
PsALM: Specification of Dependable
Robotic Missions

Claudio Menghi∗, Christos Tsigkanos†, Thorsten Berger‡ and Patrizio Pelliccione‡§
∗University of Luxembourg, Luxembourg City, Luxembourg

†TU Wien, Vienna, Austria
‡Chalmers & University of Gothenburg, Gothenburg, Sweden

§University of L’Aquila, L’Aquila, Italy

Abstract—Engineering dependable software for mobile robots
is becoming increasingly important. A core asset to engineering
mobile robots is the mission specification – a description of the
mission that mobile robots shall achieve. Mission specifications
are used, among others, to synthesize, verify, simulate or guide
the engineering of robot software. However, development of
precise mission specifications is challenging, as engineers need
to translate requirements into specification structures often ex-
pressed in a logical language – a laborious and error-prone task.
Specification patterns, as solutions for recurrent specification
problems have been recognized as a solution for this problem.
Each pattern details the usage intent, known uses, relationships
to other patterns, and—most importantly—a template mission
specification in temporal logic. Patterns constitute reusable build-
ing blocks that can be used by engineers to create complex
mission specifications while reducing mistakes. To this end, we
describe PsALM, a toolchain supporting the development of
dependable robotic missions. PsALM supports the description of
mission requirements through specification patterns and allows
automatic generation of mission specifications. PsALM produces
specifications expressed in LTL and CTL temporal logics to be
used by planners, simulators and model checkers, supporting
systematic mission design.

The pattern catalog and PsALM is available on our dedicated
website: www.roboticpatterns.com

I. INTRODUCTION

Mobile robots are increasingly used in complex environ-

ments, aiming at autonomously realizing various missions such

as exploration, delivering items, or following certain paths.

The rapid pace of development in robotics hardware and

technology demands software that can sustain this growth,

requiring proper software-engineering methods that also assure

the correct behavior of robots [1], [2]. Precisely defining the

mission, i.e. a declarative specification of the behaviour a

(team of) robot(s) should have, and transforming it into a

form that can be useful for automatic processing are among

the main challenges in engineering robotic applications [3]–

[6]. On the one hand, missions should be defined with a

notation that is high-level and user-friendly [7], [8]. On the

other hand, to enable automatic processing, the notation should

be unambiguous and provide a precise description of what

robots should do in terms of movements and actions [9], [10].

Specification patterns are a popular solution to the specifi-

cation problem [11], [12]. While precise behavioral specifica-

tions in logical languages enable reasoning about behavioral

properties [13], [14], specification is hard and error prone [15],

[16]. The problem is exacerbated, since practitioners are often

unfamiliar with the intricate syntax and semantics of logical

languages [11], [12], [16].
We proposed a pattern catalog [17] to facilitate engineering

missions for mobile robots [18], [19]. Each pattern in the

catalog is comprised of a usage intent, known uses, relation-

ships to other patterns, and –most importantly– a template

mission specification in temporal logic. The latter relies on

Linear Temporal Logic (LTL) and Computation Tree Logic

(CTL) as the most widely used formal specification languages

in robotics [20]–[28]. The catalog has been produced by an-

alyzing natural-language mission requirements systematically

retrieved from robotics literature and industrial specifications.

The patterns provide a formally defined vocabulary that sup-

ports robotics developers in defining correct and accurate

mission specifications for recurrent mission problems [26].
In this paper, we present the PsALM (Patterns bAsed

Mission specifier) toolchain, which provides concrete support

to developers in rigorous mission design. PsALM allows (i)

specifying a mission requirement through a structured English

grammar, which uses patterns as basic building blocks and

operators that allow composing these patterns into complex

missions, and (ii) automatically generating specifications from

mission requirements. PsALM is robot-agnostic and integrated

with: a planner [29], NuSMV [30] (a model checker), and

Simbad [31] (a simulator for education and research) and can

be easily integrated with Spectra [32] (a robot development

environment). The pattern catalog and the PsALM toolchain

are freely available online [17]. PsALM and the underlying

patterns support mission specification for robotic systems,

which is recognized as an important software engineering

challenge [26], [27].
We use the following scenario to demonstrate systematic

mission design through PsALM’s facilities.

A robot is deployed within a university building to
deliver coffee to employees. Specifically, the robot
reaches the coffee machine, uses it to prepare coffee
and then the robot delivers the coffee to an employee.

The scenario described will be used to concretely illus-

trate specification patterns involved, various functionalities

of PsALM as well as real robot execution of the resulting

mission.

99

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00048

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/237148556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. SPECIFICATION PATTERNS FOR ROBOTIC MISSIONS

In the following, after outlining robotic mission specifica-

tion patterns, we informally and briefly present one of them

through the use of the demonstration scenario.

