations when using
hardware or hardware/software hybrid implementations [1]. They
compared a range of implementations for floating-point square-
root algorithms on software, hardware and a hybrid of hardware
and software. A maximum throughput of 0.8 Million Floating-
Point Operations per Second (MFLOPs) for software, 25.5 MFLOPs
for a hardware/software hybrid and 46.2 MFLOPs for a hardware
implementation was reported.

Finding the square-root of a number either requires an iterative
algorithm which is costly in terms of resources and time, or alter-
natively, a piecewise-polynomial approximation may be used. The
latter generally provides a more efficient method for processors.
Common methods for square-rooting include first order algorithms
(Newton-Raphson [3]), binomial expansions (Goldschmidt’s [2]), or
Taylor-Series expansion [2].

The Newton-Raphson approximation is widely used to find the
square-root of a number. The method requires an initial approx-
imation which must then be iterated on for increased accuracy.
Cornea-Hasegan et. al. present a mathematical correctness proof for
the Newton-Raphson method for floating-point square-root [4]. It is
generally accepted that the Newton-Raphson approximation for the
square-root is given by (1).

1 X
Riy1 = 5 (Ri + E) (D

where R; is the approximation of the square-root, X is the input
number, and R; 1 is the improved approximation.
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Wang & Schulte present an optimised version of the Newton-
Raphson method that approximates X —1/2 [3], using (2):

Rt =2 (3 X.R7) @

From (1) and (2), it can be seen that the Newton-Raphson approx-
imation is intensive on resources - requiring multiplication, division
and subtraction.

Other square-root algorithms have been presented and imple-
mented on reconfigurable logic devices. Kachhwal & Rout presented
an algorithm that uses a non-standard, sub-single precision 24-bit
floating-point input, and returned a 16-bit floating-point output. The
algorithm uses a so-called Dwandwa Yoga method to determine the
square-root of the input. The design was capable of running up
to 68.22 MHz [5]. From the information presented in the paper, it
can be seen that the operating frequency of the implementation is
somewhere in the range of 1 to 1.25 MFLOPs.

There has been considerable research into non-restoring algo-
rithms to find the square-root of a number in hardware implemen-
tations. Non-restoring algorithms are based on (3).

D=Q*+R (©)

where D is the input, @ is the quotient of the operation and R is the
remainder. There are several different approaches to non-restoring
algorithms shown in [6, 7, 8, 9, 10]. Non-restoring algorithms get
their name as they are unable to restore the remainder. The majority
of these algorithms work by splitting the input into pairs of bits and
operating on each pair in turn. At each iteration a partial quotient
and partial remainder are created. The iteration continues until all
pairs are considered and a final result is calculated. Li & Chu present
an example of how a non-restoring algorithm can be implemented
in both iteratively and in parallel [9]. Previous works have lacked
analysis of the accuracy of the result or maximum throughputs of
the designs. Putra’s algorithm, proposed in [6], has been found to
work for the majority of cases. However, under certain conditions
the a negative is produced, which is not allowed mathematically.
Suresh ez. al. analysed a different non-restoring algorithm that
performs a series of comparisons between a register and the input
number [7]. Their research focuses primarily on the resource usage



when applied to a high-end Xilinx Virtex devices and custom
Application Specific Integrated Circuits (ASICs).

Recent work into fast FPGA architectures for square-root and
inverse square-roots is presented by Hasnat ez. al. [11]. A method-
ology is presented that uses seven ‘magic’ numbers, found exper-
imentally. These are integrated with a chain of seven multipliers
and three adding/subtracting modules. Hasnat et. al. claim that the
maximum accuracy achievable for the result, given single-precision
floating-point with a 23-bit mantissa, is 12 bits.

