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ABSTRACT: In this paper we report the full characterization (solution-state NMR spectroscopy and solid-state structures) of a series 

of Al(III) half-salan complexes and their exploitation for the ring opening polymerization of rac-lactide. Depending on the ligand 

employed and stoichiometry of the complexation, structures of the form Al(X)2Me or Al(X)Me2 were isolated. Interestingly Al(2)2Me 

and Al(2)Me2 produce PLA with a strong isotactic bias (Pm up to 0.80) whereas all other complexes produced atactic PLA. This is in 

contrast to recent studies on similar salan ligand systems. PLA with predictable molecular weights and narrow distributions were 

achieved. The results are discussed in terms of steric and electronic properties of the ligands.   

INTRODUCTION 

Currently, there is a tremendous desire to develop new poly-

meric materials that are biodegradable and sourced from annu-

ally renewable raw materials.1 Unquestionably one of the most 

important polymers that fulfil these criteria is polylactide 

(PLA). PLA is prepared from the ring opening polymerization 

(ROP) of the cyclic ester monomer, lactide (LA). LA is typi-

cally utilized as either the enantiomerically pure L-LA or as a 

racemic mixture of D and L monomers (rac-LA). When rac-LA 

is utilized either atactic, heterotactic or isotactic PLA can be 

prepared, with the physical properties of the polymer being in-

trinsically linked to the polymer’s microstructure. The micro-

structure can be controlled by judicious choice of metal center 

and ligand. For example, there are many elegant stereoselective 

polymerizations employing groups 1-4 metal centers,2 lantha-

nides,3 indium,4 zinc5 and pertinent to this study aluminum.6 

This follows on from seminal contributions by Feijen,6h 

Chisholm,7 Gibson8 and Coates2p,9 in the early part of this cen-

tury. More recently, a tremendous amount of effort has been fo-

cussed on understanding the subtle interplay between the metal-

center and ligand and the consequence this has on the stereo-

chemistry of the resulting polymer.2o,2v Subtle changes in selec-

tivity have been observed by Williams for phosphasalen lantha-

nide complexes and by Ma for a series aminophenolate 

Zn(II)/Mg(II) complexes.2o,10 However, it is fair to say that there 

is a degree of serendipity in the stereochemical outcome of the 

polymerization, with unpredictable tacticities achieved from 

metal-ligand combinations. Furthermore, subtle changes to the 

ligand can significantly alter the rate of polymerization.6f In this 

regard we have shown that simply reducing a salalen to a salan 

dramatically increases the rate of ROP of rac-LA.6f Tolman and 

co-workers have demonstrated, with a series of Al(III)-salen 

complexes, that the ortho substituent on the phenyl ring of the 

salen can induce distortions which can have a massive impact 

on the rate of polymerization of caprolactone. In this case it is 

shown that bulky substituents distort the geometry around the 

Al(III) center, which is believed to be responsible for the ob-

served increase in polymerization rate.11  

Recently, we have demonstrated the importance of bipyrroli-

dine derived salan ligands for controlling the stereochemical 

outcome for rac-LA polymerization.2u,2v For example, when a 

meso-bipyrrolidine salan ligand, Figure 1, is complexed to 

Zr(IV) the resulting initiator shows a high isotactic tendency 

(Pm up to 0.86).2u Interestingly, when the same ligand is com-

plexed to Al(III) highly heterotactic PLA is produced (Pr up to 

0.87).2v Moreover, for the tBu analogue, atactic PLA was pro-

duced in the melt (130 C) after 48 hours and it was shown that 

the complex was inactive in solution.2v The In(III) complex of 

the meso tBu bipyrrolidine produced heterotactic PLA in solu-

tion (Pr up to 0.84).4b The exact reasons for these dramatic 

switches in selectivity and activity are still open to debate. Kol 

has also successfully shown the importance of the these pyrrol-

idine rings in salalen complexes of Al(III) for the controlled iso-

tactic selective polymerization of rac-LA.2s,12 As part of ongo-

ing studies in the area of pyrrolidine systems we have prepared 

a series of mono-pyrrolidine ligands and their respective Al(III) 

complexes. These were and screened for the ROP of rac-LA to 

further investigate how the ligand affects the stereochemical 

outcome of the polymerization. Moreover, the ligand frame-

work could provide a more rigid environment around the alu-

minum center which could influence the stereochemical out-

come of the ROP. 