The pattern catalog [17] has been produced systematically

in the following steps:

i) analysis of natural-language mission requirements re-

trieved from the robotics literature;

ii) identification of recurrent mission specification problems;

iii) definition of model solutions to the mission specification

problems.

Patterns provide a formally defined vocabulary that supports

robotics developers in defining mission requirements. Using

the pattern catalog allows mitigating ambiguous natural lan-

guage formulations [33], reusing validated specifications for

recurrent requirements and facilitating the creation of correct

mission specifications [26]. Essentially, rather than conceiving

properties expressing robotic behavior in an ad hoc manner and

with the risk of introducing mistakes, engineers can focus on

high-level problems and re-use validated solutions to existing

specification requirements retrieved from the patterns catalog.

Within the catalog, patterns are classified according to the

major concerns that they address: (i) Core movement patterns

express fundamentally how robots should move within an

environment; (ii) Avoidance patterns constrain movements in

order to avoid occurrence of some behavior; and (iii) Trigger

patterns reflect reactive behavior based on stimuli, or express

inaction until a stimulus occurs.

Patterns generally consist of an intent, a model solution

as a template, known uses, and relationships of a pattern to

Strict Ordered Visit
Intent: Requires a robot to visit a set of locations

following a strict order.

Example: Locations l1, l2, l3 must be covered

following the strict order l1, l2, l3. The trace

l1 → l4 → l1 → l2 → l4 → l3 → (l#)
ω does

not satisfy the mission requirement since l1 occurs twice

before l2. The trace l1 → l4 → l2 → l4 → l3 → (l#)
ω

satisfies the mission requirement.

Template: The following formula encodes the mission

in LTL (l1, l2, . . . , ln are location propositions):

F(l1 ∧ F(l2 ∧ . . .F(ln)))
n−1∧

i=1

(¬li+1) U li

n−1∧

i=1

(¬li) U (li ∧ X (¬li U(li+1)))

Relationships: Specialization of the Ordered Visit
pattern, which does not avoid a predecessor location

to be visited multiple times before its successor. Strict
Ordered Visit forbids this behavior, ensuring a strict

ordering.

Figure 1: Fragment of the Strict Ordered Visit pattern.

Figure 2: Components of the PsALM toolchain.

others, facilitating browsing the catalog. The intent reflects the

mission goal – a high-level description of what a robot must

achieve. The pattern template provides a model solution of

the pattern in the LTL and CTL temporal logic specification

languages, while known uses illustrate common examples

of the pattern’s applications in the literature; relationships

describe how the given pattern relates with others. A fragment

of the Strict Ordered Visit pattern is illustrated in Fig. 1.

For our demonstration scenario, the mission specification

patterns Strict Ordered Visit and Instantaneous Reaction [17]

can be used to concretely express the intended robot behavior.

Strict Ordered Visit requires a robot to follow a strict order

when performing actions or visiting locations. Since triggering

an action when some condition is fulfilled is required, the

pattern Instantaneous Reaction can be used to encode the in-

tended reaction – if an employee is detected, the collaborative

behavior of delivering coffee will be activated.

Note that the manual specification of the behavior inherent

in the scenario is non-trivial; the template of Strict Ordered
Visit gives an indication of the complex formula required in

temporal logic to capture the behavior. Additionally, compo-

sition of intended behaviors is prone to further errors. Thus,

supporting developers in complex and precise design is critical

for dependable robotic missions.

III. A WALK THROUGH PSALM

To support developers in mission design, the PsALM tool

(Fig. 2) enables expression of robotic missions requirements

and automatic generation of mission specifications. PsALM

allows creating complex mission requirements by composing

patterns with simple operators, and transforms mission require-

ments (i.e., composed patterns) into mission specifications in

LTL or CTL. To use our pattern-based mission specification

and the PsALM prototype tool in practice, a robotics engineer

follows three distinct steps:

1) the pattern catalog is consulted – behavior intents relevant

to the mission at hand are selected. This step is essential

to establish common vocabulary, utilize the unambiguous

patterns notation and provide a precise description of

100

(a) Pattern-based mission specification.

�

(b) Mision verification and simulation.

�

(c) Execution on robot.

Figure 3: Specification of dependable robotic missions with PsALM.

what robots should do in terms of movements and actions

during specification;

2) the mission is defined using patterns as basic building

blocks using a structured English grammar (Fig. 3a);

3) automatically generated CTL or LTL specifications are

customized accordingly; and subsequently,

4) analysis, planning or simulation facilities are invoked

through interfacing with NuSMV [30], Spectra [32],

Simbad [31] (Fig. 3b), or sent to robots for execution

(Fig. 3c) through LTL planning.

