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Abstract—Novel composite models were recently proposed 
based on inverse gamma distributed shadowing conditions. 
These models were extensively shown to provide remarkable 
modeling of the simultaneous occurrence of multipath fading 
and shadowing phenomena in emerging wireless scenarios such 
as cellular, off-body and vehicular-to-vehicular communications. 
Furthermore, the algebraic representation of these models is 
rather tractable, which renders them convenient to handle 
both analytically and numerically. Based on this, the present 
contribution analyzes the ergodic capacity over the recently 
proposed "−µ / inverse gamma composite fading channels, which 
were shown to characterize excellently multipath fading and 
shadowing in line-of-sight communication scenarios, including 
realistic vehicular-to-vehicular communications. Novel analytic 
expressions are derived which are subsequently used in the anal­
ysis of the corresponding system performance. In this context, 
the offered results are compared with respective results from 
cases assuming conventional fading conditions, which leads to the 
development of numerous insights on the effect of the multipath 
fading and shadowing severity on the achieved capacity levels. It 
is expected that these results will be useful in the design of timely 
and demanding wireless technologies such as wearable, cellular 
and vehicular communications. 

I. INTRODUCTION 

Accurate characterization and modeling of fading channels 
constitutes a core topic in wireless communications as fading 
phenomena affect considerably the performance of conven­
tional and emerging communication systems. As a result, 
numerous fading models that provide adequate modeling accu­
racy to specific types of fading conditions have been proposed 
during the past years [1]–[5] and the references therein. In this 
context, it has been extensively shown that generalized fading 
models are capable of providing accurate characterization of 
multipath fading [6]–[10]. Yet, it has been also shown that 
multipath fading and shadowing phenomena practically occur 
simultaneously and can be modeled with the aid of composite 
fading distributions [11]–[19]. However, the existing compos­
ite fading models in the open technical literature do not typi­

cally provide holistic accurate modeling of fading phenomena, 
while they often have a complicated mathematical form, which 
renders them analytically intractable in numerous applications 
of interest. Motivated by this, the authors in [1]–[3] proposed 
two novel distributions, namely the "−µ / inverse gamma and 
the 7 −µ / inverse gamma that constitute effective a composite 
fading models. The high modeling capability of these models 
has been validated by accurate fitting to results from exten­
sive measurement campaigns. These campaigns also included 
communication scenarios in the context of wearable, cellular 
and vehicular communications, which constitute emerging and 
timely topics of interest. In addition, a distinct characteristic 
of the proposed models is their relatively convenient algebraic 
representation, which renders them tractable both analytically 
and numerically. Based on this, they overall constitute the most 
adequate balance between modeling accuracy and algebraic 
tractability compared to the existing composite fading models 
in the open technical literature. 

It is recalled that fading distributions have been extensively 
used in the analysis and evaluation of wireless communications 
since they typically allow the derivation of explicit expressions 
for critical performance measures of interest. However, this 
task becomes considerably more challenging, if not impossi­
ble, in the case of generalized and/or composite fading condi­
tions [6], [20]. Based on this, the authors in [21]–[23] analyzed 
the capacity over generalized fading channels under different 
adaptation policies. This topic was also addressed in [24] for 
the case of KG fading channels, in [13] and [25] for the case 
of G fading channels and in [26] and [27] for the case of 7 −µ 
/ gamma and "−µ shadowed fading channels, respectively. In 
the same context, the outage probability (OP) over different 
generalized interference-limited scenarios was investigated in 
[28], whereas an analytical framework for the case of device­
to-device communications in cellular networks was proposed 
in [29]. Finally, the outage capacity (OC) of orthogonal space­

mailto:geokarag@auth.gr
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time block codes over multi-cluster scattering multi-antenna 
systems along with the coverage capacity 5G millimeter wave 
cellular systems were addressed in [30] and [31], respectively. 

Motivated by the above, the present work analyzes the 
channel capacity of digital communications over " − µ / 
inverse gamma fading channels. To this end, we derive an 
explicit analytic expression for the ergodic capacity under 
these composite fading conditions in the form of a simple 
and convergent infinite series. An elegant upper bound for 
the corresponding truncation error is also derived in closed-
form, allowing the precise determination of the number of 
terms required at given accuracy levels. Particularly in the 
considered case of the ergodic capacity, it is shown that only 
few terms are required in order to achieve a 1% accuracy, 
which is practically sufficient for channel capacity relating 
measures. Based on this, the derived expressions are utilized 
in quantifying the effects of different fading conditions on 
the corresponding system performance. This leads to the 
development of useful insights that are expected to be useful 
in the design of demanding emerging wireless technologies 
such as wearable, cellular and vehicular communications. 

