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Abstract
Given a partially-ordered finite alphabet Σ and a language L ⊆ Σ∗, how large can an antichain
in L be (where L is given the lexicographic ordering)? More precisely, since L will in general be
infinite, we should ask about the rate of growth of maximum antichains consisting of words of length
n. This fundamental property of partial orders is known as the width, and in a companion work
[10] we show that the problem of computing the information leakage permitted by a deterministic
interactive system modeled as a finite-state transducer can be reduced to the problem of computing
the width of a certain regular language. In this paper, we show that if L is regular then there is
a dichotomy between polynomial and exponential antichain growth. We give a polynomial-time
algorithm to distinguish the two cases, and to compute the order of polynomial growth, with the
language specified as an NFA. For context-free languages we show that there is a similar dichotomy,
but now the problem of distinguishing the two cases is undecidable. Finally, we generalise the
lexicographic order to tree languages, and show that for regular tree languages there is a trichotomy
between polynomial, exponential and doubly exponential antichain growth.
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1 Introduction

Computing the size of the largest antichain (set of mutually incomparable elements) is the
‘central’ problem in the extremal combinatorics of partially ordered sets (posets) [14]. In
addition to some general theory [7], it has attracted study for a variety of specific sets,
beginning with Sperner’s Theorem on subsets of {1, . . . , n} ordered by inclusion [12, 2, 11],
and for random posets [1]. The size of the largest antichain in a poset is called its width.

In this work we study languages L (regular or context-free) over finite partially ordered
alphabets, with the lexicographic partial order. Since such languages will in general contain
infinite antichains, we study the sets L=n of words of length n, and ask how the width of
L=n grows with n; we call this the antichain growth rate of L.

In addition to its theoretical interest, the motivation for this work is the study of quantified
information flow in computer security: we wish to know whether a pair of isolated agents
interacting with a common central system (for example different programs running on a single
computer and communicating with the operating system) can obtain any information about
each other’s actions, and if so how much. In a companion work [10] we show that if the central
system is modeled as a deterministic finite-state transducer then this leakage is equivalent
to the width of a certain regular language (roughly speaking, antichains corresponding to
consistent sets of observations for one agent). The dichotomy we obtain in this paper thus
corresponds to a dichotomy between logarithmic and linear information flow.

In Section 2 we set out basic definitions and results on the lexicographic order, antichains
and antichain growth. In Section 3 we show that for regular languages there is a dichotomy
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48:2 Widths of regular and context-free languages

between polynomial and exponential antichain growth, and give a polynomial-time algorithm
for distinguishing the two cases. In Section 4 we give a polynomial-time algorithm to compute
the order of polynomial antichain growth. In Section 5 we show that for context-free languages
there is a similar dichotomy between polynomial and exponential antichain growth, but that
the problem of distinguishing the two cases is undecidable. In Section 6 we show that for
regular tree languages there is a trichotomy between polynomial, exponential and doubly
exponential antichain growth. Finally in Section 7 we discuss open problems.

For reasons of space, many proofs have been omitted or sketched in the conference version
of this work; an extended version with full proofs may be found at [9].

2 Languages, lexicographic order and antichains

I Definition 1. Let Σ be a finite alphabet equipped with a partial order �. Then the
lexicographic partial order induced by � on Σ∗ is the relation � given by
(i) ε � w for all w ∈ Σ∗ (where ε is the empty word), and
(ii) For any x, y ∈ Σ, w, w′ ∈ Σ∗, we have xw � yw′ if and only if either x ≺ y or x = y

and w � w′.

If words x and y are comparable in this partial order we write x ∼ y. If x is a prefix of y
we write x ≤ y. For a language L, we will often write L=n to denote the set {w ∈ L | |w| = n}
(with corresponding definitions for L<n, etc.), and |L|=n for |L=n|.

The main subject of this work is antichains, that is sets of words which are mutually
incomparable. It will sometimes be useful also to consider quasiantichains, which are sets
of words which are incomparable except that the set may include prefixes (note that this
is not a standard term). The opposite of an antichain is a chain, in which all elements are
comparable.

I Definition 2. A language L is an antichain if for every l1, l2 ∈ L with l1 6= l2 we have
l1 6∼ l2. L is a quasiantichain if for every l1, l2 ∈ L we have either l1 ≤ l2, l2 ≤ l1 or l1 6∼ l2.
L is a chain if for all l1, l2 ∈ L we have l1 ∼ l2.

It is easy to see that the property of being an antichain is preserved by the operations of
prefixing, postfixing and concatenation.

I Lemma 3 (Prefixing). Let w,w1, w2 be any words. Then w1 ∼ w2 if and only if ww1 ∼
ww2. Hence for any language L, wL is an antichain (respectively quasiantichain) if and only
if L is an antichain (quasiantichain).

I Lemma 4 (Postfixing). Let w,w1, w2 be any words. Then w1 ∼ w2 if w1w ∼ w2w. Hence
for any language L, Lw is an antichain if L is an antichain.

I Lemma 5 (Concatenation). Let w1, w2, w
′
1, w

′
2 be any words such that w1 6≤ w2 and

w2 6≤ w1. Then w1w
′
1 ∼ w2w

′
2 if and only if w1 ∼ w2. Hence if L1 and L2 are antichains

then L1L2 is an antichain.

Clearly the property of being an antichain is not preserved by Kleene star, since L∗ will
contain prefixes for any non-empty L. The best we can hope for is that L∗ is a quasiantichain.

