-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Open Repository and Bibliography - Luxembourg

Agent-Based HOL Reasoning*

Alexander Steen', Max Wisniewski', and Christoph Benzmiiller!:2

L Freie Universitiat Berlin, Institute of Computer Science, Germany
{a. steen,m.wisniewski,c .benzmueller}@fu—berlin .de
2 Stanford University, CSLI, USA

Abstract. In the Leo-III project, a new agent-based deduction system
for classical higher-order logic is developed. Leo-III combines its prede-
cessor’s concept of cooperating external specialist systems with a novel
agent-based proof procedure. Key goals of the system’s development in-
volve parallelism on various levels of the proof search, adaptability for
different external specialists, and native support for reasoning in expres-
sive non-classical logics.

Keywords: Higher-Order Logic, Automated Theorem Proving, Reason-
ing, Non-classical logics

1 Introduction

We present the automated theorem prover Leo-III and its associated system
platform. In the DFG funded project a novel agent-based deduction system for
classical higher-order logic (HOL) is developed which aims at exploiting massive
parallelism at various levels in the reasoning process. The system allows ad-hoc
inclusion of independent specialist agents that add advanced functionality to the
proof search such as consistency checks of the input axiomatization using model
finders or augmented deduction processes for non-classical logics. The latter,
very powerful, capability is enabled by semantical embedding of the desired goal
logic in HOL. Several of such embeddings will be included in Leo-III, yielding an
out-of-the-box automation tool for a great number of (quantified) non-classical
logics relevant in mathematics (e.g. inclusive/free logic as used in projective
geometry), philosophy (e.g. modal logics) and computer science (e.g many-valued
logics, paraconsistent logics).

In its current state, Leo-III is based on an ordered paramodulation calculus
for typed lambda-terms, augmented with special means of extensionality treat-
ment. The employment of agents allows parallelism on the search level by intro-
ducing and-/or-splits of the search space. The scheduling of the agents’ actions
is realized as optimization procedure using combinatorical auction games.

2 Classical Higher-Order Logic

Simple type theory, also referred to as classical higher-order logic (HOL), is an
expressive logic formalism that allows for higher-order quantification [Fre79],

* This work has been supported by the DFG under grant BE 2501/11-1 (Leo-III).

https://core.ac.uk/display/237148671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Steen-Wisniewski-Benzmiiller

that is quantification over arbitrary set and function variables. It is based on
the simply typed A-calculus and was, in its current formulation, developed by
Church [Chu40]. In the following, we briefly introduce the syntax and semantics
of HOL. For thorough discussions we refer to the literature?.

HOL is a typed logic. The set of simple types T is thereby freely generated
using the binary function type constructor — and the set of base types T. We
assume that T consists of at least two elements {o,:} C T, where o and ¢ denote
the type of Booleans and some non-empty domain of individuals, respectively.

The terms of HOL are then given by the following grammar (7,v € T):

s,itu=cr | Xo | (AX7o80) 1, | (Sro0 tr), (1)

where ¢, denotes a typed constant from the signature X' and X, is a variable.
The remaining two cases are called abstraction and application. The type of a
term is explicitly stated as subscript but may be dropped for legibility reasons
if obvious from the context. Terms s, of type o are formulas.

We require X' to contain a complete logical signature. To that end, we choose
X to consist at least of the primitive logical connectives for disjunction, nega-
tion, and, for each type, equality and universal quantification. Hence, we have
{Voss0305 To—30s =110 H(TTHO)HO} C XY for all 7 € T. The remaining logical
connectives can be defined as usual, e.g. s At := —=(—sV).

The semantics of HOL is now briefly addressed. A frame {D,},c7 is a col-
lection of non-empty sets D, such that D, = {T, F} (for truth and falsehood,
respectively) and D,_,, C DUDT is a collection of functions from D, to D,. An
interpretation is a pair M = ({D;};e7,Z) where {D;},;c7 is a frame and 7
is a function mapping each constant ¢, to some denotation in D,. We assume
that the primitive logical connectives are assigned their usual denotation. Given
a variable assignment o we can define a valuation ||.|[*“ by

lex M7 = Z(er)

X, M7 = o(X,) @
Sr—v Ur V= Sr—v ’ T ’
| te M = [M7 it | Mo

IAXr s, M7 = (£ 22— |5 Mel/X) € D,

A formula s, is called valid, iff ||s,||*? = T for every variable assignment
o and every interpretation M. We call M a standard model iff D,_,, is the
complete set of total functions, i.e. D,_,, = ’Dl?T. As a consequence of Godel’s
Incompleteness Theorem [Géd31], HOL with standard semantics is necessarily
incomplete. However, if we allow D,_,, to be a proper subset of DD~ with the
constraint that ||.|| remains total, a meaningful notion of completeness can be
achieved [Hen50]. We assume this so-called Henkin semantics in the following.

