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Abstract

The present thesis is articulated over two main topics which have in common the modeling
of the dynamical properties of complex biological systems from large-scale time-series
data.

On one hand, this thesis analyzes the inverse problem of reconstructing Gene Regula-
tory Networks (GRN) from gene expression data. This first topic seeks to reverse-engineer
the transcriptional regulatory mechanisms involved in few biological systems of interest,
vital to understand the specificities of their different responses. In the light of recent math-
ematical developments, a novel, flexible and interpretable modeling strategy is proposed
to reconstruct the dynamical dependencies between genes from short-time series data.
In addition, experimental trade-offs and optimal modeling strategies are investigated for
given data availability. Consistent literature on these topics was previously surprisingly
lacking. The proposed methodology is applied to the study of circadian rhythms, which
consists of complex GRN driving most of daily biological activity across many species.

On the other hand, this manuscript covers the characterization of dynamically dif-
ferentiable brain states in Zebrafish within the context of epilepsy and epileptogenesis.
Zebrafish larvae represent a valuable animal model for the study of epilepsy due to both
their genetic and dynamical resemblance with humans. The fundamental premise of
this research is the early apparition of subtle functional changes preceding the clinical
symptoms of seizures. More generally, this idea, based on bifurcation theory, can be
described by a progressive loss of resilience of the brain and ultimately, its transition from
a healthy state to another characterizing the disease. First, the morphological signatures of
seizures generated by distinct pathological mechanisms are investigated. For this purpose,
a range of mathematical biomarkers that characterizes relevant dynamical aspects of the
neurophysiological signals are considered. Such mathematical markers are later used to
address the subtle manifestations of early epileptogenic activity. Finally, the feasibility of
a probabilistic prediction model that indicates the susceptibility of seizure emergence over
time is investigated. The existence of alternative stable system states and their sudden
and dramatic changes have notably been observed in a wide range of complex systems

such as in ecosystems, climate or financial markets.
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Chapter 1

General Introduction

1.1 Modeling of Biological Systems

Biological systems exhibit an elegant combination of complexity and efficiency under
many aspects. Perhaps most remarkably, nature has developed nearly ubiquitous control
mechanisms that allow a wide range of biological processes to remain stable under vari-
ous internal or external perturbations. This capability of living organisms to remain in
a quasi-permanent stable equilibrium despite the changing environment is a fundamen-
tal aspect of life known as homeostasis. The optimal functioning of the human body,
for example, requires a tight regulation of a large array of variables such as its core
temperature, blood glucose or arterial pressure. Such adaptation requires the sensing,
identification and integration of external and internal stimuli at numerous scales. For
instance, at the cellular level, this corresponds to a meticulous modulation of chemical
balances and regulation of gene expression. Each of these processes shares a common
logical structure in such that they all are under constant control of one or more complex
feedback mechanisms that ensure their correct functioning. In general, the stability of
this category of systems is not only illustrated by their convergence to a fixed value but
it can also exhibit more complicated behaviors such as permanent oscillations around
stable cycles. This is the case for heart thythms or circadian systems. In this respect, the
dynamical properties of sophisticated biological systems can only be fully comprehended
by considering their underlying control mechanisms, rather than merely investigating
their isolated parts. A system-level approach that accounts for dynamical interactions
between biological components, thus, is of the utmost importance to understand a wide
panel of biological responses, the sources and proliferation of complex, multifactorial
pathogenesis or drugs effects [1, 2].
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An important step in the understanding of any physical or biological phenomenon is
its translation from observable behaviors into meaningful, interpretable objects known as
models. Modeling is a fundamental scientific methodology that is based on the quanti-
tative formulation of dynamical interactions between variables, perturbations and their
product. When applied to biological systems, such methodology, if valid, allows to
describe temporal and spatial evolution of complex biological processes, to formulate
new hypotheses or to make predictions on their behavior in previous untested situations.
Models may come in various shapes and complexity. In particular, their purpose can
range from describing a specific process with a high degree of precision, including all
pertinent details and species, to conceptually characterizing generic, global features of the
phenomenon under investigation. In addition, models can be broken down into smaller
pieces each concerned with different aspects of the problem. Their key commonality,
however, remains their ability to provide novel insights that would not have been possible
to gain otherwise. Overall, modeling is a flexible concept that involves many iterations

between prediction, guided experiments and model refinement at its core.

This claim is of particular relevance for the investigation of biological systems. In
contrast to human engineered systems for which the functions and properties of every
individual parts are known, the analysis of biological systems typically resembles the
task of learning from a machine we have never seen before. Moreover, the range of
possible manipulations and observable gears of this machinery remains yet limited,
while fully controllable engineered systems can be manipulated at will. Such systems
involve an incredibly large number of interacting components and it is reasonable to
expect that the amount of interactions among biological species is of several magnitudes
larger than the quantity of its individual parts. Furthermore, dynamical interactions on
one scale may yield unexpected activity at a larger scale, a phenomenon referred to
as emergence. The comprehensive study of such systems constitutes an even further
formidable challenge as their behavior is intrinsically stochastic, highly nonlinear, and
spans across various dimensional scales, from genetic regulation to brain organization.
Hence, particularly complex, or even counterintuitive behaviors might be expected.
Moreover, while expensive, biomedical data are often subject to non-neglectable inter-

intra variability across organisms as well as other types of uncertainties and noise sources.

A Timely Research Topic

At the crossroad between engineering, physics, mathematics and computer sciences, this
particularly multidisciplinary field has been fueled by technical innovations at decreasing

costs that enabled unprecedent amounts of data to be generated at an increasing resolution
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across time and space. Among the most relevant examples are the relatively recent
possibilities to measure gene expression at the single cell level, rather than averages of
heterogeneous population of cells, or to record neurophysiological activity at the neuron
level [3, 4]. Such exponential piling of multi-scale data permitted computational fields,
such as machine learning, artificial intelligence and theories of systems identification,
dynamical systems and systems control among others, to grow importance and greatly
contribute to the biological and medical knowledge through the identification of hidden
patterns in highly dimensional systems. The synergy resulting from the intercommunica-
tion between confluent scientific disciplines is at the root of almost every modern and
significant advances in todays’ biomedical research.

The promises carried by proper modeling of biological systems are truly exhilarating.
The ability to measure the dynamical nature of complex biological systems is a crucial
source of information and provides significant insights of disease progression or drug
responses. To date, there is significant progress in the direction of very ambitious aims
such as fully automated rule-decision models, personalized medicine, early detection
of diseases or the understanding of the fundamental properties of genes [5]. A recent
example is the automatic detection of heart malfunctions via an electrocardiogram (ECG)
embedded in a wearable device, the Apple Watch, which received FDA approval in 2017
[6]. At the same time, novel biomarkers and therapeutic targets are being identified with
the help of mathematical models for a range of acute and critical conditions (e.g. cancer,
kidney injury...), models which provided better preclinical evaluation of treatment effects
and real-time decision-making guidance [7, 8]. Altogether, both motives and technical

possibilities make the modeling of biological systems a timely research topic.

Subject Matter

The present thesis is articulated over two main topics which have in common the modeling
of the dynamical properties of complex biological systems from large-scale time series
data.

On the one hand, this thesis analyzes the inverse problem of reconstructing Gene
Regulatory Networks (GRN) from gene expression data. This first topic seeks to reverse-
engineer the transcriptional regulatory mechanisms involved in few biological systems of
interest, vital to understand the specificities of their different responses. In the light of
recent mathematical developments, a novel, flexible and interpretable modeling strategy
is proposed to reconstruct the dynamical dependencies between genes from short-time

series data. In addition, experimental trade-offs and optimal modeling strategies are in-
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vestigated for given data availability. Consistent literature on these topics was previously
surprisingly lacking. The proposed methodology is applied to the study of circadian
rhythms, which consists in complex GRN driving most of daily biological activity across

many species.

On the other hand, this thesis covers the characterization of dynamically differen-
tiable brain states in Zebrafish in the context of epilepsy and epileptogenesis. Zebrafish
larvae represent a valuable animal model for the study of epilepsy due to both their
genetic and dynamical resemblance with humans [9, 10]. The fundamental premise of
this research is the early apparition of subtle functional changes preceding the clinical
symptoms of seizures. More generally, this idea, based on bifurcation theory, can be
described by a progressive loss of resilience of the brain and ultimately, its transition
from a healthy state to another characterizing the disease [11]. First, the morphological
signatures of seizures generated by distinct pathological mechanisms are investigated. For
this purpose, a range of mathematical biomarkers that characterizes relevant dynamical
aspects of the neurophysiological signals are considered. Such mathematical markers
are later used to address the subtle manifestations of early epileptogenic activity. Fi-
nally, the feasibility of a probabilistic prediction model that indicates the susceptibility
of seizure emergence over time is investigated. The existence of alternative stable sys-
tem states and their sudden and dramatic changes have notably been observed in a wide

range of complex systems such as in ecosystems, climate or financial markets [12, 13, 14].

Overall, the frameworks of systems identification theory, systems control theory,
(non)linear time series analysis, dynamical bifurcation theory and machine learning
constitute the foundations upon which both the reconstruction of gene regulatory networks
and the investigation of brain vulnerability to epileptic seizure are addressed. Hereafter,

the background underlying these two problematics is introduced.

1.2 Gene Regulatory Networks Inference

DNA is the main carrier of biological information. The information required by cells
or group of cells for their proper functioning, however, is obviously not identical across
different times, and cell types. The key to this variability is called gene expression,
a process by which the genetic information is dynamically "read" by cells in order to
constantly satisfy cells demands. Gene expression consists in two steps: the DNA first
gets transcribed into mRNA, then is subsequently translated into its final product: proteins.
Yet, only a very small proportion of our genome, approximately 2%, codes for protein;
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a larger proportion is regulatory and the function of the rest is still debated [15]. While
some genes are continuously expressed, a fined-tuned regulation of the expression of most
genes is essential for a timely production of the proteins involved in specific molecular
processes such as cell division, circadian regulation, etc. In practice, gene regulation
is very often not performed by a single, isolated gene but rather by a variety of other
components being themselves regulated. Such sequence of regulatory interactions forms
interlocking transcriptional feedback loops that allow gene expression to be precisely con-
trolled and ensure its robustness against perturbations of different nature. The ensemble
of biochemical species and their interactions which together control genes expressions is
called a Gene Regulatory Network (GRN).

While the functions of many coding protein genes have been elucidated, the vast
majority of the causal map formed by the regulatory relationships between genes remains
elusive. However, gene mutations or dysregulations in such regulatory mechanisms
contribute to a broad range of diseases such as cancer, neurological disorder, diabetes and
cardiovascular diseases [16]. The accurate identification and modeling of such transcrip-
tional regulatory circuitry, therefore, would greatly benefit to the overall understanding of
disease mechanisms and diagnosis, drug effects and contribute to advances in the field of
personalized medicine [16].

The process of reverse-engineering the blue-print, or topology, of such networks and
reconstructing their dynamical properties is called gene regulatory network inference,
an important research topic of systems biology. The structure of such gene interaction
network is assessed to be static, which means that the possibilities for physical interactions
between genes are considered fixed. In the biological literature, GRN are often represented
as a network of their gene-gene equivalent representation, depicting the genes (nodes of
the network) and the causal interaction between them (the links of the network). This
latter is an abstraction of the molecular processes involved that considers the role of
Transcription Factors (TFs) and their interactions as implicit, although crucial, because
genes do not interact directly but by means of their products. The concepts of gene

expression, regulation and equivalent GRN representation are illustrated on Figure 1.1.

A Limited System Observability

Gene expression is measured at the transcript level through an extensive value: the level
of mRNA it produces. Instead of concentrating at a specific terminal point in time, we
now have the possibility to monitor the temporal progression of gene expression over

time by next-generation sequencing technologies such as microarray or RNA-Seq [17].
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Gene A Gene B Gene C
DNA level R —— | I — o —
v v v
Transcript level /\/ /\/ /\/
v v v
Protein level r L I &
\/

Equivalent GRN o ° e

Representation \/

Fig. 1.1 Genes Expression, Regulation and Equivalent Gene Regulatory Network
(GRN). Gene expression is the process by which the DNA information is dynamically
read to produce proteins. The activation or repression of genes, and the amount of protein
produced is controlled by proteins called Transcription Factors (TFs). In order to execute
their function, they attach in the vicinity of the promoter regions of target genes.