I Lemma 6 (Kleene star). Let L be an antichain. Then L∗ is a quasiantichain.

Ultimately we are going to care about the size of antichains inside particular languages.
Since these will often be unbounded, we choose to ask about the rate of growth; that is,
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if L1, L2, L3, . . . ⊆ L are antichains such that Li consists of words of length i, how quickly
can |Li| grow with i? We will call

⋃
i Li an antichain family and ask whether it grows

exponentially, polynomially, etc.

I Definition 7. A language L is an antichain family if for each n the set L=n of words in L
of length n is an antichain.

I Definition 8. A language L is exponential (or has exponential growth) if there exists
some ε > 0 such that

lim sup
n→∞

|L|=n
2εn > 0,

and the supremum of the set of ε for which this holds is the order of exponential growth.
L is polynomial (or has polynomial growth) if there exists some k such that

lim sup
n→∞

|L|=n
nk

<∞.

If 0 < lim supn→∞
|L|=n
nk

<∞ then we say that L has polynomial growth of order k.
For notational convenience, we will sometimes later adopt the convention that a language

L which is finite (and so lim supn→∞
|L|=n
nk

= 0 for all k) has polynomial growth of order −1.

A reasonable alternative choice of notation would have been to define the quantity wn to
be the size of the largest antichain consisting of words of length n, and then ask about the
growth of the series w1, w2, . . .. This is clearly equivalent to the definitions we have given
above.

Note that we will sometimes use other characterisations that are clearly equivalent; for
instance L has exponential growth if and only if there is some ε such that |L|=n > 2εn infinitely
often. We will sometimes refer to a language which is not polynomial as ‘super-polynomial’,
or as having ‘growth beyond all polynomial orders’. Of course there exist languages whose
growth rates are neither polynomial nor exponential; for instance |L|=n = Θ(2

√
n).

I Definition 9. A language L has exponential antichain growth if there is an exponential
antichain family L′ ⊆ L. L has polynomial antichain growth if for every antichain family
L′ ⊆ L we have that L′ is polynomial.

Antichain growth generalises the classical notion of language growth, which is just
antichain growth with respect to the discrete partial order (in which all elements of Σ are
incomparable).

Note that we could have chosen to define exponential antichain growth as containing
an exponential antichain (rather than an exponential antichain family). We will eventually
see (Corollary 17) that for regular languages the two notions are equivalent. However, for
general languages they are not; indeed the following proposition shows that the two possible
definitions are not equivalent even for context-free languages.

I Proposition 10. There exists a context-free language L such that L has exponential
antichain growth but all antichains in L are finite.

Proof. Let Σ = {a, b, 0, 1} with ≺= {(a, b)}. Let L =
⋃∞
n=1 Ln =

⋃∞
n=1 a

n−1b{0, 1}n.
Then each Ln is an antichain of size 2n consisting of words of length 2n, but we have
L1 > L2 > L3 > . . . so any antichain is a subset of Lk for some k and hence is finite (the
notation L1 > L2 means that for any w1 ∈ L1 and w2 ∈ L2 we have w2 ≺ w1). Plainly L is
a context-free language. J

FSTTCS 2019



48:4 Widths of regular and context-free languages

We observed above that Kleene star does not preserve the property of being an antichain.
We conclude this section by establishing Lemma 12, which addresses this problem; if our
goal is to find a large antichain, it suffices to find a large quasiantichain (where the precise
meaning of ‘large’ is having exponential growth).

As a preliminary, we observe the straightforward fact that taking finite unions does not
change the polynomial or exponential growth character of languages.

I Lemma 11. Let L1, L2, . . . , Lk be languages, such that
⋃k
i=1 Li has exponential growth of

order ε (respectively super-polynomial growth). Then Li has exponential growth of order ε
(respectively super-polynomial growth) for some i.

We are now ready to prove Lemma 12.

I Lemma 12. Let L be an exponential quasiantichain. Then there exists an exponential
antichain L′ ⊆ L.

Proof sketch. We construct an exponential subset of L which is prefix-free, and is therefore
an exponential antichain. We do this by a Ramsey-style argument: always maintaining the
invariant of exponential growth, at each step we pick a fixed word w of length k, throw
away that word if it is in the set, and also throw away all longer words of which w is not a
prefix; by Lemma 11 it is always possible to choose w such that this process preserves the
invariant. J

3 Regular languages

The dichotomy between polynomial and exponential language growth for regular languages
has been independently discovered at least six times (see citations in [4]), in each case based
on the fact that a regular language L has polynomial growth if and only if L is bounded (that
is, L ⊆ w∗1 . . . w∗k for some w1, . . . , wk); otherwise L has exponential growth.

In [4], Gawrychowski, Krieger, Rampersad and Shallit describe a polynomial time algo-
rithm for determining whether a language is bounded. The key idea is to consider the sets
Lq of words which can be generated beginning and ending at state q. L is bounded if and
only if for every q we have that Lq is commutative (that is, that Lq ⊆ w∗ for some w), and
this can be checked in polynomial time.

In this section, we generalise this idea to the problem of antichain growth by showing
that L has polynomial antichain growth if and only if Lq is a chain for every q, and otherwise
L has exponential antichain growth. This is sufficient to establish the dichotomy theorem
(Theorem 16). To give an algorithm for distinguishing the two cases (Theorem 18), we show
how to produce an automaton whose language is empty if and only if Lq is a chain (roughly
speaking the automaton accepts pairs of incomparable words in Lq).