3 Detailed information about typed A-calculi and formal aspects of HOL can e.g. be
found in [BDS13,BM14,Benl5a,BBK04] and references therein).

Agent-Based HOL Reasoning 3
3 Extensional Paramodulation for HOL

The proof search of Leo-III is guided by a refutation-based calculus which uses
the fact that Ay,..., A, F C if and only if {A4,..., A,,~C} is inconsistent. To
that end, the initial set of formulas is transformed into equational clausal normal
form and saturated until the empty clause is found. A popular method for satu-
rating a given set of clauses is resolution, i.e. as employed by LEO-II [BPST15].
In first-order theorem proving, many successful systems use calculi based on or-
dered paramodulation [BG94] (or its even more restricted form, superposition),
which improves naive resolution not only by an appropriate handling of equality,
but also by using ordering constraints to restrict the number of possible infer-
ences. In HOL, however, finding appropriate term orderings is more involved and
only few such orderings exist.

We now sketch a (unordered) paramodulation rule for HOL and then briefly
discuss, how ordering restrictions can be employed for the paramodulation-based
calculus of Leo-III.

An equation is a pair s ~ t of terms. A literal is a signed equation, written
[s ~ t]* where « € {#,f} is the polarity of the literal. A clause C is a multiset
of literals, denoting its disjunction. For brevity, if C and D are clauses and [is
a literal, we write C V[and C V D for the multi-union of C U {l} and C U D,
respectively. The paramodulation inference can then be stated as

CV([l~rt DV s ~t]*
CVDV [s[r]r =]V [s]r = |7

(Para)

where negative equality literals encode postponed unification tasks, s|, is the
subterm of s at position 7, and s[r], denotes the term that is created by replacing
the subterm of s at position 7 by r. Intuitively, paramodulation is a conditional
rewriting step that is justified if the unification tasks can be solved. Further
calculus rules include equality factoring, unification handling and clausification.

The above rule (Para) is unordered and will, especially in a higher-order
setting, produce a lot of irrelevant (redundant) clauses in the search space. In
order to restrict the inference rules such as (Para), we are employing a higher-
order term ordering primarily investigated for automated termination proofs,
called computability path ordering (CPO) [BJR15].

In its current state, we successfully use CPO to orient equations and pre-
select maximal literals eligible for paramodulation and factorization inferences.
However, the employment of full ordered paramodulation constraints, that ad-
ditionally discard generated clauses that do not match the ordering constraints
after unification, is not yet implemented. This is partly due to the complicated
nature of higher-order unification where, in general, there exists no most general
unifier between two terms. Nevertheless, already at this point, the use of CPO
seems promising as a candidate ordering towards a fully ordered paramodulation
calculus for HOL.

In addition to the usual paramodulation inference rules above, extensionality
aspects need to be considered explicitly as well. This is because equalities in HOL

4 Steen-Wisniewski-Benzmiiller

: . : External
: Special purpose Relevance Pre- : reasoning
reasoning Flt . e rOCESSin : tools
agents iltering p 9 :
L™ LEO-I
Blackboard :
/_‘ Satallax

. Internal
i reasoning
i agents

Fig. 1. Leo-III's agent-based proof search cooperation

can occur between terms of any type, in particular between terms of Boolean type
or function type. The mere addition of extensionality axioms for each relevant
symbol does not suffice, as it leads to a massive explosion of the search space.
Hence, we include special means of calculus-level treatment similar to the rules
used by LEO-IT [BPST15], and combine them with extensionality handling in
adequate preprocessing steps [WSKB16].

The overall saturation procedure consisting of the above sketched ingredients
is, at the moment, organized as a sequential loop using a variant of the given-
clause algorithm.

4 Agent-Based Refutation

An agent is a software component that can be executed independently of others.
Moreover, an agent is given the ability to decide on its own when to execute its
functionality. This high amount of autonomy is a key feature of agents [Weil3].
In the Leo-III system, agents are employed as specialists for some aspects of the
proof search. The underlying architecture of Leo-III is designed as a blackboard
which the agents use to collaboratively find a proof. The work of the agents is
thereby divided in transactional tasks and organized in auctions, in which it is
decided which tasks are performed next in case of interference.*

In its current state, Leo-III employs agents in three different scenarios: During
the preprocessing phase of the overall proof procedure each agent is responsible
(i.e. a specialist) for one sort of normalization to be applied to a formula. Here,
the overall goal is to exhaustively apply all normalization procedures [WSKB16]
to all clauses. Since normalization is a local problem, an agent can judge solely
by observing a particular formula whether it wants to act on it. Due to only
little existing interference between the normalization methods, the execution of
the different normalization routines can easily be distributed among the agents.

