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Highlights

• We propose new arc-time index formulations for scheduling with periodic main-

tenances

• We devise a simple iterative exact algorithm that yields high quality results

• All existing benchmark instances are solved to optimality

• New instances are introduced and most are solved optimally
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Abstract

The single-machine scheduling problem with periodic maintenances and sequence-

dependent setup times aims at scheduling jobs on a single machine in which periodic

maintenances and setups are required. The objective is the minimization of the

makespan. We propose an exact algorithm based on the iterative solution of three

alternative arc-time-indexed models. Extensive computational experiments are car-

ried out on 420 benchmark instances with up to 50 jobs, and on 405 newly proposed

instances involving up to 150 jobs. We compare the results found by all formulations

with those obtained by the best available mathematical formulation. All instances

from the existing dataset are solved to optimality for the first time.

Keywords: Combinatorial Optimisation, Scheduling, Periodic Maintenances,

Makespan, Arc-time-indexed formulation

1. Introduction

The single-machine scheduling problem with periodic maintenances and sequence-

dependent setup times (1MPS) aims at scheduling a set J of jobs on a single ma-

chine, assuming the machine requires both periodic maintenances and setup activi-
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ties. Scheduled maintenances take place exactly every P units of time until every job

j ∈ J is completed, and the time required for a maintenance service is p0 (hereafter

the index 0 refers to a maintenance). Once a job or a maintenance i ∈ J+ = J ∪ {0}
has been completed, the machine has to be reconfigured to perform another job or a

maintenance j ∈ J+. This activity is referred to as a setup and necessitates sij ≥ 0

time units. Examples from the literature involving setup times are (Allahverdi et al.,

2008; Liao et al., 2016; Herr and Goel, 2016; Subramanian et al., 2014). During main-

tenance and setup activities the machine cannot process any job and preemption is

not allowed, that is, jobs are not resumable. Each job i ∈ J has an associated pro-

cessing time pi > 0. The objective is the minimization of the makespan, i.e., the time

Cmax at which the last processed job is completed. Figure 1 shows an example of

solution of a 1MPS instance containing five jobs. Processing times and maintenance

durations are represented by white rectangles, setups are hatched rectangles.

Figure 1: Example of a solution of a 1MPS instance with 5 jobs.

According to the three-field notation by Graham et al. (1979), 1MPS can be

denoted as 1|pm, sij|Cmax (Lee and Kim, 2012), which is clearly NP-hard since it

includes problem 1|sij|Cmax as special case when pm = 1. Large instances of the

1|sij|Cmax can be solved to optimality by reducing the problem to the symmetric

traveling salesman problem and using, for example, Concorde (Applegate et al., 2006).

The introduction of periodic maintenances makes the problem much more difficult to

solve. In fact, the makespan minimization makes 1MPS equivalent to a heterogeneous

fleet vehicle scheduling problem with a time limit P . In this case, two vehicle types

are considered: type I has a fixed cost P and no variable cost, while type II has no

fixed cost, but has a variable cost equal to the time consumption in the route. One

vehicle of type II is available.

1MPS was introduced by Ángel Bello et al. (2011a) who motivated the practical

relevance of the problem by citing industrial applications in the textile, manufactur-

ing of printed circuit boards and chemical industries, in which machines necessitate
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periodic maintenances. The authors referred to an increasingly vast body of literature

for scheduling problems with maintenances.

We would like to mention the relevance and importance of the 1MPS not just

in the operational context of job sequencing on a single machine, but also in the

tactical context of quantifying the costs of outsourcing production or delivery opera-

tions. Assuming that maintenances model the time at which employers or machines

are most typically idle (i.e., from 17:00 until 9:00 of the subsequent day), a 1MPS

solution quantifies the time needed to complete a set of jobs, including setup times

or changeover durations from a job to the next.

Single-machine scheduling problems with periodic maintenances have recently be-

come popular in the scheduling community, given their combinatorial complexity and

relevance in real-world applications. For the sake of brevity, Table 1 summarizes

the most recent contributions in the literature about the 1MPS and related variants

for single-machine scheduling problems with maintenance activities. Here we review

the three papers with minimum makespan and setup times, which correspond to the

problem considered in our study.

Ángel Bello et al. (2011a) proposed a mixed integer linear programming (MILP)

formulation with polynomial number of variables and constraints (i.e., a compact for-

mulation) for the 1MPS, strengthened the formulation with valid inequalities and ini-

tialized the exact algorithm with upper bounds obtained using a heuristic algorithm.

The same authors tackled the problem heuristically in Ángel Bello et al. (2011b),

using a GRASP. Finally, Pacheco et al. (2013) obtained higher quality results for the

problem with a multi-start tabu search (TS) metaheuristic and an enhanced version

of the compact formulation (CF) presented in Ángel Bello et al. (2011a). To the best

of our knowledge, CF appears to be the most effective MILP for the 1MPS. However,

it still fails to solve some instances involving 20 jobs.