RESULTS AND DISCUSSION 

Ligand and Complex Preparation 

The ligands are easily prepared by one of three methods, 

Scheme 1. Route 1 employs a reductive amination to prepare 

ligand 1/5H, route 2 utilizes a modified Mannich reaction (2-

4H) or route 3 via an SN2 reaction mechanism (6H).13 In our 

hands these approaches were found to be the optimal synthesis 

for each ligand. The ligands themselves are relatively simple, 

which is a pre-requisite for large-scale applications (in-fact 1H 

is commercially available). However, to our surprise, there is 



 

only one crystallographically characterized metal complex of 

this class of ligand: Shen and co-workers have prepared a series 

of La(III) complexes, which have been screened for the 

polymerization of -caprolactone.14 All ligands synthesized 

here have been characterized via 1H, 13C{1H} NMR spectros-

copy and high resolution mass spectrometry. In the 1H NMR 

spectrum there was a sharp singlet at ca. 4 ppm for the meth-

ylene protons, Ar-CH2-N. The ligands were reacted with either 

0.5 or 1 equiv. of AlMe3 in an attempt to form the desired com-

plexes, Scheme 1. A further aim of this study was to compare 

these ligands to the bipyrrolidine complexes we have recently 

published in an attempt to gain an insight into the high heter-

oselectivity of the Al-bipyrrolidine system.2v 

Scheme 1: Synthesis of the ligands and attempted complexes 

used in this study, and our previous bipyrrolidine ligand for 

comparison. Those in pale grey were attempted but could not 

be isolated in a pure form. 

Whilst scheme 1 shows all attempted synthesis only the fol-

lowing complexes could be isolated Al(1)Me2, Al(2)Me2, 

Al(3)Me2, Al(4)Me2, Al(5)Me2, Al(2)2Me, Al(3)2Me, 

Al(5)2Me, Al(6)2Me and characterized via single crystal X-ray 

diffraction. Table 1 has the key metric data for the complexes 

and representative structures for Al(X)2Me and Al(X)Me2 

where X = 2, are shown in Figure 1. In the other cases shown in 

scheme 1 a mixture of mono and bis-ligated complexes were 

observed in the crude mixture (regardless of stoichiometry), 

which could not be purified by recrystallization. It is relatively 

facile to distinguish between the two forms via 1H NMR spec-

troscopy, for example in the preparation of Al(1)Me2 it was 

clear that a mixture of both forms {Al(1)Me2 and Al(1)2Me} 

were observed in solution, see supporting information Figure 

S7. The mono-ligated complexes are tetrahedral in geometry 

with X-Al-Y angles close to 109 , Table 1. Whereas Al(X)2Me 

are pseudo trigonal bipyramidal, as observed by the  values 

being greater than 0.5, which are in agreement with other half 

salan-Al complexes in the literature.8 As expected the Al-N dis-

tances for the mono-ligated system {1.9971(18) – 2.040(2) Å} 

are significantly shorter than the bis-ligated system {2.1131(17) 

– 2.1397(17) Å}. The metric data for both systems are in agree-

ment with similar half-salan Al(III) reported complexes in the 

CCDC.8,15 Moreover, comparing the systems there is little dif-

ference in the Al-O {1.760(2) – 1.7918(16) Å} and Al-C dis-

tances {1.954(3) – 1.987(4) Å} depending on the stoichiometry 

or ligand, both in relatively tight ranges. The Al(X)Me2 struc-

tures appear to be maintained in solution, this is exemplified for 

Al(3)Me2 where discrete and relatively sharp resonances are ob-

served for the –CH2– moieties in the solution-state NMR 

(C6D6). Further in all cases, one sharp 6H Al-Me resonance is 

observed at ca. – 0.5 ppm. On an NMR scale Al(2)Me2 was re-

acted with either 1 or 2 equivalents of BnOH, resultant spectra 

showed the rapid reaction of Al-Me with BnOH, to generate the 

alkoxide (SI figure 16, 17). DOSY investigations showed a re-

duction in the diffusion constant upon reaction with BnOH (SI 

figure 18), as might be expected by the removal of –Me by –

OCH2Ph, although this does not conclusively rule out the for-

mation of a dimeric alkoxide species. However, in the presence 

of a coordinating monomer, such as lactide, a monomeric active 

species is highly likely. 