4 Further information can e.g. be found in [WB16,Wis14].

Agent-Based HOL Reasoning 5

As a second employment scenario, a relevance filter (cf. [MP09]) is implemented
that prunes the search space prior to preprocessing. Relevance filtering can be
performed similarly to the preprocessing, except that the problem is not local
in the above sense since information about other formulas have to be considered
as well. As most of the agents of Leo-III will have this kind of non-local depen-
dencies, a reasonable coordination of those agents is one of the main goals of
further development. The last employment of the agents is to parallelize heavy
weighted proof procedures. Here, the agent-based approach can be applied on
the calculus level, e.g. for single clauses, but also for parallelizing one or more
(sequential) proof procedures (so-called multi search). In Leo-III, the calculus
sketched in §3 is distributed among multiple agents. Additionally, HOL theorem
proving systems such as LEO-II and Satallax [Brol2] are included as external
specialists.

In Fig. 1 the connections among the components of Leo-III are visualized.
The focus in the current state relies mostly on the last of the three above de-
scribed cases. We employ sequential proof procedures and external provers to
solve the input problem in parallel and wait for the first positive result. These
tasks either differ in some parameters of the proof search or in previously applied
normalization techniques. For further work, we will experiment with different
granularities for the generated tasks and different means of agent coordination.
The task sizes can hereby vary from the execution of whole proof procedures to
very fine-grained responsibilities (e.g. the application of single inference steps).
The coordination is at the lowest level bound to the auction system. On top
of that however, additional mechanisms (such as fixed execution priorities, or
coalitions and coalition games [CEW11]) can be added.

5 The Leo-III System

In its core, Leo-III is a new higher-order automated theorem prover based on the
associated system platform LeoPARD [WSB15]. LeoPARD is a framework for
deduction systems (implemented in Scala) providing sophisticated term, search,
and indexing data structures for typed A-terms, as well as an generic agent-based
blackboard architecture. Leo-IIT makes use of these supported data structures
and implements the concrete agents as described in §4 on top of the provided
blackboard architecture. The internal reasoning agents implement a proof pro-
cedure realizing the calculus depicted in §3.

During the development of Leo-III, special care was given to providing maxi-
mal compatibility with existing systems and conventions of the application area.
As input language, for instance, Leo-III supports every standard dialect of the
TPTP syntax [Sut09] (including THF, TFF and FOF). For best possible exter-
nal utilization, Leo-III can output a proof object used for proof reconstruction
pointers (e.g. in Isabelle [NPWO02]) or proof verification tools (e.g. IDV [Sut09]).

One major goal of Leo-III is to provide native means of reasoning within (and
about) non-classical logics including free logic, (quantified) conditional logic, and

6 Steen-Wisniewski-Benzmiiller

(quantified) modal logic®. Such logics are of strong interest in many different
fields of research, for example in mathematics, artificial intelligence, and phi-
losophy. In its current state, our system is already capable of reasoning in that
embedded logics and even — with a few modifications — of parsing the syntax
representation of these formalisms. The automated transformation of an input
problem stated in such a specialized syntax representation into an equivalent
HOL formulation is still in development, but can easily be added to Leo-III as
a new preprocessing procedure.

6 Conclusion

In this paper, we have presented a new automated theorem prover for HOL,
called Leo-TII. A rough sketch of its underlying paramodulation calculus and
its extensionality handling has been given. A proof procedure based on that
calculus is included in the presented agent-based blackboard architecture. Ad-
ditionally, external deduction systems can be included as agents. Leo-III is, on
the long perspective, intended as a platform for universal reasoning, offering not
only support for reasoning in classical higher-order logics, but also for reasoning
within further expressive, non-classical logics such as modal logics, conditional
logics or even many-valued logics. This enables our system to serve as a reasoning
tool for a wide spectrum of formal scientific disciplines.

A native out-of-the-box automation of input problems stated in specialized
syntax of corresponding non-classical logics is further work. Additionally, we will
develop and include further specialized agents to allow a more fine-grained paral-
lelization of the proof search. To that end, experiments with various parameters
and heuristics for the guidance of the proof search and the organization of the
agents will be conducted.