Such data are called time series measurements, as opposed to steady state measurements,
and provide the opportunity to uncover transcriptional dynamics between genes [18].
More importantly, it enables the recording and identification of transient changes in gene
expression, which is particularly relevant for the analysis of cyclic processes, or in case
of perturbation-response experiments [19, 20].

Nowadays, microarrays or RNA sequencing technologies simultaneously provide
time series data of the expression of ten of thousands of genes at given points in time.
Such recording enables the investigation of the emerging multidimensional expression
patterns over time, and thereby constitutes the necessary basis to address the complexity
of biological systems dynamics [19]. However, technical and other practical constraints
critically restrict the number of time points at which the system can be observed, as
well as the amount of replicates that can be produced. Typically, time series recordings
of gene expression contain incredibly more genes (10000-20000) than time points (of

the order of ~15) and replicates (2-4) (Figure 1.2). Hence, characterizing microarray
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Gene A

Protein A

Gene B

Fig. 1.2 Illustration of the limited observability of transcriptional dynamics (GRN).
In this example, gene A activates gene B through protein A. Genes expressions are
represented in blue, protein levels in grey. Protein levels are typically unavailable to
us, despite its crucial role in regulation since genes do not regulate themselves directly.
The red crosses represent the discrete sampled observations of the continuous expression
process. In this real case example, gene expression is sampled every 4 hours.

or RNAseq data as "big data" would be misleading. Indeed, the problem is ill-posed.
From a mathematical point of view, this represents an improper conditioning of the
information which is described by a class of mathematical problems called undetermined.
Furthermore, measuring mRNA abundance as a proxy for gene expression intrinsically
overlooks the effects of other active products in the network. Mechanistic details over the
system of interest are then partially visible, which constitutes a major limitation as parts

of the regulatory dynamics are hidden to us [21].

Altogether, both partial measurements and subsampling lead to a general lack of
observable that constitutes a fundamental challenge of gene regulatory network inference.
A proper choice of sampling rate, amount of data points and replicates, are then crucial
parameters to take into account for the collection of relevant data. The sub-optimality of
experimental design for the investigation of GRN, however, is largely underestimated.
For this purpose, general guidelines are investigated in Chapter 2 in order to select the
most efficient set of experiments together with appropriate mathematical paradigm and

model complexity. Indeed, while navigating experimental tradeoffs is not an entirely new
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concept, the literature on the topic is surprisingly scarce or outdated.

As a summary, several challenges underly the inference of gene regulatory networks:

* Large amount of genes recorded, but few time points.
* Intrinsically stochastic processes, but few replicates.

e Partial measurements both in terms of sampling frequency and of the species
involved in the transcriptional regulation.

* Noisy measurements, inherent to any observation of physical processes.

* The optimality of the experimental design is often not clear in advance, neither is
the most appropriate computational approach to be undertaken, as it relies both on
the biological system under investigation and on the availability of resources.

The modeling strategy, therefore, must take into account those limitations and the
biological question to be answered.

Distinct Biological Questions and Modeling Approaches

Formally, gene expression over time is represented by the rate of transcription of its
corresponding mRNA concentration. It can be formulated as following:

Rate of change of mRNA = Synthesis Rate - Decay Rate

Such equation describes the mRNA levels as a function of two fundamental processes:
its synthesis rate from DNA and its decay. The decay, a relatively slow process compared
to the synthesis, is an intrinsic function that depends on the mRNA abundance only. On
the contrary, the synthesis rate depends on other genes, hereafter referred to as regulators.
More generally, reverse-engineering the entire gene regulatory network corresponds to
the identification of the regulators 7; and the function f for all given genes i € {1,..,n}

(where n is the amount of genes in the system), so that

dy;(t)
dt

= fi(mi(t)) — cuyi(t) (1.1)

where y;(¢) is the mRNA concentration of gene i at time ¢ and the term oy;(¢) cor-

responds to the degradation rate of y;(z). The highly nonlinear function f; represents
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the influence of the transcription factors of the parents on the target genes, and can be
represented by Michaelis-Menten or Hill type functions under mild hypothesis [22]. The
time series data of the regulators 7; consist of other mRNA levels, as the protein levels
are typically not available to us, and then 7;(¢) C {y;(¢),...,yn(t)}. The concatenation of
the structural regulators 7; of every gene, then, forms the gene regulatory network.

The investigation of the interactions between genes and the emergent properties of
gene regulatory networks may be approached with distinct assumptions and modeling
strategies. For this purpose, there exist different modeling paradigms that span across
various levels of details, faithfulness to biological reality, amount of data needed for
modeling or the ability to perform predictions [23, 24].

240
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Fig. 1.3 The network inference problem. Gene expression is measured through the
level of mRNA the genes produce. Typically, gene expression data consists in very few
time points, but a large collection of genes. Inferring the topology of the network from
time series data means identifying the causal interactions between genes, depicted with
dotted lines.
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Mainly, there exist two categories of approaches for which the biological questions
fundamentally diverge. The first category assumes that at least most of the regulatory
connections between genes are known (7; is known for each gene), which allows to
investigate their dynamics in details (the function f;), i.e. through highly specific, non-
linear models of gene regulation. This analysis specifically addresses the question "How
is the regulation performed ?". However, this category of problem requires considerable
prior knowledge of the network structure, which is typically achieved by extensive
experimental validation. The second category favors the investigation of network topology,
that is, the causal map of transcriptional processes. Such analysis focuses on answering the
question "Who is performing the regulation ?". It corresponds to the correct identification
of the regulators 7; for each gene of the network by formulating often more general
hypothesis on the regulation functions f;. This is the main focus of this thesis (Figure
1.3). Although it is clear that the topology of the network alone does not determine its
dynamical behavior, it should be noted that such investigation does not constitute the end
product of the study per se, but rather an intermediate and necessary step to learn the

functioning of the biological system of interest [25].

Model Complexity

Learning the topology of GRN from time series data is a major challenge of systems
biology for which numerous computational approaches have been introduced and many
comparisons conducted to assess their respective performances [26, 27]. Their perfor-
mances, however, have been shown to be crucially dependent on the studied conditions,
including: data availability, sampling rate, size of the network, network topology or prior
biological knowledge. Due to experimental heterogeneity, therefore, the applicability
and accuracy presumptions of those algorithms remain unclear. Hence, it is important
that the selected approach is relevant to the biological conditions under investigation and
the question to be answered. Furthermore, different mathematical paradigms may carry
fundamentally diverging assumptions, which make them more likely to correctly identify

different types of regulatory interactions.

In the early stages, the investigation of gene regulatory networks circuitry was per-
formed with association networks [18]. In such case, the association between genes is
based on correlation or other informations metrics such as mutual-information between
signals. Clusters of co-expressed genes are created, and their functions analyzed. Such
network can be constructed either from steady-state or time series data but it does not,
however, exploit the underlying dynamical information of time series. The bottom line

for those attempts to parse genes into groups is based on the idea that genes that appear to
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be correlated or share similar responses to perturbations often share common regulatory
mechanisms. Despite not unraveling causality between genes, these networks carry valu-
able information as countless of biological insights and papers have successfully resulted

from this approach [28].

On the opposite, our approach is focused on the reconstruction of causal relationships
between genes, which carries the most potential for the understanding of regulatory mech-
anisms as a whole. Unmistakably, a brute force approach that would thoroughly scan
through every possible causal interaction between genes and their associated dynamical
behavior is typically not conceivable because of the combinatorial nature of the problem
(for 10 genes and without accounting for self-regulation, 4.7%!' possible directed network
structures already exist). That being said, it should be stressed that gene regulatory
networks appear to be naturally sparsely connected [29], which is a crucial property that
has been widely taken advantage of for the successful development of network inference
algorithms.

A central difficulty for the development of inference algorithms is to decide upon the
complexity of the strategy, that is, the hypothesis on the functions f;. For the purpose of
reconstructing the structure of the network, representing regulatory functions through
a simple model is an advantage, as it requires few or no detailed understanding of the
system and less parameters to be estimated [30]. Such model decision takes its root in the
well-known overfitting problem of statistical inference: the number of parameters to be
accurately estimated may quickly become too large for the given information. As a result
of overfitting the data, the model gets really good at predicting cases from which it has
learned, but not in unseen data. Its general predictive potential is then very limited. A
widely used strategy in the field of machine learning is to separate the data into a training
group and a test group. The training group is used to estimate the parameters of the
model while the test group evaluate its generalization potential. The opposite case, called
underfitting, happens when the complexity of the model is not sufficient to even describe
the data it is seeing in the training set. A good balance between the two is essential for
a good model (Table 1.1). Such concepts are of crucial importance in the context of
biomedical studies. Indeed, biological data are often scarce and noisy so that careful
steps have to be taken to build knowledge sequentially. The appropriateness of different

models is then a key consideration for modeling.
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Train Error  Test Error  Diagnosis

Low High Overfitting
High High Underfitting
High Low Unusual
Low Low Good !

Table 1.1 Addressing the overfitting / underfitting problem. A widely accepted strat-
egy is to separate the data in two groups, a training set and a test set. The former is used
to estimate the parameters of the model. The latter is used to verify its generalization
potential.

In general, the suitability of a network inference strategy is estimated from data simu-
lated from toy systems that reproduce realistic experimental conditions and networks. In
such case, the ability of each algorithm to accurately reconstruct the topology of the GRN
is evaluated in terms of metrics borrowed from the field of machine learning: the resulting
Area Under the ROC Curve (AUROC) and the Precision-Recall Curve (AUPREC). On
one hand, the ROC curve represents the proportion of regulatory interactions between
genes that have been discovered against the proportion of false predictions (predicting a
link where this is in fact no direct interactions). On the other hand, the Precision-Recall
curve displays the precision (correctly inferred links over total amount of predictions),
against how much of the network has been identified. Precision-Recall curves allow for
a more accurate picture of algorithms performances for sparse GRNs and are therefore
commonly used for such task. The computation of those metrics is now further detailed

in the next paragraph.

Both the AUROC and AUPREC require to investigate the amount of regulatory in-
teractions, or links, that are correctly identified between genes, and those that are not.
For this purpose, the large majority of network inference algorithm involves a decision
threshold. Such thresholding results from the mathematical framework and often stands
for the confidence that a link between two genes exists. Some algorithms formally char-
acterize this confidence as a probability while others may be less explicit and simply act
as a proxy for such probability. The procedure is relatively simple. One decreases the
threshold, starting from no links being identified down to a fully connected network. For
each novel link, the sensitivity/recall or True Positive Rate (TPR), precision and False
Positive Rate (FPR) are computed (Figure 1.4 and Equations 1.2) and reported on the
ROC and PR curves (Figure 1.5).

This thesis explores the structure of GRNs related to two specific complex biological

systems in two distinct organisms. It should be noted that the mechanistic premises of
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gene regulatory dynamics are inherently similar between organisms. As such, algorithms
are transferrable without further adjustments. The biological systems under investigation
correspond to a type of rhythmic gene regulatory network called circadian network across
two plants organisms: Arabidopsis Thaliana and Barley. The properties of such networks
are presented hereafter.
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Fig. 1.4 Gradual assessment of network inference algorithms performances. Most of
network inference algorithms involve a threshold. The thresholding often corresponds to a
cut-off on the probability of appearance of links that the user is willing to set. The overall
performances of algorithms are assessed for every choice of threshold, by gradually
decreasing its value. This affects the amount of links that are inferred, and one can
therefore assess whether the regulatory interactions are correctly identified, and evaluate
the performance of the algorithm for this threshold. Realistic in silico models, for which
the ground-truth is known, are used for this purpose. Blue pointed arrows and red blunt
arrows represent activation and inhibition reactions respectively.