Figure 2 illustrates the software components of PsALM,

which concern specification as well as automated analysis

and planning. PsALM provides a GUI 1 that allows the

definition of robotic mission requirements through a structured

English grammar, which uses patterns as basic building blocks

and AND and OR logic operators to compose these mission

specification patterns (MSP). The structured English grammar

and PsALM are available [17]; a fragment of the PsALM GUI

is presented in Fig. 3a.

Conceptually, after pattern-based specification through a

structured English grammar, the SE2PT PsALM component

extracts from a mission requirement the set of mission speci-

fication patterns (MSP) that are composed through the AND

and OR operators 2 . The PT2LTL 3 and PT2CTL 4

components automatically generate LTL and CTL specifica-

tions from these patterns which may be inspected or edited by

the designer if necessary. In essence, the produced LTL/CTL

specification is an intermediate non-ambiguous artifact.

Specifications generated by PsALM can be used in different

ways; three possible usages are presented in Fig. 2. In essence,

the produced formulae can be:

1) fed into an existing planner and used to generate plans

that satisfy the mission specification 5 ;

2) converted into deterministic Büchi automata used as

input to the widely used Spectra [32] robotic application

modeling tool 6 ; and

3) converted into the NuSMV [30] input language to be used

as input for model checking 7 .

The plans produced using the planner can be (i) used by the

Simbad [31] simulation package 10 , which is an autonomous

robot simulation package for education and research; and (ii)

performed by real robots 9 .

We make further realistic industrially-sourced scenarios

available where PsALM was used for pattern-based specifica-

tion allowing automatic creation of LTL mission specifications.

In those cases, we note that generated mission specifica-

tions were executed by PAL robotics (pal-robotics.com) robots

(Fig. 3c) by relying on existing planners, providing further

evidence of the realizability of the overall approach. Videos

of robots performing the described missions are available.

IV. PSALM IN PRACTICE

PsALM and the patterns’ support in rigorous and systematic

mission design have been evaluated in terms of practitioner-

sourced scenarios, patterns coverage and correctness as well

as in real industrial scenarios in collaboration with robotics

companies.

Patterns were evaluated by collecting 441 mission require-

ments in natural language, obtained from robotic development

environments used by practitioners (i.e., Spectra [32] and LTL-

MoP [34], [35]). We demonstrated that most of the mission

requirements were ambiguous, expressible using the proposed

patterns, and that the usage of patterns reduces ambiguities.

Regarding coverage, almost all specifications from robotic

development environments can be obtained using the proposed

patterns (1154 over 1251), showing the potential of using

PsALM in robotic mission design.

PsALM was used in five scenarios defined in collabo-

ration with two well-known robotics companies developing

commercial, human-size service robots (BOSCH and PAL

101

Robotics). PsALM generated the specifications for the five

mission requirements and fed them into an existing planner.

The produced plans were correctly executed by real robots,

showing the benefits of the pattern support in real scenarios.
We additionally tested PsALM facilities and the patterns’

correctness on a set of 12 randomly generated models, where

automatic generation of combinations of patterns was per-

formed. Those were converted into LTL mission specifications

through PsALM and used to generate robots’ plans. PsALM

interfacing with the Simbad [31] simulator was instrumental to

verify that the plans satisfied the intended mission requirement.

Equivalence of CTL and LTL patterns was also verified with

randomly generated models. To verify correctness of LTL

and CTL formulae of each pattern, we manually reviewed

them and performed random testing upon generated models to

confirm that the specifications do not permit undesired system

behaviors that were not detected during the manual check.
Overall, the pattern catalog along with the concrete PsALM

toolchain supported the creation of mission requirements for

a variety of different scenarios. We finally note that robotic

missions with PsALM can be specified using patterns, simu-

lated and developed with Simbad and Spectra robotic software

and verified with NuSMV, thus spanning a wide range of the

mission design process.

ACKNOWLEDGMENT

This work has received funding from the European Research

Council under the EU’s Horizon 2020 research and innovation

programme (grant agreement No 731869 and No 694277).

REFERENCES

[1] D. Brugali, Software engineering for experimental robotics. Springer,
2007, vol. 30.

[2] J. Pérez, N. Ali, J. A. Carsı, I. Ramos, B. Álvarez, P. Sanchez, and J. A.
Pastor, “Integrating aspects in software architectures: Prisma applied to
robotic tele-operated systems,” Information and Software Technology,
vol. 50, no. 9-10, pp. 969–990, 2008.

[3] F. S. Rodriguez, B. C. Diego, V. M. Rodilla, J. Rodriguez-Aragon,
R. A. Santos, and C. Fernandez-Carames, “The complete integration
of missionlab and carmen,” International Journal of Advanced Robotic
Systems, vol. 14, no. 3, p. 1729881417703565, 2017.