This paper proposes a method for significantly increasing the
accuracy of the result of a traditional non-restoring square-root
algorithm. The use of non-restoring algorithms provides an imple-
mentation that is free of both Digital Signal Processing (DSP) and
memory blocks, unlike offerings found in [12, 13]. DSP blocks can
be found on many modern FPGA devices. However, they are a valu-
able resource that might be better used elsewhere in a design. The
use of DSP blocks can also increase design area and reduce through-
put. Methods proposed in this paper produce a square-root block
that has an issue rate of one (a new answer on every clock cycle)
and have an accuracy of one Unit of Least Precision (ULP). The
algorithm is based on the one proposed by Putra in [6], applying
an addition to remove the problems caused by negative remainders.
Implementations of the new algorithm are subjected to both resource
and performance optimisations. Resource, performance and error
metrics for the algorithm and its implementation are shown. Com-
parisons are made between the error of a traditional non-restoring
algorithm and the proposed algorithm. The paper demonstrates the
new algorithm is suitable for half-, single- and double-precision
floating-point numbers, as per the IEEE-754R standard [14].

The remainder of this paper is arranged as follows: Section 2
presents the theory of traditional non-restoring algorithms and how
the new algorithm is derived and integrated into the floating-point
number system. Section 3 discusses implementation of the algorithm
in hardware. Section 4 presents the implementation performance
metrics and compares the accuracy of the non-restoring algorithms.
Finally the paper concludes in section 5.

2 Theory

Non-restoring algorithms, such as those proposed by Putra in [6] and
Yamin & Wanming in [10], are usually used to calculate the square-
root of a fixed-point binary number. The algorithm is summarised by
the following steps:

1. [Initialise all variables
Split the radicand into pairs of bits - prepend a O if the radicand
is an odd number of bits

3. Start processing with the Most Significant Bit (MSB) pair

4. Perform comparisons with the partial remainder and the par-
tial factor to determine how to set the partial factor, partial
remainder and quotient for the next iteration

5. Repeat stage 4 until the entire number has been processed

By de-constructing floating-point numbers, it is possible to apply
this process to determine their square-root.

2.1  Floating-point square-root

A floating-point number can be represented as three parts: the sign,
the exponent, and the mantissa. The true value of the floating-point
number is given by (4). The bias is an offset that allows the exponent
to be signed.

{Sign7 Mantissa X BaseExponent+Blas} 4)

Separating the number into its component parts allows the square-
root to be calculated using a non-restoring algorithm. Removing the
exponent and sign leaves the true mantissa which is a fixed-point
number.

To get the exponent of the result the original exponent needs to be
divided by two. If the exponent (plus the bias) of the input number

is odd; the exponent and the mantissa must be manipulated as per
Listing 1. In Listing 1, E' is the exponent, M is the mantissa and
b is the bias of the floating-point number. It is not possible to find
the square-root of the number if the input exponent is odd. Dividing
the odd exponent would be synonymous to attempting to place bits
in ‘half bit’ locations. Instead by either adding or subtracting one to
an odd exponent - then bit-shifting the mantissa down or up by one
respectively - the new exponent can now be calculated.

I. if (E mod 2 /= 0) E=E—1, M=M<<1

OR E=E + 1, M=M>> 1,

else E=E, M=M,
2. Always E=E— b,
if (E>0) E = (E/2) + b,
else E = (E/2) + (b —1),

Listing 1: Method for calculating the value of the exponent of the
resultant floating-point number.

Bit-shifting the mantissa up could cause a loss of data from over-
flowing over the top. Additionally, the latency of the non-restoring
algorithm will increase as it is a function of length of the input.

Once the new exponent and mantissa have been found they can
be concatenated to create the output root number. A comparison of
the sign is used to check for negative input numbers, which have
complex roots. The output of the module reflects this.

2.2 Putra’s non-restoring fixed-point square-root algorithm

Traditional non-restoring algorithms iterate over the input number.
The number is considered as pairs of bits, each pair is considered
individually. The result of each iteration gives a single bit for the
output, hence there is a loss of accuracy. Non-restoring algorithms
work on fixed-point binary numbers. Putra’s algorithm [6] is detailed
in Listing 2.