Actual Condition

True False
True True False
Predicted Positive Positive
Condition False False True
Negative | Negative

Table 1.2 Confusion Matrix. A specific table that allows to visualize the performances
of network inference algorithms. The actual condition refers to the ground truth of the
network, i.e. whether a link actually exists between two genes. The predicted condition
corresponds to whether a link has been predicted by the network inference algorithm. For
example, if a link has been predicted where there is in fact no interactions between those
genes, then it corresponds to a false positive.
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Fig. 1.5 Resulting Receiver Operating Characteristics (ROC) and Precision-Recall
(PR) curves. The capacity of each algorithm to recover the circuitry of GRN is compared
from the area under both curves. The Precision-Recall curves allow for a more accurate
picture of algorithms performances for sparse networks such as GRNs. The shaded area
represents the variability of this algorithm performance for data originating from the same
network, but with different noise states.

1.2.1 Circadian Clocks

Many cell-signaling and transcriptional processes show pulsatile, or even oscillatory
behavior. This is the case for circadian transcriptional networks, or circadian clocks.
Circadian networks have recently drawn attention in 2017 as the Nobel Prize in physiol-
ogy and medicine has been awarded to Jeffrey C. Hall, Michael Rosbash and Michael
W. Young for their very early work on the molecular mechanisms controlling circadian
rhythms.

Circadian clocks consist of complex gene regulatory networks that are responsible
for maintaining synchrony of a wide range of biological processes with the daily timing
of light and dark cycles resulting from Earth’s rotation (Figure 1.6). Present in most
organisms, such self-regulating GRN produces oscillations in gene expression with a
period of about 24 hours and are continuously synchronized with the external environ-
ment by integrating environmental signals, such as light or temperature. This process

of synchronization is called entrainment. Studying the mechanisms that dynamically
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adjust circadian period and phase, therefore, is critical to understand the control of daily
biological activities.

Conceptually, the circadian clock is composed of 3 mains components: a self-
sustaining central oscillator, an input pathway that incorporates the environment con-
ditions, and an output pathway that adjusts the metabolism (Figure 1.7). The central
oscillator of the clock consists of a complex network of interlocking genes activations,
inhibitions and feedback loops. The identification of the functional properties of the
individual components in circadian regulatory network is challenging due to the complex-
ity of the interlocked network. Over the past 20 years, the circadian clock of one plant,
Arabidopsis Thaliana, has been intensively studied. Several mathematical models have
emerged, which fit the experimental data, either in light/dark cycles or constant (light
(LL) or dark (DD)) conditions, and elucidate the minimal regulatory structure [31, 32,
33]. The mechanistic basis underlying the adjustment of circadian rhythms to changing
external conditions, however, has yet to be clearly elucidated.

12
11 1 PRR7
10 «% 2 w
SRR
9 \2) 3 or——
8 %ﬁ 4
7 5 ) [
6 TOC1 Y

Fig. 1.6 The Circadian Clock: A biological timekeeping mechanism. Circadian reg-
ulatory networks are the conceptual equivalent of a watch that maintains synchrony
with the external environment for most organisms to regulate a wide range of biological
processes. To date, it is known to consist of a relatively small amount of genes forming
an intricated network of multiple feedback loops across organisms. On the right, a GRN
representation of the circadian clock of Arabidopsis Thaliana: 7 genes (nodes) and their
complex regulatory interactions (blue arrows represent an activation while red arrows
represent inhibition).

This thesis investigates the dynamical mechanisms that are responsible for driving
circadian period in Arabidopsis Thaliana and the regulatory structure of the circadian
clock of the cereal crop Barley, which represents a significant source of food and animal

feed. An important step in improving the yield, a particularly relevant task, is to elucidate
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the functional components of its clock. Arabidopsis clock genes reveal a high similarity
in nucleotide sequences and expression patterns with the cereal crop Barley [34, 35].
However, clear genetic differences exist. It is therefore unclear how similar the circadian
clocks are between barley and Arabidopsis and how the barley oscillator regulates the

global transcriptome.

Inputs Outputs
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Fig. 1.7 Inputs and Outputs of the Circadian Clock. Conceptually, the circadian clock
is composed of 3 elements. An input pathway, that integrates environmental cues, an
oscillating GRN and an output pathway that regulate a wide range of biological processes.
For humans, those outputs include body temperature, blood pressure or sleep, among
others. For plants, further inputs may include the water status while outputs control
photosynthesis, growth and flowering.

1.3 Characterizing Epileptic Seizures and Epileptogene-
Sis

Living organisms not only create or respond to rhythms, but sometimes unintended
rhythms can be generated with adverse effects. Indeed, despite their apparent robustness,
complex biological systems may undergo transient or definitive fragility. Many diseases,

in fact, are the result of such homeostatic failure [36].

Epilepsy, the fourth most common neurological disorder, affects approximately 1%
of the world’s population with approximately 30% of the patients being resistant to
anti-epileptic drugs [37]. Epilepsy is defined by a state of recurrent seizures, which
are characterized by excessive and a synchronous neuronal discharge produced by large
regions of the brain [38]. Such neuronal synchronization takes its origin in the disruption

of the mechanisms that normally create a balance between excitation and inhibition of
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neurons [37]. At the fundamental level, the electrical activity of neurons is a function of its
chemical milieu that creates electrical gradients. Normally, there is a high concentration
of potassium inside neurons as well as a high extracellular sodium concentration, leading
to a negative membrane potential (-70mV). This resting potential is sufficiently close
from the activation threshold (-55mV) to simultaneously avoids neurons to constantly
fire while allowing them to rapidly discharge and produce an action potential as a result
of an environmental stimulus. The ionic basis of the action potential consists in a chain
reaction involving the consecutive opening and closing of voltage-gated ion channels,
allowing the depolarization and subsequent repolarization of the cellular membrane,
and the transmission of the electrical pulse across synapses. On the opposite, the ac-
tivity of the receptors of the principal inhibitory neurotransmitter y-aminobutyric acid
(GABA) at the postsynaptic sites controls chloride entry into the cells which results in
an hyperpolarization of neurons, and maintain the inhibitory tone that counterbalances
neuronal excitation. Hence, abnormal neuronal activity can be promoted by numerous
and various mechanisms, such as the malfunctionning of sodium or potassium channels
[39], or the adverse modulation of GABA receptors [40]. However, the exact origin of the
seizure-generating process, or epileptogenesis, is not entirely understood. Conceptually,
it is often depicted as a progressive bifurcation of the brain dynamics from a normal, less
ordered state to an abnormal, synchronous state [41].

To date, more than 500 genetic mutations have been associated with epilepsy in
humans [37]. Yet, genetic alterations are not the only possible causes of seizures, which
can essentially be triggered by a wide range of brain functions perturbations. Such
perturbations include brain insults (e.g. strokes, brain trauma, Alzheimer disease, etc.),
infectious diseases or autoimmune diseases [37]. It has been proposed that both the
healthy and synchronous states of the brain co-exist in its dynamical landscape [42, 43],
which may explain why so many different neurological conditions are also associated
with seizures. Hence, there exists a range of pathological causes that share the same
conceptual outcomes: bringing the brain system in the vicinity of a seizure state [44, 45,
46]. For healthy brains, the neuronal activity is far from the seizure state and requires
strong stochastic circumstances to operate a transition, such as intoxication, metabolic

disturbances or brain insults [44].

The epileptic condition, however, imposes constraints on brain dynamics, reducing
the threshold separating the healthy state from the seizures. More specifically, experi-
mental evidence points towards the crucial role of a slowly changing variable describing
the loss of resilience and stability of the brain systems towards seizures, which reflects

the long-lasting re-organization of the brain system [10, 11]. From a certain point on,
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stochastic fluctuations can precipitate the brain systems to seemingly sudden and rapid
changes of condition. The idea of a slowly varying system, however, carries promises for
the identification of early warning predictors of epileptic seizures. Notably, experiences
of focal seizures (one hemisphere of the brain) of humans are often preceded by certain

sensory or motor phenomena, known as "aura" [47].

A fundamental challenge of modern epilepsy research, therefore, is the accurate and
early detection of the onset of the transition to the epileptic region from brain activity
monitoring data to allow for rapid intervention and treatment. While often the most
common mean employed in practice to identify a seizure is a visual inspection by a
medical doctor, over the last decades, the availability of methods for the automatic
detection and prediction of human epileptic seizures has dramatically increased [48,
49]. In humans, changes in the spatiotemporal patterns of brain wave activity have been

observed up to 70 minutes in advance [50].

Zebrafish as an animal model

Brain activity in humans in often performed by noninvasive recordings such as Elec-
troEncephaloGram (EEG) from the scalp or intracranial recordings with Local Field
Potentials (LFP) that monitor charges separation directly from the extracellular space.
The availability of brain activity recording in humans, however, is scarse, costly and
can reach ethical barriers. In addition, seizures-generating process may differ between
patients, especially given the large range of causes and symptoms characterizing the
epileptic condition. As a result, the heterogenic nature of seizure generation cannot
be fully examined in humans, which is suboptimal for both the understanding of the
underlying epileptogenic mechanisms and the development of prediction algorithms [51,
52]. As an additional challenge, seizure occurrence is occasional as humans experience

clinical seizures on average for less than 0.05% of the total time of studies.

As an alternative to human experiments, a lot of interest has recently been rising in
performing experiments in Zebrafish larvae (Figure 1.8) due to the easy handling, low
cost and high homology with the human genome [9]. Furthermore, the central nervous
system of Zebrafish, while simpler, shares functional and structural similarities with the
mammalian system [53, 54]. As an animal model, specific seizures mechanisms can be
triggered by means of genetic mutations or drugs [51]. Finally, Zebrafish recordings
are exempt of some endogenous and exogenous factors such as the disease stage or the

influence of circadian rhythms, which have been recently reported to influence seizure



1.3 Characterizing Epileptic Seizures and Epileptogenesis 19

Fig. 1.8 Zebrafish Larvae. Zebrafish have high homology with the human genome.
Furthermore, they are transparent so that neuron activity can be monitored non-invasively
by neuroluminescence using transgenic fish expressing the Ca®>* photoprotein GFP-
apoAequorin (GA). As such, they are valuable animal model for the study of epilepsy.

emergence [55].

Zebrafish larvae are of the size of millimeters, can be grown and employed in an
experiment in huge numbers, have a fast reproduction rate and development, and within
their fifth day of life they do not have pain receptors. Importantly, Zebrafishes are trans-
parent, which allow imaging techniques to simultaneously monitor the spatio-temporal
activity of neurons together with the LFP recordings that measure their collective activity.

Overall, being able to further characterize seizures in Zebrafish has the potential to
open the door to a whelm of novel knowledge and tools to anticipate and treat the disease

in humans.

Seizure Detection and Characterization

In epilepsy research, brain states are typically classified into four events (Figure 1.9). The
ictal state refers to the seizure event per se, i.e. during the hypersynchronous activity
of large assemblies of neurons. The pre-ictal state refers to the moments just before
the seizure, where clinical symptoms of seizures are not yet apparent. The duration of
the pre-ictal state is not well defined, and often arbitrarily delineated. It corresponds
to a region where the brain has reached a critical state and seizures are likely to occur.
The post-ictal state represents the recovery of the brain towards a normal state and the
interictal phase corresponds to the moments in between seizures, during the normal

functioning of the brain. The latter stage accounts for most of the patient life, which
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makes epileptic seizure a rare and particularly impairing condition.

Seizures States
Safe Mode

w———

A

Warnings

Fig. 1.9 Clinical Seizure Terminology. The red region of the signal corresponds to the
seizure event (ictal state). The recovery of the brain towards a normal state is depicted
in green (post-ictal). In yellow, the moments before the seizure, where an incoming
seizure is likely to happen (pre-ictal). The blue region corresponds to the interictal state,
supposedly far from ictal states.

The first step to be undertaken in the understanding of the brain conformation and
mechanisms that lead to seizures events is to isolate seizures events from the entire signal.
It is a non-trivial task, however, that requires expert knowledge, considerable time and
experience. Yet, such task represents a very promising area for the development of
automated decision systems based on automatic prediction models. For this purpose,
many algorithms have been developed with varying degree of success for different
organisms such as mice, humans and more recently, Zebrafish [48, 56]. Yet, EEG/LFP
data recordings of brain activity typically suffers from a few limitations that hinder their

effective analysis or processing [57]. In more details:

* Brain activity patterns are subject to patient intra-inter variability (Figure 1.10).
This phenomenon arises from physiological differences between individuals, which
vary in magnitude but severely affect the performance of models that are meant
to generalize across subjects [58]. Since the ability to generalize from a first set
of individuals to a second, unseen set is key to many practical applications of
EEQG, it is crucial to develop methods that hold high generalization potential while

remaining specific enough to capture seizures events only.