The main contribution of this paper is to present mathematical models for the

1MPS and to develop an iterative exact algorithm that is simple to implement and

yields high quality results. The algorithm iteratively solves a MIP formulation of a re-

stricted version of the 1MPS in which the number of maintenances is fixed. Secondary
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Table 1: Overview of the problem variants

Authors Objective Characteristics Algorithms
Liao and Chen (2003) Min max tardiness Due dates B&B, heuristic
Sbihi and Varnier (2008) Min max tardiness Flexible maint. B&B, heuristic
Chen (2006a) Min total flow time - B&B, heuristic
Chen (2006b) Min mean flow time Flexible maint. MILP, heuristic
Chen (2007) Min total flow time and - B&B, heuristic

max tardiness
Chen (2009) Min # tardy jobs - B&B, heuristic
Lee and Kim (2012) Min # tardy jobs - MILP, heuristic
Ji et al. (2007) Min makespan - Approximation alg.
Chen (2008) Min makespan Flexible maint. MILP, heuristic
Xu et al. (2009) Min makespan Flexible maint. Approximation alg.
Low et al. (2010) Min makespan - Ant colony
Hsu et al. (2010) Min makespan Max # jobs Heuristics

Ángel Bello et al. (2011a) Min makespan Setup times B&B, heuristic

Ángel Bello et al. (2011b) Min makespan Setup times GRASP
Pacheco et al. (2013) Min makespan Setup times MILP, tabu search
Zade and Fakhrzad (2013) Min makespan - MILP, genetic alg.
Yu et al. (2014) Min makespan - Approximation alg.
Cui and Lu (2014) Min makespan Release dates B&B

contributions of this article are i) to test the effectiveness of using arc-time-indexed

formulations embedded within an iterative algorithm for the 1MPS, in which the

number of maintenances is fixed at each iteration, ii) to develop an enhanced and in-

novative arc-time-indexed formulation for the 1MPS, iii) to provide new best-known

solutions for several 1MPS benchmark instances, and iv) to generate and solve new

and more challenging instances for the 1MPS.

The remainder of the paper is organized as follows. Section 2 presents the for-

mulation of Pacheco et al. (2013). Section 3 describes the proposed arc-time-indexed

mathematical models. Section 4 introduces the iterative algorithm. Section 5 com-

pares the performance of the three models within (and, when possible, without apply-

ing) the iterative framework and provides extensive computational results highlighting

which is the most adequate arc-time-indexed formulation. Moreover, our results are

compared with those of Pacheco et al. (2013). Conclusions follow in Section 6.

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2. The compact formulation (CF) of Pacheco et al. (2013)

In CF a block is any time interval between consecutive maintenances. Binary

variables v1ij and v2ij set precedence relationships among jobs. More precisely, v1ij is

equal to 1 if and only if job j is scheduled after job i in the last block. Similarly, v2ij

is equal to 1 if and only if job j is scheduled after job i in any block excluding the

last one. Variable yj is equal to 1 if and only if j is processed in the last block and

the number of blocks is m. Finally, uj is the completion time of job j with respect to

the beginning of the block in which j is processed. The MILP is as follows:

minimize P (m− 1) +
n∑

i=0

n∑

j=1
j 6=i

(sij + pj)v
1
ij (1)

subject to
∑

j∈J
v10j =

∑

i∈J
v1i0 = 1 (2)

∑

j∈J
v20j =

∑

i∈J
v2i0 = m− 1 (3)

∑

j∈J+
i 6=j

v1ij = yi i ∈ J (4)

∑

i∈J+
i 6=j

v1ij = yj j ∈ J (5)

∑

j∈J+
i 6=j

v2ij = 1− yi i ∈ J (6)

∑

i∈J+
i 6=j

v2ij = 1− yj j ∈ J (7)

ui − uj + (P + sij + pj)(v
1
ij + v2ij)

+ (P − sji − pi)(v1ji + v2ji) ≤ P i, j ∈ J, j 6= i (8)

(s0i + pi)(v
1
0i + v20i) ≤ ui ≤ P − (si0 + p0)(v

1
i0 + v2i0) i ∈ J (9)
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∑

i∈J+

∑

j∈J+
i 6=j

(pi + sij)v
2
ij ≤ P ×m (10)

∑

i∈J+

∑

j∈J+
i 6=j

(pi + sij)v
1
ij ≤ P (11)

vkij ∈ {0, 1} k ∈ {1, 2}
i, j ∈ J+, j 6= i (12)

ui, yi ≥ 0 i ∈ J (13)

m ≥ 0. (14)

The objective function (1) computes the makespan as the sum of the block du-

rations (except the last one) and the time instant at which the machine finishes

processing the last job in the final block. Constraints (2) and (3) state that only one

job can be processed after and before a maintenance activity. Constraints (4)–(7)

impose precedence conditions. Constraints (8) set the maximum block duration, and

Constraints (9) define the job processing and setup times. Constraints (12) and (13)

specify the domains of the variables.

We attempted to strengthen CF using a subset of the so-called k-path cuts, which

were introduced by Kohl et al. (1999) for the vehicle routing problem with time

windows. Let K(S) be the minimum number of blocks required to schedule a subset

of jobs S ⊂ J ; the cuts state that
∑

i∈J\{S}
∑

j∈S(v1ij + v2ij) ≥ K(S). Computing

the value of K(S) is NP-hard as one needs to solve the 1|sij|Cmax over S. When

K(S) = 2, the inequalities are referred to as 2-path cuts, and it is typically within

computational reach to separate the cuts exactly when |S| is small. We implemented a

cutting plane-based algorithm using the separation procedure presented in Kohl et al.