The remainder of this paper is organized as follows: Section 
II revisits the basic properties of the recently proposed " − µ / 
inverse gamma fading model. Capitalizing on this, Section III 
is devoted to the analysis of the ergodic capacity under these 
fading conditions, followed by the corresponding numerical 
results and related discussions in Section IV. Finally, closing 
remarks are provided in Section V. 

II. THE "-µ / INVERSE GAMMA FADING MODEL 

The " − µ / inverse gamma model assumes that the mean 
power of both the dominant and scattered signal components is 
subject to shadowing, which is weighted by an inverse gamma 
random variable (RV). This model was shown to provide 
remarkable accuracy in line of sight (LOS) communication 
scenarios and its envelope probability density function (PDF), 
R, is expressed as [1], [3] 

ms −µ 2µ−12µµ(1 + ")µm Ωms e rsfR(r) = 
B(ms, µ)[µ(1 + ")r2 + msΩ]ms+µ ( ) (1)2µ2"(1 + ")r× 1F1 ms + µ; µ; 

µ(1 + ")r2 + msΩ 

where " denotes the ratio of the total power of the dominant 
components to the total power of the scattered waves, µ 
is related to the number of multipath clusters, ms is the 
shadowing parameter and Ω is the the mean signal power. 
Furthermore, B(·, ·) and 1F1(·; ·; ·) denote the Beta function 
and the Kummer hypergeometric function, respectively [32]. 

Based on (1), the signal-to-noise ratio (SNR) PDF of the 
" − µ / inverse gamma fading model is given by 

ms −µ hµ−1µµ(1 + ")µm hms esf, (h) = 
B(ms, µ)[µ(1 + ")h + msh]ms+µ ( ) (2) 

µ2"(1 + ")h× 1F1 ms + µ; µ; 
µ(1 + ")h + msh 

where h = E[h] is the corresponding average SNR, with E[·] 
denoting statistical expectation. 

It is evident that the algebraic representation of the PDF 
of the " − µ / inverse gamma fading model is relatively 
convenient both analytically and numerically. In what follows, 
we capitalize on the above statistical results to derive a 
useful analytic expression for the ergodic capacity under these 
composite fading conditions. 

III. ERGODIC CAPACITY OVER " − µ / INVERSE GAMMA 
FADING CHANNELS 

A. Ergodic Capacity 

Theorem 1. For ", h,B E R+ and ms E N, the following 
analytic expressions hold for the ergodic capacity in " − µ / 
inverse gamma fading channels 

ms  ( )∑−1 ∑ i"i −µ Ce ms − 1 (−1)l(ms + µ)iµ e
= 

B l B(ms, µ) ln(2)(µ)ii! 
l=0 i=0 

Hi+l+µ + ln(hms) − ln(µ) − ln(1 + ")× 
i + l + µ 

m∑s−1 ∑ ( ) 
i"i −µ ms − 1 (−1)l(ms + µ)iµ e

+ 
l B(ms, µ) ln(2)(µ)ii! 

l=0 i=0 

(µ(1 + ") − hms) (i + l + µ)× 
µ(1 + ") (i + l + µ + 2) ( )

msh × 2F1 1, µ + l + i + 1; µ + l + i + 2; 1 − 
µ(1 + ") 

(3) 

thwhich is valid when µ E R+, with Hn denoting the n
harmonic number, and 

ms  ( )∑−1 ∑ i"i −µ Ce ms − 1 (−1)l(ms + µ)iµ e
= 

B l B(ms, µ) ln(2)(µ)ii! 
l=0 i=0 

i+∑l+µ 
1 × 

j(i + l + µ)
j=1 

ms  ( )∑−1 ∑ i"i −µ ms − 1 (−1)l(ms + µ)iµ e
+ 

l B(ms, µ) ln(2)(µ)ii! 
l=0 i=0 

i+∑l+µ 
ln(hms) − ln(µ(1 + "))× 

i + l + µ
j=1 

ms  ( )∑−1 ∑ i"i −µ ms − 1 (−1)l(ms + µ)iµ e
+ 

l B(ms, µ) ln(2)(µ)ii! 
l=0 i=0 

(µ(1 + ") − hms) (i + l + µ)× 
µ(1 + ") (i + l + µ + 2) ( )

msh × 2F1 1, µ + l + i + 1; µ + l + i + 2; 1 − 
µ(1 + ") 

(4) 

which is valid when µ E N, where in both cases 2F1(·, ·; ·; ·) 
is the Gaussian hypergeometric function [32]. 