For the solid-state complexes of the form Al(X)2Me the lig-

ands bind to the aluminum center so that the nitrogen moieties 

are trans to one another, N(1)-Al(1)-N(2) being in the range 

169.29(7) – 172.06(7) . Obviously, this differs from our bipyr-

rolidine system (and other tetra-dentate salan systems in the 

CCDC) in which the tetradentate nature of the ligand dictates 

them to be cis to each other.2v All metric data are in agreement 

within the series regardless of the ligand’s substituent. In solu-

tion the complexes appear to have a degree of fluxionality as 

indicated by broad resonances in the region ca. 2-4 ppm for the 

pyrrolidine ring and –CH2– methylene. In an attempt to aid res-

olution a solution of Al(3/5)2Me in C6D5CD3 were investigated 

via variable temperature 1H NMR spectroscopy. The resulting 

spectra were complex with multiple resonances being observed, 

see supporting information figure S13 and S14. When heated 

sharp resonances indicative of a monomeric species were ob-

served, this is important at the polymerization takes place at 

higher temperatures.  However, in all cases at room temperature 

analysis of the aromatic region of the 1H NMR spectrum indi-

cated the required number of resonance for this motif and there 

is single 6H resonance for the Al-Me moiety. However, as the 

system cooled the Al-Me resonance splits into two signals. This 

coupled with a significantly more complex aliphatic region at 

low temperature potentially indicates that multiple coordination 

motifs are present in solution upon cooling.   

 

Figure 1: Solid-state structures for Al(2)2Me (left) and Al(2)Me2 

(right), ellipsoids are shown at the 30% probability level and all 

hydrogen atoms and solvent of crystallization have been removed 

for clarity 

  



 

Table 1: Selected bond lengths (Å) and angles () for the complexes characterized via single crystal X-ray diffraction. The  values 

have been determined via the method of Atwood et al.16  

 Al(1)Me2 Al(2)Me2 Al(3)Me2 Al(4)Me2 Al(5)Me2 Al(2)2Me Al(3)2Me Al(5)2Me Al(6)2Me 

Al(1)-O(1) 1.7745(10 1.7644(18) 1.760(2) 1.7769(17) 1.7606(14) 1.770(2) 1.7916(13) 1.7873(17) 1.7846(15) 

Al(1)-O(2) - - - - - 1.770(2) 1.7870(14) 1.7830(15) 1.7918(16) 

Al(1)-N(1) 2.0300(11) 2.040(2) 2.029(2) 2.047(2) 1.9971(18) 2.139(3) 2.1261(18) 2.125(2) 2.1131(17) 

Al(1)-N(2) - - - - - 2.132(3) 2.1377(18) 2.125(2) 2.1397(17) 

Al(1)-C(1) 1.9639(14) 1.954(3) 1.963(3) 1.964(3) 1.964(2) 1.987(4) 1.981(2) 1.973(2) 1.983(2) 

Al(1)-C(2) 1.9579(14) 1.956(3) 1.956(3) 1.952(3) 1.956(2) - - - - 

O(1)-Al(1)-N(1) 98.13(4) 97.43(8) 97.46(9) 97.45(8) 95.58(7) 87.77(11) 87.85(6) 89.55(7) 89.48(7) 

N(1)-Al(1)-N(2) - - - - - 170.41(11) 172.06(7) 167.88(8) 169.29(7) 

O(1)-Al(1)-O(2) - - - - - 118.98(13) 117.28(7) 118.46(8) 119.41(7) 

C(1)-Al(1)-O(1) 112.06(9) 111.22(11) 112.37(13) 111.88(10) 112.27(9) 118.66(15) 121.52(9) 119.08(9) 120.77(10) 

 - - - - - 0.81 0.84 0.77 0.81 

 

