
Effective Normalization Techniques for HOL?

Max Wisniewski, Alexander Steen, Kim Kern and Christoph Benzmüller

Dept. of Mathematics and Computer Science, Freie Universität Berlin, Germany
max.wisniewski|a.steen|kim.kern|c.benzmueller@fu-berlin.de

Abstract. Normalization procedures are an important component of
most automated theorem provers. In this work we present an adaption
of advanced first-order normalization techniques for higher-order theo-
rem proving which have been bundled in a stand-alone tool. It can be
used in conjunction with any higher-order theorem prover, even though
the implemented techniques are primarily targeted on resolution-based
provers. We evaluated the normalization procedure on selected problems
of the TPTP using multiple HO ATPs. The results show a significant
performance increase, in both speed and proving capabilities, for some
of the tested problem instances.

1 Introduction

Problem normalization has always been an integral part of most automated the-
orem proving (ATP). Whereas early ATP systems relied heavily on external nor-
malization and clausification, the normalization task has gradually been trans-
ferred to the prover themselves. The influence and success of FLOTTER [16]
underlined the importance of careful employment of pre-processing techniques.
Current state-of-the-art first-order ATP systems can spend a large portion of
their execution time on pre-processing. Higher-order (HO) ATPs have not yet
developed as sophisticated methods as their first-order counterparts and use
hardly any sophisticated pre-processing techniques regarding clausification.

In this paper we present adaptations of prominent first-order techniques that
improve clause normal form (CNF) calculations [12] first analyzed by Kern [8] in
the context of higher-order logic (HOL; cf. [1] and the references therein). These
adaptions are further augmented with HOL specific techniques and bundled
in different normalization procedures. These procedures are intended as pre-
processing routines for the new Leo-III theorem prover [17].

The effectiveness of these procedures is evaluated using a benchmark suite
of over 500 higher-order problems. The measurements are conducted using the
HO ATP systems LEO-II [5], Satallax [7] and Isabelle/HOL [10].

Furthermore, the normalization techniques are implemented in a stand-alone
tool, called Leonora, ready to use with any TPTP-compliant HO ATP system.

? This work has been supported by the DFG under grant BE 2501/11-1 (Leo-III).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/237148668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Normalization Techniques

The first two techniques, simplification and extensionality treatment, are already
implemented in most systems. Nonetheless, we briefly survey them in the fol-
lowing. They are essential to the overall normalization process since they allow,
when combined with further techniques, a more thorough in-depth normalization
in some cases (see e.g. §2.4).

2.1 Simplification and Extensionality Treatment

Simplification is a procedure invoked quite often during proof search. It resolves
simple syntactical tautologies and antinomies, removes trivial quantifiers, and
eliminates the constant symbols for truth and falsehood from a formula. In gen-
eral, simplification can be used to minimize formulas and reduce the number of
applicable inference rules.

Extensionality Treatment. In comparison to FOL, equalities in HOL can occur
between terms of any type, especially between terms of Boolean type or func-
tional type. To guarantee completeness, these equalities must also comply to
the extensionality principle. This is often dealt with using special extensional-
ity rules in the underlying calculus. In our context, we employ an adaption of
the extensional RUE calculus rules as implemented in LEO-II [3,5]. Intuitively,
the rule for equality on Booleans Φ = Ψ replaces the equality by the equivalence
Φ⇔ Ψ using the fact, that the domain of Booleans only contains truth and false-
hood. For equality on functions as in f = g the rule states that two functions are
equal if and only if they agree on each argument, hence we have ∀X . f X = g X
as result. We included both rules in the normalization framework for enabling
deeply normalizing formulas: In some of the normalization procedures below, a
rule can only be applied to a non-nested formula, i.e. not occurring at argument
position. Using extensionality treatment, formulas can be lifted to top-level and
then subsequently processed by other normalization steps.

2.2 Formula Renaming

Formula Renaming is a technique to reduce the size of the CNF [12]. Essentially,
the idea is to split a clause into two separate clauses and to logically link them
via a freshly introduced symbol that is added to both new clauses.

Definition 1 (Formula Renaming).
Let Φ be a formula and Ψ1 ◦ Ψ2 a subterm of Φ, where ◦ is a binary Boolean
connective. We replace Ψ2 by r(X1, . . . , Xn), where {X1, . . . , Xn} = free(Ψ2), r
is a fresh predicate symbol (of appropriate type), and add a new clause D with

D =

{
r(X1, . . . , Xn) ⊃ Ψ2 , if polarity(Ψ2) = 1

Ψ2 ⊃ r(X1, . . . , Xn) , if polarity(Ψ2) = −1

if the size of the CNF (denoted #CNF) is decreasing, i.e.