(1999) for the 2-path cuts. Our tests revealed that the cuts improved our solutions

for very few instances at the expense of increasing the overall average CPU time. We

therefore decided to report the results for the CF without cuts.
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3. Arc-time-indexed models

As shown by Pacheco et al. (2013), the 1MPS can be formulated as a MILP with

a polynomial number of variables and constraints; this type of model can be solved

directly using a commercial solver. However, the model of Pacheco et al. (2013) fails

to solve some instances involving as few as 20 jobs. In what follows, we present

three alternative models for the 1MPS. While all of our models formally describe the

1MPS, the first two cannot be used as inputs for a commercial solver because the

number of maintenances m necessary to complete all jobs is one of the indices of

some constraints. In Section 4, we explain how all models can be solved by means of

an iterative procedure.

The models we propose are all based on arc-time-indexed variables, which link

jobs to an instant in the time horizon, for example by specifying whether an arc

is traversed by starting or ending at a certain time. The number of variables is

typically proportional to the length of the time horizon (it is pseudo-polynomial),

and is therefore arbitrarily large. The success of formulations based on arc-time-

indexed variables is due to the strength of their linear relaxation, compared with

formulations that contain a polynomial number of variables, whereas their weakness

lies in their size. These models belong to the class of time-index formulations. The

first time-index formulation for a single machine scheduling problem was proposed

by Dyer and Wolsey (1990). Since then, research has focused on the adoption of

time-index formulations solved by algorithms that can mitigate the explosion of the

size of the search space.

Examples of successful methods based on arc-time-indexed formulations are those

of Sourd (2009), Tanaka et al. (2009) and Pessoa et al. (2010). Nogueira et al. (2014)

compared the performance of formulations for single-machine scheduling problems

with sequence-dependent setup times and release dates; the results of their tests con-

firm that the arc-time-indexed formulation produces high quality lower bounds and

outperforms other formulations for instances with up to 15 jobs. However, larger in-

stances are more often solved to optimality when modelled by two-index formulations.

More recently, Boland et al. (2016) proposed the use of time buckets to reduce the size
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of the search space in single-machine scheduling problems. Significant improvements

can thus be achieved when processing times have small and clustered values.

In what follows, we denote by Tij the set of times at which job or maintenance

j can be scheduled immediately after job or maintenance i without violating any

constraint, i.e., a job j cannot be scheduled after a job i if the start time of j plus

its processing time pj overlaps with any of the maintenance activities. Note that the

values Tij depend on the choice of arc-time formulation.

3.1. ATF

Our first model is called ATF for arc-time formulation. Define the set JATF =

J ∪ {0,M1, . . . ,Mm−1} in which 0 is the initial and final state of the machine and

M1, . . . ,Mm−1 are the maintenances to be performed. Binary decision variable xtij

equals 1 if and only if j ∈ JATF is processed exactly after i ∈ JATF at time t ∈
Tij. Let x be the (xtij) vector. Since the maintenance activities have fixed starting

times and jobs are not resumable, idle time may occur. In order to account for this

possibility, we allow variables xtjj to exist. Such variables mean that the machine is

idle between times t− 1 and t and no setup is executed, thus sjj = 0, j ∈ J . For ease

of representation, we define variables p′ij equal to 1 if j = i and equal to pj otherwise,

and we assume the schedule starts and returns to maintenance 0 after completing all

jobs. The ATF is as follows:

minimize
m,x

∑

i∈J

∑

t∈Ti0
(t− si0)xti0 (15)

subject to
∑

j∈J
x
s0j
0j = 1 (16)

∑

i∈JATF
i 6=j

∑

t∈Tij
xtij = 1 j ∈ JATF (17)

∑

j∈JATF
t∈Tji

xtji −
∑

j∈JATF
t′∈Tij

t′=t+p′ij+sij

xt
′
ij = 0 i ∈ JATF , t = 0, . . . ,mP (18)
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xtij ∈ {0, 1} i, j ∈ JATF , t ∈ Tij (19)

m ≥ 0. (20)

The objective function (15) computes the makespan by minimising the time at which

the last job is completed, in other words, the time at which the path returns to

the dummy maintenance 0. Constraint (16) states that exactly one job must be

processed immediately after the maintenance 0. Constraints (17) force every job

and each maintenance to be performed exactly once. Constraints (18) ensure flow

conservation. Note that these constraints also ensure that each maintenance activity

will be scheduled at the correct time. In addition, the number of constraints and

variables of each constraint depends explicitly on m (this is why the model cannot be

solved by a commercial solver). Constraints (19) and (20) define de domains of the

variables.

ATFs yield a suitable graphical representation when the vertices of the network

are plotted against time. Such a representation depicts a sequence of jobs over time

as a path in a network and provide an effective visual interpretation of the size of

the model, as well as that of the solutions. An example of this representation is

given in Figure 2. Table 2 contains the data of the instance used in our example,

in which the block duration P is set to eight time units, and the maintenance takes

one time unit. Four jobs have to be scheduled and the tables provide the setup

times and the processing times. Note that setup times are also necessary if a job is

executed immediately after the initial state 0, after a maintenance Mi, i = 1, . . . ,m,,

or if a job is executed immediately before a maintenance (or before the final state

0). In this latter case, the maintenance and eventually the idle time do not affect the

makespan, but determine the feasibility of the last block. Figure 2 depicts the ATF

network representing the solution corresponding to the sequence of jobs (3, 2, 1, 4).

