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ABSTRACT
We present the construction of molecular force fields for small molecules (less than 25 atoms) using the recently developed symmetrized
gradient-domain machine learning (sGDML) approach [Chmiela et al., Nat. Commun. 9, 3887 (2018) and Chmiela et al., Sci. Adv. 3, e1603015
(2017)]. This approach is able to accurately reconstruct complex high-dimensional potential-energy surfaces from just a few 100s of molecular
conformations extracted from ab initiomolecular dynamics trajectories. The data efficiency of the sGDML approach implies that atomic forces
for these conformations can be computed with high-level wavefunction-based approaches, such as the “gold standard” coupled-cluster theory
with single, double and perturbative triple excitations [CCSD(T)]. We demonstrate that the flexible nature of the sGDML model recovers
local and non-local electronic interactions (e.g., H-bonding, proton transfer, lone pairs, changes in hybridization states, steric repulsion, and
n → π∗ interactions) without imposing any restriction on the nature of interatomic potentials. The analysis of sGDML molecular dynamics
trajectories yields new qualitative insights into dynamics and spectroscopy of small molecules close to spectroscopic accuracy.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5078687

I. INTRODUCTION

Molecular force fields (FFs) constitute one of the most impor-
tant tools in chemistry, biology, and materials modeling due to their
remarkable value in understanding systems that range from small
molecules (e.g., ethanol with 9 atoms) up to large proteins, aiding
in the exploration and the discovery of new materials and drugs.
Creating physically inspired and handcrafted interatomic potentials
with parameters fitted to experimental data or quantum-mechanical
calculations has been a common practice since the early studies on

molecular dynamics (MD).1–4 The complexity of creating reliable
interatomic interaction models using prior physical knowledge led
to the development of dedicated specialized FFs for different mate-
rial classes, including tight-binding potentials for semiconductors
and metals,5 Tersoff potential for covalent materials,6 polarizable
FFs,7 the TIPnP FFs for water,8,9 and a wide variety of biomolecular
FFs such as AMBER, CHARMM, MMFF, and GROMOS that often
lead to reliable results for folded protein structures under ambient
conditions.10–13 The wealth of available interatomic potentials illus-
trates the vast amount of fundamentally different material classes,
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exposing that treating different types of interactions (metallic bond-
ing, covalent chemistry, hydrogen bonding, non-covalent interac-
tions, etc.) in a unified and seamless fashion is a complex challenge
for handcrafted mechanistic FFs.

To resolve some of these challenges, a number of recently devel-
oped machine learned (ML) FFs exploit the redundant information
contained in datasets of ab initio calculations or molecular dynam-
ics trajectories to reconstruct the underlying potential energy surface
(PES) without imposing any particular handcrafted analytical form
for the interatomic potential.

In particular, a vast amount of work has been done in molecu-
lar representations,14–31 neural network (NN) architecture develop-
ment,32–40 data sampling,41–45 and inference methods,46–60 as well
as software development61–63 and explanation methods.64,65

Based on rigorous statistical learning theory,66,67 machine
learning provides a powerful and general framework for construct-
ing force fields since ML approaches can reconstruct complex high-
dimensional objects with arbitrary accuracy, provided that suffi-
cient data samples (molecular energies and atomic forces) are used
for training. Obviously, the computational cost of evaluating ML
FFs lies in between empirical FFs and ab initio reference calcula-
tions. In particular, the symmetric gradient domain machine learn-
ing (sGDML) approach employed here is 5-10 orders of magnitude
faster than ab initio calculations and 2-3 orders of magnitude slower
than classical FFs; this depends of course on the molecular system.
For example, in the case of a coupled-cluster single, double and
perturbative triple excitations [CCSD(T)] calculation using the cc-
pVTZ basis set, the sGDML model can be up to 107 and 109 times
faster for malondialdehyde and aspirin, respectively.61

In the broadest sense, the challenge of accurately learning
FFs is currently being addressed using two methods: Neural Net-
work (NN)32–35,37,38,68–70 and kernel-based
models.17,19,23,26,41,42,44,46,48,58–60 Both approaches can be con-
structed to employ energy and/or force information. Learning forces
are advantageous for several reasons: (i) FF reconstruction in the
force domain yields smoother PESs, eliminating artifacts due to
somewhat conflicting requirement of simultaneously reproducing
accurate energies and forces,37,61 the inherent uncertainty of the
learning process, and using biased models that introduce unphysical
approximations, e.g., atomic partitioning of the energy, (ii) obtain-
ing energies from force models tends to diminish the noise in the
prediction as a result of the integral operator, contrasting the behav-
ior of the forces generated by the gradient operator on energy mod-
els, and (iii) force models require smaller amounts of reference
calculations to reach a desired accuracy.59 Such data efficiency arises
not only due to the fact that each force data point carries 3N com-
ponents (where N is the number of atoms) per reference calculation
but also because those components are orthogonal, thus providing
complete information about the immediate local environment.71

Both NN and kernel-based methods can achieve formally any
desired accuracy of predictions whenever a sufficiently large amount
of training data is available. By contrast, when only 100s of data
points are available, as in the case of high-level ab initio data, the
kernel methods usually offer a better reconstruction efficiency (with
a unique and well-defined solution) as they make greater use of prior
information. Finally, it is important to emphasize the mandatory
requirement of generating conservative ML-FFs, i.e., F = −∇E, to
guarantee stable simulations.