#CNF(Φ) > #CNF(Φ[Ψ2 \ r(X1, . . . , Xn)]) + #CNF(D).

The definition of free(.) and polarity(.) are hereby straight-forward adaptions
of the their usual first-order counterparts (cf. e.g. [12]). We intentionally omitted
the case of polarity(Ψ2) = 0 , since it is subsumed by a technique in §2.3.

Renaming reduces the size1 of the CNF tremendously. In the example of a
formula in disjunctive normal form, e.g. (a ∧ b ∧ c) ∨ (d ∧ e ∧ f), we obtain the
nine multiplied cases (a∨d), (a∨e), . . . , (c∨f). First renaming, however, yields
the two clauses (a ∧ b ∧ c) ∨ r and r ⊃ (d ∧ e ∧ f), which are normalized to six
clauses (a ∨ r), (b ∨ r), . . . , (¬ r ∨ e), (¬ r ∨ f). This effect of formula renaming
is mostly present in the multiplicative case of a β-rule, where the size of the
CNF is reduced from a product (of the subterm sizes) to a sum. Thus, we can
eliminate cases of exponential blowup in the transformation to CNF.

Reducing the search space in this manner can greatly boost the search pro-
cess, as shown for first-order problems by Nonnengart et al. [11].

2.3 Argument Extraction

One major difference between higher-order and first-order logic is the shallow
term-formula structure: Whereas in FOL we have the well-known distinct con-
structs of formulas and terms, in HOL there exist only terms (terms of Boolean
type are still referred to as formulas). This allows in HOL the notion of nested
formulas, that is, formulas p occurring at argument position of, e.g., an unin-
terpreted function symbol (in which case the polarity of p is 0). A treatment of
these nested formulas is not immediately possible, since calculus rules dealing
with Boolean formulas, such as clausification rules, cannot be applied to sub-
terms. In order to apply these rules, the nested formulas have to be lifted to the
top level, e.g. by decomposition rules as part of common unification procedures.

To allow immediate processing of nested formulas this lifting can be done in
a pre-processing step [8]. Possible duplicated normalizations of nested formulas
at a later proof search phase can thus be avoided. This argument extraction can
be seen as a special higher-order case of formula renaming [12].

Definition 2 (Argument extraction).
Let Φ be a formula with f(p) occurring as subterm. We replace p if its head symbol
is a logical connective. More precisely, let {X1, . . . , Xn} = free(p). We introduce
a new function symbol s (of appropriate type) and return Φ[p \ s(X1, . . . , Xn)]
together with the definition ∀X1 . . . Xn . p = s(X1, . . . , Xn).

Consider the following theorem of HOL, which LEO-II is not able to solve:

` ∀R . (R(⊥ ⇔ (b⇔ c))⇒ R((c⇔ b)⇔ ∀X . (X ∧ ¬X)))

In this formula the arguments of both occurrences of the Boolean connective R
can be extracted, resulting in two axioms and the remaining conjecture:

s1 ⇔ (⊥ ⇔ (b⇔ c)),
s2 ⇔ ((c⇔ b)⇔ ∀X . (X ∧ ¬X))
` ∀R .R(s1)⇒ R(s2)

1 With #CNF we denote the number of clauses generated by transforming the given
formula into clause normal form.

It is easy to see that further normalization steps are enabled by argument ex-
traction. In other words, some challenging HOL aspects have been eliminated
from the given proof problem in a pre-processing step. In fact, the processed
problem is now easily provable for LEO-II.

2.4 Extended Prenex Normal Form

A term Φ is in prenex normal form, if it is of the form Q1X1 . . . QnXn . Ψ where
Qi are quantifier symbols and Ψ does not contain any quantifier. Many proof
calculi, especially unification-based calculi, work on clauses with implicitly bound
variables. The quantifier for such an implicitly bound variable is (implicitly)
always enclosing the whole formula. Hence, it is necessary to move the quantifiers
outwards.

We first adapted the normalization of Nonnengart et al. [12] that first skolem-
izes existential quantifiers. A higher-order formula

` (∀X . a(X) ∧ ∃Y . Y) ∧ ∀Y . p(∀X . b(Y) ⊃ a(X))

treated with the adopted algorithm for prenex normal form yields

` ∀X . ∀Y . ((a(X) ∧ sk1(X)) ∧ p(∀X . b(Y) ⊃ a(X)).

