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Abstract 

 

The melting and freezing of Phase Change Materials (PCMs) is categorized as a moving 

boundary problem. For this reason the mathematical solution to study the behaviour of practical 

applications is only possible via complex numerical approximations. However for a 

preliminary design the main concern is to select the optimum thermal characteristics of the 

PCM storage unit, for both melting and freezing. This is to be done before the detailed design 

by integrating an optimization algorithm with a numerical simulation. The application of using 

PCMs to harness the waste heat from non-industrial grey water is investigated as a case of 

study. For this purpose, the 2-phase analytical solution to the Stefan problem is coupled with 

the particle swarm optimizer (PSO) to find the best combination of thermal characteristics 

within the prescribed boundary conditions of this case study. Results show that the optimum 

phase change temperature lies between 20-22°C, depending on various sets of input 

parameters. At the same time the ratio of latent to sensible heat transferred by the PCM highly 

influences this optimum temperature for the combination of both melting and freezing. 

Similarly results show melting being faster and more intensive in term of latent heat charging 

compared to a higher sensible heat discharging while freezing. 

 

Keywords: Stefan problem, Particle swarm optimization, Neumann solution, Thermal characteristics, 

Phase change materials 
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1. Introduction 
 

Harnessing waste heat from grey water (GW) in non-industrial buildings, has been 

highlighted to reduce the carbon footprint of passive houses [1]. Currently conventional heat 

pumps and exchangers are the only viable commercial options for this application. However 

to decouple demand with supply and integrate high density thermal storage in these heat 

extracting devices, the use of phase change materials (PCMs) is proposed. In the simplest 

design, a conventional hot GW pipe in a building is coupled to a mains cold water (CW) pipe 

linked with a PCM in an enclosed container, as in Figure 1. 

 

Figure 1: Simplest GW heat harnessing exchanger with PCM as thermal storage 

 

In this configuration, the incoming GW is at about 40-70°C, losing its heat to the surrounding 

PCM. The PCM melts and upon an incoming flow of CW at about 5-15°C, it freezes back to 

give away the stored heat. Several thermal improvements can be made to the simple design of 

Figure 1, including enhancing the thermal conductivity of the PCM, but is out of the scope of 

this paper.  

 

For the selection of the thermal parameters of the PCM for this application, the 2-phase 

analytical solution of the Stefan problem (Neumann solution) is best suited for this 

optimization analysis. In this method the net heat flux of melting and freezing is calculated 

with reference to the specific phase change temperature which must be optimized. At the 



same time the Particle Swarm Optimizer (PSO) optimizer has minimal requirements and 

guarantees fast convergence of an array of variables within specified limits [2]. This is a class 

of immensely famous optimizers mimicking social behaviour using artificial intelligence 

techniques.  

 

With the demand of high density thermal storage with isothermal conditions, PCMs have 

been in the limelight over the past few years. Several theoretical studies have been conducted 

for the assessment of an idea and to carry out a basic system design [3–6]. At the same time, 

to study the effects of a PCM used in conjunction with other systems, several studies on 

simulation platforms have been conducted [7,8].  To carry out these basic designs and ideas 

forward, there have been many feasibility studies of evaluating PCMs in specific applications 

[9–12]. The performance of these design parameters usually in terms of dimensional aspects, 

have been the focus of many optimization algorithms [13–17]. Similarly most of these studies 

have been done in laboratory conditions or in experiment to evaluate the PCMs practically 

[18–21]. Several numerical solutions have been the main focus of research. Many variants of 

the two main numerical methods: the enthalpy and the effective heat capacity method have 

been abundantly used with minor modifications. Most simulations are 2-D due to limitations 

in computing power and economic constraints, on common commercially available 

software’s including ANSYS, Star-CCM, Comsol, OpenFoam, MATLAB etc. [22–24]. 

However usually both numerical and experimental studies are carried out in conjunction with 

each other, especially for validation purposes [25,26]. Finally the mathematics and 

thermodynamics of melting and freezing are different from each other. Several studies 

emphasize on melting [27] while others focus only on freezing [28] of PCMs. Only a handful, 

focus on both these aspects, together [29,30].  

 



Most literature has been based on initial feasibility studies or a detailed design analysis with 

regards to specific applications. They do not describe a strategy to select a PCM in the initial 

phases of design based on predefined boundary conditions especially with regards to the GW 

application. Most published PCM applications are limited to the cooling of 

batteries/electronics, solar thermal heating, passive heating/cooling technologies with air, 

usage in building walls, waste heat harnessing in automotive applications and enhancing the 

storage efficiency in existing thermal storages. In terms of optimization strategies, they have 

mostly been done without a specific technique by simply testing discrete variants of a design 

either experimentally or numerically. At the same time, most literature either focus on the 

numerical solving of the Stefan problem or experimentally analysing the effects of PCMs. 

Only partial behaviour is considered with modelling either melting or freezing, depending on 

the emphasis of the application. For a preliminary design, the selection of a PCM based on 

both freezing and melting using an analytical solution with an evolutionary optimizer is not to 

be found in literature. The main aim of this paper is to define the methodology to select the 

optimum thermal characteristics of the PCM to maximize both the heat extracted from the 

GW and the heat released back to the CW, based on the GW design presented in Figure 1. 

This could not be done using sophisticated numerical techniques of mainstream 

Computational Fluid Dynamics (CFD) software’s as it requires a basic optimization 

algorithm to be integrated as well, based on a range of thermal parameters of the PCM.  The 

following objectives will be carried out:  

 

 Formulate a 2-phase analytical solution based on the thermal parameters of the PCM, 

for both melting and freezing; 

 Integrate the PSO algorithm with this solution based on the prescribed boundary 

conditions of the GW heat harnessing application; 



 Optimize the thermal parameters for both the solution and the optimizer, with the aim 

of maximizing the net heat flux; and 

 Perform a sensitivity analysis of the main parameters affecting the outcome of the 

solution. 

2. Physical concept and mathematical models 
 

2.1. Stefan problem and the Neumann solution 
 

2.1.1. Physical concept of the Stefan problem 
 

The most common phase change phenomena used in engineering applications is the solid-

liquid type [32] and the Stefan problem mathematically defines the melting and freezing of it. 