1. if(Dwipra mod 2 != 0) D={0,D},

else D =D,
2.  Always Qo =0, Fp =0,
3. Always t =0, i = Dwprn,
4.  Always Ry = Djj—1,
5. iteratefrom i = Dwmpru to 0,
6. if(Fr << 1)1 < Ry)
Qi+1 = (Qe<<I) |1,
Fr = ((Fr + F[0)<<D)[1,
else
Qi+1 = (Q<<1)|0,
Fiyq = ((Ft+Ft[O])<<l)|0,
7. Always
Riy1 = (Rt — (Fiq1 X Fiq1[0]))<<21D;24-3,
8. Always t =t +2, i =1i-2,
9.  Repeat steps 6 to8until i = 0

Listing 2: Non-restoring square-root algorithm detailed by Putra.

In Listing 2, D is the input number (radicand), D;.; 1 represents the
current sub group of the input number, F} is the partial factor, R is
the partial remainder, Q) is the quotient, ¢ is the time step and ¢ is
the bit index. The algorithm is repeated until entire number is parsed
at which time the outputs will satisfy (3).
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2.3 Proposed amendments to the fixed-point square-root
algorithm

Whilst the resultant values of Q and R conform to the relationship
D = Q? + R, under certain conditions a negative remainder is cal-
culated. In order to conform to strict mathematical rules a negative
remainder is not allowed. The result of a negative remainder is a
larger error in the value of (). A number of additional steps are
proposed by Listing 3. Applying these proposed additional steps to
the algorithm prevents calculating negative remainder and increases
the accuracy of the algorithm. The proposed amendments are placed
between steps 6 and 7 of the original algorithm (Listing 2).

6. if((Fr <<1)|1 < Ry),
6a. if(Fy << 1)]1 > Ry)
Qi+1 = (Q:<<1)|0,
((F: + Fy[0])<<1)]0,

Fipa
else

Qi1 = (Qi<<1)[1,
Fip1 = ((Fr + Fe0])<<1)1,
else
Qi+1 = (Qi<<1)|0,
Fiy1 = ((Fx + Fy[0])<<1)|0,
7. Always
Rit1 = (Rt — (Fiq1 X Fr41[0]))<<21Dj_2.4_3,

Listing 3: Additions to the non-restoring algorithm to prevent
negative remainder values.

The steps introduced by this method maintain the key features of
the non-restoring algorithms. Only very simple logic functions, such
as bit-shifts, comparators and fixed-point adders, are used.

2.4 Increasing the precision of the traditional non-restoring
algorithm

Floating-point numbers use the exponent to move the fixed-point
mantissa up or down in order to represent as much precision about a
number as possible. The mantissa is shifted until the first ‘one’ is at
the top of the register. Consequently, the magnitude of the error from
an incorrect bit in the mantissa is large.

Non-restoring algorithms introduce a large error in the result
when compared to other iterative approaches, such as Newton-
Raphson. This is an artefact of the bit pairing system. Each pair of
bits only gives a single bit for the output, therefore the resulting man-
tissa has only half the number of bits calculated. The error caused
from this approach can be removed.

For a mantissa of fixed length, n + 1 bits (where the ‘41’ is the
implied bit required to make the true mantissa), the number of bits in
the quotient will be n/2. However, if the mantissa is padded before
the non-restoring algorithm is performed, then more bits of the quo-
tient can be calculated. To achieve a quotient of the same length as
the original mantissa, the mantissa must be padded until its length is
2(n + 1) bits. The lowest significant bits of the padded mantissa are
set as zeros. This is similar to the effect of a processor performing an
iterative algorithm, such as Newton-Raphson, until it has calculated
a value for each bit in the mantissa of a number.

2.5  Performance optimised versus resource optimised
design

The latency (7), in clock cycles, for calculating the square-root of
a floating-point number using non-restoring means is dominated by
the non-restoring algorithm. Implementing the design on a highly
parallelised platform, such as an FPGA, allows the exponent and
mantissa calculations can be performed at the same time. Calculating
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the new exponent will always take the same number of clock cycles,
whereas the latency for the mantissa calculations is dependant on the
length of the mantissa. The number of clock cycles for the exponent
calculations is far fewer than the mantissa.

