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Abstract 13 

This is the first time sol-gel technology is used in the treatment of hemp shiv to develop 14 

sustainable thermal insulation building materials. The impact on the hydrophobicity of hemp shiv 15 

by depositing functionalised sol-gel coatings using hexadecyltrimethoxysilane (HDTMS) has been 16 

investigated. Bio-based materials have tendency to absorb large amounts of water due to their 17 

hydrophilic nature and highly porous structure. In this work, the influence of catalysts, solvent 18 

dilution and HDTMS loading in the silica sols on the hydrophobicity of hemp shiv surface has been 19 

reported. The hydrophobicity of sol-gel coated hemp shiv increased significantly when using acid 20 

catalysed sols which provided water contact angles of up to 118° at 1% HDTMS loading. Ethanol 21 

diluted sol-gel coatings enhanced the surface roughness of the hemp shiv by 36% as observed 22 

under 3D optical profilometer. The XPS results revealed that the surface chemical composition of 23 

the hemp shiv was altered by the sol-gel coating, blocking the hydroxyl sites responsible for 24 

hydrophilicity. 25 
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1. Introduction 31 

Wettability of a solid surface is governed by a combination of chemical composition and geometric 32 

structure of the surface [1,2]. The interplay between surface chemistry and surface roughness 33 

has been an active research topic for enhancing the hydrophobicity of cellulose based materials.  34 

 35 

The woody core of the hemp plant (Cannabis Sativa L.) known as shiv has gained interest in the 36 

building industry during the recent years for production of lightweight composites. Hemp shiv 37 

based composites have interesting properties such as thermal [3], hygroscopic [4], mechanical, 38 

acoustic [5] and biodegradability [6].  39 

 40 

Hemp shiv are generally very porous with low density tending to absorb large amounts of water. 41 

Previous studies have reported that hemp shiv not only has higher water absorption rate but also 42 

absorb high amounts of water in the very first minutes compared to different plant materials  [7]. 43 

Moreover, the presence of cellulose, hemicellulose and lignin in bio-based materials contributes 44 

to the presence of hydroxyl groups in their structure. This leads to certain disadvantages of using 45 

bio-based materials making them incompatible with hydrophobic thermoset/thermoplastic 46 

polymers [8]. High moisture uptake also encourages colonial fungal growth resulting in cell wall 47 

degradation and lower durability of the material [9]. 48 

 49 

The major constituents of industrial hemp shiv are: cellulose (44%), hemicellulose (18-27%), lignin 50 

(22-28%) and other components such as extractives (1-6%) and ash (1-2%) [10,11]. Cellulose is 51 

a semi crystalline polysaccharide consisting of linear chain of several D-glucose units linked 52 

together by β (1–4) glucosidal bond. Cellulose contains free hydroxyl groups, and since they form 53 

the major structural component of hemp shiv, they are responsible for the extreme hydrophilic 54 

behaviour. 55 

 56 

One of the mechanism to convert cellulose–based material from hydrophilic to hydrophobic 57 

involves chemical modification to block the hydroxyl groups of the cell wall thereby reducing water 58 

sorption sites. Treatments include acetylation [12], silanization [13] and in situ polymerization [14] 59 

that involve incorporation of materials into the cell wall blocking the voids accessible to water 60 

molecules. Other treatments methods that are known to enhance the water repellence are plasma 61 

etching, lithography, electrospinning and sol-gel treatment that endow the material with nano-62 

scale surface roughness [15]. 63 
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 64 

Chemical pre-treatment of natural plant materials have reported better bonding with polymer 65 

matrix interface due to improvement of their hydrophobic characteristics [16]. There is a need to 66 

develop a novel treatment method for hemp shiv to enhance its water resistance thereby 67 

improving the shiv-binder interfacial adhesion and reduce its susceptibility to decay. The sol-gel 68 

technique is a highly versatile method to deposit silica based coatings possessing single or multi 69 

functionality [17]. These thin mesoporous coatings have high structural homogeneity and their 70 

adhesion can be tailored to different substrates.  71 

 72 

Sol-gel based hydrophobic and water repellent coatings have been investigated on different bio-73 

based materials such as wood [18] and cellulosic fibres [19], however for hemp shiv this is the 74 

first time. The reactive hydroxyl groups present in the polysiloxane network of the sol-gel combine 75 

with the hydroxyl groups of cellulose through a covalent bond.  This study successfully delivers a 76 

sol-gel modified hemp shiv material of hydrophobic character through a simple and inexpensive, 77 

one step dip-coating method. 78 

 79 

2. Experimental 80 

 81 

2.1 Materials  82 

Hemp shiv used in this study was received from MEM Inc., manufacturer of ecological materials 83 

based in Rimouski, Canada. Tetraethyl orthosilicate (TEOS, 98%) and hexadecyltrimethoxysilane 84 