It is non-linear and the greatest difficulty lies in the fact that unknown variables exist in a 

region which is yet to be solved e.g. the to-be liquid region in the melting of an initial solid. 

Due to the dependency on the phase change front and its variation with time, the Stefan 

problem is mathematically categorized as a ‘moving boundary problem’. Depending on the 

simplifications and accuracy required, many variant methods for the solution are summarized 

in  

Figure 2Error! Reference source not found.:  

 



 
 

Figure 2: Solution methods to the Stefan problem 

 

The exact explicit solutions are known as the classical or Neumann solutions, but involve 

many simplifications and are 1-D. They are the basis of understanding the different thermal 

parameters involved and a good approximation to real scenarios [31]. Many 3-D applications 

can be accurately simplified, using this classical 1-D approach [38]. Implicit approximations 

are also based on various simplifications and assumptions, but reasonably model more 

practical configurations [32]. They are generally used as an initial estimate of a real setup 

after validation through experimentation or a numerical analysis, as in many studies [33,34].  

Numerical solutions are more accurate, at the cost of more computation time and resources. 

There exist many variants to this method and is a wide field in CFD [35–37].  

 



In this study the exact explicit 2-Phase analytical solution to the Stefan problem is used, with 

the following assumptions [35]: 

1) The PCM has constant thermal parameters for both phases. Usually a material has an 

abrupt change after phase transition in only its density by about 5 – 30% [38],  

causing discontinuities in the solution. All parameters have no discontinuity and are 

smooth functions of temperature.  

2) Heat transfer is isotropic only by conduction. Heat flow is normal to the surface and is 

unidirectional; 

3) The phase change interface is sharp, planar, has zero-thickness and occurs only at the 

isothermal temperature ‘Tm’. There is only one phase change front, and multiple 

cycles have no impact over the thermal properties; 

4) No internal heat source or sink is present within the PCM. There is no decrease in the 

temperature of a point within the domain, and is always rising or constant, for 

melting. Vice versa for freezing and; 

5)  Nucleation, supercooling, surface effects, curvature effects are neglected.   

 

The heat equation expresses the conservation of heat locally predicting the temperature 

distribution in terms of position and time, being applicable in the solid and liquid PCM 

regions, separated by the interface as: 

 

 

 𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 + �̇� 

(1) 

 

As in Figure 3, for the Neumann solution a 1-D semi-infinite slab is initially at a temperature 

‘Ti’, with the application of a constant temperature ‘Tb’ at the left-hand boundary at time 



‘t=0’. The discontinuity at this initial time ‘t0’ from ‘Ti’ to ‘Tb’, implies that the temperature 

changes at an infinite rate. Although this may seem, unreasonable but for theoretical 

calculations in a semi-infinite domain with relatively small temperature gradients, the 

equation is applicable. 

 

Before a solid can melt it must acquire a specific amount of energy to overcome the bonding 

forces within it or similarly a liquid must exothermically release this energy to transit to a 

solid, at a phase change temperature ‘Tm’. This energy is called the latent heat ‘L’, 

representing, the difference in enthalpy levels between both phases at similar conditions, and 

is known as the Stefan condition at the melt interface. The enthalpy of the liquid phase is 

higher than the solid phase, the difference of which is the required heat flux across the 

interface for phase change [39]. This required net heat flux across the interface is equal to the 

rate of transfer of latent heat per unit area across it. The velocity ‘v’ of the interface is equal 

to the rate of change of this net heat flux. The heat flux across the interface is continuous only 

when ‘L = 0’ or the interface is stationary. This Stefan condition is defined as: 

 

 
𝜌𝐿𝑋(𝑡)̇ =  −𝑘𝐿

𝜕𝑇

𝜕𝑥
(𝑋(𝑡)−, 𝑡) + 𝑘𝑆

𝜕𝑇

𝜕𝑥
(𝑋(𝑡)+, 𝑡) 

̇
 

(2) 

 

 

‘𝑋(𝑡)’ is the position of the melt front with the superscripts, donating the side of approach.  

 

A summary of the applicable equations, boundary and initial conditions, for this melting 

phenomena are in Figure 3, where the solid black lines represent the boundaries and the 

interface. 

 



 

Figure 3: Boundary and initial conditions of the simplified 2-Phase Stefan problem 

 

2.1.2. Mathematical formulation of the 2-phase analytical (Neumann) solution 
 

This Stefan problem for this semi-infinite case with a constant temperature boundary 

condition is solved via the separation of variables technique [39]. In the solution, three 

important relationships are of interest: 

 

 The temperature distribution within both phases 

 The location and speed of the interface 

 The amount of heat stored and released while melting and freezing 

 

The explicit solution of Figure 3 is the classical 2-Phase analytical or the Neumann solution 

[39]. This 1-D slab case is different from the pipe-container configuration of Figure 1, but is a 

good approximation of a comparative assessment of melting and freezing. Unless the pipe 

radius is very small, the freezing or melting around a pipe is roughly slab-like [38]. The slow 



heat of conduction and transition in phase of the PCM, makes a reasonable approximation of 

an infinite slab to a real finite slab.  

 

Three variables defining the outcome of the solution are: 

 

 

𝑆𝑡𝐿 = 
𝑐𝐿(𝑇𝑏 − 𝑇𝑚)

𝐿
,     𝑆𝑡𝑆 = 

𝑐𝑆(𝑇𝑚 − 𝑇𝑖)

𝐿
, 𝑎 = √

𝛼𝐿

𝛼𝑆
                

(3) 

 

 

The Stefan numbers (St) represent the ratio of the sensible heat to the latent heat for both 

phases. For certain waxes or organic PCMs, it is usually small, hence the bulk of the heat 

transfer is in latent form, as in this application of GW using organic PCMs. For metals it is 

usually 1 – 10 where sensible heating effects cannot be neglected. Normally for ceramics and 

silicates it is very large with negligible latent effects [40].  