With this simple adaption, a prenex form cannot be reached in HOL. As in
§2.3 we have to cope with nested formulas. Moving the quantifiers out of the
nested application is not possible. In fact, even skolemizing is impossible, since
we loose track of the polarity inside the application. However, applying argument
extraction will introduce a new axiom containing the nested Boolean argument.
Subsequently processed with extensionality – forcing a hard polarity distinction –
all quantifiers will now appear at top-level and can be treated with the standard
adaption to transform the problem into a pure higher-order prenex form. We
call this approach extended prenex normal form which is, up to the author’s
knowledge, novel in the context of HOL. Normalizing the example finally yields

∀Y .∀X .¬ek1(Y) ∨ (¬b(Y) ∨ a(X)),
∀Y . ek1(Y) ∨ (b(Y) ∧ ¬a(sk2(Y)))
` ∀X .∀Y . ((a(X) ∧ sk1(X)) ∧ p(ek1(Y)).

3 Evaluation and Discussion

We have conducted several experiments to evaluate the potential benefits of the
afore described normalization procedures. These experiments are designed to
benchmark the number of problems that can be solved with the respective ATP
as well as the time spent by the ATP on solving each individual problem.

The benchmark suite consists of overall 537 higher-order problems divided
in eight domains from a broad field of application domains. The problems were

AGT
(23 Prob.)

CSR
(123 Prob.)

GEG
(18 Prob.)

LCL
(139 Prob.)

PHI
(10 Prob.)

PUZ
(59 Prob.)

QUA
(20 Prob.)

SET
(145 Prob.)

Org N1 N2 Org N1 N2 Org N1 N2 Org N1 N2 Org N1 N2 Org N1 N2 Org N1 N2 Org N1 N2

LEO-II

Solved 23 23 23 61 69 45 12 13 11 104 93 104 6 5 5 31 32 31 0 0 0 134 134 135

–THM 23 23 23 57 65 41 12 13 11 99 88 99 6 5 5 31 32 31 0 0 0 134 134 135

Σ [s] 4.9 4.8 4.6 417 98 200 5.2 5.3 16.4 22.2 13.1 22.2 18.3 0.6 0.6 8.8 21 9.2 — — — 14.9 16.4 15.3

Avg. [s] 0.2 0.2 0.2 6.8 1.4 4.4 0.4 0.4 1.5 0.2 0.1 0.2 3 0.1 0.1 0.3 0.7 0.3 — — — 0.1 0.1 0.1

Satallax

Solved 18 19 19 58 78 51 17 17 15 113 114 112 7 7 7 35 37 33 2 2 2 138 136 138

–THM 18 19 19 54 74 47 17 17 15 104 105 103 7 7 7 31 34 30 2 2 2 138 136 138

Σ [s] 97 157 157 290 52 252 204 202 192 267 361 276 52 76 77 42 71 68 3.5 3.5 14.6 153 119 201

Avg. [s] 5.4 8.3 8.3 5 0.7 4.9 12 11.9 12.8 2.4 3.2 2.5 7.5 10.9 10.9 1.2 1.9 2.0 1.7 1.7 7.3 1.1 0.9 1.5

Table 1: Measurement results for normalizations N1 and N2 over all benchmark
domains

taken from the TPTP library [14,15] (version 6.3.0) and coincide with the com-
plete higher-order subsets of the corresponding TPTP problem domains2 AGT,
CSR, GEG, LCL, PHI, PUZ, QUA and SET.

For assessing the effectiveness of the proposed normalization pre-processing,
we run the ATP systems on the original problems first and then on a series of
differently normalized versions of the respective problems. These versions differ
hereby in the number and combination of enabled normalization transforma-
tions from §2. More specifically, we investigated four different normalization
procedures, denoted N1, . . . , N4:

N1 Enabled routines: Prenex form, argument extraction, formula renaming, sim-
plification and extensionality processing (i.e. full normalization)

N2 Enabled routines: Argument extraction, formula renaming, simplification
and extensionality processing

N3 Enabled routines: Prenex form, argument extraction, simplification and ex-
tensionality processing

N4 Enabled routines: Argument extraction, simplification and extensionality
processing

We chose to investigate different combinations of normalization techniques as
pre-processing step to take into account that different ATP systems can use fun-
damentally different calculi and thus may benefit from different input conditions.