(HDTMS, 85%) were obtained from Sigma-Aldrich. Anhydrous ethanol was purchased form 85 

Commercial Alcohols, Canada.  Hydrochloric acid (HCl, 38%) and nitric acid (HNO3, 70%) were 86 

obtained from Anachemia, VWR, Canada. All chemicals were used as received without further 87 

purification.  88 

 89 
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 90 

 91 

 92 

 93 

 94 

Figure 1. 3D structure of a (A) TEOS molecule, (B) HDTMS molecule; and (C) water on coated hemp shiv samples. 95 

(A) 

(B) 

(C) 



5 
 

 96 

It is known that HDTMS may not be able to penetrate the outer surface layers of the cell wall due 97 

to its high molecular weight [18]. Due to this, the hydrophobicity would be compromised and it can 98 

be predicted that the coating might not be robust. Moreover, using only HDTMS would be highly 99 

expensive and would not be of interest to the construction industry. For these reasons, it was 100 

considered inappropriate to make a comparative study using purely HDTMS. 101 

 102 

 103 

2.2 Preparation of the hydrophobic coatings 104 

The silica based sol-gel was synthesised by hydrolysis and condensation of TEOS in ethanol and 105 

water. The reaction was catalysed using 0.005M acid (HCl/ HNO3). Two sets of silica sols were 106 

prepared based on the difference in concentration of ethanol. The first set of formulations (sols 107 

A) were prepared stirring 1M TEOS in a mixture of 4M water and 4M ethanol. For the preparation 108 

of the second set of formulations (sols B), 1M TEOS was added to 4M water and 16M ethanol. 109 

After the preparation of both sets of silica formulations, the hydrophobic agent HDTMS was added 110 

in concentrations of 0.5-4 wt% of the sol. These mixtures of silica sol and HDTMS were stirred at 111 

300 rpm for at least 20 minutes before performing the dip-coating process. All the sols were 112 

prepared at 40 °C and atmospheric pressure. The sols were allowed to cool down to room 113 

temperature and the pH was recorded. 114 

 115 

The sols aged for 48 hours in closed container at room temperature before the dip-coating 116 

process. Gelation took place in-situ in which pieces of hemp shiv were dipped in the sol for 10 117 

min and then carefully removed and transferred onto a Petri dish. The samples were placed at 118 

room temperature for one hour and then dried at 80 °C for one hour. A schematic illustration of 119 

the HDTMS modified silica sol-gel coating is shown in Figure 1. 120 

 121 

As for the preparation of the pure sol-gel specimen, the sol aged in a container at room 122 

temperature until gel point. The gel-point was taken as the time when the sol did not show any 123 

movement on turning the container upside down. The gel-time and pH for all the prepared sols 124 

are reported in Table 1.  125 

 126 
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Table 1. Composition of the prepared sol-gel formulations and their properties. 127 

FORMULATION CATALYST 
ETHANOL 
CONC. (M) 

HDTMS 
CONC. 
(wt%) 