References

[BBK04] C. Benzmiiller, C. Brown, and M. Kohlhase. Higher-Order Semantics and
Extensionality. Journal of Symbolic Logic, 69(4):1027-1088, 2004.

[BDS13] H. P. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with
Types. Perspectives in logic. Cambridge University Press, 2013.

[Benlb5a] C. Benzmiiller. Higher-Order Automated Theorem Provers. In D. Dela-
haye and B. Woltzenlogel Paleo, editors, All about Proofs, Proof for All,
Mathematical Logic and Foundations, pages 171-214. College Publications,
London, UK, 2015.

[Benl5b] C. Benzmiiller. Invited talk: On a (quite) universal theorem proving ap-
proach and its application in metaphysics. In De Nivelle. H., editor,
TABLEAUX 2015, volume 9323 of LNAI, pages 209-216, Wroclaw, Poland,
2015. Springer. (Invited paper, mildly reviewed).

5 The reasoning in such non-classical logics is enabled by a semantical embedding of
the target logic into HOL. Detailed information about this approach can be found,
e.g. in [Benl5b] and the references therein.

[BGY4]
[BJR15)]

[BM14]

[BPST15]

[Brol2]

[CEW11]

[Chu40]
[Fre79]

[Géd31]

[Hen50]
[MP09)]
[NPW02]
[Sut09]

[WB16]

[Weil3]
[Wis14]

[WSB15]

Agent-Based HOL Reasoning 7

L. Bachmair and H. Ganzinger. Rewrite-Based Equational Theorem Prov-
ing with Selection and Simplification. J. Log. Comput., 4(3):217-247, 1994.
F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path order-
ing. CoRR, abs/1506.03943, 2015.

C. Benzmiiller and D. Miller. Automation of Higher-Order Logic. In D. M.
Gabbay, J. H. Siekmann, and J. Woods, editors, Handbook of the History
of Logic, Volume 9 — Computational Logic, pages 215-254. North Holland,
Elsevier, 2014.

C. Benzmiiller, L. C. Paulson, N. Sultana, and F. Theifs. The Higher-Order
Prover LEO-II. Journal of Automated Reasoning, 55(4):389-404, 2015.

C. E. Brown. Satallax: An Automatic Higher-Order Prover. In B. Gramlich,
D. Miller, and U. Sattler, editors, Automated Reasoning - 6th International
Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012. Pro-
ceedings, volume 7364 of LNCS, pages 111-117. Springer, 2012.

G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects of
Cooperative Game Theory. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2011.

A. Church. A formulation of the simple theory of types. J. Symb. Log.,
5(2):56-68, 1940.

G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Verlag von Louis Nebert, Halle, 1879.

K. Goédel. Uber formal unentscheidbare Sdtze der Principia Mathemat-
ica und verwandter Systeme. Monatshefte fir Mathematik und Physik,
38(1):173-198, 1931.

L. Henkin. Completeness in the theory of types. J. Symb. Log., 15(2):81-91,
1950.

J. Meng and L. C. Paulson. Lightweight relevance filtering for machine-
generated resolution problems. Journal of Applied Logic, 7(1):41 — 57, 2009.
T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. J.
Autom. Reasoning, 43(4):337-362, 2009.

M. Wisniewski and C. Benzmiiller. Is it Reasonable to Employ Agents
in Theorem Proving? In J. van den Heerik and J. Filipe, editors, Proc.
of the 8th International Conference on Agents and Artificial Intelligence
(ICAART), volume 1, pages 281-286, Rome, Italy, 2016. SCITEPRESS —
Science and Technology Publications, Lda.

G. Weiss, editor. Multiagent Systems. MIT Press, 2013.

M. Wisniewski. Agent-based Blackboard Architecture for a Higher-Order
Theorem Prover. Master’s thesis, Freie Universitat Berlin, 2014.

M. Wisniewski, A. Steen, and C. Benzmiiller. LeoPARD - A Generic Plat-
form for the Implementation of Higher-Order Reasoners. In M. Kerber,
J. Carette, C. Kaliszyk, F. Rabe, and V. Sorge, editors, Intelligent Com-
puter Mathematics - International Conference, CICM, Proceedings, volume
9150 of LNCS, pages 325-330. Springer, 2015.

[WSKB16] M. Wisniewski, A. Steen, K. Kern, and C. Benzmiiller. Effective Nor-

malization Techniques for HOL. In N. Olivetti and A. Tiwari, editors,
Automated Reasoning, Fight International Joint Conference, Proceedings,
LNCS. Springer, 2016. Accepted for publication; to appear in 2016.