* Brain recordings are highly nonlinear and non-stationary in nature, that is, their
statistics vary over time. As a result, the investigation of brain patterns on a
temporally-limited amount of subject-specific data might generalize poorly to data
recorded at a different time on the same individual (1.11). This is crucial challenge
for real-life clinical applications of EEG/LFP, which often need to work with
limited amounts of data.
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* The signal holds a low-signal-to-noise ratio (SNR) (Figure 1.11). EEG/LFP signals
are typically contaminated with noise originating from various sources. The most
prominent external source of noise is the ambient electrical 50 Hz frequency.
Internal sources of noise of eventually very large amplitude include body motion,
muscle activity or eye blinking [59]. Those large unrelated signals are considered
artifacts that need to be removed from the signal. Finally, the brain is engaged in
many different activities in time and space, which all get mixed into the overall

signal captured by the electrodes.

* Finally, brain dynamics span orders of magnitude in space and time, making the

dynamical activity of populations of neurons both rich and difficult to understand.

The key challenge in correctly discriminating seizures events from baseline brain
activity, therefore, is constructing a predictive model that is robust to translation and
deformation of signal in space, frequency, and time, due to inter- and intra-subject differ-
ences, as well as signal acquisition protocols (electrode positioning etc.).

In its core, the identification of seizure events from EEG or LFP recordings can be
tackled from two different perspectives. On one hand, sub-sequences of signals from
interictal and ictal phases can be retrospectively extracted by clinicians, and their differ-
ences subsequently characterized through the development of a predictive model that
captures the main discriminative features of both signals. Such approach allows to evalu-
ate the applicability range of automated approaches as well as discover novel knowledge
on important discriminating features. However, it does not permit the development of
algorithms for implantable devices for continuous diagnostic or therapeutic purposes.
Yet, a vast majority of the current literature on automatic seizure detection focus on
the development of novel and not necessarily interpretable algorithms through publicly
available datasets [58], therefore overlooking their direct clinical portability. It is often
referred to offline detection of seizures. On the other hand, seizure identification can be
performed in real-time, which often represents a more subtle mathematical challenge but
yet closer to a clinically relevant framework. In such approach, data are provided to the
algorithms in the form of a sliding window and the analysis is focused on emitting an
alarm as soon as the seizure is detected. The latter approach is called online automatic
detection. This thesis considers both offline and online aspects for the identification and

prediction of seizures events.

For this purpose, machine learning tools play a significant role in the field as it
offers tools to address the high complexity of EEG/LFP signals through the integration

of multivariate factors to distinguish between brain states. Traditionally, the standard
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Fig. 1.10 Subject variability of seizures-like events recorded from LFP recordings
of 5 Zebrafish. Seizures-like events are displayed here in 5 colors, representing different
subjects. The characteristics of seizures vary drastically across fishes, but within fishes
as well. Among those, the duration and amplitude of seizures, but also their dynamical
signature. Characterizing the signature of seizures and their dynamical (in)variants is a
crucial step in the understanding of seizures mechanisms.

approach undertaken by most automatic seizure detection algorithms can be summarized
as: (1) extraction of a set of features from a short time window of a few seconds to few
minutes and (2) classification into different epileptic stages. Features extraction typically
consists in reducing the dimensionality of the original signal to a lower-dimensional
space that represents its most salient characteristics. Features can be computed from
raw EEG/LFP signals or from a decomposition of the signal. Furthermore, they can be
extracted either from the time domain, from the frequency domain or both. It should
be noted that feature engineering represents one of the most demanding steps of the
EEG/LFP analysis pipeline [60, 61].

1.3.1 Predictive Modeling

The language used to describe the behavior of complex nonlinear systems characterized by
transitions between dynamical regimes is of great relevance to seek for global invariants in

the collective neuronal dynamics leading to seizures emergence. It is hereafter introduced.
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Fig. 1.11 Abnormal LFP activity. EEG/LFP signals hold low signal to noise ratio. This
figure displays artifacts and signal variations that significantly differ from baseline activity,
but do not represent seizures.

The multistability of the healthy brain and the simultaneous existence of an epilep-
tic state can be represented by two basins of attractions, or attractors, separated by a
seizure threshold, or separatrix [10]. A dynamical bifurcation is said to occur when the
dynamical regimes of the system critically change (e.g. transition from a laminar fluid to
a turbulent one and vice versa). Such transition can be achieved by crossing the separatrix
or through geometrical modification of the dynamical landscape, which ultimately leads
the nonlinear system towards another attractor. Concerning seizure emergence, such
phenomenon can be achieved through multiple routes, possibly reflecting the involvement
of specific cellular mechanisms [62, 63]. Dependent on the response of the system after
moving beyond a tipping point, different classes of bifurcations have been defined that
can lead to multiple equilibria and attractor states, e.g. homoclinic or Hopf-bifurcations
[64, 65].

Of particular interest here is the subcritical Hopf bifurcation to describe the loss of
system stability towards seizures and the homoclinic bifurcation to characterize system’s
recovery to the normal neuronal activity [10, 66]. The Hopf bifurcation describes the
transition from out of the stable region to a periodic behavior while the homoclonic
bifurcation describes the transition outside of the synchronous neuronal activity to leave
the system with one stable point. Nevertheless, while a common mathematical frame-
work may be formulated, dynamical specificities that account for various pathological

conditions surely remain. To understand the brain predisposition to seizures, it is crucial
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to elucidate the dynamical pathways through which the bifurcation point is reached.

More specifically, the transition between the healthy state and the epileptic one ap-
pears to be generally governed by the principles of critical slowing down, or slow-fast
dynamical processes, where a slight perturbation or disturbance takes a significant time
to be recovered by the system [45, 67, 68]. This phenomenon can be described by a
pathological decrease of the sepatrix threshold over time. The transient synchronous
activity of pathologically interconnected neurons during interictal and pre-ictal periods,
known as interictal epileptiform discharges (IEDs), is thought to be visible manifestation
of such threshold decrease (Figure 1.12) [69]. IEDs can take many shapes and their role
in epileptogenesis is still a matter of debate, ranging from being an adaptive phenomenon
(manifestation of feedback processes) to disruptive (feedforward mechanisms) or merely
co-occurring mechanisms [70]. Mathematically, such changes of dynamics preceding the
ictal region are characteristic features of subthreshold oscillations occurring in the vicinity
of a dynamical bifurcation, that is, close from the separatrix [71]. Hence, the occurrence
of IEDs at least corresponds to reflections of the dynamical state of the brain system,
which is analogous to the definition of a pre-ictal state. Furthermore, the amplitude and
frequency of IEDs allow to formulate the type of bifurcation occurring. The quantification
of the role IEDs in seizure emergence, however, is challenging. Indeed, these fluctuations
are notably variable [72], do not inevitably progress to a seizure [73], and are dominated

by the normal baseline activity.
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Fig. 1.12 Interictal Epileptiform Discharges (IEDs). The seizure has been centered in
the middle of the Figure. 10 IEDs can be observed before seizure occurrence. After the
seizure, the brain activity returns to a normal state, without IEDs.

In the recent years, the frontiers of computational epilepsy research have moved

from seizure detection to a more challenging problem: seizure prediction [74, 75, 76].
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The mathematical framework underlying the development of prediction algorithms is
very similar to detection, besides that statistical classifiers do not aim at discriminating
between fully developed seizure states and normal brain activity, but rather at identifying
the pre-ictal region characterizing the vicinity of the separatrix. Whereas it is typically
not difficult to discriminate between a healthy and a fully developed diseased state, the
differentiation between healthy and pre-disease state is much harder. To date, no predic-
tive characteristic or pre-seizure biomarker that is universal and forecast the exact time
of the next seizure has been identified [76]. The lack of such biomarker may originate
from a range of factors, including the general lack of long-term continuous recordings of
human EEGs, or from the pooling of patients with different pathological conditions as a

result of sparse data availability.

In this thesis, the aim is to keep with the general view of dynamical bifurcations to
address the possible (in)variants properties of seizures types by means of distinct animal
models. The objectives are twofold: contributing to the current knowledge of seizures and
epileptogenesis mechanisms and pave the way for targeted and more accurate prediction
models. For this purpose, a probabilistic prediction model is developed to conceptually

formulate seizure occurrence as a function of the distance between the attractor states.

1.4 Thesis Objectives & Overview

Objectives

This thesis is divided into two main parts: (1) the efficient modeling of gene regulatory
networks from sparse microarray data and (2) epileptic seizures and epileptogenesis from
local field potentials. The predictive models and mathematical frameworks developed
here aim at providing a solution to current, real-world biomedical problems. As such,
"efficient" modeling refers to the optimization of model complexity, parameters estima-
tion, model validation and the modeling conditions to provide the best solution to given
problems. Furthermore, the thesis principally aims at generating meaningful biomedical

knowledge, so that interpretable models are favorized throughout the whole manuscript.

The objectives respectively consider:

1. The development of efficient modeling strategies for the identification of GRN
in the context of circadian networks. Such approach is data-driven, in such that
two applications are targeted. On one hand, the investigation of the mechanisms
responsible for driving circadian period in Arabidopsis Thaliana. On the other hand,

the identification of the yet vastly unknown circadian regulatory network of Barley.
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2. The development of efficient modeling strategies for the automatic extraction, char-
acterization and prediction of pathologically distinct epileptic seizures mechanisms
of zebrafish from LFP data.

Overall Contributions

In this thesis, a modelling strategy based on the identification and comparison of gene
regulatory dynamics before and after a perturbation occurred in the network is first intro-
duced. The rationale behind this approach is that not only genes, but also their interactions,
are affected by a drug. This reasoning is further supported by [2, 77, 78], which highlight
the fact that drugs and diseases mechanisms should be regarded as network instead of
gene-centric perturbations. We designed our modelling strategy so that it could be applied

to large datasets with scarce sampling (described in Chapter 2).

The Dynamical Differential Expression (DyDE) methodology uses a reverse engineer-
ing approach that favors both the accurate identification of unknown Gene Regulatory
Network (GRN) topology and the interpretation of the possible dynamical changes, with-
out the need to cover extensive experiments or to make prior assumptions of network
dynamics. The modelling strategy and its application to the Arabidopsis circadian network
resulted in a publication in PLoS Computational Biology, 2019 (described in Chapter 3):

* Mombaerts, L. et al. Dynamical differential expression (DyDE) reveals the period
control mechanisms of the Arabidopsis circadian oscillator. PLoS Comput. Biol.
(2019).

The flexibility and accuracy of the introduced approach has been further exploited
to uncover the circadian network of barley, a yet unknown complex regulatory network.

This investigation resulted in a paper, currently under submission (described in Chapter 4):

e Lukas M. Miiller*, Laurent Mombaerts*, Davis SJ, Alex A. R. Webb, Jorge
Goncalves and Maria von Korff. Dynamic modelling of the barley circadian clock
and transcriptome rhythmicity analysis reveal differential effects of the day-night

cues and circadian clock on gene transcription. (Submitted to Plant Cell)

In addition, the strategy developed here has also been successfully applied to another
kind of GRN related to the human immune system. This study is not detailed in this
manuscript, since it merely consisted in applying the developed algorithms (DyDE) to
another biological system without further theoretical development. Nevertheless, such
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application across organisms illustrates the flexibility of the proposed approach. This
research topic resulted in the following contribution:

o Sawlekar R., Magni S., Capelle C., Baron A., Mombaerts L., Zeng N., Yue Z., He
E, Goncalves J. Dynamical modelling predicts novel regulatory genes of FOXP3 in
humans. (To be submitted)

This thesis also assesses the performance of recent and successful network infer-
ence strategies under a novel, multifactorial evaluation framework in order to highlight
pragmatic tradeoffs in experimental design. The effects of data quantity and systems
perturbations are addressed, thereby formulating guidelines for efficient resources man-
agement (Chapter 2). It is shown that data originating from transients systems dynamics
are more informative for the identification of regulatory interactions between genes, which
is novel and of particular relevance for oscillating networks. Furthermore, it is shown
that network inference strategies do not benefit equally from data increments and across
experimental conditions. This constitutes a novelty as this analysis allows to further
unveil experimental trade-offs and computational performance of algorithms in such
conditions. As such, it is shown that, in order to provide a comprehensive comparison
between algorithms, it is necessary to perform a multifactorial analysis of the algorithm
performances. Such analysis resulted in two conferences papers at the Foundations for
Systems Biology in Engineering (FOSBE), in 2016 and 2019:

* Mombaerts L et al. Optimising time series experimental design for modelling of
circadian rhythms: the value of transient data. FOSBE 2016.