The symmetric Gradient Domain Machine Learning (sGDML)
FF60 retains all the advantages of kernel-based ML models which
directly learn forces. In fact, training the sGDML model solely using
forces, besides the availability of molecular energies, improves the
learning process, given that there is evidence that combining ener-
gies and forces in the loss function degrades the quality of the force
prediction.37,61 The robustness of the method is explained by the
fact that all atomic interactions are modeled globally, without resort-
ing to an inherently non-unique partitioning into atom-wise, pair-
wise, or many-body contributions. In the sGDML model, (i) each
FF model is explicitly constrained to be energy conserving, and (ii)
the model complexity is further reduced through the incorporation
of molecular symmetries (i.e., rigid and fluxional) that are automati-
cally extracted from the reference dataset. All these important prop-
erties contribute to the ability of sGDML to reconstruct complex PES
for molecules of intermediate size from modest amounts of reference
data, an unfeasible task for non-dedicated molecular FFs. In par-
ticular, the sGDML model enables the reconstruction of CCSD(T)-
quality FFs from a limited amount (∼100s) of reference molecular
configurations.60

In this article, we analyze some of the relevant quantum effects
captured by the sGDML model while reconstructing the PES of
small molecules. First, in Sec. II, we give a short introduction to
the GDML framework and its symmetrized version, the sGDML
model. In Sec. III, a discussion regarding the advantages of gradi-
ent domain-based FFs is presented, as well as an analysis of ded-
icated vs. transferable FFs. Then, in Sec. IV, we describe some of
the quantum interactions described by the sGDML’s reconstructed
PES. In particular, we focus on three ubiquitous phenomena of gen-
eral interest: Sec. IV A—lone-pairs and electrostatic interactions,
Sec. IV B—intramolecular hydrogen bonds and proton transfer, and
Sec. IV C—changes in atomic hybridization state and n→ π∗ inter-
actions.72,73 Note that a qualitative description of these complex
interactions by regular FF would require highly specialized mod-
els, while the sGDML model captures every interaction encoded in
−Fi = ⟨Ψ∗∣∂H/∂xi∣Ψ⟩ with high accuracy. In Sec. V, we summarize
our findings.

II. sGDML MODEL
The sGDML model enables the direct efficient construction of

dedicated FFs for flexible molecules from high-level ab initio calcu-
lations. Unlike traditional FFs, it imposes no hypothesized analytical
interaction models and thus, in principle, can model any physi-
cal interaction. Compared to other machine learning approaches,
sGDML achieves high data efficiency through the incorporation of
spatial and temporal physical symmetries. Global spatial symme-
tries include rotational and translational invariance of the energy, in
addition to rigid and fluxional symmetries, which are recovered and
enforced in an automatic data-driven manner. The homogeneity of
time implies energy conservation, property that is enforced by learn-
ing in the gradient domain using as prior an analytically integrable
covariance function.

The latter is introduced as a linear operator constraint, by
modeling the FF as the transformation of an underlying energy
model. In particular, we train the gradient of a kernel ridge esti-
mator on force labels F, which—by construction—yields energy-
conserving FFs that can be integrated to obtain the corresponding
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Born-Oppenheimer (BO) global potential-energy surface (PES)
VBO.59,60 Practically, this is achieved via the use of the Hessian
matrix of a kernel κ as the covariance structure to solve the normal
equation of the ridge estimator in the gradient domain,59,60

(KHess(κ) + λI)α⃗ = ∇VBO = −F, (1)

where KHess(κ) is the kernel matrix, λ is the regularization param-
eter, I is the identity matrix, and α⃗ are the parameter-vectors to
train.

The sGDML model imposes additional permutational sym-
metry constraints on KHess(κ) to take advantage of PES redundan-
cies due to rigid space group and fluxional symmetries.60 Typi-
cally, extracting those symmetries requires chemical and physical
intuition about the system at hand, e.g., rotational barriers, which
is impractical in a ML setting. Through a data-driven multi-partite
matching approach (see Fig. 1), we automate the discovery of per-
mutation matrices P(τ) corresponding to the index permutation τ
from molecular dynamics simulations by realizing the assignment
between adjacency matrices (A)ij = ∥r⃗i− r⃗j∥ of molecular graph pairs
G and H in different energy states,

arg min
τ

L(τ) = ∥P(τ)AGP(τ)⊺ −AH∥2. (2)

The resulting approximate pairwise matchings are subse-
quently synchronized using transitivity within the training set
as the consistency criterion. A particular advantage of our solu-
tion is its ability to limit the symmetry recovery to energet-
ically feasible permutational configurations, given that unfeasi-
ble permutation, e.g., the permutation of two random atoms,
would not contribute any valuable information the symmetrized
kernel and should not be considered. This severely reduces
computational efforts in evaluating the model. Finally, the FF
estimator trained on M reference geometries, with 3N par-
tial derivatives and S symmetry transformations each, takes the
form

f̂F(x⃗) =
M
∑
i

3N
∑
l

S
∑
q
(Pqα⃗i)l

∂

∂xl
∇κ(x⃗,Pqx⃗i) . (3)