The algorithm proposed in this paper was implemented as both
resource and performance optimised designs. The resource opti-
mised design reuses the same hardware to iterate over the input
mantissa. The performance optimised design unrolls the calculations
into a pipeline. Even though this is more resource intense, an issue
rate of one is achieved - a new answer is given on every clock cycle.
The speed of the design is further increased by adding pipelining
stages. Pipelining stages reduce routing delay, allowing for a faster
clock to be used. This gives a higher overall throughput. The for-
mulas to calculate the latency of each design are summarised in
Table 1.

Consider the resource optimised implementation. A standard non-
restoring algorithm the latency is given by:

T=(Mm+1)+1 )

if the length of the true mantissa is odd, otherwise:

T=(n+1)+2 6)

where n + 1 is the number of bits of the true mantissa.
When the accuracy of the algorithm is increased the latency is
calculated by:

T=2(n+1)+1 )

for both an odd and even input mantissa length.

Latency calculations also consider the time taken to process the
input mantissa and set up the radicand. For example, to calculate
the square-root of a single-precision floating-point number, the pro-
posed method takes 49 clock cycles and the traditional algorithm
takes 26 clock cycles. The length of the true mantissa is even for
single-precision floating-point.

The latency of the performance optimised designs are also influ-
enced by the number of pipelining stages (Np). For the traditional
algorithm the latency is given by:

T:(n+1)+(ngp) ®)

if the length of the true mantissa is odd, otherwise:

7= (n) + (%4 x Np) )

for a true mantissa with an even number of bits.

Similarly, the latency of the performance optimised implementa-
tion with increased accuracy can be derived from (8) and (9). The
latency is now given by:

T=02Mn+1)+1)+((n+1) x Np) (10)

or

7= (2(n+1) + (n x Np) (1n

for an odd or even width true mantissa respectively.

Again, applying this to a single-precision floating-point number
results in a latency of 48 clock cycles for the new algorithm. This
is compared to the traditional algorithm that would take 34 clock
cycles, assuming there are no pipelining stages.

3 Implementation

Figure 1 shows the architecture of the square-root core. Two imple-
mentations of this core have been considered, a resource optimised
and a performance optimised implementation. The resource opti-
mised design implements the logic for the bit-select and comparators
once and iterates over the entire input using this logic as a loop.



Table 1 Latency calculations for resource and performance optimised implementations of the non-restoring square-root module. Latency () is given in clock cycles.

Traditional algorithm

Improved accuracy algorithm

. Odd mantissa

Resource optimised )
Even mantissa
Odd mantissa

Performance optimised .
Even mantissa

(n+1) 4+ ((n/2) X Np)
(n) + (((n = 1)/2) x Np)

(n+1)+1
(n+1)+2

2n+1)+1
2(n+1)+1

2(n+1) + 1) + ((n+1) x Np)
(2(n + 1)) + (n x Np)

Input
U
[0]

F Disi1

Ctrl

1

Ctrl

0

Comparator

OR OR

Fig. 1: Architecture of the proposed DSP- and memory-free square-
root implementation.

<<2

Consequently the latency of this core reduces the throughput. The
throughput is the clock frequency divided by the latency.

Optimising for performance implements a number of stages, one
after the other. Pipelining stages can be inserted as necessary to fur-
ther increase the clock speed. Since there is no reusing of logic in
this implementation the core can operate with an issue rate of one.
The throughput is equal to the clock frequency.

The floating-point square-root algorithm was implemented using
a Hardware Description Language (HDL). The design was syn-
thesised for both a low-cost Intel Cyclone V [15] device and a
high-performance Intel Stratix V [16] device. Simulation and verifi-
cation of the design was achieved with an automated test bench. The
design was configured onto a DE10-Standard board from TerASIC
[17] with an Intel Cyclone V SCSXFC6D6F31C6N FPGA device
for confirmation of real world operation.

The algorithm was implemented in both the resource and perfor-
mance optimised versions for comparison of metrics. Both designs
parallelise the processing of the exponent and the mantissa to reduce
the overall latency. Details of latency calculations for different size
inputs are discussed in Section 2.5.