 

Based on the method of similarity variables, ‘λ’, is defined as the root to a transcendental 

equation [32]. For each value of the Stefan numbers there exists a unique solution of ‘λ’ 

implying a uniqueness of the Neumann solution [41].  The transcendental equation is:  

 

 
𝑓(𝜆) =

𝑆𝑡𝐿
exp(𝜆2) erf (𝜆)

−
𝑆𝑡𝑆

(𝑎 exp (𝑎2𝜆2)𝑒𝑟𝑓𝑐(𝑎𝜆)
−  𝜆√𝜋 

(4) 

 

 

More accurate solutions to this transcendental equation may be found using Brent’s method 

[41].  This equation is solvable with the Newton-Raphson iterative method, with an initial 

estimate ‘𝜆0’, defined as: 



 

𝜆0 = 0.5 [−
𝑆𝑡𝑆

𝑎√𝜋
+ √2𝑆𝑡𝐿 + (

𝑆𝑡𝑆

𝑎√𝜋
)
2

 ] 

(5) 

 

 

Based on this solution, the position of the melt front can be computed as: 

 

 𝑋(𝑡) =  2𝜆√𝛼𝐿𝑡                       𝑡 > 0 (6) 

 

The temperature in the liquid region is defined as, 

 

 

𝑇(𝑥, 𝑡) = 𝑇𝑏 − (𝑇𝑏 − 𝑇𝑚)

𝑒𝑟𝑓 [
𝑥

2√𝛼𝐿𝑡
]

𝑒𝑟𝑓𝜆
          0 <  x <  X(t) and t >  0 

(7) 

 

While the temperature in the solid region is, 

 

 

𝑇(𝑥, 𝑡) = 𝑇𝑖 + (𝑇𝑚 − 𝑇𝑖)

𝑒𝑟𝑓𝑐 [
𝑥

2√𝛼𝑆𝑡
]

𝑒𝑟𝑓𝑐(𝜆𝑎)
          x >  X(t) and t >  0 

(8) 

 

 

For melting, at any time interval ‘t > 0’ the liquid occupies the region (0, X (t)) while the 

solid occupies (X (t), ∞).  

At ‘t=0’ the system has zero energy at a temperature ‘Ti’. Based on this the total heat entering 

the system for melting, is: 

 

 

𝑄(𝑡) =  ∫ 𝑞(0, 𝑡)𝑑𝑡 =  ∫−𝑘𝐿

𝜕𝑇

𝜕𝑥
(0, 𝑡)𝑑𝑡 =  

𝜌𝐿𝑆𝑡𝐿𝑋(𝑡)

√𝜋𝜆𝑒𝑟𝑓𝜆

𝑡

0

 

𝑡

0

 

(9) 

 

 



The total energy absorbed by the system is the sensible heat to the liquid, solid and the latent 

heat. The sensible heat added to the liquid phase is: 

 

 

𝑄𝐿
𝑠𝑒𝑛𝑠(𝑡) =  ∫ 𝜌

𝑋(𝑡)

0

𝐶𝑠(𝑇𝑚 − 𝑇𝑖)𝑑𝑥 + ∫ 𝜌

𝑋(𝑡)

0

𝐶𝐿(𝑇(𝑥, 𝑡) − 𝑇𝑚)𝑑𝑥 

=  𝜌𝐿𝑆𝑡𝑆𝑋(𝑡) +  𝜌𝐿𝑆𝑡𝐿𝑋(𝑡)
1 − 𝑒−𝜆2

√𝜋𝜆𝑒𝑟𝑓𝜆
  

(10) 

 

 

The sensible heat added to the solid phase is: 

 

 

𝑄𝑆
𝑠𝑒𝑛𝑠(𝑡) =  ∫ 𝜌

∞

𝑋(𝑡)

𝐶𝑠(𝑇(𝑥, 𝑡) − 𝑇𝑖)𝑑𝑥 

=  𝜌𝐿𝑆𝑡𝑆𝑋(𝑡) [
1

√𝜋𝑎𝜆𝑒(𝑎𝜆)2
𝑒𝑟𝑓𝑐(𝑎𝜆)

− 1] 

(11) 

 

 

The latent heat added to the system is: 

 𝑄𝑙𝑎𝑡(𝑡) =  𝜌𝐿𝑋(𝑡) (12) 

 

To verify that the energy balance is satisfied the following holds: 

 

 𝑄𝐿
𝑠𝑒𝑛𝑠 + 𝑄𝑆

𝑠𝑒𝑛𝑠 + 𝑄𝑙𝑎𝑡 = 𝑄 (13) 

 

Heat conduction in a semi-infinite slab for the case of the freezing process where ‘Ti > Tm’ 

and ‘Tb < Tm’ is also modelled [38]. The changed variables and equations are defined as 

follows, with all other parameters remaining the same: 

 



The Stefan numbers are 

 
𝑆𝑡𝐿 = 

𝑐𝐿(𝑇𝑖 − 𝑇𝑚)

𝐿
,     𝑆𝑡𝑆 = 

𝑐𝑆(𝑇𝑚 − 𝑇𝑏)

𝐿
 

(14) 

 

The transcendental equation is now defined as: 

 

 
𝑓(𝜆) =

𝑆𝑡𝑆
exp(𝜆2) erf (𝜆)

−
𝑆𝑡𝐿

(𝑎 exp (𝑎2𝜆2)𝑒𝑟𝑓𝑐(𝑎𝜆)
−  𝜆√𝜋 

(15) 

 

 

The initial estimate to the root ‘λ’, for the Newton-Raphson method is as follows: 

 

 

𝜆0 = 0.5 [−
𝑆𝑡𝐿

𝑎√𝜋
+ √2𝑆𝑡𝑆 + (

𝑆𝑡𝐿

𝑎√𝜋
)

2

 ] 

(16) 

 

 

The position of the freezing front is defined as: 

 

 𝑋(𝑡) =  2𝜆√𝛼𝑆𝑡                       𝑡 > 0 (17) 

 

The temperature in the liquid region is: 

 

 

𝑇(𝑥, 𝑡) = 𝑇𝑖 + (𝑇𝑚 − 𝑇𝑖)
𝑒𝑟𝑓𝑐 [

𝑥
2√𝛼𝐿𝑡

]

𝑒𝑟𝑓𝑐(𝜆𝑎)
                        x >  X(t) and t >  0 

(18) 

 

 

While the temperature in the solid region is: 

 



 