The corresponding energy predictor is obtained by simply
integrating f̂F with respect to the Cartesian coordinates,

− f̂E(x⃗) = ∫ f̂F ⋅ dx =
M
∑
i

3N
∑
l

S
∑
q
(Pqα⃗i)l

∂

∂xl
κ(x⃗,Pqx⃗i) . (4)

Due to linearity of integration, the expression for the energy
predictor is identical up to the second derivative operator on the

FIG. 1. Construction of the sGDML model. (1) The data used for training, {xi , Fi }Mi=1, is generated by random sampling of molecular dynamics trajectories (blue dots). The force
on each atom is represented by a green arrow. (2) From the training set, the permutational set of symmetries, {Pa}Sa=1, are computed by the multi-partite matching approach.
This effectively enhances the size of the training set by a factor S. (3) The force field is trained by solving the linear system for the parameters {αj }. The reconstructed
potential-energy surface is obtained by analytically integrating the force model.
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TABLE I. Accuracy of total energies for sGDML@DFT (using PBE+TS functional) and
sGDML@CCSD(T) models on various molecular dynamics datasets. Energy errors
are in kcal mol−1. These results, with the exception of enol-MDA, were originally pub-
lished in Ref. 60. All the models were trained using atomic forces for 1000 molecular
conformations.

Energy prediction

Dataset DFT CCSD(T)

Molecule MAE RMSE MAE RMSE

keto–MDA 0.10 0.13 0.06 0.08
Ethanol 0.07 0.09 0.05 0.07
enol–MDA 0.07 0.09 0.07 0.07
Aspirin 0.19 0.25 0.16a 0.21a

aCCSD.

kernel function (see Fig. 1). Figure 1 gives a general perspective of the
sGDML model by summarizing the training process, from sampling
the MD trajectory and extracting the permutational symmetries to
solving the linear system and reconstructing the embedded PES in
the data.

The addition of spatial, temporal, and permutational symme-
try constraints leads to a gain in data efficiency of more than two
orders of magnitude.60 Recently, we have systematically demon-
strated that sGDML models trained on only few 100s of refer-
ence structures reconstruct molecular PESs with a mean average
error of less that 0.06 kcal mol−1 for small molecules with up to
15 atoms and less than 0.16 kcal mol−1 for molecules as complex
as aspirin, paracetamol, and azobenzene60 (see Table I, Tables S1,
and S2). Hence, the explicit symmetrization incorporated in the
GDML framework59 results in robust learning models with the
ability to preserve the complex subtleties encoded in the reference
data.

The sGDML models for each molecule studied in this arti-
cle were initially trained on density functional theory (DFT) data
at the generalized gradient approximation (GGA) level of theory
with Perdew-Burke-Ernzerhof (PBE)74 exchange-correlation func-
tional and the Tkatchenko-Scheffler (TS) method75 to account
for van der Waals interactions. The training dataset was created
by subsampling MD trajectories at constant temperature (500 K)
using the FHI-aims package.76 In the case of keto-MDA, enol-
MDA, and ethanol, we recomputed the training configurations
using all-electron CCSD(T), while in the case of aspirin, we used
all-electron CCSD77–79(see the supplementary material for further
details).

III. COMPARISON OF sGDML TO OTHER
ML-FF APPROACHES
A. Force vs. energy model

The unique approach used by the sGDML model contrasts
other models that first develop an energy function and then get the
forces by analytic differentiation.1–13,17,19,23,32–35,37,38,46,48,68–70

This is represented in the next diagram,

Trained Derived
sGDML : f̂F Ð→ f̂E = − ∫ f̂F ⋅ dx,
E-ML : f̂E Ð→ f̂F = −∇f̂E,

where the trained predictors and their post-training derived energy
and forces are presented for the sGDML and an energy ML (E-ML)
model, respectively. An interesting advantage of the sGDML over
E-ML models is how the training error propagates to the derived
quantities. Lets assume that the prediction errors associated with the
models f̂F and f̂E are γF and γE, respectively. Then, from the dis-
crete approximation of the integral and the derivative operator, we
obtain that the error in the derived energy, − ∫ f̂F ⋅ dx, is attenuated
and given by ∼γF∆x, while the error in the derived forces, −∇f̂E,
is amplified and given by ∼γE/∆x (see the supplementary material
for further details). A direct implication of these results is that, as
a whole, FFs based on E-ML are potentially less stable than gradi-
ent based FFs. Empirical evidence supporting these results as well as
a proof from signal processing theory was published in the original
GDML paper.59

Regarding the data efficiency of the sGDML, there is solid evi-
dence from Gaussian processes (GPs) that learning linearizations
of a function, e.g., gradients, are more informative than learning
single points.71 Such data efficiency has been systematically shown
in the GDML framework.59–61 There is empirical evidence that
more than 3N training data points would be needed in an E-ML
model per each sample used in GDML to reach similar force accu-
racy,59 therefore allowing to train molecular FFs using data from
very accurate but computationally expensive reference methods, e.g.,
CCSD(T).