* Mombaerts L et al. A multifactorial evaluation framework for gene regulatory
network reconstruction. FOSBE 2019.

The thesis also contributes to the global knowledge of epileptic seizures and epilepto-
genesis. In particular, epileptic seizures and their dynamical signatures are investigated for
different Zebrafish models, i.e. for both chemically induced seizures and genetic variants.
So far, Zebrafish have been used either because of convenience or genetic resemblance
with humans but it is not known to what extent the mechanistic processes generating

seizures are similar. Investigating those topics resulted in the following contribution:

* Oldano A, Mombaerts L, Magni S., Goncalves J., Skupin A. Machine learning
classification of epileptic seizures reveals distinct dynamic mechanisms in zebrafish
models. (To be submitted)
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Then, based on the previously gained knowledge, a probabilistic seizure prediction
model is proposed for Zebrafish. This investigation will be considered for further publica-

tions.

The investigation of dynamical perturbations and transitions of complex adaptive
systems in the context of epileptic seizures and heart arrhythmias in humans also resulted
in the following book chapter:

* Balling R, Goncalves J, Magni S, Mombaerts L, Oldano A, Skupin A. From diag-

nosing diseases to predicting diseases.

Collaborations with external scientific partners also led to the following publications:

» Tzortis I, Hadjicostis CN, Mombaerts L. Reconstruction of gene regulatory net-
works using an error filtering learning scheme. Communication, Control and
Computing. 2017

e Aalto A, Viitasaari L, Ilnonen P, Mombaerts L, Goncalves J. Gene regulatory

network inference from sparsely sampled time series data. (To be submitted)

The overall thesis structure is illustrated on Figure 1.13.

PART I

CHAPTER 2 describes the development of the Dynamical Differential Expression
(DyDE) framework, which allows both identification of the underlying gene regulatory
circuitry without prior knowledge but also favors the interpretation of its dynamical
properties before and after a perturbation occurred in the biological system of interest.
It is shown that the modeling approach developed here is valuable tool both in terms of
accuracy of identification and mechanistic interpretation. Furthermore, the optimization
of experimental design is also addressed using various state-of-the-art mathematical

approaches to GRN inference.

CHAPTER 3 applies the DyDE modeling framework to the identification of the mech-
anisms responsible for driving circadian period in Arabidopsis Thaliana. This led to
two outcomes. On one hand, PRR7 has been identified as a regulator of the pace of the
circadian clock in Arabidopsis by learning the effect of nicotinamide from differentiated
systems. On the other hand, the role of blue light is uncovered in the response of the

circadian oscillator to nicotinamide.
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CHAPTER 4 investigates the yet unknown circadian regulatory network of barley
through the application of the modeling framework previously introduced. The flexibility
and interpretability of the model class used is exploited to gain knowledge on the effects

of light on the circadian networks and its internal coincidence.

Part 11

CHAPTER 5 covers mathematical preliminaries on dynamical bifurcations, state-
space embedding, a time-frequency analysis of signals called wavelet decomposition and

introduces the machine learning tools used in the following chapters.

CHAPTER 6 describes the development of the automatic seizure extraction algorithm
for several Zebrafish models of epilepsy. Then, a random forest approach is used to

investigate the dynamical signature of seizures.

CHAPTER 7 describes the development of the probabilistic model for the prediction

of seizures in Zebrafish, as well as its interpretation.

CHAPTER 8 is a discussion of the main findings and future perspectives of each topic
covered in this thesis.

Talks & Posters

* Thesis presentation "Inference of gene regulatory networks" at the ERASyS Inter-

national Group , Munich, Germany.

* Thesis presentation "Inference of gene regulatory networks" at the ERASyS Inter-

national Group, Brussels, Belgium.

* Thesis presentation "Dynamical modelling of RNAseq time series data" at KTH,
Stockholm, Sweden.

* Thesis presentation "Towards early warning signals in epilepsy and cardiac dis-

eases" Scripps Institute, San Diego, US.

* Poster presentation "Optimising time series experimental design for modelling of
circadian rhythms: the value of transient data" at FOSBE conference, Magdeburg,

Germany.

* Poster presentation "A linear modelling framework for the reconstruction of gene
regulatory networks" at ERNSI workshop, Lyon, France.
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Chapter 1

Introduction and
Objectives

PART | PART Il
Gene Regulatory Network Inference Characterizing Epileptic Seizure and Epileptogenesis

Chapter 2 Chapter 5
Efficient Modeling and Experimental Design Mathematical Preliminaries

Chapter 6
Chapter 3 Automatic Extraction and Characterization of
Identification of Chapter 4 Epileptic Seizures for Different Seizure Models

Dynamical Regulators CE ]
Y hegut Circadian Network of
of Arabidopsis

Thaliana Barley Chapter 7

Early Detection of Epileptic Seizures

Chapter 8

Discussion

Fig. 1.13 Thesis Overview. Chapters colored in red depicts theoretical chapters or
developments based on in silico generated data. Blue chapters consist in applications
using real data. Dark blue chapters comprise those applications related to circadian
networks in plant and crops. Light blue chapters represent the analysis of epileptic
seizures in Zebrafish.

* Poster presentation "Effects of explicit derivatives computation for the identification
of network inference from time series data" at ERNSI workshop, Cambridge, UK.

* Educational talk "Introduction to Machine Learning" at LCSB, Belval, Luxem-

bourg.

* Conference talk "A multifactorial evaluation framework for gene regulatory network

reconstruction" at FOSBE conference, Valencia, Spain.



Part 1

Gene Regulatory Network Inference






Chapter 2

Efficient Modeling and Experimental
Design for GRN Reconstruction

2.1 Contribution

The contribution of this thesis to the identification of GRN is twofold.

First, an algorithm is developed for the automatic identification of transcriptional de-
pendences between genes given relatively small amount of time series data and no a priori
assumptions on the topology of the system. This mathematical framework allows both
the reliable identification of unknown GRN’s topology and the interpretation of possible
dynamical changes following a network perturbation. This work has been particularly
motivated by the investigation of drug mechanisms of action within complex biological
systems, and more specifically in the context of circadian networks. Nevertheless, it
should be noted that its applicability range is not restricted as such. By means of in silico
and real data, it is shown that the performances of the proposed mathematical framework
are comparable for steady-state biological networks, and outperform most of the current
state-of-the-art network inference algorithms as well.

Then, the effects of experimental design on the performances of relevant state-of-the-
art mathematical models are investigated. Indeed, in the past years, many computational
methods have been developed to infer the structure of gene regulatory networks from time
series data. However, the applicability and accuracy presumptions of such algorithms
remain unclear due to experimental heterogeneity. Hence, in practice, experimentalists
are still faced with difficult questions: which method to use with an available dataset?
Alternatively, with fixed amount of resources, what kind of experiments to carry out to

ensure an optimal use of resources? How much can be gained by investing into few more



34 Efficient Modeling and Experimental Design for GRN Reconstruction

datapoints? The results highlight the importance of transients data and that algorithms do
not benefit equally from data increments. The purpose of this study is to provide guidelines
for conscientious management of biological resources by unveiling the performances
of state-of-the-art network inference strategies under various experimental designs. To
this end, the effects of data quantity and multi-experiment availability are assessed
simultaneously on the accuracy of the topological reconstruction, thereby formulating

experimental trade-offs and practical guidelines, which are yet vastly unexplored.

2.2 Network Inference and Analysis by Dynamical Dif-
ferential Expression (DyDE)

Adapted from: Mombaerts, L. et al. Dynamical differential expression (DyDE) reveals
the period control mechanisms of the Arabidopsis circadian oscillator. PLoS Comput.
Biol. https://doi.org/10.17863/CAM.35626 (2019) [79].

2.2.1 Introduction

The identification of gene regulatory networks is a major challenge of systems biology.
This is due on one hand to the complexity of the interlocked network and on the other
hand to the partial observations of the species and mechanisms involved [19, 80]. To this
end, numerous computational approaches have been introduced and many comparisons
conducted to assess their respective performances [26, 27]. However, performances of
such network reconstruction algorithms have been shown to be crucially dependent on
the studied conditions, including: data availability, size of the network, network topology
or prior biological knowledge [26, 81].

The network inference algorithm introduced in this chapter has been developed in
response to the particularly small amount of data (10-12 datapoints) that is typically repre-
sentative of microarray recordings resulting from the study of a novel GRN. Conveniently,
the strategy chosen in this thesis allows the comparison of the dynamical properties
of GRN, which is introduced as well. Additionally, the strategy developed is flexible
and highly scalable, so that it can be applied to very large networks (10 000+ genes) to
uncover fundamental regulatory interactions. In the case of the problems sought to be
solved in this thesis, those properties are of particular importance, since the most relevant
information are scanned across large datasets, and through slight modifications of the

model across applications.



2.2 Network Inference and Analysis by Dynamical Differential Expression (DyDE) 35

2.2.2 Model Class

This thesis introduces the development of a systematic and scalable dynamical modeling
framework named Dynamical Differential Expression (DyDE). DyDE uses a simple yet
consistent modeling approach to reverse-engineer comparable gene regulatory dynamics
from time series data. In addition, it does not use any prior information and, hence, it
is unbiased towards prior knowledge of network topology and dynamics. The general

equation (1.1) of gene regulation is repeated hereafter to introduce the methodology:

dyi(t)
dt

= fi(mi(t)) — ouyi(t) (2.1)

where y;() is the mRNA concentration of gene i at time ¢ and the term oy;(¢) corre-
sponds to the degradation rate of y;(¢). The nonlinear function f; represents the influence
of the transcription factors of the parents on the target genes. The goal of the reconstruc-
tion of the gene regulatory network, therefore, is to find the regulators 7; for each gene of
the network.

Here, Linear Time-Invariant models (LTT) are used to capture the dynamics describing
the rate of change of the selected mRNA. Both the synthesis rate of the output mRNA
and the degradation term, therefore, appear linearly in the equation above. Linear models
are a simple yet flexible class of models that represent a local approximation in time
and frequency (first order truncation at a point of interest) of the underlying nonlinear,

complex physical processes at play, where their properties are preserved.

The motivations for such choice are multiple:

1. While complex nonlinear models have the potential to capture the dynamical
relationships between genes with great precision, it should be noted that large
amount of experiments are often required to accurately reconstruct the topology of
the network in such case [27]. In particular, such complexity is typically subject to
overfitting (fitting the noise instead of dynamics) without sufficient data or detailed
knowledge such as network topology, types of nonlinear interactions, or potentially

some of the model parameters (e.g. Hill coefficients).

2. Linear Time Invariant (LTT) systems are the most widely studied class of dynamical
systems. Such model benefits from a rich theory and a well-established collection
of tools that makes the analysis of its dynamical properties straightforward, as
contrast to detailed mechanistic models.
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. The estimation of the parameters of such models is reliable and computationally

efficient.

. LTIs have a frequency description with an easy visual interpretation, which can be

used to infer their stability and performance.

. LTIs models are highly flexible: the number of hidden variables involved (which can

represent non—observable biological species) can be tuned and a best approximation
of the system can be estimated with information criterion such as the AIC (Aikake
Information Criterion). Furthermore, user-defined time-delays can be introduced to
formulate further hypothesis on the nature of the biological process (for example,

the time it takes for the regulation to happen) [82].