In order to comply with IEEE-754R if the module is passed a
negative number it will return a ‘QNAN’ on the output [14].

4 Results

All designs were synthesised using the Quartus II 15.0 toolkit
(Intel), and timing statistics were analysed using TimeQuest. Table 2
shows a summary of the resource use and maximum operating
frequency of the different designs on the different platforms for
half-precision, single-precision and double-precision floating-point
inputs. The metrics given are for the proposed new increased accu-
racy implementation of a non-restoring algorithm. Power measure-
ments for the traditional non-restoring algorithm, the proposed new
non-restoring algorithm, and Intel floating-point square-root cores
were taken using the Intel PowerPlay analysis tool.

On a high-performance device, the proposed design has a
throughput of 717 MFLOPs for half-, single-, and double-precision
respectively, limited only by the maximum switching speed of the
FPGA fabric [18 pp. 38]. The resource optimised implementa-
tion on a low-cost device required only 127 Adaptive Logic Mod-
ules (ALMs) and 232registers, 239 ALMs and 452 registers and
456 ALMs and 901 registers for half-, single- and double-precision
respectively.

The maximum throughput of this design exceeds the throughput
of the designs presented in [7, 11], which used Xilinx Virtex-5 and
Virtex-6 devices. Additionally, the design presented by Hasnat er.
al. that used magic numbers required 12% of the high-end Xilinx
Virtex-5 flip-flop logic. The designs presented here used only 7%
of the high-end Intel Stratix V (SSGXEA7K2F40C2) device, when
arranged for maximum throughput.

The addition of pipeline stages in the design increases the per-
formance, albeit at a cost. Pipeline stages increases the number of
required resources. Each pipeline stage has to register all the data
moving through the pipeline. The more stages there are the more reg-
isters that need to be used. However, adding pipelining stages allow
the fitter to reduce the routing delay, therefore a higher frequency
clock can be used. The unrolled design produces a new result on
every clock cycle. Therefore, using pipelining to increase the clock
frequency increases the designs overall throughput.

Intel provide a floating-point square Megafunction capable of
single-, double-, and extended-precision, (extended-precision is not
included as part of IEEE-754R). The Megafunction has two latency
options for both single- and double-precision. Table 3 presents the
resource requirements and performance of the lowest latency options
for all Intel Intellectual Property (IP). For the high-performing Intel
Stratix V device the metrics are given in [19 pp. 18-7]. Metrics for
the Intel Cyclone V device come from the compilation report using
Quartus II 15.0. Unlike the performance optimised design, the Mega-
function is unable to provide an issue rate of one. Therefore, the
throughput of the Intel block is significantly lower than that of the
proposed design.

The resources for the Intel Megafunction and the proposed
algorithm can be compared. Table 2 shows that the single-precision
resource optimised design requires additional resources compared
to the equivalent Intel Megafunction. However, the double-precision
Intel implementation for the Cyclone V device requires more
resources than the proposed double-precision resource optimised
implementation. The proposed performance optimised designs have
a larger resource cost than the Megafunctions, however the through-
put of the proposed algorithm is greater than the Megafunction’s
by two orders of magnitude. Additionally, the Megafunction for the
Stratix V device uses DSPs, whereas the proposed algorithm is a
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Table 2 Resource usage (number of logic modules, ALMs and registers) and performance statistics for the pipelined and resource shared designs synthesised on

both a Cyclone V and a Stratix V device

Cyclone V
Performance Optimised

Resource Optimised

Stratix V

Resource Optimised Performance Optimised

fmax (MHz) 214
Half-Precision Throughput (MFLOPs) 8.56
ALMs 127
Registers 232
fmax (MHz) 178.25
Single-Precision Throughput (MFLOPs) 3.50
ALMs 239
Registers 452
Jmax (MHz) 133.92
Double-Precision Throughput (MFLOPs) 1.25
ALMs 456
Registers 901

236.52 456.83 717
236.52 18.27 717
728 126 734
2,465 230 2,417
194.1 77 717
1941 28.68 717
3,585 240 3,510
11,564 436 11,389
124.29 717 717
124.29 6.7 717
16,902 460 16,975
58,404 909 58,099

Table 3 Resource usage (number of logic modules, ALMs and registers) and
performance statistics for the Intel Megafunction square-root IP core.