B. Performance of using forces vs. forces
+ energies for training

In the process of generating ML-FFs, the nature of the model,
E-ML or gradient domain model, gives prior information regarding
the problem to solve. This in the context of GPs would be equiva-
lent to narrow the space of possible solutions. Then, a loss function
is introduced in order to train the model by finding the best set of
parameters that minimize such function (here presented without the
regularization part),

Model Loss function
sGDML : lossF = ∑M

i=1 ∣∣̂fF(x⃗i) − Fi∣∣2

E-ML : lossE = ∑M
i=1 ∣∣f̂E(x⃗i) − Ei∣∣2.

Using these loss functions would, in principle, give an optimal
fitting, respectively. There is the idea that such loss functions can
be complemented by adding energy or force constraints as they are
often available in the reference data. In fact, several related studies
optimize a hybrid squared loss function of the form,37

loss =
M
∑
i=1
{∣∣̂fF(x⃗i) − Fi∣∣2 + η∣∣f̂E(x⃗i) − Ei∣∣2}, (5)

where η is a linear trade-off hyper-parameter which absorbs the dif-
ferences in units and weights the force and energy contribution. By
training a model using this loss function, a somewhat conflicting
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optimization race between energies and forces is introduced. Clear
empirical evidence of this issue has been reported for NN-FFs37 and
for the sGDML+E model61 where in both cases, the quality of the
forces degrades by introducing energy constrains.

C. Transferable and non-transferable models
Recently, the idea of transferable or across chemical compound

space ML-FFs has been under discussion, but due to its complex-
ity, less progress has been achieved compared to dedicated ML-
FFs. Transferable models can generate qualitatively good predictions
simultaneously for different molecular systems,55,80–82 but clearly
cannot offer reliable results for PES reconstruction where energy
prediction errors are often much larger than 1 kcal mol−1.55 On
the other hand, the accuracy achieved by state-of-the-art dedicated
that ML-FFs can even reach couple of calories per mole in energy
predictions using only a few hundreds reference calculations for
training.60 By contrast, the above mentioned transferable model
required ∼13 × 106 data configurations for training. Furthermore,
any gradient field generated from these models is, at the moment,
not reliable because of such energy errors, which makes prohibitive
to accurately capture physical interaction.55 From this discussion, it
is apparent that transferable models cannot be used to study dynam-
ical properties of molecules, a task easily accomplished by dedicated
FFs.

IV. MOLECULAR POTENTIAL-ENERGY SURFACES
In the framework of the BO approximation, VBO contains all

the information necessary to describe the dynamics of a molecu-
lar system. All electronic quantum interactions are encoded in VBO,
but in practice, it is not possible to expand VBO in different ener-
getic contributions such as hydrogen bonding, electrostatics, disper-
sion interactions, or other electronic effects. Therefore, the intricate
form of VBO resulting from an interplay between different quantum
interactions should be preserved in the reconstruction process. We
will now demonstrate how sGDML is able to describe many com-
plex features contained in the quantum-chemical conformational
data.

In practice, these important features or interactions (e.g.,
energy barriers or H-bond interactions) often come in the form of
subtle variations in VBO of less than 0.1 kcal mol−1, which is one
order of magnitude lower than the so-called chemical accuracy.60

For example, the relative stability of trans and gauche conformers of
ethanol is within 0.1 kcal mol−1. Any model with an expected error
above that threshold runs the risk of misrepresenting or even invert-
ing this subtle energy difference, which will lead to incorrect occupa-
tion probabilities and hence qualitatively wrong dynamical proper-
ties. The sGDML model has been shown to satisfy the stringent accu-
racy requirement of 0.1–0.2 kcal mol−1 for molecules with up to 15
atoms.60 Moreover, we found that using coupled-cluster reference
data not only generates a more accurate description of the quantum
system but also improves the learning errors, as shown in Table I.
In this section, we exemplify the accuracy and insights obtained
with sGDML with ubiquitous and challenging features of general
interest in chemical physics: electron lone pairs, electrostatic inter-
actions, intramolecular hydrogen bonds, proton tunneling effect,
and other electronic effects (e.g., steric repulsion, change in the

bond nature, and bonding–antibonding orbital interaction). Fig-
ure 2 shows an overview of the different types of molecules and their
reconstructed PES chosen to highlight the mentioned effects in this
study.

A. Electrostatic interactions and electron lone pairs
First, we focus our attention on electrostatic interactions,

including atom–atom and lone-pair–atom interaction. Here, the
concept of electron lone pairs plays a central role; these are ubiq-
uitous molecular features responsible for a wide variety of physi-
cal and chemical phenomena. Lone pairs are valence electrons of
an atom that are not shared with any other atom in a molecule.
Some examples of atoms in molecules that often present lone pairs
are nitrogen and oxygen. To illustrate the interactions induced
by lone pairs, we will use the keto-tautomer of malondialdehyde
(keto–MDA) and ethanol molecule shown in the first two rows of
Fig. 2. These fluxional molecules have complex PES with a rich
variety of physical phenomena (e.g., electrostatics and steric repul-
sion) for which the reconstruction process is not a trivial task
(see Fig. 3).