GEL TIME 
(DAYS) 

pH 

sol A-1 HCl 4.0 4.0 178 1.87 

sol A-2 HCl 4.0 2.0 116 1.82 

sol A-3 HCl 4.0 1.0 101 1.78 

sol A-4 HCl 4.0 0.5 101 1.85 

sol A-5 HNO3 4.0 4.0 150 1.73 

sol A-6 HNO3 4.0 2.0 112 1.87 

sol A-7 HNO3 4.0 1.0 101 1.92 

sol A-8 HNO3 4.0 0.5 101 1.92 

sol B-1 HCl 16.0 4.0 >180 1.64 

sol B-2 HCl 16.0 2.0 >180 1.68 

sol B-3 HCl 16.0 1.0 >180 1.67 

sol B-4 HCl 16.0 0.5 >180 1.72 

sol B-5 HNO3 16.0 4.0 >180 1.70 

sol B-6 HNO3 16.0 2.0 >180 1.76 

sol B-7 HNO3 16.0 1.0 >180 1.81 

sol B-8 HNO3 16.0 0.5 >180 1.83 

 128 

2.3 Contact Angle Measurements 129 

The water contact angle (WCA) of uncoated and coated hemp shiv samples were measured using 130 

a contact angle meter (First Ten Ångstroms USA, FTA200 series). The sessile drop method was 131 

employed and the contact angle was determined on at least three different positions for each 132 

sample (coated substrate). The volume of the water droplets was 5µl for the contact angle 133 

measurements. The average value was adopted as a final value. Images were captured and 134 

analysed using the FTA32 Video 2.0 software. All the measurements were performed at room 135 

temperature (24 ± 1 °C). 136 

 137 
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2.4 Surface Roughness 138 

The topography and surface roughness of the samples was obtained using a 3D optical 139 

profilometer (Bruker Nano GmbH Germany, ContourGT-K series). The surface roughness was 140 

measured over an area at 0.25*0.30 mm2 in non-contact mode at 20X magnification. Vision 64 141 

on board software was then employed to analyse these data and calculate the roughness 142 

parameters. The readings were taken on at least three different positions for each sample and 143 

the average value was reported as the final value.  144 

 145 

2.5 X-ray photoelectron spectroscopy (XPS) 146 

The surface elemental and chemical composition of the samples were analysed using XPS. Prior 147 

to XPS analysis, samples were oven-dried at 80 °C for 96 hours. XPS spectra of uncoated and 148 

sol-gel coated hemp shiv were recorded with an X-ray photoelectron spectrometer (Kratos Axis 149 

Ultra, UK). All spectra were collected using a monochromatic Al Kα X-ray source operated at 300 150 

watts. The lateral dimensions of the samples were 800 microns × 400 microns, corresponding to 151 

those of the Al Kα X-ray used, and probing depth was approximately 5 nanometres. For each 152 

sample, two spectra were recorded: (i) survey spectra (0–1150 eV, pass energy 160 eV, and step 153 

size 1eV) recorded for apparent composition calculation; and (ii) high-resolution C1s, O1s and Si 154 

2p spectra (within 20 eV, pass energy 20 eV and step size within 0.05eV) recorded to obtain 155 

information on chemical bonds. Calculation of the apparent relative atomic concentrations is 156 

performed with the CasaXPS software. Peak fitting is performed with CasaXPS, which 157 

automatically and iteratively minimizes the difference between the experimental spectrum and the 158 

calculated envelope by varying the parameters supplied in a first guess. 159 

 160 

2.6 Scanning Electron Microscopy 161 

The surface morphology of the specimens was characterised using a scanning electron 162 

microscopy (SEM), JEOL corporation - Japan Model JSM-6360 operating at 25 kV. The 163 

specimens were coated with gold to achieve maximum magnification of textural and 164 

morphological characteristics. 165 

 166 
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3. Results  167 

3.1 Hydrophobicity of sol-gel coatings 168 

The water contact angle was determined as soon as the water droplet encountered the sol-gel 169 

coated hemp shiv surface. The sol-gel coatings with high HDTMS loadings (4 wt%) and varying 170 

concentration of ethanol are compared in Figure 2. It can be seen that uncoated shiv has an 171 

extremely hydrophilic surface and water droplet sinks into the substrate reducing the WCA in a 172 

short time. The sol-gel coatings yield hydrophobicity to the hemp shiv by maintaining a stable 173 

contact angle over 60 seconds.  174 

 175 

 176 

Figure 2. Hydrophobicity of hemp shiv surface treated with different sol-gel coatings over 60 seconds of water contact. 177 

 178 

Considering the coating compositions with 4% HDTMS loading listed in Table 1, it was observed 179 

that ethanol diluted sols (sol B series) performed better in terms of providing hydrophobicity to 180 

hemp shiv surface compared to undiluted sols (sol A series).  Sol B-1 and sol B-5 coatings had 181 

higher contact angles (up to 105°) compared to sol A-1 and sol A-5 coatings (up to 100°). 182 