Single-Precision ~ Double-Precision

fmax (MHz) 135.94 104.88
Throughput (MFLOPs) 8.50 3.50
Cyclone V AL.Ms 192 888
Registers 396 1783
DSP 0 0
Latency 16 30
fmax (MHz) 393.7 274.12
Throughput (MFLOPS) 65 16
Stratix V AL.Ms 112 458
Registers 136 1060
DSP 2 9
Latency 6 17

DSP-free implementation. Using DSP blocks increase the used phys-
ical area of a design. Additionally, DSP blocks can increase the
system latency or reduce fmax, the maximum clocking frequency
of a design. The absence of DSP blocks is a key characteristic for
the proposed design.

Multiplicative square-root algorithms are another approach for
determining the square-root of a number. These can be implemented
effectively using FPGAs, as shown in [12]. The multiplicative
square-root algorithm presented in [12] was synthesised for Xilinx
Virtex-4 and Virtex-5 devices, requiring a number of DSP blocks
and BRAM. Similarly, the multiply-accumulate methods described
in [13] rely on DSP blocks integrated within the FPGA. The square-
root method if [13] has latencies of 35 and 59 clock cycles for
single- and double-precision respectively. Whereas the performance
optimised design presented in this paper has an issue rate of one,
therefore achieving a throughput that is two orders of magnitude
greater.

Automation allowed extensive testing of the system. Initial tests
swept the input to the module over a large range in fixed incre-
ments. An analysis of the error of the results was used to confirm
correct operation of the square-root function. Tests were also per-
formed to provide an exhaustive search of the possible input values.
A Linear Feedback Shift-Register (LFSR) pseudorandomly gener-
ated input numbers, hence limiting the potential for the module to
appear working when only given sequential data. The tap points for
the LFSR were given as per the table found in [20]. The error of the
traditional and proposed non-restoring square-root algorithms was
compared. The normalised error was calculated by comparing the
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output of the hardware, S}, with the result calculated using an Intel
Core i7-7700HQ processor, Sp, performing a square-root operation
in double-precision. The error (¢) is given by (12).

Sp — Sh
€= 5, (12)

Relative error is also calculated in terms of ULPs (Units of Least
Precision). A ULP is the difference in the floating-point results given
by both a processor and the FPGA in terms of the significance of the
lowest significant bit of the mantissa for a given exponent.

Plots for relative and normalised error can be seen in Figures 2
and 3 for the traditional algorithm and the improved accuracy
algorithm respectively. The solid line shows the relative error (ULPs)
and the dashed line shows the normalised error. The data has been
split into bins and the maximum error of each bin has been plotted.

The error for the original non-restoring algorithm, with the
proposed solution for negative remainders, is large. For the half-
precision FPGA implementation, shown in Figure 2a, there is a worst
case normalised error of 0.058; single-precision is 4.88 x 10~%; and
a double-precision is 2.98 x 107°.

Increasing the precision has increased the number of bits calcu-
lated in the mantissa, hence there is a better accuracy for higher
precision numbers. The mantissa of a floating-point number is bound
between zero and one, and the contents is adjusted based on the
exponent to get the represented number. Due to the construction of a
floating-point number, the error in the output of the square-root mod-
ule has a cyclic nature. This can be observed in the error plots. For
a given exponent, the contents of the mantissa is cycled through to
get all possible representable values. This happens for all exponent
values, giving rise to the cyclic nature of the error in the plots.

The relative error is expressed in ULPs. A half-precision number
produces a maximum relative error of 64 ULPs, single-precision of
4,096 ULPs and double-precision of 134,217,726 ULPs.