Polymerization Studies 

The most pertinent comparison in the literature to the com-

plexes herein is with our bipyrrolidine salan system (either 

meso or homochiral versions).2u,2v When complexed to Al(III) 

this bipyrrolidine ligand (with methyl substituents in the or-

tho/para position) produces either heterotactic PLA (meso chi-

rality) or atactic (homochiral ligand) PLA. For example, with 

the meso-bipyrrolidine-Al-Me complex at 100:1:1 

(LA:Init:BnOH) in toluene at 80 C a conversion of 87% was 

achieved after 120 hrs (Mn = 21550, Ð = 1.05, Pr = 0.87). How-

ever, with the tBu substituted ligand atactic PLA was observed 

and it was concluded that with this bipyrrolidine system heter-

otactic PLA was due to a combination of steric bulk of the ortho 

substituent and the meso chirality of the ligand. In the current 

study we have removed any effect ligand chirality may have on 

the stereochemical outcome of the polymerization. However, 

the coordination motif is now subtly different to our previously 

reported study.2v 

The complexes were tested for the ROP of rac-LA in solution 

with the addition of BnOH to generate the alkoxide in-situ, Ta-

ble 2. MALDI-ToF mass spectrometry indicated the BnO- and 

H- end groups as expected (entry 12), a major series with a re-

peat unit of 144 gmol-1 and a minor series of 72 gmol-1 was ob-

served due to transesterification. We suggest that the mecha-

nism for polymerization is the classical coordination insertion 

mechanism, as both sets of complexes react with BnOH in so-

lution (see SI Figure 16,17).17 For the Al(X)2Me complexes 

there is relatively good agreement between the observed molec-

ular weights and theoretical molecular weight with narrow dis-

tributions observed in all cases. However, for Al(3)2Me the ob-

served molecular weight was considerably higher than the the-

oretical, this may well be related to the increase steric bulk of 

the ortho substitute hindering the formation of the Al-alkoxide, 

thus reducing the concentration of the active species in solution 

or poor initiation. Al(2)2Me was also trialed in the melt (entries 

3-4). Without the addition of BnOH the polymer molecular 

weight was not predictable, however with the addition of BnOH 

there was excellent agreement and PLA with a narrow Ð was 

isolated. The polymer tacticity, assessed by 1H{1H} NMR spec-

troscopy, showed Al(2)2Me produced PLA with a moderate iso-

tacticity (Pm = 0.71) whereas all other Al(X)2Me complexes af-

forded atactic PLA.  

For the Al(X)Me2 systems again there was good agreement 

between the theoretical and calculated molecular weight and 

MALDI-ToF indicated the desired end groups. The high degree 

of control was exemplified by a linear relationship between con-

version and molecular weight for Al(2)Me2, Figure 2, with a 

gradient of ca. 144 gmol-1 indicative of one chain growing per 

metal center and the Ð remained below 1.10. Furthermore, 

when the equivalents of BnOH was varied (entry 12 vs. 13) then 

there is a concomitant reduction in the observed molecular 

weight, and without BnOH (entry 14) there is a small degree of 

conversion. This system is also active under melt conditions 

(entries 15 and 16) with high conversion in a relatively short 

timeframe. Noteworthy, is that at a ratio of 1000:1:10 under 

melt conditions a 92% conversion was achieved in just 30 mins 

with a predictable molecular weight and narrow distribution. 

This is a significantly shorter timeframe than the tetradentate 

salan complex.2v 

 

Figure 2: Plot of measured Mn and Ð vs. conversion for the 

polymerization of rac-LA with Al(2)Me2 (80 C, 100:1:1 

LA:Init:BnOH, solvent: toluene). 

  



 

Table 2: Solution and Melt polymerization for the range of Al(III) complexes prepared. [a toluene solvent, b solvent free (melt con-

ditions); c CH2Cl2; 
d determined from analysis of the 1H NMR spectrum; e as determined from 1H{1H} NMR; f as determined by GPC 

(THF) calibrated using RI, viscometer and light scattering detectors using the Universal calibration method via multi-detection soft-

ware; g Theoretical molecular weight calculated from conversion {[LA]/[BnOH] × (Conv. × 144.13) + 108.14} (rounded to the nearest 

50).] 