1. Oxygen–oxygen atom repulsion in keto–MDA
To illustrate the interatomic repulsion interaction, we use the

keto–MDA molecule, whose PES complexity is evident despite its
small size [see Fig. 3(A)]. For example, the PES contains flat regions,
which correspond to the global minima of the molecule [depicted
in dark blue in Fig. 3(A)], but also display intricate pathways to
move to local minima. Also, one can notice the sudden energy
increase when the two oxygen atoms are in the closest configu-
ration [structure (1) in Fig. 3(A)]. As mentioned before, the PES
is the result of many complex interactions but certainly there are
parts of the PES which can be mainly ascribed to a particular phe-
nomenon. This is the case for the yellow region in Fig. 3(A), where
the closeness between the two oxygen atoms suggests that the steep
increase in the energy could be primarily attributed to the electro-
static repulsion between the lone pairs in each atom. Additionally,
we know that electron lone pair clouds have large spatial extent
compared to shared electrons; therefore, steric effects caused by elec-
tron cloud overlap could also be playing an important role in this
region due to the close proximity between the two oxygen atoms
(rOO ∼ 2.6 Å). From these two interactions, only the electrostatic
contribution is roughly incorporated in regular FFs as constant
point charges located on each atom. This greatly constrains their
flexibility and reliability to describe complex interactions. Nonethe-
less, systematic studies of such interactions using the sGDML
model could spawn new ideas regarding their integration into reg-
ular FFs and ultimately increase the predictive power of empirical
FFs.

2. Electron lone pairs in ethanol
A particularly interesting case of strong effects of electron lone

pairs is the ethanol molecule, where the lone pairs of the oxy-
gen atom interact with the partially positive hydrogen atoms of
the methyl group [structure (2) in Fig. 3]. This molecule has two
rotors—the hydroxyl and methyl groups—as its main degrees of
freedom. The PES for ethanol [Fig. 3(B)] exhibits a very subtle
quasi-linear dependence between the dihedral angles of the methyl
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FIG. 2. Molecules under study and their properties. From left to right: List of molecules and their molecular structure, potential-energy surface along two relevant torsional
degrees of freedom, free energy surface at 300 K, type of intramolecular hydrogen bonds (if applicable), vibrational spectrum at 300 K, and type of electronic effect to study (if
applicable). The free energy scale from lowest (red) to higher (blue) is in kBT. The last column shows the electron lone pairs in keto-MDA and ethanol, sp2

→ sp3 hybridization
transition present in paracetamol, and n→ π∗ interaction in aspirin.72

and hydroxyl functional groups in the trans configuration [angle
zero of the hydroxyl group in Fig. 3(B)], as shown by the red
arrows in Fig. 3(B). Such coupling is evident when analyzing
the normal modes for this configuration, where the lowest two

vibrations correspond to the aforementioned coupled motion [see
also Fig. 4(c)]. The origin of this coupling can be understood by
the electrostatic attraction between the lone pairs in the oxygen
atom and the partially positively charged hydrogen atoms in the
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FIG. 3. Features of the PES. (A) PES for keto–MDA. The structure (1) leads to a steep increase in energy due to the close distance between two negatively charged oxygen
atoms. The regions (a) and (b) are the global and local minima of keto–MDA. (B) Ethanol’s PES. The structure (2) shows the effect of oxygen’s lone pair and the partial
positive charges in methyl’s hydrogen atoms, and their coupling is represented by a red arrow in the PES of ethanol. Both PES were predicted using sGDML@CCSD(T)
models.60

FIG. 4. Free energy for (a) ethanol and (b) paracetamol molecules at 300 K using
F(T ; x, y) = −kBT ln[P(x, y)] where P(x, y) is the sampling obtained from classical
molecular dynamics. For ethanol, two different ensembles are presented: NVE
and NVT. (c) Two lowest vibrational normal modes and their frequencies for trans
ethanol. The normal modes (1) and (2) are represented in the free energies A-
NVE and A-NVT, respectively. (d) Qualitative representation of the partial charges
in paracetamol. The dihedral angle of the acetamide group respect to the benzene
ring is represented in orange, and the inner rotational degree of freedom CNCO is
represented in black.

methyl rotor [structure (2) in Fig. 3]. The correct description of
this phenomenon within the reference data is crucial to obtain accu-
rate physical properties of any molecular system with lone pairs.60

It is important to stress that an accurate and general description
of lone pairs is a characteristic that goes beyond the capabilities
of regular FFs.60 The handmade FFs that attempt to include lone
pairs introduce explicit extra point charges,83 which results in highly
specialized models.84