Before proving the main theorems, we first establish (Lemma 13) that if L1 and L2 have
polynomial antichain growth then so does L1L2. Moreover if the rates of polynomial growth
of L1 and L2 are at most k1 and k2 respectively then the rate of polynomial growth of L1L2
is at most k1 + k2 + 1. For the proof of this see the extended version [9].

I Lemma 13. Let L1, L2 be languages with polynomial antichain growth of order at most k1
and k2 respectively. Then L1L2 has polynomial antichain growth of order at most k1 + k2 + 1.

We are now ready to prove the main theorem, generalising the condition for polynomial
language growth (that Lq is commutative for every q) to one for polynomial antichain growth:
that Lq is a chain for every relevant q.
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I Definition 14. A state q of an automaton A = (Q,Σ,∆, q0, F ) is accessible if q is reachable
from q0 and co-accessible if F is reachable from q.

I Definition 15. Let A = (Q,Σ,∆, q0, F ) be an NFA. Then for each q1, q2 ∈ Q, the
automaton Aq1,q2 , (Q,Σ,∆, q1, {q2}).

I Theorem 16. Let A = (Q,Σ,∆, q0, F ) be an NFA over a partially ordered alphabet. Then
(i) L(A) has polynomial antichain growth if and only if L(Aq,q) is a chain for every

accessible and co-accessible state q, and
(ii) if L(A) does not have polynomial antichain growth then it contains an exponential

antichain (and hence has exponential antichain growth).

Proof. Suppose that w1, w2 ∈ L(Aq,q) with w1 6∼ w2 and q accessible and co-accessible, so
w ∈ L(Aq0,q) and w′ ∈ L(Aq,q′) for some w,w′ and some q′ ∈ F . Now by the Kleene star
Lemma we have that (w1 +w2)∗ is an exponential quasiantichain and so by Lemma 12 there
is an exponential antichain L′ ⊆ (w1 + w2)∗. Then by the Prefixing and Postfixing Lemmas
we have that wL′w′ ⊆ L is an exponential antichain.

For the converse, we proceed by induction on |Q|. Let Q′ = Q \ {q0}, F ′ = F \ {q0} and
∆′(q, a) = ∆(q, a) \ {q0} for all q ∈ Q′, a ∈ Σ. For any q ∈ Q′, let A′q = (Q′,Σ,∆′, q, F ′).
Then by the inductive hypothesis we have that L(A′q) has polynomial antichain growth. Also,
since Lq0 = L(Aq0,q0) is a chain it has polynomial (in particular constant) antichain growth.
Now we have

L(A) ⊆ Lq0 ∪
⋃
q∈Q′

⋃
a∈∆(q0,q)

Lq0aL(A′q).

By Lemma 13, each Lq0aL(A′q) also has polynomial antichain growth, and hence by
Lemma 11 so does the finite union. J

A trivial restatement of part (ii) of the theorem shows that the two possible definitions
of antichain growth are equivalent.

I Corollary 17. Let L be a regular language. Then L has exponential (respectively super-
polynomial) antichain growth if and only if L contains an exponential (respectively super-
polynomial) antichain.

Using Theorem 16 we can produce an algorithm for distinguishing the two cases.

I Theorem 18. There exists a polynomial time algorithm to determine whether the language
of a given NFA A has exponential antichain growth.

Proof sketch. We construct an NFA B which accepts interleavings of incomparable words
over Σ and Σ′ (a fresh copy of the alphabet). We then have that L(Aq,q) is a chain if and
only if L((Aq,q ||| A′q,q) ∩ B) is empty, where A′ is a copy of A over alphabet Σ′. This can
be checked in polynomial time. J

4 Precise growth rates

In [4] the authors give an algorithm to compute the order of polynomial language growth for
the language of a given NFA; on the other hand efficiently computing the order of exponential
growth is an open problem. In this section we give an algorithm to compute the order of
polynomial antichain growth for the language of a given NFA. We do this by first giving an
algorithm for DFA, and then showing that in fact it also works for NFA. We will assume
throughout without loss of generality that all states are accessible and co-accessible.

FSTTCS 2019



48:6 Widths of regular and context-free languages

I Definition 19. Let A = (Q, q0, F,Σ, δ) be a DFA over a partially ordered alphabet. Let
GA = (Q,E) be the directed graph with vertex-set Q such that (q, q′) ∈ E if and only if
q
w−→ q′ for some w ∈ Σ∗.
Let G′A = (Q,E′) be the directed graph with (q, q′) ∈ E′ if and only if there exist words

w 6∼ w′ ∈ Σ∗ such that q w−→ q and q w′−→ q′. We will write Lq,q′ , L(Aq,q′).

We will generally omit the subscript As from now on, where this will not cause confusion.
Note that by Theorem 16, we have that G′ is a directed acyclic graph (DAG) if and only

if L(A) has polynomial antichain growth. By a similar argument to the proof of Theorem 18,
the graph G′ can be computed in polynomial time. Clearly G can be computed in polynomial
time using a flood fill.

I Definition 20. Let A = (Q, q0, F,Σ, δ) be a DFA with polynomial antichain growth. For a
directed path P = q0q1 . . . ql (not necessarily simple) in GA, let

D(P ) = |{i ∈ {0, . . . , l − 1}|(qi, qi+1) ∈ E(G′A)}|+
{

1 if |Lqm,ql | =∞
0 otherwise.