. Although they inherently represent idealizations of the real, underlying complex

physical processes at play, careful design and considerations based on linear theory

led to good results in many different fields.

. It is not yet clear how non-parametric methods, such as [83, 84] could be used

to compare subtle changes in dynamics caused by perturbations, and pinpoint the

source of those perturbations.

. The description of biological mechanisms from time series data by LTI models

has been previously studied in [85, 86] and showed that such simple linear black
box model representation of circadian networks offers advantages when data are
scarce. In addition, [87, 88] correctly predicted previously unknown interactions
and design principles within the Arabidopsis oscillator using LTI models. It is
important to notice, therefore, that although such an approach does not provide
detailed functioning of the network, it is capable of describing gene regulatory
interactions with a reliable degree of precision.

Mathematical Formulation

Formally, a LTI model is generally represented by the following set of equations:

dx(r) _
o = Ax(t) + Bu(t) + Ke(r) (2.2)

y(t) =Cx(t) +Du(t) +e(t)

where x(1), u(t), y(t) and e(r) respectively represent the internal dynamics of the sys-

tem, its input and its output, and the inherent white noise of the system and measurements
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(e(t) ~ (0, 62)) [89]. The matrix A € R"™", vectors B, K € R™!, C € R'*", and scalar

D are parameters of the system.

Here, the strategy consists in representing the transcriptional relationships between
each pair of genes, one pair at a time, and identify the most relevant parents genes given
both genes expressions (Figure 2.1). As such, the model investigates whether the rate
of change of a particular gene y(¢) depends on another gene u(¢). For this purpose, u(t)
and y(r) represent the time series of the gene expression level of parents genes and of the
regulated gene, respectively. The LTI representation above represents a direct extension
of equation (2.1) in such that only an intermediate state x(¢) is added to give the dynamics
more flexibility towards the biological processes involved (translation, transcription, etc.).
The dimension of the vector x(z) defines the model order: it can be a 1-dimensional
vector (direct regulation or relatively slow dynamics compared to internal dynamics),
or a multi-dimensional vector (the regulation happens through intermediate steps that
introduce delays and cannot be ignored).
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Fig. 2.1 Mathematical Modeling Strategy. A & B Genes expression are measured
through their mRNA levels. C Gene regulation dynamics between genes is represented
through Linear Time Invariant (LTT) systems, one pair of genes at a time.This is repeated
for all input-output pairs of genes to estimate a network.

Estimating a model means finding A, B, C, D and K that reproduce the dynamics
involved with a sufficiently high degree of precision. More specifically, it produces a
vector y(¢) using u(¢) and through the estimation of A, B, C, D and K that needs to be as
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close as possible to the real data y(¢). As for the modeling of gene regulatory networks, the
model has been simplified to merely estimating A, B and C. Indeed, explicitly estimating
K did not improved the accuracy of the reconstruction and it is further assumed that y(z)
is a direct observation of the output gene, so that D = 0. Furthermore, C is set so that
the first state is the measured gene. Finally, since gene expression measurements always
hold a constant offset, an additional state of order O is added to account for it. Hence, the

model can be rewritten as:

e L

y(1) = (€ 1) xpunlo)+e(0)

with

( X )
Xfull =
Xof fset

The identification of the parameters is performed using the function ’pem’ imple-
mented in MAT LAB™™ to minimize the prediction error [89]. A, B and C describe entirely
the evolution of the system, which can therefore be predicted. The estimation of parame-
ters requires low computational time: a single system between a pair of genes is typically
identified within few seconds (Intel Core i5).

Each potential link between two genes is validated if the corresponding model repro-
duces the dynamics involved with a sufficient degree of precision, which is characterized
by a high goodness of fit, defined as:

Z;(v:l (y_),)\k)2>

fitness =100 (1 — =
chvzl (y_y)z

where y is the validation data, y is the average value of the validation data, and i is
the estimated output. MATLAB function compare can be used to compute the fitness of
the model. A model fitness equal to 100% corresponds to a perfect identification. The
choice of such metric is motivated by the dependency of noise towards the abundance

of gene expression. When the distance of the true data points towards the mean is large
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(represented by the denominator in the above equation), the fitness conveniently penalizes
less the error term, which lies in regions where the intrinsic noise involved in the gene

expression is potentially the largest.

2.2.3 DyDE Framework

In this section, one of the main contributions of the thesis is introduced. The Dynamical
Differential Expression (DyDE) methodology uses the aforementioned LTI modelling
framework to reverse engineer the topology of unknown GRNs while at the same time
providing a dynamically reliable support to investigate the source of a perturbation (e.g.
treatments or drugs) in the network. In particular, this approach does not rely on prior
assumptions of the network dynamics and can be applied to short time series data with
scarce sampling. In chapter 3, it is shown that the introduced methodology can reliably
identify the source of a perturbation in complex regulatory systems such as the circadian
network. The proposed mathematical framework is scalable and flexible, so that it can be
applied to large datasets.

Identification of Transcriptional Dependencies

The first step of DyDE consists of uncovering dependencies and quantifying dynamics
between every genes of the whole network with LTI models. The mathematical framework
estimates a collection of Single Input-Single Output (SISO) models between pairs of
genes to characterize the system dynamics. The limited number of available time points
restricts the modelling of SISO systems to first and second order models. It should be
noted that the use of DyDE involves a cubic spline interpolation between data points
before estimating the parameters. Gaussian processes have been empirically considered
as an alternative way of interpolating the data for further constraining the dynamics
of the linear modeling, without noticeable improvement. Furthermore, second order
systems did not improve significantly the fitness of models and resulted in a considerable
increase of false positives (overfitting). Hence, the model order is restricted to one for the
applications considered in the thesis. Second order models will be computed to investigate
the complexity of the dynamics given that the link has been validated. For a first order

model, the LTI model described the dynamics between two genes can be reduced to:

= au(t) —by(t) +c¢

where u(t) and y(r) represent the time series of the regulatory gene and the regulated

gene, respectively. In addition, by(¢) corresponds to the degradation rate of gene y, au(t)
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corresponds to the influence of u(r) on the rate of y(r) and c is a constant offset. The
model has a total of three parameters (a, b, and ¢), leading to efficient solutions. A
subspace initialization algorithm is chosen since it performed similarly as randomizing
initial conditions—for the vast majority of models (99%), the final solution was identical
with either method. This suggests that the chances of being trapped into a local minimum
are negligible.

To reverse engineer the whole gene regulatory network, therefore, this modeling is
independently repeated for all available pairwise genes, where each gene takes its turn as
being an input and then an output to another gene. This modeling approach, therefore,
generates a large amount of SISO LTI models (n> — n models, where n corresponds to the
amount of genes, and self regulation is not considered) to describe the system. Finally,
the fitness of each of the pairwise regulation model subsequently serves as a proxy for
the confidence level of the interactions between genes. A thresholding process, therefore,
allows to recover the topology of the network (illustrated on Figure 2.2).

0
©—& . BE
4 K 6 2| 2 validation threshold = 75%
L 60 30 87
M @ 75 | 81 | s

Fig. 2.2 Network Reconstruction through Fitness Thresholding. LTI systems are
computed between each pair of genes, one pair at a time. The agreement of the model
with the observable data is therefore represented by the fitness metric. The fitness values
for each pair of genes of the network can be represented as a fitness matrix. A threshold
that describes the level of required accuracy of the model to the data is then applied. The
topology of the network is defined as the models for which the agreement with the data
were above the fitness threshold. In this example, a fitness threshold of 75% has been
chosen, so that only the following links are accepted: G1 to G2, G2 to G3, G3 to G4, G4
to G1, G4 to G2.

Assessing Biological Alterations using the v-gap

The second step consists in identifying the effect of a treatment on the biological network.
In general, the discovery of drug modes of action is still a costly and inefficient process,
which often requires considerable prior knowledge of a biological system and/or a vast

amount of data in several experimental condition (e.g. mutations). In particular, while a
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treatment might affect the abundance of many transcripts, only a few links are affected,
as depicted in red in Figure 2.3. Indeed, most biological systems have a large number of
feedback loops. Hence, a perturbation anywhere in the network typically affects all nodes
(in this case, their molecular concentration and time profiles), which makes the problem
of inferring the entry point of a perturbation hard using the standard Differential Analysis
(DE) of transcripts levels. The main reason is that DE only performs statistical analysis
of changes in gene expression levels [23, 90]. Indeed, a complex cascading effect causes
large section of the transcriptome to be differentially expressed, despite not being directly
affected by the drug.

To capture the cause of the perturbation, it is proposed, instead, that key mechanisms
involved in the perturbation can be captured by identification and comparison of regu-
latory dynamics before and after the perturbation occurred. The rationale behind this
approach is that not only genes, but also their interactions, are affected by a drug. The
modelling strategy was designed so that it could be applied to scarce data without the

need to cover extensive experiments or to make prior assumptions of network dynamics.

Treatment

Fig. 2.3 Treatments effects in transcriptional networks. Treatment effects can be
perceived as perturbations in molecular networks [2, 91]. In transcriptional networks,
such perturbations usually only affect a very small number of regulatory links directly. For
example, only the red links have been directly affected by the treatment. All other links
are unchanged, although all nodes (concentrations) in the Figure have been (indirectly)
affected due to cascading and feedback effects. Hence, Differential Expression (DE)
might not distinguish between direct and indirect effects of a treatment. Dynamical
Differential Expression (DyDE), therefore, investigates how and why changes occur,
instead of simply measuring what and how much is produced by those changes.
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For this purpose, two cases are of particular interest. First, a link between two genes
is validated in the untreated system alone (i.e. it is not possible to find a combination of
a, b and c so that the model in the treated system provides a good match with the data
anymore). Second, a link is validated in both systems, but the way one gene regulates the
other may change; this is a much subtler change in the dynamics of the link. The latter
case requires us to compare the dynamics between both links.

Here, a rigorous and well-established tool from engineering known as the v-gap
[92] was used. To understand the control theory concepts underlying the v-gap, some
mathematical notions need to be introduced. When estimating the regulation function
between two genes, the resulting model is known as "open-loop", such that the external
feedbacks loops controlling both genes expression are not integrated directly in the model
computation. Let P represent the equivalent transfer function of the model, the genes
are known to be involved in a feedback loop, represented by the controller C, the system
can be illustrated by the block diagram on Figure 2.4. Altogether, P and C represent the
closed-loop behavior of the system. In fact, the closed-loop behavior of two systems
can appear very close although the difference between the open-loop systems can be

arbitrarily large.
This can be illustrated with the following example [92], given P;, P>, P3 so that:

_ 100 100 100
T2+l T 2s—1 7 T (s+1)2

Py 2.4)

Py and P, are very different. One is stable, the other unstable. Nevertheless, their

closed loop behaviors are quite similar (for the example, C = -1):

P 100
1—-PC 254101

(2.5)
P 100
1—-PC 25499

Which is confirmed by a small v-gap; 6 (P;,P») = 0.02, while 6 (P;,P3) = 0.89. Orig-
inally developed to compare two linear models from a perturbation perspective, the v-gap

estimates the smallest amount of perturbation that is needed to transform one model into
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another. In the context of biological networks, this is of particular relevance since genes
regulate each others through multiple interlocked feedback loops. This then facilitates us
to determine the significance of the dynamical change of a link between experimental
conditions. The v-gap returns a value between O to 1, quantifying whether the models are

similar or very different, respectively.

u(t) — y(t)

Fig. 2.4 Block diagram representation of a feedback system. When a perturbation
occurs in the system, the dynamics between genes might be affected. P represent the
model as estimated by DyDE while C represent the control effect of the rest of the
biological network. Originally developed to address the stability properties of closed
loops systems defined in the same feedback loop, the v-gap essentially measures the
distance, from a perturbation point of view, between linear models P.

This approach has been tested with in silico data in [93] which subsequently suggested
that values above 0.2 could be used to infer the main target of a perturbation. The v-gap
is computed using the gapmetric function in MATLAB. It should be applied to all models
that have been estimated in both networks.