The vertical lines correspond to setup times, while the horizontal lines are either

processing or idle times.

10
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Setup times Processing times
0/Mi 1 2 3 4 j pj

0/Mi 0 2 1 2 1 p0/pMi
1

1 1 0 2 3 1 1 1
2 1 1 0 3 3 2 1
3 2 2 1 0 2 3 2
4 1 2 4 2 0 4 1

Figure 2: ATF network and solution representation.
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3.2. ATF-M

The second model is called ATF-M (“M” stands for the maintenance index) and

the main characteristic is that variables make use of an additional index to identify

blocks. Let K = {1, . . . ,m} be the set of blocks. Binary variable ztkij is equal to 1

if and only if job j ∈ J starts immediately after job i ∈ J+ on block k ∈ K at time

t ∈ Tij. Note that idle times do not need to be modelled as in ATF because jobs are

allowed to return to 0 before the scheduled maintenance. Variables ztkjj are therefore

not required. The ATF-M is as follows:

minimize P (m− 1) +
∑

i∈J

∑

t∈Ti0
(t− si0)ztmi0 (21)

subject to
∑

k∈K

∑

i∈J+

∑

t∈Tij
ztkij = 1 j ∈ J (22)

∑

t∈Tij

∑

j∈J
ztkj0 =

∑

j∈J
z
s0j ,k
0j = 1 k ∈ K (23)

∑

j∈J+
t∈Tjik

ztkji −
∑

j∈J+
t′∈Tij

t′=t+pi+sij

zt
′k
ij = 0 k ∈ K, i ∈ J

t = 0, . . . , P − p0 (24)

ztkij ∈ {0, 1} i, j ∈ J+, i 6= j

k ∈ K, t ∈ Tij (25)

m ≥ 0. (26)

Constraints (22) mean that every job is executed in one block. Constraints (23)

state that, for each block k ∈ K, one job must be performed first (after 0). Constraints

(24) ensure flow conservation. Note that both the sets of Constraints (23) and (24)

are indexed in m, and therefore, as for the previous model, ATF-M cannot be solved

by a commercial solver. We do not provide a graphical interpretation of ATF-M

solutions because a visual representation of a four-index variables model would be

12
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too complex and uninformative.

3.3. ATF-P

Our final model, called ATF-P, considers a single block of P−p0 time units (hence

the “P”). The decision variables are the same as in ATF. The main difference between

ATF and ATF-P is the length of the time interval, which is restricted to P − p0 time

units in the ATF-P, in comparison to mP units in ATF. In order to reduce the time

horizon to P − p0 units of time and keep track of the makespan, m simultaneous

but distinct paths have to be identified. The first m − 1 paths start and end at the

dummy maintenance 0, the last path starts and ends at the dummy maintenance 0′.

The latter path represents the final block, therefore, JATF -P = J ∪ {0, 0′}. As in

ATF-M, the variables xtjj are not necessary to model idle time. The ATF-P model is

as follows:

minimize P (m− 1) +
∑

i∈J
t∈Ti0′

(t− si0′)xti0′ (27)

subject to
∑

j∈J
x
s0j
0j = m− 1 (28)

∑

j∈J
x
s0′j
0′j = 1 (29)

∑

i∈JATF -P
i 6=j

∑

t∈Tij
xtij =

{
m− 1 if j = 0

1 otherwise
j ∈ JATF -P (30)

∑

j∈JATF -P
t∈Tji

xtji −
∑

j∈JATF -P
t′∈Tij

t′=t+pi+sij

xt
′
ij = 0 i ∈ J, t = 0, . . . , P − p0 (31)

xtij ∈ {0, 1} i, j ∈ JATF -P , t ∈ Tij (32)

m ≥ 0. (33)

The objective function (27) minimizes the makespan. Constraint (28) forces m−1
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jobs to be processed immediately after the dummy maintenance 0. Constraint (29)

means that only one job is processed immediately after the dummy maintenance 0′

at time t = s0′j. Constraints (30) guarantee that every job is performed exactly once,

and vertex 0 is visited after m − 1 jobs. Constraints (31) ensure flow conservation.

Constraints (32) and (33) define the nature of the variables. Note that in contrast

with ATF and ATF-M, this formulation can be solved directly by a commercial solver.

The solution of the Table 2 instance is depicted in Figure 3 adopting the ATF-P

network. It can be noted that ATF-P drastically reduces the size of the search space;

m − 1 paths depart from vertex 0 and terminate within time P − p0 at vertex 0,

whereas the last path departs from vertex 0′ and returns to the same vertex within

the same time frame. This representation highlights the similarities between ATF-

P and problems with parallel machines. Each of the blocks can in fact be seen as

an independent machine; the completion time of the last job performed on the mth

machine is considered to compute the overall makespan. Note that the objective

function guarantees that the mth machine performs at least one job.