 

 

 

 

 

 

Proof. By recalling that ∫ 
Ce £ B log2(1 + h)p, (h)dh (5) 

0 

and substituting [3, Eq. (4)] yields (6), at the top of the next 
page. Based on this and setting 

u = µ(1 + ")h + msh 

it immediately follows that 

ms −µCe m hms es = 
B B(ms, µ) ln(2) ∫ ( )

(u − msh)
µ−1 u − msh × ln 1 + (7) 

ums+µ µ(1 + ")ms , ( )
msµ"h × 1F1 ms + µ; µ; µ" − du 

u 

which upon setting 

t = 1 − msh/u 

and after some algebraic manipulations yields 

−µCe e
= 

B B(ms, µ) ln(2) {∫ 1 ( )
tµ−1 (msh − (1 + ")µ)t × ln 1 + 

(1 − t)1−ms µ(1 + ")0 

× 1F1 (ms + µ; µ; µ"t) dt ∫ 1 }
tµ−1 ln(1 − t)− 1F1 (ms + µ; µ; µ"t) dt . 
(1 − t)1−ms 

0 
(8) 

By applying [32, Eq. (1.111)] in (8) and expanding the 
involved hypergeometric functions along with straightforward 
algebraic manipulations one obtains (3), which is valid for 
µ E R+. To this effect and by recalling that 

i+∑l+µ 

Hi+l+µ £ j−1 (9) 
j=1 

which holds for µ E N, equation (4) is deduced, which 
completes the proof. 

It is noted that the series representation in (4) is fully 
convergent and it is evident that it has a relatively convenient 
algebraic form that renders it tractable both analytically and 
numerically. Furthermore, only a few number of terms are 
required to achieve adequate truncation accuracy. Yet, a simple 
upper bound that determines the involved truncation error 
in an accurate manner is essential, particularly in analyses 
relating to emerging wireless communication scenarios, such 
as those encountered in vehicular communications. To this end, 
a simple and tight closed-form bound to (4) is derived in the 
following proposition. 

B. A closed-form upper bound for the truncation error of (4) 
Proposition 1. For ", h, B E R+ and ms E N, the following 
closed-form upper bound is valid for the truncation error of 
the infinite series in (3): 

−µeT < 
B(ms, µ) log(2) { ( )ms∑−1 

ms − 1 log(hms/µ) − log(1 + ") + Hp+l+µ× 
l µ + l 

l=0 

× (−1)l 2F2(ms + µ, µ + l; µ, µ + l + 1; µ") ( )ms∑−1 
ms − 1 (−1)l(µ(1 + ") − hms)

+ 
l µ(1 + ")(µ + l)(µ + l + 1) 

l=0 ( )
hms × 2F1 1, 1 + p + l + µ; 2 + p + l + µ; 1 − 

µ(1 + ")}
× 2F2(ms + µ, l + µ; µ, µ + l + 2; µ") . 

(10) 

where pFq(·) denotes the generalized hypergeometric function 
for the specific case p = q = 2, [32]. 

Proof. Truncating the infinite series in (3) after p − 1 terms 
results to the following truncation error 

−µeT = 
B(ms, µ) log(2) { ( )ms∑−1 

ms − 1 × 1 + 
l 

l=0 

i"i∑ (−1)l(ms + µ)iµ× 
i!(µ)ii=p 

log(hms) − log(µ(1 + ")) + Hi+l+µ× 
i + l + µ ( )ms∑−1 

ms − 1
(−1)l µ(1 + ") − hms 

+ 
l µ(1 + ")

l=0
 ∑ i"i
(ms + µ)i (i + l + µ) µ× 
(µ)i (i + l + µ + 2) i! 

i=p ( )}
hms × 2F1 1, µ + l + i + 1; l + i + µ + 2; 1 − . 

µ(1 + ") 
(11) 

With the aid of the Pochhammer symbol identities and after 
some algebraic manipulations, the above representation can 
be upper bounded by the inequality in (12), at the top of the 
next page. Notably, the involved infinite series representations 
can be expressed in closed-form in terms of the generalized 
hypergeometric function, namely ∑ i"i ( )(ms + µ)i(µ + l)iµ ms+µ, µ+l = 2F2 ; µ" (13)µ, µ+l+1i!(µ)i(µ + l + 1)ii=0 

and ∑ i"i ( )(ms + µ)i(l + µ)i µ ms+µ, l+µ= 2F2 ; µ" (14)µ, l+µ+2(µ)i(l + µ + 2)i i! 
i=0 

http:communications.To


 

 

 

 

∫ ( )
ms hmsCe µµ(1 + ")µm hµ−1 ln(1 + h) µ2"(1 + ")hs = 1F1 µ + ms; µ; dh. (6)