The v-gap can in general be computed pointwise in the frequency domain, under mild

conditions [94]. Let P; and P, represent the transfer function of the open loop LTI system

before and after a perturbation occurred in the system:

Oy(P1,Py) = supy(Pi(jo), P (jo)) (2.6)

In particular, for a SISO system:

. o P (jo)—P(jo)]
W(Pl(Jw)’PZ(]w))_\/1+|P1(ja))|2\/1+|P2(ja))|2 (2.7)
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Therefore, if the signals are concentrated around a particular range of frequencies
(such as oscillating signals, such as circadian of period approx. 24 hours), the gap should
be measured ‘locally’ around that range of frequencies only, since they dominated the

model estimation in Step 1.

2.2.4 Example of DyDE application

Next, we explain the key ideas behind DyDE through a small number of genes in the
Arabidopsis circadian oscillator. For example, the following model considers TOC! as an

input and PRR9 as an output.

d[PRRY) (1)

-~ =a[TOC] (1) — b[PRRY](1) +¢

where b represents the strength of activation or repression induced by 7OC! on the
expression rate of PRR9, and a corresponds to the degradation rate of PRR9. These
parameters are estimated by minimizing the prediction error from the untreated time
series for both TOCI and PRR9Y.

In this case, we found a model in good agreement with the data (57% fitness), suggest-
ing that indeed TOCI regulates PRR9 (Figure 2.5). Moreover, the model demonstrates
that the rate of change of the concentration of PRR9 is proportional to the concentration
of TOCI. Note that the other way around (i.e., PRR9 regulating TOC1 could not be
established since the respective model has a low goodness of fit (16%, Figure 2.5B).
These results are consistent with the literature [33]. Hence, we would then establish a
link from 7OC1 to PRRY, but not the other way around (Figure 2.5C).

Then, a model is estimated between TOCI and PRR9 from the NAM-treated time
series. From the untreated and treated time series alone, it is unclear whether the link
dynamics have changed (Figure 2.5D). The optimal model parameters, however, have
significantly changed. A v-ugap of 0.5 confirms that indeed the link has been affected.
This result indicates that there is large perturbation in the regulatory dynamics that links
TOCI to PRR9Y, which, therefore, should be considered as a strong candidate for being an
entry point for NAM in the system. If true, knocking down either TOC1 or PRR9 would
therefore lead to NAM no longer affecting the clock. This analysis is then repeated for all
common links between untreated and treated plants.



2.2 Network Inference and Analysis by Dynamical Differential Expression (DyDE) 45

Untreated
dPRRY() _ _
A 05 |~  =-04TOCIL()-041PRRAY)
0 ‘ ‘ 0! ‘
48 60 72 84 96 48 60 72 84 96
TOoC1 PRR9 Simulated (57% Fit)
1 1 .."’.‘ "‘
Untreated kY
B 05 _JATOCY _ _33pRRo(t) - 7.6 TOCL(H) s
ol ‘ ol.: R
48 60 72 84 96 48 60 72 84 96
PRRY TOC1 Simulated (16% Fit)

C @

NAM Treated

FRRAY — - 022T0C10) - 002P RR YY)

0.5

0 ‘ 0
48 60 72 84 96 48 60 72 84 96
TOC1 PRR9 Simulated (58% Fit)

Fig. 2.5 Network inference and analysis by dynamical differential expression
(DyDE). (A) LTI system captures the dependence of the rate of the concentration of
a transcript on the concentration of another transcript. First order linear models are used
to represent the dynamics between two genes. Here, a good agreement (plain line) with
the data (dotted line) was found (57% goodness of fit). (B) The inverse regulation is
considered. In this case, it is not possible to find a combination of parameters so that
a first order linear model captures the dynamics involved. For this inverse regulation
the model that best described the data obtained a goodness of fit of only 16%. (C) A
threshold by which each model is (in)validated is applied on the goodness of fit of the
models. As an example, a threshold of 46% would consider a link from 7OCI to PRR9
but not the other way around. The same threshold is applied to all models. (D) A first
order linear model is evaluated in the presence of nicotinamide between the same species.
The v-gap is then applied to compare models (A) and (D) to quantify whether the models
are similar, or significantly affected by NAM
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2.3 Optimal Experimental Design and Multifactorial Bench-

marking for GRN Inference

Adapted from:

* Mombaerts L et al. Optimising time series experimental design for modelling of
circadian rhythms: the value of transient data. FOSBE 2016. [95]

* Mombaerts L. et al. A multifactorial evaluation framework for gene regulatory
network reconstruction. FOSBE 2019. [96]

2.3.1 Introduction

Hereafter, the performance of the DyDE framework and recent and successful network
inference strategies are assessed under a novel, multifactorial evaluation framework in
order to highlight pragmatic trade-offs in experimental design and network reconstruction.
Realistic time series datasets are generated from one rhythmic and five non-rhythmic
models of gene regulatory networks that have been widely used as benchmarks in the
literature [27, 26]. External interventions, i.e., gene deletion (knock-out) and chemical
treatments, are explicitly simulated to provide a comprehensive picture of the perfor-
mance of each algorithm under a range of experimental conditions. Then, increasingly
rich multi-experiment time series datasets are provided to five state-of-the-art network
inference algorithms representing distinctive mathematical paradigms. Performance is
assessed using standard techniques for classification algorithms, studying the area under
the receiver operating characteristics (ROC) and the precision-recall (PR) curves.

Navigating experimental trade-offs for GRN inference is not an entirely new concern,
although literature on the topic is surprisingly scarce [97]. Such a multifactorial approach
has never been undertaken for systematic evaluation of network reconstruction algorithms.
[98] studied the trade-offs between dense and replicate sampling strategies. Their results
showed that, under reasonable noise assumptions, gene expression profiles reconstructed
from dense sampling are more accurate than those resulting from replicate sampling.
[99] showed that at equivalent data size, short-time, gene knock-out experiments contain
more information about the GRN structure than single experiment, longer recordings
of non-rhythmic systems. The GRN inference algorithms used in their study, however,
are no longer state-of-the-art. [100] studied the cell cycle of Saccharomyces cerevisiae
as a case-study to analyze the effect of temporal resolution on the quality of the in-
ferred network. The performance as a function of time series length resulting from a
LASSO methodology [101] resembled a sigmoid shape with a plateauing effect at the
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end. [102] identified previously unrecognized factors that affect inference outcomes, such
as stimulus-specific experimental design and network motifs in the vicinity of a stimulus.
Following the DREAM3 competition, [103] investigated strengths and weaknesses of
algorithms in recognizing types of motifs that appear in gene networks. Finally, it has
also been shown that, for mutual-information based techniques, the accuracy reaches a
saturation point after a specific data size [104]. Algorithms based on correlation or mutual
information are, however, excluded from this research as they cannot detect causality

between genes [26].

In this analysis, it is reported that the algorithms do not benefit equally from data
increments. Furthermore, for rhythmic systems, it is more profitable for network infer-
ence strategies to be run on long time series rather than short time series with multiple
perturbations. In the case of circadian networks, it is further noted that the transitory
regime that follows the switch to a new constant condition (such as constant light) has
the potential to shortly reveal supplementary dynamics between genes that constitute the

network.

By contrast, for the non-rhythmic systems, increasing the number of perturbation ex-
periments yielded better results than increasing the sampling frequency. It is expected that
future benchmark and algorithm design would integrate such multifactorial considerations

to promote their widespread and conscientious usage.

2.3.2 Generation of Realistic Data

The use of in silico networks is preferable over random graphs, as they account for
realistic structural properties of biological networks [105]. For example, although ran-
domly generated networks display approximately the same power-law degree distribution
of regulatory interactions, they often fail to represent important properties such as the
modularity [106] or the occurrence of network motifs, which are statistically overrepre-
sented in real complex biological networks [107]. For this analysis, one rhythmic and
five non-rhythmic models of gene regulatory networks that have been widely used as
benchmarks in the literature [27, 26] are used to produce realistic time series data of gene
expression. The dynamical models considered for benchmarking all rely on common
modeling specificities and on highly nonlinear equations explicitly integrating protein

dynamics (although not observable in practice), such that gene expression is computed as:
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dyi
d_y = m;fi(m(t)) — oy
! (2.8)
dy o
dr =riyi iXi

where m; corresponds to the maximum transcription rate and r; the translation rate.
o; and f; represent both mRNA and protein degradation rates, respectively. f; is of the
Hill or Michaelis-Menten type formula for mass-action kinetics such that:

ﬁ:%%®+ui?%% (2.9)
xg(t) + ku,i

where k, ; corresponds to the Michaelis-Menten parameters and /,, ; indicates whether
the regulation is an activation (/,; = 1) or an inhibition (1, ; = 0). x, represent protein
levels and 7; the ensemble of parents genes for gene i. Indeed, mRNA levels are not
influenced directly by other mRNA levels but through their respective protein products.

Finally, a represent the Hill exponent (typically equal to 2 in most models).

Furthermore, all simulations were performed based on Langevin equations (stochastic
differential equations) to account for the Brownian motions of chemical species and
represent the intrinsic stochasticity in the dynamics of gene regulatory networks (account-
ing for molecular noise in both transcription and translation processes) [108]. Given
an infinitesimal updating, the standard form of the multivariate Langevin equation de-
scribes the random fluctuations of the molecular species and their evolution over time in

a "well-stired" system of interest. Formally, it can be represented by:

dXi(t) _

M M 2
dt E 1 le'aj(X(l‘)) + E lel'aj (X(t))l“](t) (2.10)
]: J:

with i = 1,..., N the amount of species in the system and M the amount of reaction
channels. The uppercase X; represents the number of molecules i in the system (in this
case, both mRNAs and proteins levels). M accounts for the molecular dependencies
(parents genes or proteins). a; is referred to as the propensity function. It measures
the propensity for reactions to occur in the next moment and is therefore inversely
proportional to the total system volume €2, which in turn can be tuned so that it matches
the noise magnitude observed in real biological systems. Vv;; represent the "state-change",
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or stoichiometry vector. It can admit O entries if a molecular species does not participate in
the reaction. The term I';(¢) represents temporally uncorrelated, statistically independent

Gaussian white noises formally defined as [108]:

T;(t) = lim .4 (0,1/dr) (2.11)

dt—0

The intrinsic noise is expected to have a significant impact on the behavior of the
system [109]. Then, data are downsampled to resemble realistic experimental design
(every 4 hours in the case of circadian experiments). Finally, the protein concentrations
are not made available in the provided datasets (only mRNA concentrations levels), as
current high-throughput technologies typically do not allow the monitoring of protein
expression [110]. Auto-regulatory interactions are not included. The models are hereafter

introduced.

The Millar Group Model of Circadian Regulation

The rhythmic gene regulatory system used as a benchmark here is a model of circadian
regulation of Arabidopsis thaliana, hereafter referred to as Millar 10 (Figure 2.6A) [31].
This model describes the central circadian oscillator through the modelling of 8 genes and
the intervention of several intermediate transcription factors. Moreover, regulatory interac-
tions are either additive or multiplicative, while proteins might undergo post-translational
modifications. As such, many levels of complexity encountered in real biological systems
are represented. The parameters of this model were typically investigated experimentally

or via simulated annealing over years of experiments.

Conceptually, it is composed of 2 interconnected feedback loops and an input pathway
that incorporates external light cues in order to synchronize the plant to the surround-
ing light conditions. When subjected to another external regime, e.g., constant light
or constant darkness, the system displays transient dynamics and reaches a new limit
cycle characterized by the free-running conditions of the circadian network. The transi-
tory regime that follows the switch to a new condition (either constant light or constant
darkness) can be short before establishing the new regime. However, this time window
may have the potential to shortly reveal supplementary dynamics between the genes that
constitute the network. To support this hypothesis, the performances of the network
inference strategies are first analyzed under such transient dynamics. For this purpose,
the model has been initially simulated for 240 hours in light/dark cycles to remove initial

system transients and then switched to constant light regime. Time windows of 48 hours



50 Efficient Modeling and Experimental Design for GRN Reconstruction

are then extracted from the light/dark limit cycle, at the transition to constant light and 48
hours after transition to constant light for further comparison. In the subsequent analysis,
only time windows starting from the transition to constant light and up to 3 days of
observations (24-36-48-60-72 hours) are considered.