Figure 3: Network using ATF-P
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3.4. Sizes of the models

Table 3 provides a comprehensive comparison of the numbers of constraints and

variables of the models presented. It can be noted that all three models proposed in

this paper rely on a pseudo-polynomial number of variables and constraints, whereas

CF is polynomial in both the numbers of variables and constraints. Nevertheless, the

ATF-P has a number of variables and constraints proportional to P − p0. While this

value can be arbitrarily large, it is significantly smaller than mP and m(P − p0) (the

coefficients in the complexity formula of the number of constraints for ATF and ATF-

M), when m is large. Despite the fact that ATF and ATF-M have a larger number of

variables and constraints than ATF-P, these formulations can more easily incorporate

future problem extensions, as, for example, incompatibilities between jobs in the same

block and time-dependent setup or processing times.

Table 3: Sizes of the models

Formulation #Constraints #Variables
CF |J |2 + 5|J |+ 6 2(|J |+ 1)2 + 2|J |+ 1
ATF 1 + (|J |+m) + Pm(|J |+m) (|J |+m)2(maxij{|Tij|})
ATF-M |J |m(P − p0) + |J |+m (|J |+ 1)2(P − p0)m
ATF-P |J |(P − p0 + 1) + 4 (|J |+ 2)2(P − p0) + 1

4. An iterative exact algorithm for the 1MPS

The algorithm we propose iteratively solves the 1MPS by fixing the number of

maintenances, starting from a valid lower bound, until the minimum number of main-

tenances allowing the scheduling of all jobs is reached. At each iteration, either the

problem is solved to optimality by the MILP associated with a given model (which re-

ceives the number of maintenances as an input datum) and the algorithm terminates,

or an infeasible solution is returned, meaning that at least an extra maintenance is

required to achieve feasibility.

Each formulation used in our algorithm assumes that the number of maintenances

to be performed is known a priori. This allows solving ATF and ATF-M to optimality

using a solver, as well as the ATF-P and CF.
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The algorithm starts by computing the following trivial lower bound m on the

number of maintenances necessary to perform all jobs:

m =

⌊ |J | ×mini,j∈J+ sij +
∑

j∈J pj

P − p0

⌋
. (34)

The models presented in Section 3 and CP are initialized assuming that exactly

m maintenances are necessary to complete all jobs and to reconfigure the machine for

the final maintenance. If a feasible solution is found by the model, then it is optimal;

otherwise, m is incremented by one unit and the model is solved again.

The number of iterations of this algorithm is bounded by |J |, but our compu-

tational results indicate that typically only a few iterations are necessary, and the

computing time needed to confirm that m is insufficient to accommodate all jobs is

typically small. More details about the performance of the algorithm will be provided

in Section 5.

5. Computational experiments

We have conducted tests using a single core on an Intel Core i7 with 3.4 Ghz and

16 GB of RAM, with operating system Ubuntu 12.04. All formulations were solved

by CPLEX 12.6 using default settings. The same computational environment was

used to perform the tests regarding the CF formulation.

5.1. Benchmark Instances

In this section we describe the instances used to test the proposed formulations

and solution methods. We first present the benchmark dataset suggested by Pacheco

et al. (2013), and we then introduce a set of new benchmark instances.

5.1.1. Instances of Pacheco et al. (2013)

The number of jobs in the instances of Pacheco et al. (2013) is set as |J | =

10, 12, 15, 20, 30, 40, 50. These authors have used a discrete uniform distribution to

generate the processing and setup times within the intervals [2, 8], [4, 12] and [5, 20].

For ease of presentation, we associate a value S to each interval, in particular, S = 1, 2
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and S = 3, respectively. They have also considered different length for the blocks,

namely: 2.25dm, 2.5dm, 3dm, 4dm, where dm = maxi∈J{(s0i + pi + si0 + p0)/2}. Since

five instances were generated for each combination of n, S and block length (P ), there

are in total 5× 7× 3× 4 = 420 instances.

5.1.2. Newly proposed instances

The new set of instances was generated as follows. The number of jobs was set

as |J | = 10, 15, 20, 25, 50, 75, 100, 125, 150, whereas the processing and setup times

were randomly generated using a discrete uniform distribution in the intervals [2, 4]

(S = 1), [5, 10] (S = 2) and [10, 20] (S = 3). The length of a block was computed

as α×maxi,j∈J+{pi + sij}, where α is either 2, 3 or 4. Five instances were generated

for each combination involving the different values of n, S and α, thus resulting in

5×9×3× 3 = 405 instances. This set of instances differs from that of Pacheco et al.

(2013) for the following reasons: the triangular inequality is not satisfied, the range

of the values of job processing times do not overlap, and the length of a block is

computed using different tightness parameters.

Figures 4 and 5 show, in logarithmic scale, how the average number of variables

and constraints of each formulation varies with the value of α for the newly generated

instances. For the sake of conciseness, we chose to present only the graphs for α = 2

and α = 4. Note that the larger the value of α, the larger the length of the block in the

instance. As reported in Appendix B, the performance of the formulations is highly

dependent on the value of this parameter. According to Table 3, we can observe

that the number of variables and constraints in CF only depends on the number of

jobs. However, this is not the case for the arc-time-indexed formulations, for which

the numbers of variables and constraints are clearly sensitive to α, i.e., the size of

the block. More precisely, the average numbers of variables and constraints of ATF

and ATF-M tend to rapidly increase for smaller values of α, but not for ATF-P. It is

interesting to observe that, for larger values of n, the average number of constraints

of ATF-P tends to be smaller than in CF.
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Figure 4: Average number of variables
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Figure 5: Average number of constraints
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5.2. Standalone formulations versus iterative framework