 183 
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Ethanol helps the HDTMS to be fully dissolved in water thereby promoting the hydrolysis 184 

reaction [20,21]. Figure 2 shows the WCA measurements of sol coatings containing 4 wt% 185 

HDTMS. Sol A-1 and sol A-5 contain only 4M ethanol whereas sol B-1 and sol B-5 contain 186 

16M of ethanol. At 4 wt% HDTMS concentration, using 16M of ethanol favours the hydrolysis 187 

of HDTMS. In this way HDTMS molecules are able to self-assemble on the silica network, 188 

hence providing enhanced hydrophobicity to the material. In general, it was observed that sol-189 

gel coatings with HNO3 as catalyst perform slightly better in terms of hydrophobicity than coatings 190 

with HCl as catalyst. 191 

 192 

The changes in water contact angle as a function of HDTMS loading (0.5-4.0 wt%) is presented 193 

in Figure 3. The contact angle measurements had a standard deviation between 1.1° and 6.0°. 194 

The hydrophobic performance of the coatings is not reduced on lowering the HDTMS loading 195 

down to 1%.  Surfaces coated with sol B series showed good water repellence with contact angles 196 

ranging between 96° to 108°.  197 

 198 

Figure 3. Effect of ethanol dilution and varying HDTMS concentration in the sol-gel coating on hydrophobicity of hemp 199 
shiv surface. 200 

 201 
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3.2 Surface roughness of the coatings 202 

The samples were analysed for their surface microstructure and roughness by the Vision64 203 

software using a Robust Gaussian Filter (ISO 16610-31 2016) and a short wavelength cut-off 204 

0.025mm. The use of such filters helps to reduce the anatomical influence and optimizes the 205 

roughness profile data for evaluation of the sample surface [22,23]. The robust Gaussian filter 206 

avoids the distortions produced by some filters when applied in profiles with deep valleys [24]. 207 

Mean surface roughness (Sa) was calculated according to ISO 4287 (1997). Sa gives the 208 

description of the height variations in the surface and it is the most widely used parameter to 209 

measure the surface roughness profile of the sample. The surface roughness parameters for sol-210 

gel coated hemp shiv with 1% and 4% HDTMS loadings are shown in Figure 4.  211 

 212 

 213 

Figure 4. Mean surface roughness (Sa) measurement of uncoated and sol-gel coated hemp shiv surfaces. 214 

 215 

The influence of different sol-gel coatings on the surface roughness of hemp shiv can be seen in 216 

Figure 5. The 3D surface roughness profile showed that the sol A-5 coating on the hemp shiv 217 

lowered the surface roughness providing a smoother surface as seen in Figure 5b. The non-218 

uniform coating was also cracked, which in turn can facilitate water penetration into the hemp 219 

shiv. On the other hand, sol A-7 (contemning lower HDTMS loading) enhanced the surface 220 
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roughness of hemp shiv. Overall ethanol diluted sol-gel coatings had enhanced the surface 221 

roughness of hemp shiv. Sol B-5 had the highest mean surface roughness as seen in Figure 5c.  222 

 223 
 224 

    225 

(a) 
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 226 

  227 

 228 

(b) 

(c) 
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Figure 5. Surface roughness of (a) uncoated, (b) sol A-5 and (c) sol B-5 coated hemp shiv surface. 229 

 230 

3.3 Surface Morphology 231 

Roughness parameters alone cannot describe the surface morphology and therefore microscopy 232 

analysis is beneficial to improve surface evaluations. The morphology of the uncoated and sol-233 

gel coated surfaces was studied by scanning electron microscopy (SEM). Figure 6 shows the 234 

micrographs of hemp shiv surface before and after modification with different sol-gel coatings. Sol 235 

A-5 and sol B-7 (Figures 6b and 6e) formed a thick coating layer and changed the morphology of 236 

the shiv surface. This resulted in coating with major cracks which could be a result of shrinkage 237 

after drying the treated sample (sol-gel coated hemp shiv). On the other hand, sol A-7 and sol B-238 