The measurements were primarily taken using the higher-order ATP systems
LEO-II [5] and Satallax [7]. While the former system is based on higher-order
resolution, the latter uses a sophisticated tableau-like approach. Selected bench-
mark results are additionally investigated using the automated and interactive
theorem prover Isabelle/HOL [10]. In its automatic proof mode, Isabelle employs
different solving tools such as the counter model finder Nitpick [6], the first-order
tableau prover Blast [13], the SMT solver CVC4 [2] and several more.

2 A comprehensive presentation of the different TPTP problem domains and their
application domain can be found at http://www.cs.miami.edu/~tptp/cgi-bin/

SeeTPTP?Category=Documents&File=OverallSynopsis.

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Documents&File=OverallSynopsis
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Documents&File=OverallSynopsis

As indicated before, for each original problem and each of the four normal-
ized versions (by N1, . . . , N4 respectively) we measure whether the system were
able to solve the input problems as well as the time taken to do so. The CPU
limit (timeout) for each problem and each ATP system is limited to 60s. The
measurements were taken on a 8 core (2x AMD Opteron Processor 2376 Quad
Core) machine with 32 GB RAM.

Pre-processing time is not considered in the results below, since it still carries
essentially little weight and does not considerably contribute to the overall CPU
time.

Results and Discussion. Table 1 displays the benchmark result summary. For the
two ATP systems LEO-II and Satallax, the number of solved problems and the
CPU time is shown for the original problems (denoted Org) in the respective
domain and the pre-processed problem domains (denoted N1 and N2 respec-
tively). The results for the remaining two normalization procedures are omitted
since they are very similar to the ones shown.3 The number of solved problems
(thereof theorems) is denoted Solved (–THM). The sum (average) of CPU time
spent on solving all input problems (that could be solved using the respective
normalization procedure) is denoted Σ (Avg.).

As can be seen, in the case of the LEO-II prover, the normalization procedure
N1 results in more solved problems in benchmark domains CSR, GEG and PUZ.
A decrease in solved problems can be observed in domains LCL (only 90% solved)
and PHI (83% solved). The results of the remaining three benchmark domains
only differ in the overall (and average) solving time. For the Satallax prover, the
results are even better: More problems were solved in domains AGT, CSR, LCL
and SET using N1. Only in domain SET there are some problems that could
not be proven anymore (see remark on domain SET below). In all cases, the
normalization procedure N2 did not improve the reasoning effectivity.

The most striking increase in solved problems can be observed in domain CSR
where 8 problem were additionally solved due to N1 (roughly 13%) by LEO-II.
Also, the overall (and average) proving time in N1 only takes approximately a
quarter of the original time (while proving more problems in that time). These
observations also apply for Satallax, where 20 more problems (34%) were solved
by using N1 while reducing the reasoning time to roughly one quarter of the
original time. Detailed measurement results for problem domain CSR are shown
in Table 2, where the fifteen best speed-ups are displayed for each employed
ATP system. In order to provide additional evidence for the practicability of the
presented normalization procedures, we included Isabelle/HOL in these mea-
surements. The average speed-up for the Isabelle system is approx. 66%. Here,
some problems that were originally provable by Isabelle’s CVC4 routine become
provable by Blast after normalization with N1, hence the speed-up.

The above results shows a significant increase in reasoning effectivity for
problems of the CSR (commonsense reasoning) domain. In the investigated

3 The average time results for normalization procedure N3 are in nearly all cases
within a range of 0.1% of the results for N1. Likewise results apply for N4 and N2.

Time [s]
Problem Orig. N1 N2

CSR153ˆ2 38.254 0.054 †
CSR138ˆ1 9.858 0.029 9.875

CSR153ˆ1 5.492 0.038 5.493

CSR126ˆ2 31.425 0.676 31.451

CSR139ˆ1 10.022 0.266 10.027

CSR137ˆ2 1.351 0.039 4.270

CSR134ˆ1 9.713 0.338 0.359

CSR122ˆ2 19.307 0.683 19.266

CSR143ˆ2 2.714 0.238 †
CSR153ˆ3 7.743 0.988 †
CSR119ˆ3 26.588 3.672 †
CSR120ˆ3 26.609 3.678 †
CSR137ˆ1 0.242 0.042 0.246