,

where m = max{i+ 1|(qi, qi+1) ∈ G′A} if this exists, and 0 otherwise.

Observe that if |Lqm,ql | =∞ then we have ww′∗w′′ ⊆ Lqm,ql for some w,w′, w′′.

I Lemma 21. Let A = (Q, q0, F,Σ, δ) be a DFA with polynomial antichain growth. Let P
be the set of directed paths from q0 to an element of F . Then the quantity

DA = max
P∈P

D(P )

is well-defined and can be computed in polynomial time.

Proof. To show that DA is well-defined, observe that no directed cycle in G contains an edge
in G′. Indeed, suppose that q1q2 . . . q1 is a directed cycle in G, with (q1, q2) ∈ E(G′). Then
we have q1

w−→ q1 and q1
w′−→ q2 for some w 6∼ w′ ∈ Σ∗. Also we have q2

w′′−−→ q1 for some
w′′ ∈ Σ∗. But then q1

w′w′′−−−→ q1 and w′w′′ 6∼ w by the Concatenation Lemma, contradicting
polynomial antichain growth of L(A). Hence D(P ) is bounded.

For a polynomial time algorithm, first expand G and G′ by adding a sink vertex vf for
each f ∈ F . For each q such that |Lq,f | =∞ put (q, vf ) ∈ E(G) and (q, vf ) ∈ E(G′). Then
add a further vertex v with (f, v) ∈ E(G) and (vf , v) ∈ E(G) for all f ∈ F . Then DA is
precisely the maximum number of edges of G′ contained in a directed path from q0 to v in G.

Form the graph G′′ on vertex-set Q ∪ {v} by (v1, v2) ∈ E(G′′) if and only if there is a
path from v1 to v2 in G containing a single edge of G′. Then we have that G′′ is a DAG (by
the first observation), and DA is the longest path from q0 to v in G′′, which can be found by
a simple dynamic programming algorithm. J

We will show that the order of polynomial antichain growth of L(A) is precisely DA − 1.

I Lemma 22. Let A = (Q, q0, F,Σ, δ) be a DFA with polynomial antichain growth. Then
L(A) has polynomial antichain growth of order at least DA − 1.

Proof. Let P = q0q1 . . . ql be a path with D(P ) = DA. Let i1, . . . , ik be such that
(qij , qij+1) ∈ E(G′A) for all j. Let w1, . . . , wk, w

′
1 . . . , w

′
k, w ∈ Σ∗ be such that wj 6∼ w′j

for all j, qij
wj−−→ qij for all j, qij

w′j−−→ qij+1 for all j < k, qik
w′k−−→ ql, and q0

w−→ qi1 .
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Suppose that |Lqm,ql | =∞ (with m = ik defined as in Definition 20), and let w′, w′′, w′′′ ∈
Σ∗ be such that w′w′′∗w′′′ ⊆ Lqm,ql . Then L = ww∗1w

′
1w
∗
2w
′
2 . . . w

∗
kw
′w′′∗w′′′ is an antichain

family with polynomial growth of order k = DA − 1. Similarly if |Lqm,ql | < ∞, then
L = ww∗1w

′
1w
∗
2w
′
2 . . . w

∗
kw
′
k is an antichain with polynomial growth of order k−1 = DA−1. J

We will now prove the upper bound. Our strategy will be to classify words by the edges
of G′ they visit. We first show a preliminary lemma, which bounds the antichain growth
from regions between edges of G′.

I Lemma 23. Let q1, q2 ∈ Q, and let L ⊆ Lq1,q2 be the set of words such that no edges of
G′ appear in the runs corresponding to elements of L. Then L has antichain growth of order
at most 0.

Proof. Without loss of generality we may assume that A does not have any transitions
labelled by more than a single letter (by introducing additional states if necessary; in
particular we can set Q′ = Q× Σ and ensure that δ′(q, x) ∈ Q× {x} for all x ∈ Σ).

We will show that L cannot contain two incomparable words that correspond after removal
of loops to the same sets of simple paths in G.1 Since G is finite and hence contains only
finitely many simple paths, this suffices to establish the result.

Suppose that w1 6∼ w2 correspond to the same simple path P . Suppose that the first
point of divergence of w1 and w2 is at state q; that is, that w1 = wx1w

′
1 and w2 = wx2w

′
2

with x1 6= x2 ∈ Σ and q1
w−→ q (see Figure 1). Without loss of generality we may assume that

q and δ(q, x1) lie on P .
Since the path for w2 corresponds to P after removal of cycles, we must have that

w′2 = w′′2w
′′′
2 with q x2w

′′
2−−−→ q and q w′′′2−−→ q2. But w1 6∼ w2 and x1 6= x2 so x1 6∼ x2 and so

x1 6∼ x2w
′′
2 . Hence (q, δ(q, x1)) ∈ G′, which is a contradiction. J

q
1

w

q
x

1

x
2

w
2
’’

q
2

w
1
’

Figure 1 The proof of Lemma 23

I Lemma 24. Let A = (Q, q0, F,Σ, δ) be a DFA with polynomial antichain growth. Then
L(A) has polynomial antichain growth of order at most DA − 1.