Entry Initiator [LA]:[I]:[BnOH] Temp./C Time/ h Conv./ %d  Pm
e Mn

f Ðf Calc Mn
g 

1 Al(2)2Me 100:1:1 80a 6 38 0.72 4210 1.02 5550 

2 Al(2)2Me 100:1:1 80a 24 95 0.71 8780 1.04 13750 

3 Al(2)2Me 100:1:0 130b 0.25 60 0.62 18500 1.24 8750 

4 Al(2)2Me 100.1:1 130b 0.25 94 0.58 14850 1.10 13650 

5 Al(2)2Me 100:1:1 25c 120 17 - - - 2550 

6 Al(3)2Me 100:1:1 80a 48 32 0.52 24250 1.28 4650 

7 Al(5)2Me 100:1:1 80a 6 36 0.49 4650 1.18 5300 

8 Al(5)2Me 100:1:1 80a 24 96 0.48 11950 1.17 13950 

9 Al(6)2Me 100:1:1 80a 6 48 0.61 4350 1.07 6950 

10 Al(6)2Me 100:1:1 80a 24 72 0.59 12750 1.10 10400 

11 Al(1)Me2 100:1:1 80a 6 84 0.53 8250 1.06 12154 

12 Al(2)Me2 100:1:1 80a 6 73 0.80 9250 1.05 10550 

13 Al(2)Me2 100:1:2 80a 6 52 0.68 6050 1.06 7400 

14 Al(2)Me2 100:1:0 80a 6 23 - - - 3350 

15 Al(2)Me2 100:1:1 130b 0.16 73 0.61 12550 1.23 10550 

16 Al(2)Me2 1000:1:10 130b 0.5 92 0.56 18200 1.10 13300 

17 Al(3)Me2 100:1:1 80a 24 16 - - - 2400 

18 Al(4)Me2 100:1:1 80a 24 12 - - - 1850 

19 Al(5)Me2 100:1:1 80a 6 74 0.61 8800 1.06 10700 

20 Al(5)Me2 100:1:2 80a 6 68 0.55 5300 1.07 4950 

 

For Al(2)Me2 PLA with a strong isotactic bias was observed 

with Pm = 0.80. Analysis of the 1H{1H} NMR spectrum showed 

a reduced sis tetrad, indicative of PLA possessing a “blocky” 

nature is formed. Moreover, the sii, iis and isi tetrads are ap-

proximately 1:1:1 which is indicative of a chain end mechanism 

in operation.2v It is interesting that regardless of stoichiometry 

complexes with 2H have an isotactic tendency. This is in stark 

contrast to the Al(III) complex of the tetradentate version.2v It 

is not uncommon that minor changes to the substituents on the 

phenyl group of salan/salen or salalen ligands to induce differ-

ence stereochemical outcomes.2v,18 However, it is far less com-

mon to compare two bidentate ligands to the tetradentate sys-

tem. The exact reason for the dramatic switch is not fully known 

but is potentially related to change in coordination motif of the 

ligand around the metal center which in turn will alter the path 

of lactide coordination to the metal center.  

The rate of polymerization has been investigated and Table 3 

shows a comparison of kapp for a representative sample of initi-

ators. The mono-ligated systems appear to be faster {Al(2)2Me 

vs. Al(2)Me2 and Al(5)2Me vs. Al(5)Me2} which may be related 

to the reduce steric crowding around the Al(III) center facilitat-

ing facile coordination of the monomer. As expected as the size 

of the ortho substituent increases (H – Me –tBu) there is a re-

duction in the apparent first order rate constant. Again this can 

be explained in terms of steric crowding around the metal cen-

ter. The polymerization of L-LA was investigated with 

Al(2)2Me and in this case polymerization rate was faster than 

with rac-LA, which is to be expected from an isoselective initi-

ator. 

Table 3: kapp values for various initiators. Temperature = 80 C, 

solvent C6D5CD3, [LA]0 = 0. 69 moldm-3. 

Initiator Conditions (LA:Init:BnOH) kapp/mins-1 

Al(2)2Me 100:1:1 rac-LA 6.5  10-4 

Al(2)2Me 100:1:1 L-LA 10.2  10-4 

Al(5)2Me 100:1:1 rac-LA 5.6  10-4 

Al(1)Me2 100:1:1 rac-LA 19.2  10-4 

Al(2)Me2 100:1:1 rac-LA 18.8  10-4 

Al(2)Me2 100:1:2 rac-LA 19.7  10-4 

Al(3)Me2 100:1:1 rac-LA 1.3  10-4 

Al(5)Me2 100:1:1 rac-LA 13.5  10-4 

Conclusions 

In conclusion nine half-salan Al(III) complexes have been 

prepared and fully characterized in solution and in the solid-

state. The ligands have been chosen to investigate the steric and 

electronic effects on the polymerization. Complexes Al(2)2Me 

and Al(2)Me2 produce PLA with a high isotactic bias, which is 

in stark contrast to previously reported complexes.2v The other 

complexes produced predominately atactic PLA. It therefore 

appears that the steric requirements are the overriding require-

ment for the production of isotactic PLA. Moreover, it is inter-

esting to compare this half salan to the full bipyrrolidine salan, 

which has a high heterotactic enchainment. This illustrates the 



 