𝑇(𝑥, 𝑡) = 𝑇𝑏 − (𝑇𝑏 − 𝑇𝑚)

𝑒𝑟𝑓 [
𝑥

2√𝛼𝐿𝑡
]

𝑒𝑟𝑓𝜆
                    0 <  x <  X(t) and t >  0 

(19) 

 

 

In the event that ‘Ti < Tm’, the case of conduction in the liquid slab is witnessed, as will be 

seen as a possibility in section 3.  For this the temperature profile in the un-frozen liquid 

PCM is: 

 

𝑇(𝑥, 𝑡) = 𝑇𝑏 − (𝑇𝑏 − 𝑇𝑖)𝑒𝑟𝑓 (
𝑥

2√𝛼𝑆𝑡
)       

(20) 

 

 

The total heat input to the system is defined as:  

 

𝑄(𝑡) =   
𝜌𝐿𝑆𝑡𝑆𝑋(𝑡)

√𝜋𝜆𝑒𝑟𝑓𝜆
 

(21) 

 

The sensible heat addition to the liquid phase is: 

 

 
𝑄𝐿

𝑠𝑒𝑛𝑠(𝑡) =  𝜌𝐿𝑆𝑡𝐿𝑋(𝑡) +  𝜌𝐿𝑆𝑡𝑆𝑋(𝑡)
1 − 𝑒−𝜆2

√𝜋𝜆𝑒𝑟𝑓𝜆
 

(22) 

 

 

While that to the solid phase is: 

 

 
𝑄𝑆

𝑠𝑒𝑛𝑠(𝑡) =  𝜌𝐿𝑆𝑡𝐿𝑋(𝑡) [
1

√𝜋𝑎𝜆𝑒(𝑎𝜆)2
𝑒𝑟𝑓𝑐(𝑎𝜆)

− 1] 
(23) 

 

2.2. Particle swarm optimizer 
 



2.2.1. Physical concept of the PSO 
 

 

 

The optimization of the Stefan problem for melting and freezing in GW is multi-dimensional 

and non-linear requiring a not so computational intensive zero-order simple optimizer. Zero-

order methods use only values of the objective function without using their derivatives [42].  

Zero-order bracketing methods have higher computation times with chances of converging to 

local optimums instead of global ones. On the other hand, zero-order evolutionary methods 

are used to solve non-linear, non-convex and even discontinuous applications at a reasonable 

speed with simple algorithms, being more applicable in this scenario.  

 

Although there are about 40 different nature inspired, artificial intelligence evolutionary 

methods the three most famous techniques are analysed in Table 1 [43] [44].  

 
Table 1: Advantages and disadvantages of the main evolutionary methods  

 Advantages Disadvantages 

Particle 

swarm 

method 

 Applicable in a range of 

problems (robust) 

 Simplest of all with fewest 

variables 

 Fastest convergence 

 Adapts to multi dimensions 

without any side affect 

 Insensitive to scaling of design 

variables 

 Oldest method with several 

custom modifications possible  

 Chances of local optima are 

highly possible 

 Not applicable for noisy 

problems 

 Requires a multi-dimensional 

coordinate system 

 Parameters for each problem 

require custom tuning 

Ant colony 

method 

 Applicable in dynamic problems 

 Inherent parallelism 

 Large parameter ranges possible 

 Closest replication to real social 

behavior 

 Manages external affects more 

efficiently 

 Theoretically difficult algorithm 

 Comparatively a high number of 

variables 

 Probabilities and chance factors 

must be computed for each 

iteration 

 Convergence time uncertain and 

highly dependent on initial 

estimate 



Firefly 

algorithm 

 Applicable for noisy multi-peak 

problems 

 Latest and newest of the 

evolutionary methods 

 Hybrid combinations easily 

possible 

 Applicable to discontinuous 

functions 

 Comparatively slow convergence 

rates 

 Probability of the local optima 

trap is the greatest 

 A high number of variables and 

complexity 

 Custom modification of the 

entire algorithm as per problem is 

required 

 Extra behavioral information of 

the problem is required 

 

 

Based on these considerations and experimental research, the PSO method is deemed the 

most feasible for this Neumann-GW application [45]. The fact that the PSO optimizer should 

search through multidimensional space arrays, without taking the derivative of the function, 

even if it is noisy, discontinuous or irregular make it suitable. However, an important 

drawback is that sometimes, if the parameters are not properly tuned, it may lead to 

premature convergence to the local optimum.  

 

PSO is based on the collective behaviour of multiple interacting particles (birds). Each 

particle can be considered as unintelligent, but the collective system of the swarm is 

intelligent as it shows self-organization behaviour. The self-organization, co-evolution and 

learning of these particles, after each iteration, ensure its convergence to the optimized point. 

It is categorized as a generic population-based metaheuristic optimization algorithm [46]. 

Several hybrid and modified versions have evolved with an increasing popularity in the field 

of optimization, but the most basic is used in conjunction with the Neumann solution. 

 

2.2.2. Mathematical formulation of the PSO 
 

 

In the PSO algorithm, particles evolve by communicating with their neighbours and by 

learning from their mistakes. Only the position and velocity of each particle in the swarm 



changes, as the entire swarm heads towards the optimum solution [47]. The following steps 

constitute the PSO algorithm, used in this application [45] [48]: 

 

 The set of variables to be optimized and the output value (fitness) determining the 

optimum is identified.  

 The number of iterations, and associated parameters of the PSO algorithm are defined. 

 The search space for each variable is defined, in a range between a maximum and 

minimum. Each variable is a dimension of the PSO represented by an element in the 

position vector of a particle.  

 The PSO is initialized with a fixed sized population (particles) of random solutions. 

The rule of thumb is that the number of particles should be up to four times the 

number of optimizable variables (dimensions). The position of any particle, in an 

iteration, in the search space is a vector of ‘n’ dimensions representing each 

optimizable variable, used to find the fitness function or the potential solution. As an 

example, the position of a particle in iteration ‘k’ is represented with ‘n’ variables ‘x’ 

as 𝑥𝑖(𝑘) = (𝑥1, 𝑥2 … . . 𝑥𝑛).  