Proof. We may assume without loss of generality that there is only a single accepting state,
say qf (otherwise consider seperately the automata A1, . . . ,A|F | which agree with A except
for having only a single accepting state; then on the one hand we have DA = maxDAi , but
on the other hand L(A) =

⋃
Ai which is a finite union and hence the order of antichain

growth of L(A) is the maximum of the orders of growth of the L(Ai)).

1 Note that since removal of loops may be done in many different ways, a single path may correspond
to multiple simple paths. We are asserting that L cannot contain two incomparable words which
correspond to precisely the same sets of simple paths.
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48:8 Widths of regular and context-free languages

We classify words by the edges of G′ that appear in their accepting runs. We shall show
that the set of words corresponding to a fixed sequence P of G′-edges has antichain growth of
order at most D(P ) (where D(P ) = |P | − 1 or |P | depending on whether the set of accepted
words beginning at the last vertex of P is finite). Since the number of relevant G′-edge
sequences is finite (recalling that no edge of G′ is contained in a directed cycle in G and so
no G′-edge can appear more than once), this will suffice to establish the result.

Let (q1, q
′
1), . . . , (qk, q′k) be a set of G′-edges. Then the set L of words which have this

sequence of G′-edges in their run is given by

L = L′q0,q1
X1L

′
q′1,q2

X2L
′
q′2,q3

. . . XkL
′
q′
k
,qf
,

where Xi = {x ∈ Σ | δ(qi, x) = q′i} and L′q,q′ ⊂ Lq,q′ is the set of words whose runs do not
include edges of G′.

The Xi are finite and hence have antichain growth of order −1. By Lemma 23 the L′q′
i
,qi+1

and also L′q0,q1
and L′q′

k
,qf

have antichain growth of order at most 0. Moreover if Lq′
k
,qf

is finite then so is L′q′
k
,qf
⊆ Lq′

k
,qf and so it has antichain growth of order −1. The result

follows by Lemma 13. J

Combining Lemmas 21, 22 and 24 yields

I Theorem 25. Let A = (Q, q0, F,Σ, δ) be a DFA with polynomial antichain growth. Then
L(A) has polynomial antichain growth of order exactly DA − 1, which can be computed in
polynomial time.

We now show how to extend this algorithm to the case of NFA. Note that DA as defined
above is well-defined for NFA just as for DFA, and that the algorithm to compute it in
polynomial time is equally applicable. It therefore remains to show that for NFA we also
have that if A has polynomial antichain growth then it has antichain growth of order exactly
DA − 1.

We do this by showing (Lemma 27) that DA depends only on the language L(A), so
that if A and A′ are NFA with L(A) = L(A′) then DA = DA′ . Having shown this we then
consider A′ to be the determinisation of A. This is a DFA with L(A′) = L(A), and by
Theorem 25 we have that L(A′) has polynomial antichain growth of order DA′ − 1 = DA− 1.

We will first show (Lemma 26) that if L = v0w
∗
1v1w

∗
2v2 . . . w

∗
kvk ⊆ L(A) then there exists

a single sequence of states q1, q2, . . . , qk which essentially realises L (that is, up to various
offsets we have vi ∈ L(Aqi,qi+1) and w∗i ∈ L(Aqi,qi)).

I Lemma 26. Let A = (Q, q0, F,Σ,∆) be an NFA such that v0w
∗
1v1w

∗
2v2 . . . w

∗
kvk ⊆ L(A).

Then then there exists a sequence of states q1, q2, . . . , qk+1 and integers m1,m2, . . .mk,
m′1,m

′
2, . . . ,m

′
k and n1, n2, . . . , nk such that

(i) v0w
m1
1 ∈ L(Aq0,q1) and wm

′
k

k vk ∈ L(Aqk,F ),
(ii) for all 0 < i < k we have wm

′
i

i viw
mi+1
i+1 ∈ L(Aqi,qi+1), and

(iii) for all 0 < i ≤ k we have wnii ∈ L(Aqi,qi).

Proof. Consider an accepting run for v0w
|Q|+1
1 v1w

|Q|+1
2 v2 . . . w

|Q|+1
k vk ∈ L(A), and write

q(s) for the state reached in this run after the word s. By the pigeon-hole principle,
we must have q(v0w

m1
1 ) = q(v0w

m1+n1) = q1 (say) for some m1 ≥ 0 and some n1 > 0
with m1 + n1 ≤ |Q| + 1. Let m′1 = |Q| + 1 − m1 − n1. Similarly for each i we have
q(v1w

|Q|+1
1 v2 . . . w

mi
i ) = q(v1w

|Q|+1
1 v2 . . . w

mi+ni
i ) = qi (say) for some mi ≥ 0 and ni > 0

with mi + ni ≤ |Q|+ 1. Let m′i = |Q|+ 1−mi − ni. Then these qi,mi,m
′
i and ni give the

result. J
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I Lemma 27. Let A and A′ be NFA with L(A) = L(A′). Then DA = DA′ .

Proof. Let A = (Q, q0, F,Σ,∆) and A′ = (Q′, q′0, F ′,Σ,∆′).
Suppose that DA′ = k. Then by an identical argument to the proof of Lemma 22 we

have that v0w
∗
1v1w

∗
2v2 . . . w

∗
kvk ⊆ L(A′) = L(A) for some v0, . . . , vk, w1, . . . , wk ∈ Σ∗ with

wi 6∼ vi. Then by Lemma 26 there exists a sequence of states q1, q2, . . . , qk+1 ∈ Q and
integers m1,m2, . . . ,mk,m

′
1,m

′
2, . . .m

′
k and n1, n2, . . . , nk such that (i)–(iii) in the statement

of the lemma hold. Now since wi 6∼ vi we have wkinii 6∼ wm
′
i

i viw
mi+1
i+1 for sufficiently large ki

and so DA ≥ k = DA′ . Similarly DA′ ≥ DA, and hence DA = DA′ . J

I Theorem 28. Let A be an NFA with polynomial antichain growth. Then L(A) has
polynomial antichain growth of order exactly DA − 1.