This section compares the results obtained by using a standalone mathematical

programming model when this is possible (ATF-P and CF) and the results achievable

by using the same models within the iterative algorithm (see Appendix A for detailed

results). Recall that this comparison cannot be extended to ATF and ATF-M, because

m if one of the indices of some of their constraints. Table 4 reports the results on

the instances proposed by Pacheco et al. (2013), Table 5 reports the results on the

new set of instances. The tables are organised as follows: the rows represent the

average results for a set value of n and α. The results of the ATF-P standalone

model and iterative algorithm are reported first, followed by the same information

for the CF standalone model and algorithm. For each method, we then report the

number of optimal #opt solutions obtained, the average computing time for instances

in which both methods found the optimal solution t∗(s), and the average percentage

gap Gap∗(%) with respect to the linear relaxation value for the instances that both

methods failed to solve to optimality. Note that for the Pacheco et al. (2013) instances

both the ATF-P standalone and the ATF-P iterative algorithm always finds optimal

solutions, so we only report the time column.

The iterative framework is systematically capable of finding at least as many op-

timal solutions as the standalone formulation within smaller computing times. When

both approaches fail to find the optimal solution, the iterative framework typically

yields smaller average percentage gaps. In what follows, we will therefore present

results obtained by applying the iterative algorithm for all models, given that this

approach empirically outperforms the corresponding standalone formulation.

5.3. Summary of the results

We now present an overview on the performance of the formulations embedded

within the iterative algorithm. We first analyze the behaviour of the gap with respect

to α. It is clear that the performance of ATF-M and CF depends on the value of α,

as depicted in Figure 6. We do not include ATF nor ATF-P in this analysis because

the first formulation would yield very large gaps on large-sized instances, and the

average gap line of the second formulation would not be distinguishable from the 0%
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Table 4: Results comparing the standalone formulation to the iterative framework for the Pacheco
et al. (2013) instances

CF ATF-P
Standalone Iterative Standalone Iterative

n α # t∗ Gap∗ # t∗ Gap∗ t∗ t∗

opt (s) (%) opt (s) (%) (s) (s)

10

2.25 15 5.1 - 15 1.6 - 0.0 0.0
2.50 15 1.0 - 15 0.5 - 0.0 0.0
3.00 15 5.2 - 15 0.1 - 0.1 0.1
4.00 15 1.1 - 15 0.1 - 0.7 0.4

12

2.25 15 16.6 - 15 5.7 - 0.0 0.0
2.50 15 9.4 - 15 3.1 - 0.0 0.1
3.00 15 17.8 - 15 0.4 - 1.0 0.1
4.00 15 9.5 - 15 0.1 - 0.8 0.7

15

2.25 15 147.7 - 15 71.2 - 0.0 0.1
2.50 15 21.6 - 15 11.4 - 0.1 0.1
3.00 15 150.9 - 15 2.6 - 1.1 0.3
4.00 15 22.3 - 15 0.2 - 4.6 0.6

20

2.25 7 2580.0 11.3 8 1471.4 9.6 0.1 0.1
2.50 13 1373.7 8.2 14 1191.7 0.7 0.6 0.3
3.00 15 64.2 - 15 86.7 - 2.0 0.7
4.00 15 4.1 - 15 4.9 - 151.6 2.3

30

2.25 0 - 10.7 0 - 9.8 0.7 0.7
2.50 1 648.4 7.9 1 2241.3 7.5 1.8 1.0
3.00 4 215.2 3.2 4 495.5 3.3 4.9 3.0
4.00 14 900.7 - 15 770.3 - 15.8 10.8

40

2.25 0 - 11.4 0 - 11.3 1.2 1.0
2.50 0 - 10.0 0 - 9.7 3.2 3.3
3.00 0 - 5.6 0 - 5.6 6.0 10.7
4.00 4 270.8 1.5 4 493.8 1.4 65.6 37.0

50

2.25 0 - 13.5 0 - 12.9 1.4 2.5
2.50 0 - 11.2 0 - 10.8 25.0 3.8
3.00 0 - 5.7 0 - 5.5 136.8 15.0
4.00 2 113.1 2.4 3 822.1 2.4 659.8 98.5

Avg. 229.2 8.1 184.1 7.7 38.7 6.9
Tot. 255 259

gap line. ATF-M yields better lower bounds for smaller values of α, whereas CF

exhibits the opposite behaviour, especially for α = 4, where CF finds relatively good

lower bounds. Nevertheless, as CF struggles to find high quality upper bounds, the

formulation still fails to prove the optimality of the instances with α = 4 and n > 25.