 Each particle has a velocity which governs its position in the coming iteration. The 

velocity is a vector, like the position vector that guides the particle to move to a 

potentially better position. The position and velocity of each particle is updated after 

each iteration. The velocity of a particle is also represented by ‘n’ variables ‘v’, 

𝑣𝑖(𝑘) =  (𝑣1, 𝑣2 … . . 𝑣𝑛). In the first iteration the velocity vector is randomized like 

the position vector. 

 The fitness ‘𝑓(𝑥)’, for each particle is computed, based on the optimizable output 

function defined in the first step. 



 A given particle’s position in the next iteration is influenced by its own learning 

represented by the variable ‘pBest’, also an ‘n’ dimension vector,  𝑝𝐵𝑒𝑠𝑡𝑖(𝑘) =

 (𝑝𝐵𝑒𝑠𝑡1, 𝑝𝐵𝑒𝑠𝑡2 … . . 𝑝𝐵𝑒𝑠𝑡𝑛). The best personal position discovered by the particle 

is updated after each iteration, as defined by the fitness value in the last step. If in a 

specified iteration ‘k’ the position of the particle is better than its previous best, it is 

updated, for each dimension, otherwise it is kept same. In the first iteration ‘pBest’ 

for each particle is initialized to the first position. For a given iteration each 

dimension in ‘pBest', is updated according to the simple logic: 

 

 
𝑝𝐵𝑒𝑠𝑡𝑖(𝑘 + 1) =  {

𝑝𝐵𝑒𝑠𝑡𝑖(𝑘)         𝑖𝑓          𝑓(𝑥𝑖(𝑘)) ≤ 𝑓(𝑝𝐵𝑒𝑠𝑡𝑖(𝑘))

𝑥𝑖(𝑘)        𝑖𝑓         𝑓(𝑥𝑖(𝑘)) > 𝑓(𝑝𝐵𝑒𝑠𝑡𝑖(𝑘)) 
 

(24) 

 

 

A greater than sign for the fitness assumes a better condition, although the logic can 

vary in case a minima is the optimal solution. In this case a maxima is desired, as 

explained in section 3.  

 A given particles position in the next iteration is also influenced by the best position 

of the entire swarm or its social network. It is represented by the variable ‘sBest’, 

also an ‘n’ dimension vector, sBest(𝑘) =  (𝑠𝐵𝑒𝑠𝑡1, 𝑠𝐵𝑒𝑠𝑡2 … . . 𝑠𝐵𝑒𝑠𝑡𝑛). The best 

personal position discovered by the swarm is updated after each iteration, as defined 

by the fitness value. To find the best position of the entire swarm ‘sBest’ is compared 

to the ‘pBest’ of each particle in an iteration, as: 

 

 
𝑠𝐵𝑒𝑠𝑡(𝑘 + 1) =  {

𝑠𝐵𝑒𝑠𝑡(𝑘)    𝑖𝑓     𝑓(𝑝𝐵𝑒𝑠𝑡𝑖(𝑘)) ≤ 𝑓(𝑠𝐵𝑒𝑠𝑡(𝑘))

𝑝𝐵𝑒𝑠𝑡𝑖(𝑘)    𝑖𝑓    𝑓(𝑝𝐵𝑒𝑠𝑡𝑖(𝑘)) > 𝑓(𝑠𝐵𝑒𝑠𝑡(𝑘)) 
 

(25) 

 



 Finally, a particles velocity, determining its movement in the next iteration is updated 

according to the following equation: 

 

 𝑣𝑖(𝑘 + 1) = (𝑤 × 𝑣𝑖(𝑘)) + (𝑗1 × 𝑟1 × (𝑝𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝑥𝑖(𝑘)) + (𝑗2 × 𝑟2

× (𝑠𝑏𝑒𝑠𝑡(𝑘) − 𝑥𝑖(𝑘)) 

(26) 

 

 

The first part of the equation is known as the momentum/memory part which ensures, 

through the inertia constant ‘w’ that the new velocity of the particle does not change 

abruptly. The second part is known as the cognitive part in which the particle learns 

from its own experience. The third part is known as the social part, where the particle 

learns from social interactions within the swarm [48]. A large velocity increases the 

convergence speed along with the chances of converging towards the boundaries of 

the search space. However, a small value increases computation time but finds a 

global optimum as it increases the ability of particles to explore.  

The random variables (r1 and r2) add a random component to the algorithm and 

prevent it from getting stuck at a local maxima. ‘j1’ and ‘j2’ are described in section 3. 

‘pBest’ and ‘sBest’ are the quality factors of the algorithm ensuring diversity of 

particle positions [47]. 

 Finally, the new position of a particle is updated as: 

 

 𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1) (27) 

 

 Due to the random nature of movement, after each iteration it is necessary to check 

that the position of every dimension of each particle is within the search space. If not 

it is set equal to the closest limit. This ensures that the swarm does not explode and 



follows a converging path.  Once again 𝑥𝑚𝑎𝑥/𝑚𝑖𝑛 = (𝑥1, 𝑥2 … . . 𝑥𝑛) is a vector of ‘n’ 

dimensions. 

 𝐼𝑓 (𝑥)𝑖  > 𝑥𝑚𝑎𝑥 𝑡ℎ𝑒𝑛 (𝑥)𝑖 = 𝑥𝑚𝑎𝑥 

𝐼𝑓 (𝑥)𝑖  < 𝑥𝑚𝑖𝑛 𝑡ℎ𝑒𝑛 (𝑥)𝑖 = 𝑥𝑚𝑖𝑛 

(28) 

 

 

Another important feature is the selection amongst the two neighbourhood topologies of the 

swarm defining the social interaction method to calculate ‘sBest’, of a particle [46]. The 

global model is known as a fully connected social network. All the particles within the swarm 

are interconnected to each other in terms of communication. The best position, of a particle 

‘pBest’, is known to the entire swarm. In reality this is rarely the case, but possible in small 

sized swarms. The local model is known as a partial social network. Each particle is 

influenced only by the best performance of its neighbours which are a subset of the swarm. 

There are different topologies to define neighbours and compute the variable ‘sBesti’ where 

‘i’ in this case denotes a specific neighbourhood  [45]. This topology is more realistic, a bit 

complex and avoids convergence to a local optimum, but at a lower convergence speed.  