Proof. Let A′ be the powerset determinisation of A, so A′ is a DFA with L(A′) = L(A).
By Theorem 25, L(A′) has polynomial antichain growth of order exactly DA′ − 1, and by
Lemma 27 we have DA′ = DA. J

5 Context-free languages

In [6], Ginsburg and Spanier show (Theorem 5.1) that a context-free grammar G generates
a bounded language if and only if the sets LA(G) and RA(G) are commutative for all non-
terminals A, where LA and RA are respectively the sets of possible w and u in productions
A
∗⇒ wAu. They also give an algorithm to decide this (which [4] improves to be in polynomial

time).
We generalise this to our problem by showing that G generates a language with polynomial

antichain growth if and only LA(G) and also the sets RA,w(G) of possible u for each fixed
w are chains, and that otherwise L(G) has exponential antichain growth. However, we will
show that the problem of distinguishing the two cases is undecidable, by reduction from the
CFG intersection emptiness problem.

Except where otherwise specified, we will assume all CFGs have starting symbol S
and that all nonterminals are accessible and co-accessible: for any nonterminal A we have
S
∗⇒ uAu′ for some u, u′ ∈ Σ∗ and A ∗⇒ v for some v ∈ Σ∗.

I Definition 29. Let G be a context-free grammar (CFG) over Σ. Then for any nonterminal
A let

LA(G) = {w ∈ Σ∗| ∃u ∈ Σ∗ : A ∗⇒ wAu}.

I Lemma 30. Let G be a CFG over Σ and A some nonterminal such that LA(G) is not a
chain. Then L(G) contains an exponential antichain.

Proof. Since LA(G) is not a chain, we have w1, w2, u1, u2 with w1 6∼ w2 such that A ∗⇒ w1Au1
and A ∗⇒ w2Au2. Now A is accessible and co-accessible so also S ∗⇒ uAu′ and A ∗⇒ v for
some u, u′, v ∈ Σ∗.

Hence uwi1wi2 . . . wikvuikuik−1 . . . ui1u
′ ⊆ L(G), for any i1i2 . . . ik ∈ {1, 2}∗. Write

φ : (w1 +w2)∗ → (u1 +u2)∗ for the map wi1wi2 . . . wik 7→ uikuik−1 . . . ui1 (with any ambiguity
resolved arbitrarily).

Now {wi1wi2 . . . wik |i1 . . . ik ∈ {1, 2}∗} = (w1 + w2)∗ is a quasiantichain by Lemma 6,
clearly it is exponential and hence by Lemma 12 it contains an exponential antichain L.
By the Concatenation Lemma we have that L′ = {lvφ(l)|l ∈ L} is an antichain, and it is
exponential because there is a bijection between L and L′ such that the length of each word in
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L′ exceeds the length of the corresponding word in L by a factor of at most |v|+max(|u1|,|u2|)
min(|w1|,|w2|) .

By the Prefixing and Postfixing Lemmas we have that uL′u′ ⊆ L(G) is an exponential
antichain. J

I Definition 31. Let G be a CFG over Σ. Then for any nonterminal A and any w ∈ Σ∗, let

RA,w(G) = {u ∈ Σ∗|A ∗⇒ wAu}.

I Lemma 32. Let G be a CFG over Σ, A some nonterminal and w ∈ Σ∗ such that RA,w(G)
is not a chain. Then L(G) has exponential antichain growth.

Proof. We have v, w, u, u′ ∈ Σ∗ and u1 6∼ u2 ∈ Σ∗ such that S ∗⇒ uAu′, A ∗⇒ v, A ∗⇒ wAu1
and A ∗⇒ wAu2. Let Li = uw2iv(u1u2 + u2u1)iu′. Then Li is an antichain and

⋃∞
i=1 Li is

an exponential antichain family. J

I Lemma 33. Let G be a CFG over Σ such that LA(G) and RA,w(G) are chains for all
nonterminals A and all w ∈ Σ∗. Then L(G) has polynomial antichain growth.

Proof sketch. Induction on the number of nonterminals, similarly to the proof of Theorem
16. J

Combining these three lemmas gives:

I Theorem 34. Let L be a context-free language. Then either L has exponential antichain
growth or L has polynomial antichain growth.

It is a straightforward exercise to show that the ambiguity of an NFA (the maximum
number of accepting paths corresponding to a given word) can be represented as the width
of a suitable context-free language, and hence Theorem 34 implies the well-known result that
the ambiguity of an NFA has either polynomial or exponential growth (see Theorem 4.1 of
[13]).

We now show that the problem of distinguishing the two cases of antichain growth is
undecidable for context-free languages, by reduction from the CFG intersection emptiness
problem. In fact, it is undecidable even to determine whether a given CFG generates a chain.