This may also explain the large number of nodes explored in the branch-and-bound

tree, sometimes even exceeding the memory limit of 10 GB before the time limit

of 7200 seconds for n > 20. The results show that the quality of the lower bound

found by CF is sensitive to the value of α, even though the numbers of variables and

constraints of this formulation are not a function of this parameter.
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Table 5: Results comparing the standalone formulation to the iterative framework for the newly
proposed instances

CF ATF-P
Standalone Iterative Standalone Iterative

n α # t∗ Gap∗ # t∗ Gap∗ # t∗ Gap∗ # t∗ Gap∗

opt (s) (%) opt (s) (%) opt (s) (%) opt (s) (%)

10
2 15 0.7 - 15 0.6 - 15 0.0 - 15 0.1 -
3 15 3.0 - 15 0.7 - 15 0.1 - 15 0.1 -
4 15 1.8 - 15 1.8 - 15 4.8 - 15 0.4 -

15
2 15 78.1 - 15 32.2 - 15 0.0 - 15 0.2 -
3 9 207.1 1.8 10 113.2 1.9 15 0.3 - 15 0.3 -
4 14 34.2 4.5 14 98.4 4.7 15 8.5 - 15 1.3 -

20
2 12 861.8 - 15 318.1 - 15 0.1 - 15 0.3 -
3 4 3366.5 5.3 3 3432.7 5.7 15 0.8 - 15 0.9 -
4 9 1353.3 1.1 10 1165.1 1.3 15 17.9 - 15 4.8 -

25
2 3 669.8 15.3 7 114.2 11.6 15 0.1 - 15 0.5 -
3 1 1745.8 5.5 1 1928.1 5.2 15 2.6 - 15 2.0 -
4 6 940.2 1.7 5 692.6 1.9 15 25.8 - 15 14.5 -

50
2 0 - 21.3 0 - 21.3 15 0.3 - 15 3.9 -
3 0 - 5.2 0 - 5.2 15 20.1 - 15 20.0 -
4 0 - 0.4 0 - 0.3 15 651.8 - 15 545.0 -

75
2 0 - 19.3 0 - 19.3 15 0.6 - 15 12.2 -
3 0 - 3.9 0 - 3.9 15 91.5 - 14 142.9 -
4 0 - 0.5 0 - 0.5 10 1173.0 1.0 11 460.2 0.5

100
2 0 - 19.8 0 - 19.8 15 1.0 - 15 27.6 -
3 0 - 4.2 0 - 4.2 15 271.7 - 14 155.5 -
4 0 - 0.3 0 - 0.3 10 1892.4 1.4 10 649.7 0.5

125
2 0 - 19.7 0 - 19.6 15 3.5 - 15 56.7 -
3 0 - 3.8 0 - 3.8 14 948.0 - 14 746.1 -
4 0 - 2.6 0 - 2.6 6 1866.6 25.8 9 1024.0 25.5

150
2 0 - 20.2 0 - 20.2 15 2.4 - 15 87.8 -
3 0 - 3.2 0 - 3.2 10 248.8 0.3 13 2069.4 0.1
4 0 - 13.5 0 - 13.5 5 1231.0 20.9 8 3487.0 31.7

Avg. 771.9 7.9 658.1 7.7 313.5 9.9 352.3 11.7
Tot. 118 125 370 378

Despite clearly dominating the results found by the other formulations in terms

of lower and upper bounds, the overall performance of ATF-P still depends on the

value of α. For example, while ATF-P solved all instances with α = 2, it failed to

solve a few instances with α = 3 and α = 4 (for n = 75 and n = 100). The average

gap for the instances of up to 100 jobs and that were not solved to optimality was

always smaller than 1%, thus demonstrating the good quality of the ATF-P bounds.

Moreover, in order to better illustrate the influence of α on the performance of ATF-P,

we present in Figure 7 (in logarithmic scale) the average CPU time in seconds spent

by the iterative algorithm over the referred formulation for different values of α.

We can observe that the CPU time increases with the value of α, that is, the
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Figure 6: Comparison between the average gaps (%) of ATF-M and CF for different values of α

larger the size of the blocks, the harder the instances for ATF-P. This result may seem

counter-intuitive since the numbers of constraints and variables of ATF-P decrease

as α increases (see Figures 4 and 5). However, since the number of possible schedules

between two consecutive maintenances increases with the size of the block, this may

possibly explain the difficulty faced by ATF-P in solving those type of instances.
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Figure 7: Average execution CPU time in seconds spent by the iterative algorithm over ATF-P

Tables 6 and 7 present a summary of the results obtained for the instances pro-

posed by Pacheco et al. (2013) and those proposed in this work, respectively. In this

case, Gap(%) denotes the average percentage gap between the lower bound and the
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best-known upper bound, t(s) corresponds to the total average CPU time in seconds

and we chose to report the average gap obtained after solving the root node (Gapr)

for the last iteration of the iterative algorithm, so as to provide a more accurate idea

of the quality of the root relaxation of each formulation. The symbol “-” denotes that

no lower bound was found for at least for one of the instances in the set after two

hours of computing time, therefore making it impossible to compute the Gap(%).

It is worth mentioning that values of Gap(%) and Tree Size for the arc-time-

indexed formulations are associated with the last iteration of the exact algorithm,

i.e., the one for which the minimum feasible number of maintenances is used. The

CPU times reported for such formulations correspond to the total execution time

of the exact algorithm. A time limit of 7200 seconds and 10 GB of memory were

imposed. Note that the Gap(%) values are computed with respect to the best-known

upper bounds and therefore Gap(%) = 0.00 does not necessarily imply that a solution

was proven optimal (i.e., the upper bounds identified by the algorithm at hand can

be higher than the best upper bound). Moreover, a CPU time smaller than 7200

seconds may mean that the memory limit of 10 GB was exceeded.