CSR152ˆ3 14.960 3.671 †
CSR151ˆ3 14.939 3.668 27.075

(a) Satallax

Time [s]
Problem Orig. N1 N2

CSR139ˆ2 5.331 0.146 5.633

CSR132ˆ2 5.331 0.283 †
CSR139ˆ1 1.196 0.055 1.142

CSR150ˆ1 1.633 0.091 1.604

CSR141ˆ2 1.229 0.202 †
CSR148ˆ1 0.295 0.057 †
CSR149ˆ2 1.002 0.194 1.479

CSR123ˆ2 0.930 0.192 †
CSR124ˆ2 0.731 0.190 †
CSR122ˆ2 0.725 0.193 †
CSR125ˆ2 0.757 0.327 †
CSR119ˆ2 0.355 0.173 †
CSR138ˆ1 0.104 0.054 0.122

CSR120ˆ2 0.388 0.202 †
CSR127ˆ2 0.342 0.190 0.529

(b) LEO-II

Time [s]
Problem Orig. N1 N2

CSR128ˆ2 52.286 14.305 49.489

CSR153ˆ2 50.682 14.056 51.087

CSR131ˆ2 49.519 13.983 52.484

CSR133ˆ2 48.984 13.902 50.028

CSR148ˆ2 43.199 14.172 42.063

CSR149ˆ2 40.294 14.310 38.664

CSR138ˆ2 39.387 15.305 40.481

CSR150ˆ1 29.746 11.767 29.844

CSR130ˆ2 49.632 21.136 46.207

CSR132ˆ2 55.217 24.252 56.829

CSR129ˆ2 47.401 20.979 45.682

CSR119ˆ1 26.858 12.259 12.343

CSR141ˆ2 52.501 26.366 44.813

CSR123ˆ2 52.272 26.337 54.192

CSR127ˆ2 27.227 14.248 26.311

(c) Isabelle

Table 2: The 15 best relative time improvements with normalization N1 in CSR
domain for the respective prover (ordered by speed-up). Normalization N2 is
shown for comparison. A timeout result of a system is denoted †.

THF subset of that domain, a majority of problems represent HOL embeddings
of SUMO [9] reasoning tasks.

Another major observation is that a TPTP rating 1.0 problem (i.e. a problem
that could not be solved by any ATP system) became provable after normaliza-
tion with procedure N1. Here, the problem PUZ145ˆ1 from the puzzles domain
can be shown to be a theorem in 5.8s by Satallax.

Another interesting aspect of the normalization procedures is the impact on
occurrences of defined equalities in problems. As discussed before, some prob-
lems in our benchmark suite became unprovable after normalization. This could
be due to the fact that the HOL ATPs under consideration provide some special
techniques for the manipulation of defined equalities, for example, Leibniz equal-
ities. Leibniz equalities have the form ∀P.Pa⇔ Pb, ∀P.Pa ⊃ Pb, ∀P.¬Pa∨Pb,
etc., for arbitrary terms a and b.4 The special techniques are aiming at a more
goal directed equality handling as is possible with the above formulas, cf. [4].
However, our implemented normalization procedures do not yet support a similar
detection and treatment of defined equalities. Thus, executing a normalization
strategy can alter the structure of a (sub-)formula in a way that the HOL ATPs
do subsequently not recognize it as an instance of a defined equality anymore.
Augmenting our procedures with special techniques for defined equalities might
therefore further improve the above results. Similar techniques might be useful
for description and choice.

4 The prover LEO-II, for example, is able to detect such (sub-)formulas and to replace
them by primitive equalities a = b.

Implementation. For the above experiments, the described normalization tech-
niques were implemented into a stand-alone pre-processing tool, called Leonora
(for Leo’s normalization) that can be used to normalize any higher-order prob-
lem file in THF format [15], ready to employ in conjunction with any TPTP-
compliant HO ATP system [14]. The selection of normalization steps to apply
on the input problem can be controlled individually for each technique via flags,
e.g. -a for enabling argument extraction or -r for formula renaming. A prelimi-
nary version of Leonora is freely available under MIT license and can be found
at GitHub5. For the experiments we used version 1 of Leonora.

4 Further Work

Even though we have not yet included special techniques for defined equalities,
the results show a significant improvement in some problem domains. Introduc-
ing such techniques has large potential to further improve these results.