3. Dynamics of coupled rotors in ethanol
The coupling between the hydroxyl and methyl rotors in

ethanol manifests in the two lowest normal modes (1) and (2),
as shown in Fig. 4(c). The normal mode (1) corresponds to the
direction indicated by the red arrow in the PES [Fig. 3(B)], while
(2) moves perpendicularly. Here, we analyze the dynamical impli-
cations of the coupling between lone pairs and the methyl rotor.
By performing molecular dynamics simulations at 300 K using the
NVE and NVT ensembles, we have obtained different probabil-
ity distributions and therefore different free energy surfaces (FES),
as shown in Fig. 4(a). In both cases, the FES considerably differs
from its underlying PES in the trans region. FESNVE develops a
deep minimum which traps the system into a state that boosts the
occupation of the lowest vibrational mode, as illustrated by (1) in
Fig. 4(c). By contrast, FESNVT reverts the direction of the coupling,
as depicted in Fig. 4(a)-(2), which, in general, promotes the occu-
pation of both vibrational modes (1) and (2) in Fig. 4(c). In both
cases, the FES shows an interesting and contrasting behavior that
highlights the importance of the coupling between the two rotors
in ethanol. A possible explanation for the difference between the
two ensembles is that the NVT distributes the energy between all
the molecular degrees of freedom in a more efficient way com-
pared to NVE. The NVE ensemble relies only on the anharmonic-
ities of the PES to redistribute the energy. Furthermore, the strong
coupling between the two rotors suppresses the energy redistribu-
tion between vibrational normal modes in NVE. It is clear that
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only FFs with an explicit description of lone pairs can show this
coupling.

As shown here, for ethanol and keto-MDA, the interactions
involving electron lone pairs (e.g., electrostatic interactions, steric
repulsion, and n → π∗ interactions) encoded in the PES play a fun-
damental role in the dynamics of the molecule and defining the free
energy (Fig. 2). This has direct implications on its thermodynam-
ics and spectroscopic properties given that a different sampling of
the PES re-weights and shifts the peaks in the vibrational spectrum.
Therefore, since electron lone pairs participate in many other more
complex interactions, their appropriate description is the first steps
to generate reliable force fields.

B. Intramolecular H–bond and proton transfer
Another complex phenomenon accurately captured with the

sGDML method is hydrogen bonding (H–bond). The intramolec-
ular H–bond is a subtle interaction, which dictates the dynam-
ical behavior of many molecules.85 It is responsible for very
important molecular features such as the molecular structure and
vibrational spectra, which result in macroscopic properties, e.g.,
solubility and permeability.86 Here, we will study two differ-
ent types of H–bonds: standard donor–acceptor H–bond and the
symmetric H–bond present in salicylic acid and the enol form of
malondialdehyde (enol–MDA), respectively (Fig. 5). The symmetric
H–bond allows proton tunneling to occur due to thermal fluctua-
tions assisted by quantum nuclear effects to overcome the energetic
barrier. In the case of a standard donor–acceptor H–bond, the pro-
ton is fixed to the proton donor (PD), while its dynamical behavior is
strongly affected by the electron lone pair belonging to a neighboring
atom (proton acceptor, PA). These two kinds of intramolecular H–
bonds appear very often in molecules, and their presence can dras-
tically change the physical properties of any molecule as we show in
this section for salicylic acid and enol-MDA molecules.

1. Intramolecular H–bond
We start by analyzing the salicylic acid molecule [Fig. 5(a)].

This molecule presents a standard donor–acceptor kind of
H–bond between the hydroxyl and carboxylic acid groups. From
the schematic representation in Fig. 5(a), we can see that the effect
of the H–bond in this molecule consists in allowing the proton to
stretch from the PD oxygen toward the PA oxygen. The middle point
(transition state) between PD and PA is represented by a red plane
in salicylic acid’s PES in Fig. 5(a) bottom. The energy necessary to
reach this point is ∼10 kcal mol−1, barely accessible at room temper-
ature. We would also like to highlight the narrow structure of the
reduced PES in the transition state [red plane in Fig. 5(a) bottom],
which gives us an idea of how directional the H–bond is. This direc-
tionality of the interaction changes the dynamics of the participating
functional groups, which results in a characteristic red-shift in the
stretching frequency of O–H induced by the H–bond.87–89 From a
vibrational normal mode analysis on the sGDML reconstructed PES
(see Fig. 6), we observe the red-shift of the O–H stretching frequency
in the participating hydroxyl group. Furthermore, the H–bond also
creates a blue shift in normal modes perpendicular to the H–bond
(see Fig. 6), which is a direct evidence of a O–H⋯O bond. The
proper description of these molecular features will be directly dis-
played in spectroscopic properties such as IR and Raman spectrum

FIG. 5. Intramolecular hydrogen bond in (a) salicylic acid and (b) enol-
Malondialdehyde. The top row shows schematically the type of H–bond in each
case. In the middle row are the molecular structures and their respective proton
reaction directions (from PD to PA). In the case of enol–MDA, the PES is sym-
metric, and then PD and PA are interchangeable. In the bottom row, the PESs
are shown where the red plane indicates the transition state of the proton. The
energy at the transition states (c) is ∼10 kcal mol−1 for salicylic acid and ∼4 kcal
mol−1 for enol–MDA. In the transition state, the enol–MDA molecule has a C2v
point symmetry, which the sGDML model exploits to increase the reconstruction
accuracy.

which is often used to characterize molecular structures and their
interactions.