5 (Figures 6c and 6d) showed uniformly coated surfaces without significantly altering the 239 

morphology of the hemp shiv.  240 

 241 

 242 

 243 

 244 

 245 

 246 

WCA = 96° 

WCA = 77° (a) 

(b) 
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 248 

 249 

 250 

 251 

 252 

WCA = 104° 

WCA = 98° 

WCA= 118° (c) 

(d) 

(e) 
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 253 

Figure 6. Surface morphology and WCA of (a) uncoated, (b) sol A-5, (c) sol A-7, (d) sol B-5 (e) sol B-7 coated hemp 254 
shiv surface and (f) thickness of sol-gel coating.   255 

 256 

Conventional SEM techniques proved unsuccessful in determining the coating thickness, but SEM-FIB 257 

(Focused Ion Beam) imaging of an early iteration of the formulation (Figure 6f) measured a thickness in 258 

the range 160-180nm. It is expected that the current formulations (sol A-7 and sol B-5) would have a 259 

similar thickness. 260 

 261 

3.4 Chemical Composition 262 

The surface chemical composition was determined by X-ray photoelectron spectroscopy. A low-263 

resolution survey scan determined the atomic percentage of various elements present at the 264 

sample surface (Figure 7). The relative elemental composition of the uncoated and sol-gel coated 265 

hemp shiv surface is listed in Table 2.  266 

 267 

Table 2. Relative amount of atoms at sample surface determined by low-resolution XPS scan. 268 

Element 

Relative Conc. (atomic %) 

Uncoated 
Hemp shiv 

Sol A-7 Coated 
Hemp Shiv 

C 69.61 28.33 

O 27.06 53.57 

N 2.06 - 

Ca 0.64 - 

(f) 
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P 0.14 - 

K 0.30 - 

S 0.09 - 

Na 0.04 - 

Cl 0.04 - 

Co 0.03 - 

Si - 18.10 

 269 

The main elements detected for uncoated hemp shiv were carbon and oxygen. Small amounts of 270 

other elements were present either possibly arising from the epidermal cell wall or from 271 

contamination during sample preparation. The sol-gel coated hemp shiv additionally showed high 272 

content of silicon arising from the silica based membrane on the surface (Figure 7b). 273 

 274 

 275 

 276 

(a) 
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 277 

Figure 7. XPS survey can for (a) uncoated hemp shiv, (b) sol A-7 coated hemp shiv. 278 

 279 

A high-resolution scan was performed on the C1s region for the uncoated and sol-gel coated 280 

hemp shiv samples to determine the type of oxygen-carbon bonds present. The chemical bond 281 

analysis of carbon was performed by curve-fitting the C1s peak and deconvoluting it into four sub 282 

peaks corresponding to unoxidized carbon C1, and various oxidized carbons C2, C3 and C4. A 283 

ratio between oxidized carbon (Cox) and unoxidized carbon (Cunox) was calculated by the equation 284 

[25]: 285 

 286 

𝐶𝑜𝑥/𝑢𝑛𝑜𝑥 =  
𝐶𝑜𝑥

𝐶𝑢𝑛𝑜𝑥
=

𝐶2+𝐶3+𝐶4

𝐶1
     Equation 1 287 

 288 

The binding energy, corresponding bond type and their relative percentage are listed in Table 3. 289 

The ratio of Cox/unox has dropped significantly for sol-gel coated hemp shiv indicating that the 290 

carbon oxygen bonds have decreased on the surface of the samples.  291 

 292 

(b) 
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Table 3. Deconvoluted peak parameters and relative amount of different carbon-to-oxygen bonds at sample surface 293 
determined by high-resolution XPS. 294 

Carbon 
Group 

Peak parameters Relative amount (% area) 

Binding Energy 
(eV) 

Bond Uncoated 
Sol A-7 
Coated 

C1 285.0 C-C or C-H 48.01 91.09 

C2 286.6/286.8 C-OH 36.18 8.91 

C3 288.0 O-C-O or C=O 12.56 0.00 

C4 289.2 O-C=O 3.24 0.00 

Cox/unox - - 1.08 0.09 

 295 

The C1s high resolution spectra with the deconvoluted peaks for uncoated and sol-gel coated 296 

surfaces are represented in Figure 8. The C1 peak represents carbon-carbon or carbon-hydrogen 297 

bonds whereas C2, C3, and C4 peaks possess carbon-oxygen bonds.  298 

 299 

 300 

 301 

 302 

 303 

(a) 
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 304 

Figure 8. XPS scan of C1s region for (a) uncoated hemp shiv, (b) sol A-7 coated hemp shiv. 305 