 

3. Methodology and algorithms 
 

The PSO-Neumann algorithm is simulated using MATLAB. An overview of the structure of 

the algorithm is in Figure 4: 

 



 

Figure 4: Overall algorithm for the melting-freezing PSO algorithm – where grey is PSO, red is melting and blue is freezing 

 

Initially the PCM is melted to store or extract heat from the GW. After this cycle the liquid 

PCM is frozen to utilize this heat and insert it into the CW. The algorithm for the melting and 

freezing portions is as in Figure 5: 



 

Figure 5: Melting and freezing algorithm using the Neumann solution 

 



The Neumann solution is valid for a constant ‘Ti’, over the semi-infinite slab. However after 

the initial melting cycle, the slab has a non-uniform temperature profile. It is assumed that the 

initial temperature of the slab is that of the mid-point of the melt front, when passed from the 

melting to the freezing algorithm as of point 7 of Figure 5, using the following equation: 

 

 
𝑇𝑖

𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔
= 𝑇𝑏

𝑚𝑒𝑙𝑡𝑖𝑛𝑔
− (𝑇𝑏

𝑚𝑒𝑙𝑡𝑖𝑛𝑔

− 𝑇𝑚) 

𝑒𝑟𝑓

[
 
 
 
 (

2𝜆𝑚𝑒𝑙𝑡𝑖𝑛𝑔√(𝛼𝐿 ) 𝑡 
2 )    

2√𝛼𝐿𝑡

]
 
 
 
 

𝑒𝑟𝑓𝜆𝑚𝑒𝑙𝑡𝑖𝑛𝑔
 

 

(29) 

 

 

The variable ‘x’, in equations of the temperature profiles of the phases, represents a 

hypothetical point of interest from the boundary of the slab. It has no involvement in the 

fitness function or the outcome, but is used to visualize the temperature profile at this specific 

position. During the algorithm, a condition might occur outside the melt region, when ‘Ti < 

Tm’, for this hypothetical point, when moving from the melting to freezing algorithm. In this 

event equation (20), calculates the temperature profile without a phase change occurrence. 

This algorithm takes the melt region, as the area of consideration for optimization. 

 

As in Figure 4, the first step is to define the PCM properties and boundary conditions of the 

GW harnessing application. Based on the temperature profiles of the GW and CW, ‘Tb’ for 

the melting is defined as 52°C and that for freezing as 10°C. The initial temperature ‘Ti’, for 

the melting algorithm is the ambient temperature of 18°C. The PCM properties are defined 

based on data compiled for organic PCMs by Pluss, PureTemp, Honeywell, Rubitherm, 

PlusICE, SavenRG, Microtek and Croda International Plc in the range of 18-52°C. A 

summary of the thermal parameters from this data is in Table 2: 



 

Table 2: Range of the thermal parameters of commercially manufactured PCMs in a Tm between 18-52°C 

 
Latent 

heat in 

kJ/kg 

Density 

in kg/m3 

Solid 

thermal 

conducti

vity in 

kW/(m. 

°C) × 10-3 

Liquid 

thermal 

conducti

vity in 

kW/(m. 

°C) × 10-3 

Solid 

specific 

heat 

capacity 

in kJ/(kg. 

°C) 

Liquid 

specific 

heat 

capacity  

in kJ/(kg. 

°C) 

Max 340 2,100 0.59 32 3.51 4.19 

Min 37 735 0.1 0.14 1.15 1.39 

Average  187.5 1,092.5 0.2635 0.65 2.15 2.47 

Standard 

deviation 

50.5 310.2 0.185 2.84 0.35 0.62 

 

The four variables in Table 3, are optimized through the PSO algorithm within the specified 

range, selected based on the differences between the average values and standard deviations 

of Table 2. Latent heat and specific heat capacities have been selected as optimizable 

variables to see whether the algorithm prefers latent or sensible heat. The thermal 

conductivities and density of the PCM are taken as constants, also based on average values 

from Table 2. The main variable of interest is ‘Tm’, with the range selected based on the 

boundary conditions of the GW application.  

 

Table 3: Optimizable variables with the search space range for the PSO algorithm 

Variable Interpretation Range 

Cp liquid Liquid specific heat capacity in kJ/(kg.°C) 1.9 – 3.1 

Cp solid Solid specific heat capacity in kJ/(kg.°C) 1.8-2.5 

Latent heat Latent heat for the PCM in kJ/kg 137-238 

Tm Melt temperature of the PCM in °C 18-52 

 

Each particle has four dimensions, based on the optimizable variables, with defined search 

ranges in Table 3. The fitness of a particle is assessed on the absolute values of the heat 



absorbed and released by the PCM during the melting (equation (9)) and freezing (equation 

(21)), respectively, as per the following equation: 

 

 
𝑓(𝑥𝑖(𝑘)) =  𝑄𝑎𝑏𝑠 = |𝑄𝑚𝑒𝑙𝑡(𝑘)| + |𝑄𝑓𝑟𝑒𝑒𝑧𝑒(𝑘)| 

 

(30) 

 

The highest value of the fitness function or maxima is desired in this application. The total 

time set for the simulation is 1,800 seconds. Equal times of 900 seconds are set for both the 

melting and freezing phases. This is based on the average time of flowing of GW, in domestic 

households [1].   

The parameters for the PSO algorithm are defined, after several test trials on convergence to a 

global maxima. The number of particles in the swarm is set at 8. The optimizable variables 

are 4, and as mentioned the rule of thumb is to select up to a maximum of four times the 

number of particles based on the variables. A much larger number of particles would result in 

faster convergence with a chance of finding a local maxima as discussed in section 4. The 

number of iterations for this algorithm is set at 100. Since the search space is not vast, the 

solution converges quickly.  

As the swarm size isn’t high, the global network model is selected to update the ‘sBest’ 

variable. After tuning, the three important variables of equation (26)  (w, j1 and j2), are 

assigned values of 0.6, 0.5 and 0.4 respectively. All constant variables used are summarized 

in Table 4: 

 
Table 4: Input variables with fixed values 

Variable Interpretation Value 

Tb Melting 
Boundary temperature i.e. GW pipe temperature 

for the melting algorithm in ℃ 

52 

Tb Freezing 
Boundary temperature i.e. CW pipe temperature 

for the freezing algorithm in ℃ 

10 



Ti Melting Initial temperature for the melting algorithm in ℃ 18 

kL 
Thermal conductivity of liquid phase in kW/(m. 