2. Proton transfer
The second type of H–bond we analyze is the symmetric

H–bond in enol–MDA, which exhibits a symmetric double-well
reduced PES, as schematically represented in Fig. 5(b). The ener-
getic barrier separating the two minima is ∼4 kcal mol−1 which
occurs when the interatomic distance between oxygen atoms is
dO⋯O = 2.38 Å; this allows proton transfer between the two oxygen
atoms even at room temperature. The transition state in the PES is
shown by the red plane in Fig. 5(b) bottom.
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FIG. 6. Intramolecular H–bond in salicylic acid and its implications in the vibrational
normal modes. The normal modes of the hydroxyl functional group involved in a
H–bond (first row) and the reference ones in the carboxylic acid (COOH) functional
group (second row).

The energetic barrier for the proton transfer has two pos-
sible contributions: Electron density rearrangement and quasi-
aromaticity. From the schematic representation of the enol–MDA
in Fig. 5(c), we see that going from the global minimum to the
transition state entails a redistribution of the electron density. There-
fore, the redistribution of π electrons in the molecule induces an
energetic penalty,90 which contributes to the generation of a higher
energy barrier. There is also evidence that molecules like enol–MDA
behave as quasi-aromatic systems in the transition state.91 This phe-
nomenon tends to stabilize the molecule in the transition state,
which lowers the energetic barrier. Capturing these intricate and
subtle quantum phenomena and their dynamics requires high-level
quantum chemistry methods, with CCSD(T) being the only method
that converges to the correct energetic barrier. We found that sys-
tematically increasing the amount of electron correlation energy in
our calculations, the energy barrier decreases as ∼13→ ∼5→ ∼4 kcal
mol−1 for HF → CCSD → CCSD(T), respectively. This result high-
lights the importance of the correlation energy in such complex
phenomena as the H-bond interaction and proton transfer.

The resulting free energy of the system obtained from MD sim-
ulations using sGDML@CCSD(T) at room temperature (see Fig. 2)
displays a very low proton transition rate between the two oxygen
atoms, but it is still accessible at room temperature. This suggests
that nuclear quantum effects would considerably increase the tran-
sition rate due to tunneling effects reshaping the FES and conse-
quently its vibrational spectrum and thermodynamics. In general,
the local electron density delocalization induced by intramolecular
H-bonds influence macroscopic properties such as solubility and
permeability,86 but a fundamentally different macroscopic impli-
cation of the symmetric H-bond is proton transport in extended
systems like water. Therefore, the need of creating FFs capable of
handling H-bonds in all of their flavors to accurately describe com-
plex biological systems becomes obvious, and data-driven models
enable a robust solution to this problem.

C. Hybridization change sp 2
↔ sp 3 and n → π∗

interactions
The two types of interactions mentioned in the previous

subsections, electrostatic and H–bonds, are often approximately

implemented in empirical FFs. The advantages of flexible fully data-
driven models are featured in describing any quantum interaction
coming from −Fi = ⟨Ψ∗|∂H/∂xi|Ψ⟩, without relying on prior knowl-
edge of the phenomena or its connection to any classical electro-
dynamic or mechanical concepts. To exemplify this, we consider
the paracetamol and aspirin molecules. Their dynamics are strongly
influenced by delocalized π electrons and the n → π∗ interac-
tion,92 respectively. The quantitative description of these phenom-
ena occurs naturally in our data-driven FF even when only a
restricted amount of reference data is available.

Hence, it is important to highlight that only now with the devel-
opment of accurate ML-FFs trained on ab initio data, it is feasible
to study in full extent the dynamical implication of such electronic
effects at finite temperatures.

1. Hybridization state change in paracetamol
Paracetamol is a molecule with a shallow global minimum con-

sisting in a planar configuration (Fig. 2) stabilized by being a conju-
gated system. From Fig. 2 for paracetamol, a steep energy increase is
evident as illustrated by yellow regions in the PES. This represents
the breaking of the conjugated state, given that the nitrogen atom
changes its hybridization state from sp2 → sp3 producing an ener-
getic penalty (see electronic effects column in Fig. 2). Such electronic
effects raise the energy, leading to an effectively inaccessible region
in this direction of the PES. In fact, this region is hardly visited by
MD simulations at 300 K; therefore, it is not represented in the FES
in Fig. 4(b).

Another important contribution to the planar structure of
paracetamol is the electrostatic interaction between the lone pair
on the carbonyl oxygen and the positively charged nearest hydro-
gen atom [see Fig. 4(d)]. We find a linear coupling between the
acetamide main dihedral angle and the carbonyl dihedral angle, as
depicted in orange and black in Fig. 4(d), respectively. The projected
FES in these two variables shown in Fig. 4(b)-top reveals that near
the global minimum the system moves without altering the dO⋯H
distance since the internal dihedral angle CNCO flexes to follow
the minimum free energy path. Certainly, paracetamol is a highly
fluxional molecule containing four correlated rotors moving in a
complex PES due to its electronic structure.