very subtle interplay between ligand coordination and selectiv-

ity. Such a change between bidentate half salan and tetradentate 

salan ligands, to our knowledge, is unprecedented. 

EXPERIMENTAL SECTION 

The preparation and characterization of all metal complexes was car-

ried out under inert argon atmosphere using standard Schlenk or glove-

box techniques. All chemicals used were purchased from Aldrich and 

used as received except for rac-LA which was recrystallized from dry 

toluene. Dry solvents used in handling metal complexes were obtained 

via SPS (solvent purification system). 1H and 13C{1H} NMR spectra 

were recorded on a Bruker 400 or 500 MHz instrument and referenced 

to residual protio solvent peaks. CDCl3/C6D6 were dried over CaH2 

prior to use with metal complexes. Coupling constants are given in 

Hertz. CHN microanalysis was performed by Mr. Stephen Boyer of 

London Metropolitan University. All details are given as supporting 

information, but a representative synthesis is provided below. The fol-

lowing general synthesis for the 1:2 metal:ligand complexes was fol-

lowed: The ligand (1.0 mmol) was dissolved in toluene (10 ml), to this 

AlMe3 (0.5 mmol) was added slowly. After 1 hour the solvent was re-

moved and the resulting product recrystallized from a hexane/toluene 

mixture, typically crystals were isolated after cooling to – 20 C over-

night. Al(5)2Me Isolated as a yellow powder (64 %). 1H NMR (400 

MHz, C6D6, δH, ppm, 298 K); 7.38 (2H, d, J = 2.3 Hz, ArH), 6.52 (2H, 

d, J = 2.3 Hz, ArH), 3.55 (2H, m, NCH2), 3.15 (4H, m, NCH2), 2.79 

(4H, m, NCH2), 1.32 (8H, m, CH2), -0.69 (3H, s, CH3), 13C{1H} NMR 

(100 MHz, C6D6, 298 K, δC, ppm): 154.7 (C-O), 129.0 (Ar), 125.8 (Ar), 

125.5 (Ar), 124.5 (Ar), 121.0 (Ar), 57.1 (NCH2), 53.1 (NCH2), 22.4 

(CH2), 21.3 (CH2), -12.3 (CH3). Elemental (CHN) Analysis; (Cald: 

C23H27N2Cl4O2Al1) C: 51.90%, H: 5.11%, N: 5.26%, (Exp.) C: 51.65%, 

H: 5.06%, N: 5.03%. For the synthesis of mono-ligated complexes, a 

solution of ligand (1.0 mmol) dissolved in toluene (5 ml) was added 

slowly to a solution of AlMe3 (1.0 mmol) in toluene (5 ml). Work up 

procedures follow the methods for bis-ligated complexes. Al(5)Me2 

isolated as a white solid (59 %). 1H NMR (400 MHz, C6D6, δH, ppm); 

7.38 (1H, d, J = 2.8 Hz, ArH), 6.47 (1H, d, J = 2.8 Hz, ArH), 2.89 (2H, 

s, CH2), 2.38 (2H, m, NCH2), 1.61 (2H, m, NCH2) 1.11 (2H, m, CH2), 

1.01 (2H, m, CH2), -0.57 (6H, s, CH3) 13C{1H} NMR (100 MHz, C6D6, 

δC, ppm); 155.3 (C-O), 130.5 (Ar), 127.7 (Ar), 125.5 (Ar), 123.8 (Ar), 

120.9 (Ar), 58.4 (NCH2), 54.0 (NCH2), 22.4 (CH2), -11.3 (CH3). Ele-

mental (CHN) Analysis; (Cald: C13H18N1Cl2O1Al1) C: 51.66%, H: 

6.00%, N: 4.64%, (Exp.) C: 50.85%, H: 5.89%, N: 5.25%.  
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