 306 

4. Discussion 307 

The sol-gel coatings were functionalised using HDTMS as the hydrophobic additive during the 308 

sol-gel synthesis. The co-precursor method of sol-gel synthesis was followed based on the 309 

simplicity of the process. In the sol-gel process, TEOS is hydrolysed and condensed to form a 310 

SiO2 network which is covalently bonded to cell wall through the hydroxyl sites of cellulose present 311 

in the hemp shiv. On addition of hydrophobic agent as a co-precursor during the sol-gel 312 

processing, the hydroxyl groups on the silica clusters are replaced by the –Si–C16 groups through 313 

oxygen bonds as illustrated in Figure 9. The hydrophobicity of the sol-gel coatings is due to the 314 

attachment of these long alkyl chains on the silica network thereby providing water resistance to 315 

the hemp shiv surface.  316 

(b) 
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 317 

  318 

 319 

Figure 9 Schematic illustration of sol-gel deposition on glucose units of cellulose.  320 

 321 

Overall, the acid catalysed sol-gel coatings enhance the water repellence of hemp shiv making 322 

the surface hydrophobic (WCA>90°). The wettability of the surface is controlled by the surface 323 

chemical composition as well as by the morphology of the microstructure. Surfaces with a similar 324 

chemical composition may have different wettability behaviour due to the surface topology [26]. 325 

In this study, the surface of hemp shiv underwent microstructural changes via deposition of an 326 

organo-functionalised silica coating.  327 

 328 

Ethanol diluted sol series enhanced the surface roughness of the hemp shiv. At higher HDTMS 329 

loading, undiluted coatings (sol A-1 and sol A-5) lowered the surface roughness of the shiv which 330 

could explain the reason for lower contact angles compared to diluted coatings. Sol A-1 and sol 331 

A-5 have HDTMS molecules that are not fully hydrolysed and being deposited onto the 332 

membrane as a flat thick film as seen in Figure 6b. The reduced surface roughness can be 333 

attributed to the extra HDTMS molecules on the coated surface [27]. Therefore, sol-gel 334 

coatings chemically modified the surface of hemp shiv which overall improved the hydrophobicity 335 

of the material. The high water repellence can be attributed to the long alkyl chains of HDTMS 336 

that provide high hydrophobicity. 337 

Functionalised sol-gel coating 
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 338 

Interestingly, the optimal HDTMS loading was observed when hemp shiv samples were coated 339 

with sol A-7 (1% HDTMS loading). The hemp shiv modified with sol A-7 delivered the highest 340 

contact angle, up to 118°. This can be related to the crack-free surface and the enhanced surface 341 

roughness of coated hemp shiv. 342 

 343 

Since an organic-inorganic hybrid coating was used, the ratio of TEOS: HDTMS was critical to 344 

control the roughness of the coatings resulting in variable water repellent properties of the coated 345 

hemp shiv. Most of the coatings enhanced the surface roughness except sol A-1 and sol A-5. 346 

These coatings had smooth surfaces with cracks which could explain the lower contact angles 347 

even though it had the highest loading of hydrophobic agent. It was observed that the TEOS: 348 

HDTMS molar ratio in the coating formulations affected the hydrophobicity of the coated 349 

hemp shiv. From Figure 3 it can be seen that varying the concentration of HDTMS in the 350 

formulations affects the water contact angle. When TEOS: HDTMS was 1: 0.01 corresponding 351 

to 0.5 wt% HDTMS, the contact angle was below 100° which suggests the concentration of 352 

the hydrophobic agent was too low to provide sufficient level of hydrophobicity . The best 353 

results were obtained with TEOS: HDTMS ratio 1: 0.02 (1 wt% HDTMS)with contact angles up 354 

to 118°. However, when the TEOS: HDTMS ratio was increased to 1: 0.06 (4 wt% HDTMS), the 355 

hydrophobicity was decreased for the undiluted sol coatings. These results can be explained 356 

by the combined effect of surface roughness and energy. TEOS is hydrophilic whereas HDTMS 357 

is hydrophobic and changing their molar ratio can affect the surface roughness and energy 358 

of the coated material. Increasing the HDTMS concentration would reduce the surface energy. 359 