2. n → π∗ interaction in aspirin
Another important electronic effect is the overlap between

occupied (lone pair n) and antibonding (π∗) orbitals; this electronic
effect is depicted in Fig. 2. The aspirin molecule is a particularly
interesting case in this regard given the dominant role of this inter-
action in its molecular behavior. This crucial n→ π∗ attraction inter-
action is responsible for the binding between the ester and carbonyl
groups, which dictates the structure of the global minimum. This
effect is amplified at finite temperature given that thermal fluctua-
tions enhance the overlap between the lone pair, n, in the carbonyl
group and the antibonding orbital in the ester group, π∗.60 We
have recently shown that the energy functional form of conventional
FFs put into close contact four negatively charged oxygen atoms
in aspirin; such strong charge repulsion leads to a misrepresenta-
tion of its PES.60 The sole incorporation of the missing lone pairs
in all four closely interacting oxygen atoms and their directionality
could greatly improve the results in regular FFs. In general, there are
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many other electronic effects (e.g., n→ σ∗ interactions,93 hypercon-
jugation, configuration dependent charge densities, and Jahn–Teller
effect94) that are not explicitly incorporated in conventional FFs, nor
captured by less robust ML-FF frameworks, which limits the reliabil-
ity and predictive power of the dynamics. This rigorous requirement
is justified by the increasing demand of computationally inexpensive
and highly accurate PESs to interpret and obtain further insights into
state-of-the-art spectroscopic experimental results.94–100

In summary, we have analyzed a wide variety of energy land-
scapes reconstructed with high fidelity (see Fig. 2). Being trained
directly on molecular forces from ab initio calculations, the gen-
erated PES encodes the broad range of fundamental interactions
coming from the solution of the quantum-mechanical problem.
This indicates that our model is a general ML approach capable
of describing arbitrary interatomic interactions contained in the
reference data.

V. CONCLUSIONS
We have presented the construction of molecular force fields

using the symmetrized gradient domain machine learning model.
This framework reconstructs high-dimensional manifold embedded
in the training data from a few 100s of samples, allowing the use of
highly accurate ab initio reference data such as the “gold standard”
CCSD(T) method. The flexibility of the sGDML model comes from
its intrinsic nature of being a fully data-driven universal approxima-
tor, which grants the adaptability to describe any kind of quantum
interaction.

This was demonstrated here by describing H-bonds, pro-
ton transfer, lone pairs, changes in hybridization states, steric
repulsion, and n → π∗ interactions and by obtaining insightful
results from molecular dynamics simulations. From a careful analy-
sis of the PES and MD simulations, we highlighted the importance
of electron lone pairs in generating the strong coupling between the
two rotors in ethanol and in the dynamics of keto-MDA. On the
other hand, the proper description of H-bonds revealed the proton
dynamics in salicylic acid and enol-MDA molecules, yielding further
understanding about its implications on the vibrational spectrum.
Regarding electronic effects, the main contribution is that ML-FFs
can be used as trustworthy tools able to describe non-trivial interac-
tions. For example, from MD simulations, we observed the sp2↔ sp3

hybridization change of the nitrogen atom in paracetamol which
help us to understand better the strong consequences of breaking
the conjugated molecular system, and that in aspirin, the n → π∗
interaction is enhanced at higher temperatures giving extra stability
to the molecular global minima.

The main advantages of the sGDML model over other machine
learning methods are copious: (i) it is highly data efficient, due to
being trained in the gradient domain, (ii) it is robust due to modeling
all atomic interactions globally, without any kind of inherent non-
unique partitioning of the energy or force contributions, (iii) it uses
energy conservation as a prior, therefore encoding this fundamental
physical law in the core of every gradient-domain FF model, and (iv)
it correctly represents spatial symmetries using explicit constraints
that are automatically extracted from the data.

A number of challenges remain to be solved in order to
extend the applicability of sGDML to larger systems. In spite of its
many advantages, a global model imposes limits on the maximum

molecule size, as well as the training set size. Overcoming this funda-
mental limitation without compromising its robustness calls for the
introduction of a well-reasoned fragmentation scheme that divides
the reconstruction problem into smaller independent subproblems
without oversimplifying the nature of the interactions. A data-driven
approach could achieve this task in a way that is tailored to pre-
serving the intricate phenomena studied in this article, as opposed
to applying general coarse-graining techniques. Such an approach
will benefit from the explicit knowledge about fluxional symmetries
within the system, which our algorithm is already able to extract. In
its current formulation, the sGDML model captures different inter-
action scales, with no need to separating them. Nevertheless, an
explicit decoupling of long-range interactions could be a new avenue
to further increase data efficiency on the way to increasingly larger
and complex molecules.

SUPPLEMENTARY MATERIAL

See supplementary material for additional tables with predic-
tion accuracy for total energies and forces from DFT and CCSD(T)
data. Also, some supplementary notes regarding reference data gen-
eration, molecular dynamics details, and error propagation. The
sGDML code and documentation is available at http://quantum-
machine.org/gdml/.
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