I Definition 35. CFG-Intersection is the problem of determining whether two given
CFGs have non-empty intersection. CFG-Chain is the problem of determining whether
the language generated by a given CFG is a chain. CFG-ExpAntichain is the problem
of determining whether the language generated by a given CFG has exponential antichain
growth.

I Lemma 36. CFG-Intersection is undecidable.

Proof. [5], Theorem 4.2.1. J

I Lemma 37. There is a polynomial time reduction from CFG-Intersection to CFG-
Chain.

Proof. Let G1, G2 be arbitrary CFGs over alphabet Σ. Let Σ̃ = Σ∪{0, 1}, with an arbitrary
linear order on Σ, and Σ < 0,Σ < 1 but 0 and 1 incomparable. Let G̃ be a CFG such that

L(G̃) = (L(G1)0) ∪ (L(G2)1)

(which can trivially be constructed with polynomial blowup). Then L(G̃) is a chain if and
only if G1 ∩G2 = ∅. J
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I Lemma 38. Let L be a prefix-free chain. Then L∗ is a chain.

Proof. Let lw 6∼ l′w′ be a minimum-length counterexample with l, l′ ∈ L and w,w′ ∈ L∗.
By minimality and the Prefixing Lemma we have that l 6= l′. Then by the Concatenation
Lemma since L is prefix-free we have that l 6∼ l′, which is a contradiction. J

I Lemma 39. There is a polynomial time reduction from CFG-Chain to CFG-ExpAntichain.

Proof. Let G be a CFG over a partially ordered alphabet Σ. Let Σ̃ = Σ ∪ {0}, with Σ < 0.
Let G̃ be a CFG such that L(G̃) = (L(G)0)∗.

We claim that L(G̃) has exponential antichain growth if and only if L(G) is not a chain.
Indeed, suppose that l1 6∼ l2 ∈ L(G). Then l10 6∼ l20 and so by Lemmas 6 and 12 we have
that (l10 + l20)∗ ⊆ L(G̃) contains an exponential antichain.

Conversely, suppose that L(G) is a chain. Then L(G)0 is a prefix-free chain and so by
Lemma 38 we have that L(G̃) is a chain. J

Combining these lemmas gives:

I Theorem 40. The problems CFG-Chain and CFG-ExpAntichain are undecidable.

6 Tree automata

In this section, we generalise the definition of the lexicographic ordering to tree languages,
and prove a trichotomy theorem: regular tree languages have antichain growth which is
either polynomial, exponential or doubly exponential.

Notation and definitions (other than for the lexicographic ordering) are taken from [3], to
which the reader is referred for a more detailed treatment. Results in this section are stated
without proof; all proofs may be found in the extended version [9].

I Definition 41. Let F be a finite set of function symbols of arity ≥ 0, and X a set of
variables. Write Fp for the set of function symbols of arity p. Let T (F ,X ) be the set of
terms over F and X . Let T (F) be the set of ground terms over F , which is also the set of
ranked ordered trees labelled by F (with rank given by arity as function symbols).

For example, the set of ordered binary trees is T (F), where F = {f, g, c} and f has arity
2, g arity 1 and c arity 0.

Note that this generalises the definition of finite words over an alphabet Σ, by taking
F = Σ ∪ {ε}, giving each a ∈ Σ arity one and ε arity zero.

A term t is linear if no free variable appears more than once in t. A linear term mentioning
k free variables is a k-ary context.

I Definition 42. Let F be equipped with a partial order �. Then the lexicographic partial
order induced by � on T (F) is the relation � defined as follows: for any f ∈ Fp, f ′ ∈ Fq
and any t1, . . . , tp ∈ T (F) and t′1, . . . , t′q ∈ T (F) we have f(t1, . . . , tp) � f ′(t′1, . . . , t′q) if and
only if either f ≺ f ′ or f = f ′ and ti � t′i for all i.

Note that this generalises Definition 1, by taking ε � a for all a ∈ Σ. As before we will
write t ∼ t′ if t, t′ ∈ T (F) are related by the lexicographic order; the definitions of chain and
antichain are as before. To quantify antichain growth we need a notion of the size of a tree.
The measure we will use will be height:

I Definition 43. The height function h : T (F ,X )→ N is defined by h(x) = 0 for all x ∈ X ,
h(t) = 1 for all t ∈ F0 and h(t(t1, . . . , tn)) = 1 + max(h(t1, . . . , tn)) for all t ∈ Fn (n ≥ 1)
and t1, . . . , tn ∈ T (F ,X ). For a language L, the set {t ∈ L | h(t) = k} is denoted L=k.
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48:12 Widths of regular and context-free languages

For example, taking the earlier example of binary trees, ground terms of height 3 include
f(f(c, c), f(c, c)), f(c, f(c, c)) and g(f(c, c)).

We say that L has doubly exponential antichain growth if there is some ε such that the
maximum size antichain in L=n exceeds 22εn infinitely often.

I Definition 44. A nondeterministic finite tree automaton (NFTA) over F is a tuple
A = (Q,F , Qf ,∆) where Q is a set of unary states, Qf ⊆ Q is a set of final states, and
∆ a set of transition rules of type f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)), for f ∈ Fn,
q, q1, . . . , qn ∈ Q and x1, . . . , xn ∈ X . The move relation→

A
is defined by applying a transition

rule possibly inside a context and possibly with substitutions for the xi. The reflexive transitive
closure of →

A
is denoted ∗→

A
.

A tree t ∈ T (F) is accepted by A if there is some q ∈ Qf such that t ∗→
A
q(t). The set of

trees accepted by A is denoted L(A).