Increasing the accuracy of the square-root significantly reduces
the maximum error. Figure 3 shows the half-precision system will
now generate a maximum normalised error of only 0.001 compared
to the previous 0.058, this is a 57-fold improvement. Similarly a
4,094-fold improvement for single-precision and a 134 x 10%-fold
improvement for double-precision have been observed. The maxi-
mum relative error (ULPs) for each implementation (half-, single-,
and double-precision) is now only one ULP. This complies the IEEE-
754R standard for accuracy of floating-point operations [14]. The
effect of the proposed method for increasing the accuracy of the
algorithm is synonymous to a processor using an iterative algorithm
until all bits of the mantissa are calculated.

The improvements in accuracy have come at a cost. Table 4
shows the resource uses and performance of the algorithm before
and after the accuracy improvements were made when targeting a
Cyclone V device. The improvements require additional resources
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Fig. 2: Normalised error in the result from the non-restoring
algorithm compared to the result a processor calculating the square-
root of double-precision floats. Normalised error (dashed line).
Relative Error in ULPs (solid line).

a Half-precision floating point (normalised error better than 0.058)

b Single-precision floating point (normalised error better than 4.88 x 10™%)

¢ Double-precision floating point (normalised error better than 2.98 x 10~ 8)

to account for the additional processing and increased size of the
registers for the quotient, partial factor and intermediate values. For
the resource optimised implementations this increase is less than
twice the original resource count. Performance optimisation requires
approximately three times the number of resources, most of which
are used to implement the pipeline stages. Without pipelining, the
increase in resources used would be closer to the difference seen by
the resource optimised design.

Increasing the accuracy has caused a reduction in throughput for
the same implementation at a lower accuracy; particularly in the
case of a resource optimised design. This is due to the increase
in required iterations to perform all calculations for the extra bits
of the mantissa. The throughput for the performance optimised
implementations still has an issue rate of one.

Table 5 shows the power metrics for floating-point square-root
implementations. In the Table, numbers in parenthesis represent the
percentage change in power consumption for the new algorithm
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Fig. 3: Normalised error in the result from the non-restoring
algorithm after a method to improve the accuracy was implemented
compared to the result a processor calculating the square-root of
double-precision floats. Normalised error (dashed line). Relative
Error in ULPs (solid line).

a Half-precision floating-point (normalised error better than 0.001)

b Single-precision floating-point (normalised error better than 1.19 X 1077

¢ Double-precision floating-point (normalised error better than 2.22 x 10~ 16)

compared to the traditional algorithm. From Table 5 it can be seen
that the power consumption of the non-restoring algorithms is lower
than the Intel Megafunctions for the same floating-point precision.
In general, increasing the precision of the non-restoring algorithm
or adding pipelining resources has a negligible impact on the power
consumption of the FPGA (less than 0.1%). The change in the num-
ber of resources used can result in a reduction in power consumption
due to how the fitter can now pack the hardware. The only excep-
tion is the half-precision implementation of the increased accuracy
non-restoring algorithm without pipelining resources; this is due
to the widths of the registers causing an slight increase in routing
complexity in order to map onto the technology.
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Table 4 Resource usage (number of logic modules, ALMs and registers) and performance comparisons for the algorithm before and after the improvements in

accuracy were made when implemented on a Cyclone V device

Before Improvement

After Improvement

Resource Performance Resource Performance

fmax (MHz) 290.36 407.5 214 236.52

Half-Precision Throughput (MFLOPs) 20.74 407.5 8.56 236.52
ALMs 80 251 127 728

Registers 153 836 232 2465

fmax (MHz) 207.7 260.28 178.25 194.1

. - Throughput (MFLOPs) 7.42 260.28 3.50 1941

Single-Precision

ALMs 162 1,143 239 3,585

Registers 309 3,769 452 11,564

Sfmax (MHz) 180.67 185.91 133.92 124.29

Double-Precision Throughput (MFLOPS) 3.23 185.91 1.25 124.29

ALMs 318 5,248 456 16,902

Registers 583 18,416 901 58,404

Table 5 PowerPlay (Quartus) power metrics for floating-point square-root
FPGA implementations, % relative to the traditional algorithm.