However the surface roughness can be reduced if the HDTMS concentration is high enough 360 

as the extra silane fills the inter-particle gap. Similar results have been reported in different 361 

coating systems [27,28].  Although sol B-7 coating enhanced the surface roughness, it had 362 

developed cracks which lowered the water contact angle to 98°. The presence of surface cracks 363 

arising as a result of shrinkage after drying the coated shiv is a significant factor to be considered 364 

when hydrophobic properties are concerned. The hydrophobicity of modified hemp shiv can be 365 

compromised as the water molecules can penetrate through the cracked coating wetting the bulk 366 

of the material over time. Therefore, sol-gel coatings chemically modified the surface of hemp 367 
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shiv which overall improved the hydrophobicity of the material. The high water repellence can be 368 

attributed to the long alkyl chains of HDTMS that provide high hydrophobicity. 369 

 370 

The chemical composition of hemp shiv is mainly composed of cellulose, hemicellulose and lignin, 371 

which altogether contain a large percentage of oxidized carbon in their structure. Hydroxyl groups 372 

are known to contribute towards majority of the carbon-oxygen bonds in bio-based materials [29]. 373 

The XPS data confirmed that the sol-gel deposition on hemp shiv significantly altered the surface 374 

chemistry. The surface carbon content of the coated hemp shiv decreased by 41.28% (from 69.61 375 

to 28.33%). On the other hand, the oxygen content increased by 26.51% (from 27.06 to 53.57%). 376 

This change in C/O ratio and increase in surface oxygen concentration can be attributed to O-377 

CH3 bonds present in the polysiloxane coating on the surface of the sol-gel coated hemp shiv. 378 

Moreover, the decrease in the surface carbon concentration of the sol-gel coated shiv can be 379 

attributed to the masking effect of the polysiloxane coating which reduces the detectability of 380 

surface cellulose and hemicellulose. 381 

 382 

The C1s high resolution XPS spectra indicate that the surface has been modified by the silica 383 

based coating that led to disappearance of C3 and C4 components of the C1s peaks. A shift in 384 

the binding energy of C2 component (from 286.6 to 286.8 eV) was observed along with the 385 

decrease in the intensity of the C2 component for the sol-gel coated sample. This shift indicates 386 

the presence of a carbon atom linked to an oxygen and silicon atom (O-C-Si or C-O-Si) [18]. It 387 

has also been shown [16,30–32] that curing above room temperature drives the dehydration 388 

reaction at the adsorption sites between hydroxyl groups of the cellulose and the silanols forming 389 

–Si-O-C- bonds. These bonds are formed by the linkage between polysilanol network with the 390 

cellulose hydroxyl groups via polycondensation as illustrated in Figure 9. The increase in the 391 

intensity of C1 component for sol-gel coated sample from 48.01% to 91.09% indicates the 392 

presence of C-H and C-C bonds from the HDTMS hydrocarbon chain. 393 

 394 

5. Conclusion 395 

A simple one step dip-coating process was successfully applied to form a hydrophobic surface 396 

onto an extremely hydrophilic bio-based aggregate construction material. The hydrophobic 397 

properties were achieved through a combination of topological alteration and chemical 398 

modification of the hemp shiv by the modified silica based sol-gel coatings.  399 

 400 
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The treated material (hemp shiv coated with silica based membrane) delivered the following 401 

properties when compared to the untreated hemp shiv: 402 

 Delivered water repellence by maintaining stable water contact angles over 60 seconds. 403 

 Controlled surface wettability through microstructure modification. 404 

 Uniform and crack-free coated surface. 405 

 Enhanced surface roughness providing water contact angles up to 118°. 406 

 407 

It can be concluded that water based sol-gel coatings with low HDTMS precursor loading (sol A-408 

7) would be of interest to the bio-based building industry due to its hygroscopic properties, long 409 

shelf life, reduced cost and lower environmental impact. 410 
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