[4] J. F. Kramer and M. Scheutz, “Development environments for au-
tonomous mobile robots: A survey,” Autonomous Robots, vol. 22, pp.
101–132, 2007.

[5] S. Maniatopoulos, M. Blair, C. Finucane, and H. Kress-Gazit, “Open-
world mission specification for reactive robots,” in International Con-
ference on Robotics and Automation (ICRA). IEEE, 2014.

[6] S. Maoz and J. O. Ringert, “On the software engineering challenges
of applying reactive synthesis to robotics,” in Workshop on Robotics
Software Engineering, ser. RoSE ’18. ACM, 2018.

[7] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta, “Automatic deployment
of robotic teams,” IEEE Robotics & Automation Magazine, vol. 18, no. 3,
pp. 75–86, 2011.

[8] C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-Gazit,
“Provably correct reactive control from natural language,” Autonomous
Robots, vol. 38, no. 1, pp. 89–105, 2015.

[9] I. Lee and O. Sokolsky, “A graphical property specification language,”
in High-Assurance Systems Engineering Workshop. IEEE, 1997.

[10] S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos,
“A graphical language for LTL motion and mission planning,” in
International Conference on Robotics and Biomimetics (ROBIO). IEEE,
2013.

[11] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in International Conference
on Software Engineering (ICSE). IEEE, 1999.

[12] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” Transactions on Software Engi-
neering, vol. 41, no. 7, pp. 620–638, 2015.

[13] E. A. EMERSON, “{CHAPTER} 16 - temporal and modal logic,” in
Formal Models and Semantics, ser. Handbook of Theoretical Computer
Science, J. V. LEEUWEN, Ed. Elsevier, 1990, pp. 995 – 1072.

[14] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” Transactions on Robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[15] G. J. Holzmann, “The logic of bugs,” in Foundations of Software
Engineering (FSE). ACM, 2002.

[16] M. Autili, P. Inverardi, and P. Pelliccione, “Graphical scenarios for
specifying temporal properties: An automated approach,” Automated
Software Engg., vol. 14, no. 3, 2007.

[17] “PSaLM tool, accompanied material and data for this paper,”
http://www.roboticpatterns.com, 2018.

[18] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and
T. Berger, “Specification patterns for robotic missions,” CoRR,
vol. abs/1901.02077, 2019. [Online]. Available: http://arxiv.org/abs/
1901.02077

[19] C. Menghi, C. Tsigkanos, T. Berger, P. Pelliccione, and C. Ghezzi,
“Property specification patterns for robotic missions,” in International
Conference on Software Engineering: Companion Proceeedings. ACM,
2018, pp. 434–435.

[20] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion
planning under linear temporal logic specifications in partially known
workspaces,” in International Conference on Robotics and Automation
(ICRA). IEEE, 2013.

[21] E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-guided controller
synthesis for nonlinear systems with temporal logic,” in International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2013.

[22] C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot LTL
planning under uncertainty,” in International Symposium on Formal
Methods (FM). Springer, 2018.

[23] C. Menghi, S. Garcı́a, P. Pelliccione, and J. Tumova, “Towards multi-
robot applications planning under uncertainty,” in International Confer-
ence on Software Engineering: Companion Proceeedings. ACM, 2018.

[24] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimal
multi-robot path planning with temporal logic constraints,” in Intl.
Conference on Intelligent Robots and Systems (IROS). IEEE, 2011.

[25] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[26] S. Maoz and J. O. Ringert, “Synthesizing a lego forklift controller in
GR(1): A case study,” in Proc. 4th Workshop on Synthesis (SYNT), 2015.

[27] S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Foundations of Software Engineering (FSE). ACM, 2015.

[28] S. Maoz and J. O. Ringert, “On well-separation of GR(1) specifications,”
in Foundations of Software Engineering (FSE). ACM, 2016.

[29] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, 2015.

[30] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A
new symbolic model verifier,” in Computer Aided Verification (CAV).
Springer, 1999.

[31] L. Hugues and N. Bredeche, “Simbad: an autonomous robot simulation
package for education and research,” in International Conference on
Simulation of Adaptive Behavior. Springer, 2006.

[32] S. Maoz and J. O. Ringert. Spectra. http://smlab.cs.tau.ac.il/syntech/
spectra/. Accessed: 2018-06-20.

[33] Y. Endo, D. C. MacKenzie, and R. C. Arkin, “Usability evaluation of
high-level user assistance for robot mission specification,” Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 34, no. 2, pp. 168–180, 2004.

[34] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting
with language, temporal logic and robot control,” in International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2010,
pp. 1988–1993.

[35] W. Wei, K. Kim, and G. Fainekos, “Extended LTLvis motion planning
interface,” in International Conference on Systems, Man, and Cybernet-
ics. IEEE, 2016.

102