Power (mW)

Cyclone V. Stratix V

Traditional Algorithm 421.02 1,032.32

Pipelined Traditional Algorithm 421.02 1,032.58

Half-Precision ) 526.15 1,173.59
New Algorithm (25.0%) (13.7%)

o ) 421.02 1,032.31
Pipelined New Algorithm (0%) (-0.002%)

Intel Megafunction - -

Traditional Algorithm 422.11 1032.85

Pipelined Traditional Algorithm 422.23 1032.85

Single-Precision . 422.06 1032.84
New Algorithm (-0.04%) (-0.001%)

N . 422.07 1032.84
Pipelined New Algorithm (-0.04%) (-0.001%)

Intel Megafunction 453.41 1,233.06

Traditional Algorithm 424.60 1,033.91

Pipelined Traditional Algorithm 424.62 1,033.91

Double-Precision ) 424.60 1,033.90
New Algorithm (0%) (-0.001%)

oo ) 424.61 1,033.90
Pipelined New Algorithm (-0.002%)  (-0.001%)

Intel Megafunction 554.72 1,488.24

5 Conclusions

An algorithm for calculating the square-root of multi-precision
floating-point numbers with increased accuracy over traditional non-
restoring algorithms, such as those presented by Putra [6] and
Li [10], has been presented and extensively tested. The latency of the
algorithm is fixed and predictable based on the length of the mantissa
of the input number.

The performance and resource metrics for the traditional non-
restoring algorithm and the improved accuracy algorithm have been
compared for both resource and performance optimised implemen-
tations. Increasing the accuracy results in a relative error of one ULP
or fewer, which is what is described by IEEE-754R for floating-point
operations. However, this comes at a cost of increased resources and
a lower throughput.

Comparisons in the error of the FPGA implementation were
made using the result from an IEEE-754R compliant processor.
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Half-precision has an accuracy increase of 57-fold, single-precision
4,094-fold and double-precision 134 x 108-fold. In all cases the rel-
ative error of the proposed algorithm has been reduced to a single
ULP. This is ideal of any floating-point mathematical function. The
increase in accuracy means the proposed algorithm is now compa-
rable to other approaches such as Newton-Raphson approximation
performed by a processor.

Implementations for the proposed algorithm provided a through-
put of up to 717 MFLOPs when implemented on a high-performance
FPGA, such as the Stratix V. Alternatively, a resource optimised
implementation uses only 127 ALMs and 232 registers on a low-cost
FPGA, such as the Cyclone V. In both cases the system does not
require any DSP blocks.

The maximum throughput achieved by the proposed algorithm
for a single-precision floating-point numbers on a low cost Cyclone
V device is 4.2 times greater than the reported maximum through-
put for a hardware implementation and 243 times greater than
the software implementation presented by Pimentel et. al. in [1].
Comparing the throughput achieved by a Stratix V and the imple-
mentations in [1], there is a 15.5 times increase against the hard-
ware implementation and a 896 times increase against the software
implementation.

There are a number of multiply-accumulate methods that have
been compared against [12, 13]. The throughput of the proposed
design is two orders of magnitude greater than the multiply-
accumulate methods.

Comparisons have further been made against the resource use
for the algorithm proposed by this paper and the floating-point
square-root Megafunctions provided by Intel. The Intel Megafunc-
tion core for single-precision requires fewer resources in single-
precision mode, the double-precision implementations are more
resource intense. The Intel Megafunction for performing square-root
on the high-performing Stratix V device also uses DSPs. The pro-
posed implementation from this paper is always DSP- and memory
cell-free. DSPs and memory cells are a valuable FPGA resource that
can be better used elsewhere in designs. The power consumption
of the proposed non-restoring implementation has negligible change
on the power consumption of the FPGA compared to the traditional
non-restoring algorithm. In some cases, the routing of the proposed
algorithm offers a reduction in power consumption.

Functionality was verified by implementing the algorithm on an
Intel Cyclone V SCSXFC6D6F31CN.
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