Again this generalises the definition of an NFA: put in transitions ε→ q(ε) for all accepting
states q, a(q(x))→ q′(a(x)) whenever q ∈ ∆(q′, a), and set Qf as the initial state.

The critical idea for the proof is to find the appropriate analogue of Lq. This turns out
to be the set Pq of binary contexts such that if the free variables are assigned state q then
the root can also be given state q. By analogy to the ‘trousers decomposition’ of differential
geometry (also known as the ‘pants decomposition’), we refer to such a context as a pair of
trousers. It turns out that a sufficient condition for L to have doubly exponential antichain
growth is for Pq to be non-empty for some q (note that this does not depend on the particular
partial order on Σ). On the other hand, if Pq is empty for all q, then there is in a suitable
sense no branching and so we have a similar situation to ordinary languages.

I Definition 45. Let A = (Q,F , Qf ,∆) be an NFTA and q ∈ Q. A linear term t ∈
T (F , {x1, x2}) is a pair of trousers with respect to q if x1, x2 appear in t and t[x1 ←
q(x1), x2 ← q(x2)] ∗→

A
q(t). The set of pairs of trousers with respect to q is denoted Pq(A).

I Lemma 46. Let A = (Q,F , Qf ,∆) be a reduced NFTA. If there exists some q ∈ Q such
that Pq(A) is non-empty, then L(A) contains a doubly exponential antichain.

I Lemma 47. Let A = (Q,F , Qf ,∆) be a reduced NFTA such that Pq(A) = ∅ for all q ∈ Q.
Then L(A) has at most exponential growth.

In the case where there are no pairs of trousers, the situation is essentially equivalent
to ordinary NFA, and so we have a further dichotomy between exponential and polynomial
antichain growth. To show this, we define a set equivalent to Lq,q, and show that we have
polynomial growth if it is a chain and exponential growth otherwise.

IDefinition 48. Let A = (Q,F , Qf ,∆) be an NFTA, and q ∈ Q. Define Lq(A) ⊆ T (F , {x1})
to be the set of unary contexts t such that t[x1 ← q(x1)] ∗→

A
q(t).

Note that unary contexts are linear terms in which exactly one free variable appears, so
Lq(A) does not contain ground terms. Note also that x1 ∈ Lq(A) for any A.

To give meaning to the statement ‘Lq(A) is a chain’, we must extend the definition of
the lexicographic order from the set T (F) of ground terms to the set T (F , {x1}) of unary
contexts. We do this by extending the relation � on F to F ∪ {x1} by x1 � f for all f ∈ F ,
and extending this to the lexicographic order as before.

I Lemma 49. Let A = (Q,F , Qf ,∆) be a reduced NFTA such that Pq(A) = ∅ for all q.
Then L(A) has polynomial antichain growth if Lq(A) is a chain for all q, and otherwise L(A)
has exponential antichain growth.
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Combining these lemmas gives

I Theorem 50. Let L be a regular tree language over a partially ordered alphabet. Then
L has either doubly exponential antichain growth, singly exponential antichain growth, or
polynomial antichain growth.

The special case of the trivial partial order (in which elements are only comparable to
themselves) yields the fact that the language growth of any regular tree language is either
polynomial, exponential or doubly exponential, which may not have previously appeared in
the literature.

I Corollary 51. Let L be a regular tree language. Then L has either doubly exponential
language growth, singly exponential language growth or polynomial language growth.

Finally, we show that there is a polynomial algorithm to detect doubly exponential growth,
by determining whether or not the language of a given NFTA contains a pair of trousers.

I Theorem 52. There exists a polynomial time algorithm to determine whether the language
of a given NFTA has doubly exponential growth.

7 Open problems

It is remarkable that, many decades after the discovery of the dichotomy between polynomial
and exponential language growth, and 11 years after the work of Gawrychowski, Krieger,
Rampersad and Shallit [4], it remains unknown whether there is an efficient algorithm
to compute the order of exponential language growth of a given NFA. Consequently we
consider that resolving this question (by providing either a polynomial-time algorithm or an
appropriate hardness result) is the most important open problem in this area.

For a DFA, on the other hand, the order of exponential language growth is easily computed
as the spectral radius of the transition matrix. However, it is not clear how such ‘algebraic’
methods can be applied to the case of antichain growth, and so a second open problem is to
find a polynomial-time algorithm to compute the order of exponential antichain growth for
DFA. Such a result would have immediate application to the field of quantified information
flow, since it would allow one to compute the flow rate in the ‘dangerous’ linear case, at
the cost of determinising the automaton representing the system (with overhead roughly
corresponding to the amount of hidden state the system contains).

The final problem in this direction is the combination of the preceding two: to find a
polynomial-time algorithm to compute the order of exponential antichain growth for a given
NFA.

Alternatively we may wish to ask not about growth rates in the asymptotic limit, but
instead about the precise width of L=n or L≤n for given n. This is particularly relevant
to applications in computer security, where we may want not just an approximation ‘for
sufficiently large n’ but a concrete guarantee. For the case of a language given as a DFA
and n given in unary there is a straightforward dynamic programming algorithm to compute
these quantities (for details see p.89 of [8]), but what about for NFA and for more concise
representations of n?

Finally we pose a more speculative question: what other phenomena, apart from informa-
tion flow, can antichains with respect to the lexicographic order usefully represent?
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