Future work is to additionally support normalization techniques that are
more suited for non-CNF based calculi. While it was indeed possible to improve
Satallax’s performance in both speed and proving capabilities in some problem
domains, the system is using a quite different approach, i.e. a tableau method
with an iterative queuing, SAT solver and special treatment for existentially
quantified formulas. Applying the standard prenex algorithm could complicate
the problems for Satallax. In order to deal with provers that are not suited for
working with Skolem variables, we will additionally implement a procedure that
moves all quantifiers outside and omits the skolemization.

Additionally there is a lot of potential for further improvements, such as
finding meaningful size functions for the formula renaming procedure (cf. #CNF
from §2.2). One example would be size functions that aim at minimizing the
number of tableau branches created by the input problem.

5 Conclusion

In this work, we have adopted prominent first-order normalization techniques
for higher-order logic. First benchmark results of these techniques on a set of
HO problems indicate promising results. For each of the employed ATP systems
the normalization procedures enables an improvement in both speed as well as
number of solved problems for most benchmark domains. In some domains, up
to 20 (34%) more problems could be solved. Additionally, a problem that was
not solved by any ATP system before could be solved by Satallax in less than
six seconds after normalization.

We have observed that a straight-forward adaption of FOL techniques is
not enough for the HOL case. Especially the treatment of nested formulas has
great potential. Additionally, we have identified that a simple application of
these techniques can interfere with occurrence of defined equalities, which is a

5 The Leonora repository can be found at https://github.com/Ryugoron/Leonora

https://github.com/Ryugoron/Leonora

problem specifically arising in HOL. By lifting nested formulas to top-level, we
have on the one hand established a prenex normal form for HOL. On the other
hand, the lifting contributes to the improvement of a prover’s performance.

References

1. P. Andrews. Church’s type theory. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Stanford University, Spring 2014 edition, 2014.

2. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. Cvc4. In 23rd Int. Conference on Computer Aided
Verification, volume 6806 of LNCS, pages 171–177. Springer, 2011.

3. C. Benzmüller. Higher-order automated theorem provers. In D. Delahaye and
B. Woltzenlogel Paleo, editors, All about Proofs, Proof for All, Mathematical Logic
and Foundations, pages 171–214. College Publications, London, UK, 2015.

4. C. Benzmüller, Brown C, and M. Kohlhase. Cut-simulation and impredicativity.
Logical Methods in Computer Science, 5(1:6):1–21, 2009.

5. C. Benzmüller, L. C. Paulson, N. Sultana, and F. Theiß. The Higher-Order Prover
LEO-II. J. Automated Reasoning, 2015.

6. J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-
order logic based on a relational model finder. ITP, 6172:131–146, 2010.

7. Chad. E. Brown. Satallax: An Automatic Higher-Order Prover. In Automated
Reasoning, volume 7364 of LNCS, pages 111–117. Springer Berlin Heidelberg, 2012.

8. Kim Kern. Improved Computation of CNF in Higher-Order Logics. Bachelor
thesis, Freie Universität Berlin, 2015.

9. I. Niles and A. Pease. Towards a standard upper ontology. In Int. Conf. on Formal
Ontology in Information Systems, Proceedings, pages 2–9. ACM, 2001.

10. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

11. A. Nonnengart, G. Rock, and C. Weidenbach. On Generating Small Clause Normal
Forms. In C. Kirchner and H. Kirchner, editors, 15th Int. Conf. on Automated
Deduction, Proc., volume 1421 of LNCS, pages 397–411, Germany, 1998. Springer.

12. A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms. In
J. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume 1, pages 335–367. Gulf Professional Publishing, 2001.

13. L. C Paulson. A generic tableau prover and its integration with isabelle. J. Uni-
versal Computer Science, 5(3):73–87, 1999.

14. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. J. Auto-
mated Reasoning, 43(4):337–362, 2009.

15. G. Sutcliffe and C. Benzmüller. Automated Reasoning in Higher-Order Logic using
the TPTP THF Infrastructure. J. Formalized Reasoning, 3(1):1–27, 2010.

16. C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER version 0.42. In
M. A. McRobbie and J. K. Slaney, editors, 13th Int. Conf. on Automated Deduc-
tion, Proc., volume 1104 of LNCS, pages 141–145, USA, 1996. Springer.

17. M. Wisniewski, A. Steen, and C. Benzmüller. The Leo-III Project. In A. Bolotov
and M. Kerber, editors, Joint Automated Reasoning Workshop and Deduktionstr-
effen, page 38, 2014.

	Effective Normalization Techniques for HOL