Table 6: Summary of the results for the instances of Pacheco et al. (2013)

CF ATF ATF-M ATF-P
Gap Gapr t # Gap Gapr t # Gap Gapr t # Gap Gapr t #

n
(%) (%) (s) opt (%) (%) (s) opt (%) (%) (s) opt (%) (%) (s) opt

10 0.00 9.19 0.59 60 0.00 0.14 1.6 60 0.00 0.00 0.5 60 0.00 0.00 0.1 60
12 0.00 8.87 2.34 60 0.00 0.35 3.5 60 0.00 0.59 1.1 60 0.00 0.00 0.2 60
15 0.00 8.20 21.37 60 0.00 0.64 9.6 60 0.00 0.66 2.3 60 0.00 0.02 0.3 60
20 1.14 9.24 1551.79 52 0.00 0.90 76.3 60 0.00 0.97 13.8 60 0.00 0.24 0.9 60
30 4.79 7.82 5153.43 20 0.00 1.38 707.0 60 0.00 1.21 205.1 60 0.00 0.17 3.9 60
40 6.89 7.49 4463.76 4 0.67 0.92 4345.4 37 0.07 0.89 1190.9 56 0.00 0.45 13.0 60
50 7.76 9.11 3762.19 3 0.02 0.64 4530.9 38 0.12 0.76 2208.1 49 0.00 0.29 29.9 60

Total - - - 259 - - - 377 - - - 405 - - - 420

When considering for the 420 instances of Pacheco et al. (2013), ATF, ATF-M,

ATF-P, and CF solve, 89.8%, 96.4%, 100%, and 61.7% of the instances to optimal-

ity, respectively. As for the 405 instances introduced in this work, ATF, ATF-M,

ATF-P, and CF are capable of solving 40.7%, 61.0%, 93.3%, and 30.9% of the in-

stances to optimality, respectively. Furthermore, the quality of root relaxation of

the arc-time-indexed formulations, when considering the minimum feasible number
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Table 7: Summary of the results for the newly proposed instances

CF ATF ATF-M ATF-P
Gap Gapr t # Gap Gapr t # Gap Gapr t # Gap Gapr t #

n
(%) (%) (s) opt (%) (%) (s) opt (%) (%) (s) opt (%) (%) (s) opt

10 0.00 7.93 1.04 45 0.00 0.19 11.3 45 0.00 0.00 1.9 45 0.00 0.03 0.2 45
15 0.32 9.30 1172.64 39 0.00 0.42 181.3 45 0.00 0.11 10.9 45 0.00 0.00 0.6 45
20 1.55 10.74 3479.09 28 0.00 0.33 1187.4 45 0.00 0.28 65.5 45 0.00 0.02 2.0 45
25 4.04 10.62 5379.65 13 0.09 0.35 3425.7 30 0.00 0.26 238.2 45 0.00 0.04 5.7 45
50 8.96 9.13 4532.21 0 - - - - 2.24 0.88 2889.0 32 0.00 0.07 189.6 45
75 7.89 7.92 5233.19 0 - - - - 6.66 1.84 5091.1 19 0.05 0.08 1078.8 40
100 8.12 8.12 6256.39 0 - - - - 8.93 1.63 6147.5 12 0.06 0.07 1161.5 39
125 8.65 8.67 6925.65 0 - - - - 10.51 10.51 6815.0 3 0.84 0.85 1713.2 38
150 8.81 8.81 7200.00 0 - - - - 9.33 9.34 7195.9 1 0.01 0.03 2686.4 36
Total - - - 125 - - - 165 - - - 247 - - - 378

of maintenances, is superior to that obtained by CF. In the case of ATF-P, the average

root gap is always smaller than 1.00%.

6. Conclusions

We have considered the single-machine scheduling problem with periodic main-

tenances and sequence-dependent setup times (1MPS). This difficult combinatorial

optimization problem was solved by embedding some arc-time-indexed formulations

within an iterative algorithm. This algorithm iterates on the minimum feasible num-

ber of blocks necessary to schedule all jobs. It starts by fixing the number of blocks

to a lower bound and by solving an arc-time-indexed formulation to check whether

a feasible scheduling solution exists with this number of blocks. If not, the number

of blocks is incremented by one and the model is solved again. The procedure is

reiterated until a feasible (and optimal) solution is found.

The three arc-time-indexed formulations introduced in this paper are simple due

to a clearly defined time horizon within the iterative algorithm (i.e., the number of

blocks). This enabled us to solve two models that cannot be solved directly by a

commercial solver (ATF and ATF-M). Our third model, called ATF-P, contains a

number of variables and a number of maintenances that are pseudo-polynomial in

the duration of a single block, and not of the whole time horizon. It can be solved

directly by CPLEX or by the iterative algorithm.
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Extensive computational experiments confirmed that solving the 1MPS by embed-

ding any of the three arc-time-indexed formulations within the iterative algorithm is

clearly better than solving the model previously proposed by Pacheco et al. (2013).

The ATF-P is the best of the four models used in the comparison, whether it is em-

bedded within the iterative framework, or compared with CF when both models are

solved directly by CPLEX. Solving the ATF-P model within the iterative framework

yields optimal solutions for all of the benchmark instances with 50 jobs, and for all

but 27 of the 405 newly generated instances.
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