℃) 

0.65 × 10-3 

kS 
Thermal conductivity of solid phase in kW/(m. 

℃) 

0.27 × 10-3 

ρ Phase-independent density in kg/m3 1092.5 

Time 
Time for both melting and freezing, in seconds. 

Equal division of time between both algorithms 

1800 

Particles Number of PSO particles 8 

Dimensions 

Number of optimizable variables defining the 

rows in xi, vi, pBesti, sBest vectors of the PSO 

algorithm 

4 

Iterations Number of iterations in the PSO algorithm 100 

w Inertia weight of the particles 0.6 

j1 Cognitive learning rate 0.5 

j2 Social learning rate 0.4 

 

‘w’ is a sensitive parameter impacting the particles exploration region influencing the 

computation time, with a value not bigger than 1, since then the swarm would explode. A 

large value allows the particle to move with a large velocity, enabling it to find the optimum 

in a minimum amount of time. However a very large value will make the particle explore 

only around the edges of the search space. A small value can narrow the particles search 

region, to find a local optimum in a larger amount of computation time. Based on research 

[49], ‘w’ is between 0.1 to 0.9, to balance exploration and exploitation.  

The movement of each particle is controlled by the acceleration constants ‘j1’ and ‘j2’. Most 

guidelines treat the sum of the two constants[49], as the variable to be changed. The 

frequency of oscillations about the optimum increases proportionally to the values of these 

variables. For small values the trajectory of a particle is extremely long with increases in 

small steps. The trajectory explodes to infinity for values of their sum greater than 4.0 [49]. It 

is not recommended to equalize the two variables as the learning curve of a particle is rarely 



equally based from both personal and social behaviour. For larger searcher domains, usually 

these variables are initially set at large values decaying over time.  

The developed model for the Neumann solution is validated with examples from literature 

[38]. Similarly the validation is further proved by ensuring the energy balance of equation 

(13) for both melting and freezing, after every iteration. For the custom built PSO algorithm 

for this specific application there is no benchmark for validation. However the behaviour of 

the swarm is assessed over several trials to ensure no abnormalities existed. It is made certain 

that the entire search range is covered by plots similar to Figure 10, and the parameters are 

finely tuned. The outcome is intuitively assessed for its credibility and seems reasonable.  

4. Results and discussion 
 

 

With the defined ranges and parameters, Table 5 summarizes the optimum results obtained: 

 

Table 5: Results of the optimum variables of the algorithm 

Variable Interpretation Value 

Cp liquid Liquid specific heat capacity in kJ/(kg.℃) 3.1 

Cp solid Solid specific heat capacity in kJ/(kg.℃) 2.5 

Latent heat Latent heat for the PCM in kJ/kg 238 

Tm Melt temperature of the PCM in °C 20.85 

Qabs Total heat absorbed and inserted in kJ 5.24155 

λm Root of the transcendental equation for melting 0.4147 

λf Root of the transcendental equation for freezing 0.1651 

 

The first for variables correspond to the four dimensioned ‘𝑠𝐵𝑒𝑠𝑡’ after 100 iterations, based 

on the algorithm outlined in Figure 4. The first three of these variables analyse whether a 

sensible combination or latent combination of heat transfer is preferred. Evidently, the 

maximum of both is preferred as these values are at the upper limit of the range in Table 3.  



The temperature profiles at the midpoint of the phase change front (5.4 mm) from the 

boundary, for both melting and freezing are in Figure 6: 

 

Figure 6: Temperature profiles at position x = 0.54 cm from the boundary edge of the layout  

 

It can be seen that a prominent phase change occurs during melting at 20.85°C but not for 

freezing, at the position 0.54cm, probably due to the time limit of 15 minutes. However, there 

is freezing prior to this position as can be seen from the freeze front position of Figure 7.  

When the expression ‘(aλ)2 < 1.5’ for a PCM is true, a change in concavity occurs due to 

thermal property effects, as seen in the initial 100 s melt temperature profile [38]. At the same 

time it is also observed that both plots start from ‘Ti’ and asymptotically approach ‘Tb’, as 

expected.  

There is no horizontal line at ‘Tm’ as would be expected for phase change to occur. This is a 

typical behaviour of the Neumann solution where the time for melt is not calculated. As soon 

as the melt front reaches a specific point the transition of equations takes place without 



considering the melt time. In reality it is observable, with the formation of a mushy region. 

The propagation of the phase change fronts is presented in Figure 7: 

 

 

Figure 7: Propagation of phase change fronts from the boundary edge of the layout 

  

In about 15 minutes 1.1cm of PCM, adjacent to ‘Tb’ is melted. In the same amount of time, 

only about 0.32cm of PCM adjacent to the boundary ‘Tb’, freezes, which is about 1/3rd 

compared to the melting front. Hence freezing is a much slower process primarily due to the 

fact that the thermal conductivity in the freezing phase is less than half of that in the liquid 

phase. At the same time during melting, convection effects contribute to higher heat transfer 

rates, although not directly considered in this model. Instead of an equal distribution of the 

time of 15 minutes an unequal distribution would have resulted in equal phase change front 

positions. 

 



The distributions of the heat fluxes at this optimum condition for both processes are in Figure 

8: 

 

Figure 8: Heat flux distributions for the optimum fitness of the PSO 

 

About 5.24155 kJ of total heat is transferred where 67% is contributed by melting while 33 % 

by freezing. This is the exact ratio of the phase change front positions of Figure 7. Latent heat 

is dominant in the melting process while an equal combination of latent and sensible heat 

contributes to the freezing process. This proves that latent heat storage has a higher storage 

density compared to sensible storage.  

Due to the fact that the thermal parameters of sensible and latent heat are always optimum at 

the maximum end of the range, the solution converged quickly, as can be seen from the plot 

of the fitness function ‘𝑓(𝑠𝐵𝑒𝑠𝑡)’ of Figure 9.  