B B(ms, µ) ln(2)eµ (µ(1 + ")h + msh)ms+µ µ(1 + ")h + msh0 

( )ms∑−1 −µ ∑ i"ims − 1 e (−1)l log(hms) − log(µ(1 + ")) + Hi+l+µ (ms + µ)i(µ + l)iµT < 
l B(ms, µ) log(2) l + µ i!(µ)i(µ + l + 1)i

l=0 i=0 ( )ms−µ ∑−1 
e (−1)l ms − 1 µ(1 + ") − hms 

+ (12)
B(ms, µ) log(2) l µ(1 + ")(µ + l)(µ + l + 1) 

l=0 ( ) ∑ i"ihms (ms + µ)i(l + µ)i µ× 2F1 1, µ + l + p + 1; l + p + µ + 2; 1 − . 
µ(1 + ") (µ)i(l + µ + 2)i i! 

i=0 

( )
a, b where 2F2 ; x £ 2F2 (a, b; c, d; x). To this effect, by c, d

substituting (13) and (14) into (12) and performing the nec­
essary change of variables along with some algebraic ma­
nipulations, equation (10) is deduced, which completes the 
proof. 

Remark 1. It is noted that for the case of µ E N, a respective 
closed-form upper bound for the truncation error of (4) can 
be readily deduced by substituting (9) in (10), yielding 

−µeT < 
B(ms, µ) log(2) ⎤  ( )  ⎦ms ( ) [ log ,ms i+∑l+µ 

j−1∑−1 
ms − 1 µ(1+ ) ⎡× × + ⎣ l µ + l µ + l

l=0 j=1 

× (−1)l 2F2(ms + µ, µ + l; µ, µ + l + 1; µ") ( )ms∑−1 
ms − 1 (−1)l(µ(1 + ") − hms)

+ 
l µ(1 + ")(µ + l)(µ + l + 1) 

l=0 ( )
hms × 2F1 1, 1 + p + l + µ; 2 + p + l + µ; 1 − 

µ(1 + ")}
× 2F2(ms + µ, l + µ; µ, µ + l + 2; µ") . 

(15) 

It is evident that both (10) and (15) have a tractable algebraic 
representation that allows their straightforward computation, 
since the involved functions are included as built-in functions 
in popular software packages such as MATLAB, MAPLE and 
MATHEMATICA. 

IV. NUMERICAL RESULTS 

This section employs the derived results in the previous 
sections in the quantification of the effects of composite 
multipath/shadowing conditions on the ergodic capacity, as this 
can occur in realistic communications scenarios undergoing 
fading effects, such as in wearable, cellular and vehicular 
communication scenarios. To this end, Fig. 1 illustrates the 
ergodic capacity over "−µ / inverse gamma composite fading 
channels. It is evident that the joint effects of multipath fading 
and shadowing are considerable as significant deviations from 

the standard Rayleigh fading conditions are observed. For 
example, a 50% spectral efficiency increase is noticed when 
µ changes from µ = 0.2 to µ = 2.0, for light shadowing 
conditions at moderate SNR values and NLOS scenarios. Like­
wise, a nearly 55% spectral efficiency reduction is observed 
when shadowing changes from ms = 0.2 to ms = 2.0 for 
µ = 0.2 at h = 20dB with " = 1. This corresponds to gains 
of several dBs for fixed spectral efficiencies, which is partic­
ularly advantageous in emerging applications of substantially 
increased quality of service requirements. It is noted that the 

0 5 10 15 20 25 30
0

5

10

15

Average SNR

E
rg

o
d
ic

 C
a
p
a
ci

ty

 

 
 µ = 0.2, m

s
 = 0.2

 µ = 2.0, m
s
 = 0.2

 µ = 0.2, m
s
 = 2.0

 µ = 2.0, m
s
 = 2.0

       Rayleigh

Fig. 1: Ergodic capacity versus average SNR under " − µ / 
inverse gamma fading channels for " = 1 and different values 
of µ, and ms. 

offered results also verify that accurate characterization and 
modeling of multipath fading and shadowing are of paramount 
importance in the design of emerging communication systems; 
therefore, highly accurate composite fading models are highly 
essential in ensuring avoidance of unrealistic evaluation of 
conventional and emerging communication systems, such as 
wearable and vehicular communications. 



V. CONCLUSION 

This work was devoted to the ergodic capacity analysis of 
digital communications over " − µ / inverse gamma fading 
channels. Novel exact analytic expressions were derived for 
this measure which were subsequently employed in quantify­
ing the effects of severity of multipath fading and shadowing 
fading conditions on the overall system performance. It was 
shown that the effect of different types of composite fading 
have a considerable effect across all SNR regimes. These ef­
fects are clearly beyond the range of the conventional Rayleigh 
distributed multipath fading effects and thus, they must be 
taken into account in the realistic design and deployment of 
emerging wireless systems that are characterized by their sig­
nificantly increased quality of service requirements. Indicative 
examples include timely and critical topics of interest such as 
wearable, cellular and vehicular communications. 
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