 



 

Figure 9: Convergence of the fitness function i.e. the total heat transferred 

 

On the contrary, ‘Tm’ converges after more iterations. To illustrate the fact that a global 

maxima is actually achieved, the scatter plot of Figure 10 displays the variation of ‘Tm’ for 

each particle after every 10 iterations. Initially in iteration 1, the particles are scattered all 

over the search domain while finally, all of them converge to ‘Tm = 20.85°C’ , after the 100 

iterations. 

 



 

Figure 10: Convergence of optimum melt temperature  

 

4.1. Variations in PSO parameters  
 

 

The variation of the three primary variables (w, j1 and j2), in the PSO is performed as listed in  

Table 6. The complexity of using decaying variables or increasing dependency of these 

variables on thermal properties would have fine tuned the results further, but for this 

application it is kept simple.  

 

Table 6: Parametric study of the variation of PSO parameters 

Variated variable Constant 

variables 

Qabs fitness 

function/kJ 

Tm/°C Maxima 

w – increased to 0.90 j1,j2 5.24155 20.85 Global 

w – decreased  to 0.10 j1,j2 5.12734 22.59 Local 

j1 – increased to 2.0 j1,w 5.24155 20.85 Global 



j1 – decreased to 0.1 j1,w 5.15649 29.33 Local 

j2 – increased to 2.0 j2,w 5.22939 18 Local 

j2 – decreased to 0.1 j2,w 5.20285 26.49 Local 

 

Since the search space is small in this case, most combinations except lower values of these 

variables converged to a global maxima. To ensure that the entire search space is thoroughly 

checked the number of particles could be increased resulting in faster convergence. With an 

increase to 20 particles and finally 50 particles, the same global maxima is reached. However 

if the number of particles is lowered, the probability of finding a local maxima increased. 

Hence the number of particles is directly proportional to the speed of convergence, upto a 

certain limit before saturation in the swarm. More particles result in higher computation 

times. Therefore a balance between the maximum particles used and computation time has to 

be achieved, as per application.  

4.2. Variations in Neumann solution parameters 
 

 

As from Table 5, the algorithm always prefers a maximum of both the sensible and latent 

heat variables. At the same time from Figure 8, most of the heat is input in the form of latent 

energy, for the melting algorithm. It can be argued that the upper limit is a bit out of range, 

for most practical combinations. Hence the upper limits of the three variables ‘cp liquid’, ‘cp 

solid’ and ‘L latent heat’ are decreased. The upper limits for ‘cp liquid’ and ‘cp solid’  are 

changed to 2.2 kJ/(kg.°C) and 2.0 kJ/(kg.°C) respectively. The input of the the upper limit of 

the latent heat is varied, giving a linear relationship with ‘Tm’, as in Figure 11: 

 



 

Figure 11: Variation of input maximum latent heat and optimized melt temperature 

 

 

As expected the optimizer always selects a combination with the maxima heat trasnfer. Most 

of the heat is added in the melting phase, with the majority being latent. When the ‘ΔT’ 

between the ‘Tb’ and ‘Tm’ is greatest more latent heat via melting can be added. To 

compensate for the loss of latent heat energy, there is a decrease in ‘Tm’, to increase heat 

trasnfer.   

 

It is also arguable that the time of GW flow has a normal distribution from the mean 15 

minutes [1]. Hence a variation of time is also investigated from the initially set 15 minutes. 

However the results are independent of time. Probably an unequal distribution, with a higher 

time for freezing would have invoked different results.  

 

5. Conclusion 

 



An optimizer using the PSO algorithm to determine the thermal parameters of a PCM has 

been developed, which has been applied with the GW heat harnessing. This methodology can 

be used in the primary phase of the design process, without the need of extensive detail. 

 

 The Neumann solution of the Stefan problem is a good estimation of selecting a PCM 

for both a melting and freezing phenomena, without the practical constraints of 

dimensioning and analysing external factors. 

 The thermal parameters are selected based on the PSO optimization algorithm linked 

with the Neumann solution for both melting and freezing. The PSO procedure is 

suitable for this multi-variable non-linear problem with convergence to the desired 

maxima of heat extracted/inserted.  

 Results show that the best performance PCM for this application would have a ‘Tm’ 

of 20.85°C. However a sensitivity analysis of parameters from both the PSO and 

Neumann solution provide an insight into the complexities. It can be seen that 

melting is relatively a faster phenomenon, compared to freezing.  

 

The basic Neumann solution can easily be replaced with more detailed implicit 

approximations, within this algorithm for further studies. At the same time detailed numerical 

and experimental analysis of this optimum PCM is recommended after this selection phase.  

 

Abbreviations  
 

 

PCM Phase change material 

PSO Particle swarm optimization 

GW Grey water 

CW Cold water 

CFD Computational fluid dynamics 



L and S 

subscripts 

Liquid and solid region 

Sens Sensible Heat 

Lat Latent heat 

 

 

Nomenclature 
 

Tm Melting temperature in °C 

∇ Laplace operator 

T Temperature in °C 

t Time in seconds 

𝛼 Thermal diffusivity in m2/s 

�̇�/q Internal heat generation rate in W 

Ti Initial temperature in °C 

Tb Boundary temperature in °C 

L Latent heat kJ/kg 

v Velocity in m/s 

ρ Density in kg/m3 

𝑋(𝑡) Position of the melt front in m 

k Thermal conductivity of liquid phase kW/(m.°C) 

x Position in m 

∞ Infinity 

St Stefan number  

c Specific heat in kJ/(kg.°C) 

a Ratio of the under root of the thermal diffusivities 

λ Root of the transcendental equation 

exp Exponential 

erf Error function 

erfc Complementary error function 

π Pi 

Q Heat energy in kJ 

n Number of dimensions in the PSO 

𝑥𝑖 Position vector of the PSO 

𝑣𝑖 Velocity vector of the PSO 

k Iteration number 

𝑓(𝑥) Fitness function for the PSO 

𝑝𝐵𝑒𝑠𝑡𝑖 Particle best vector of the PSO 

sBest Swarm best vector of the PSO 

w Inertia weight of the particle 

j1 Cognitive learning rate 

r Random variable between 0 -1 

j2 Social learning rate 

Δ Delta or change 
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