Y e ° N ‘ o

./‘.GG 53 . . OG1 .(38 G5

Fig. 2.6 Gene regulatory networks used as benchmarks. Blue pointed arrows and
red blunt arrows represent activation and inhibition reactions respectively. A. Millar 10
Model (Rhythmic) B.-F. DREAM4 models 1-5

The Millar 10 model has been simulated to reproduce gene knock-out experiments.
Knock-out experiments are very informative, more than knock-down experiments, as they
provide network response to individual and large perturbations (genes are deleted) [26].
Knock-out experiments were simulated as in [111], by replacing the transcription rates of
the targeted genes by random noise drawn from a truncated normal distribution to ensure
non-negativity of the concentrations. Genes that have been knocked out are, therefore,
not influenced by their structural regulators anymore. The datasets in the numerical
experiments consist of a wildtype (WT) time series, and up to three randomly chosen
knock-out time series at a time. This selection has been randomized 6 times to account
for the uneven informative potential of different genes in the network. Furthermore,
such simulations being stochastic, each experiment was replicated 10 times to provide a
representative view of the performance of each computational method. In total, 950 =

10-5410-6-5-3 simulations were performed.
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The DREAM Competition Models

The studied non-rhythmic models (Figure 1 B—F) originate from the DREAM4 in silico
network inference challenge [103, 26, 112]. The structural properties of those networks
are extracted from the global interactions network of E. Coli, and therefore represent
biologically realistic networks (groups of genes are more connected than expected in
random graphs and cycles were preferentially extracted) [113]. In such case, a mix of
normal and lognormal noise is added to the overall gene expression time series data to rep-
resent measurement noise. New time series data were generated by the GeneNetWeaver
software [105] which simulates the system’s response to a perturbation of about a third of
its nodes, followed by a relaxation back to steady state after half of the recording, when
the perturbation was removed. The data characteristics are as in the challenge, with the
exception that the perturbation targets were randomized, whereas in the challenge data

they were preferentially carried out to cover the whole network [26].

Such data simulation offers a realistic representation of the undetermined effects
of a chemical treatment on a system at rest (steady-state). The resulting data are then
resampled using 3 different sampling rates (11-21-41 datapoints) to further assess the
effect of changes in experimental design. Here, 10 chemical perturbations were simulated
for each of the 5 available networks and replicated 3 times. Then, increasing amount
of perturbation time series (up to 4 at a time) are randomly selected from those 10
generated perturbations, and provided to the inference algorithms. This random selection
is performed 5 times. The perturbation targets are not known to the methods. In total,

900 =3-5-3-4-5 simulations were performed.

2.3.3 Network Inference Techniques

The network inference methods included in the comparison represent the function f of
Equation (2.1) at various levels of complexity and through entirely different mathematical
paradigms. They are Gaussian Process Dynamical Models (GPDM) [114], dynamical
GEne Network Inference with Ensemble of trees (dynGENIE3) [83], Algorithm for
Revealing Network Interactions (ARNI) [115] and Improved Chemical Model Averaging
(iCheMA) [27]. The modeling framework involved in DyDE has been extended to handle

multi-experiments data and is also included, hereafter referred to as All-to-All (ATA).

All-to-All (ATA)

The network inference methodology developed in this thesis to reverse-engineer the

structure of GRNs with comparable dynamics has been extended to deal with multi-
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experiments datasets. The datasets are merged together so that the dynamics to be
identified are identical through all experimental conditions, assuming that the signal-
to-noise ratios are similar in different experiments. The fitness score over multiple

experiments is defined as:

~ VEer 01(1) =31(116))* + .+ V/Xrern (9u(r) — 9a(1]6))?
\/ZIETI ()’I(l) =1 (t))z +ot \/ZteT”(yn(l) _)_’n(t))z

fitness = 100 (1 )

(2.12)

where n represents the amount of experimental conditions, 7' the sampling times of
experiments, y the gene expression level, ¥ the modeled gene expression, and y is the

average value of the gene expression level.

Gaussian Process Dynamical Models (GPDM)

GPDM, a non-parametric method, models gene expression as a nonlinear stochastic

differential equation:

yj=x(t;)+vj
dx = g(x,0)dt +du

(2.13)

where the dynamics function g is modeled as a Gaussian process with some hyper-
parameters 6, v;’s correspond to measurement errors, and « is a Brownian motion. This
defines gene expression as a stochastic process whose realizations can be sampled using a
Markov Chain Monte-Carlo (MCMC) strategy. Network inference is based on estimating
the hyperparameters of the covariance function of the GP. Multi-experiments are taken
into account by assuming that all time series are produced by the same dynamics function
g. Independent samplers are then constructed for trajectories x corresponding to different
experiments. Performance of GPDM was recently compared to the best performers of the
DREAM4 challenge and consistently shown superior in dealing with short time series
data [114].

dynamical GEne Network Inference with Ensemble of trees (dynGENIE3)

The semi-parametric method dynGENIE3 is an adaptation of the GENIE3 method for
time series data. GENIE3 was the best performer in the DREAM4 Multifactorial Net-
work Inference challenge and the DREAMS Network Inference Challenge [116]. The
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transcription function f; in Equation (2.1) is represented by an ensemble of regression
trees which is estimated from the gene expression data and their derivatives, estimated

using a difference approximation [83], so that Eq. 2.1 becomes:

)’i(tI;H) — i) = fi(m(1)) — o4yi(t) (2.14)
k+1 — Ik

The gene regulatory network inference problem is here casted as a feature selection

problem, estimated from the following learning sample:

) Viltks1) = vilte)

LS = {(vi(te),
Tkl — Ik

+oyite)) k= 1,.,N — 1} 2.15)

This semi-parametric approach provides a greater flexibility to the inference frame-
work but complicates the comparison of dynamical properties between experimental
conditions.

Algorithm for Revealing Network Interactions (ARNI)

ARNI is a recently developed method used for the estimation of network topologies
that performed well in network inference from a large collection of short time series
[115]. The derivatives are estimated explicitly through a difference approximation and
the relationships between nodes in the network are estimated by solving a nonlinear

regression problem, with a user-selected library of nonlinear basis functions.

dy N
: Z,l ij8ij )’j + Z,l ZlAlengljS(yj7yS)
= j=1s

N N
Z Z AijNisAin8ijsw(YVjsYsiyw) + ..
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Where g; are basis functions. A;; € {0, 1}V*N represents the dependency matrix of
the GRN so that:
LI
A= 5§g (2.17)
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Where f; is as in Equation (2.1). In the experiments, polynomial basis functions of
degree at most 3 were used. In essence, this approach shares an important commonality
with the network inference strategy developed in this thesis in such that it decomposes
the dynamics between biological species of the network into pairwise dynamical units.
The difference lies in the fact that more complex basis functions are typically considered
here with higher order hypernetwork interactions, together with a parameter selection
based on the enforcement of group sparsity via a greedy approach known as the Block
Orthogonal Least Squares (BOLS) algorithm [117].

Improved Chemical Model Averaging (iCheMA)

iCheMA is a semi-mechanistic model that estimates the derivatives from the data by
fitting a smooth Gaussian process to the time series. Then, genes expressions profiles are

modeled using explicitly the Michaelis-Menten formula for mass-action kinetics:

dyi(1) Liixu(t) + (1= L)k i
I . o), 2.18
dt u;,' " xﬁ (t) + kuvi ( )

Network inference is then based on estimating the parameters using an MCMC
approach. iCheMA goes exhaustively through all possible combinations of regulators
(typically, up to 3 at a time), which makes it a computationally heavy algorithm that does
not scale easily to large systems. Nevertheless, when provided with a large amount of
experimental conditions (11 experiments), it was revealed as the best performer of a set of
established network reconstruction algorithms applied to the inference of circadian-type
regulatory networks.

Summary of GRN reconstruction strategies

Table 2.1 summarizes the properties of the methods included in the benchmark. A
method is deemed a continuous-time method if it is based on continuous trajectory-
fitting, or modeling from a continuous-time system. Methods estimating derivatives
from the data and then solving input-output regression are deemed discrete-time methods.
Combinatorial effects mean dynamics of the form y; = f(y;,yx) where f(y;,yx) cannot
be represented as a sum f(y;,yx) = &(y;) +h(yx). The table shows whether the methods
explicitly take into account combinatorial effects. The computational time is based on 48
hours recordings (13 datapoints) of the Millar 10 model. Performance ranking is based
on average AUPREC values.
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Table 2.1 Summary of the properties of the different network inference methodologies
introduced.

Z o
5 g 3 = g &0 .
28 2 £ o § 2.8 Lol
= s B 3% = = o323
EE Eg Eg8 3 Eg . g5:
Method Z© OZ5 O=E D T U8 ¥ afs
All-to-all v (V)] 49.4 2/5
GPDM v v v 333.4 /1
dynGENIE3 v v 0.7 42
ARNI v (V')? 1.0 3/3
iCheMA v (V)2 1999 5/4

TIf higher-order dynamics are used.
2Discussed in the article, but not in the implementation.

2.3.4 The Value of Transients Data for Modelling Circadian Rhythms

The performances of each algorithm are here assessed in terms of the resulting Area Under
the Receiver Operating Characteristic (AUROC) and the Area Under the Precision-Recall
(AUPREC). Precision-Recall curves allow for a more accurate picture of algorithms
performances for sparse GRNs and is commonly used for the comparison of inference

algorithms. Auto-regulatory interactions are not considered.

Decomposing the time series resulting from the rhythmic model into synchronized-
desynchronized states showed that, on average, the accuracy of the network reconstruction
is improved by considering transient dynamics (Figure 2.8). While GPDM, ATA, and
dynGENIE3 benefit —to a varying degree— from the transition to the desynchronized
state, change in performance of iCheMA was not statistically significant and ARNI’s
performance was slightly impaired. It should be noted that a significant increase in
accuracy is observed for the strategies that do not explicitly estimate derivatives. An
example of the resulting ROC and PR curves is shown for the ATA strategy on Figure 2.7.

2.3.5 Experimental Tradeoffs and Optimal Strategy

Figures 2.10 displays the performance of each algorithm resulting respectively from the
simulations with data from the Millar 10 model and the steady-state systems under several

combinations of data types.

On one hand, these graphs show that GPDM outperforms the other approaches for al-
most every system and experimental configuration considered. It is outperformed by ATA
in only one case with 24h wildtype only data from the Millar 10 model. This illustrates

the importance of various experimental scenarios in benchmarking network inference



56 Efficient Modeling and Experimental Design for GRN Reconstruction

Receiver Operating Characteristics Curve C Precision Recall Curve
T T T T 1 T T

[CJ9s5%Cl
—— Median value

PR)
o o
8 3
|
i
i
i
i
i
L
T~
5 o
5 %
AN
AN
\

o
o
~
Precision
o ¢
o

True Positive Rate (TPR]
2
o
=

o
w
~
o
w

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive Rate (FPR) True Positive Rate (TPR)

Pokhilko et al. (2010)
T

T
©
L]
©
E
S
=
c
o2
7]
@
4
s
=
[n]
©
c
5}
0]

Fig. 2.7 Example of results for the All-to-All on the Millar 10 model. (A) The circa-
dian network that serves as a benchmark. (B & C) The ROC and the Precision-Recall
curve resulting from the application of the All-to-All to the time series gene expression
data, respectively. The grey area represent the 95% confidence interval and is a result of
the stochastic simulations. (D) An example of transients data for one run of stochastic
simulation of the Millar 10 model (downsampled to one data point every 4 hours).

strategies and motivates the work undertaken in this paper. Interestingly, the simple
pairwise low order linear modeling (ATA) seems to outperform dynGENIE3, iCheMA
and ARNI in terms of AUPREC for every observation length and system perturbation con-
sidered in the rhythmic model. Only the AUROC values of the non-parametric approach
ARNI exceed those of ATA for the 3 mutations case, starting from 36 hours of observation.

It is further interesting to notice that not all algorithms benefit equally from data incre-
ments. The gain of accuracy resulting from increasing the amount of data in the rhythmic
model is only mild for the linear modeling strategy and iCheMA while it is significant
for GPDM, dynGENIE3, and ARNI. In this regard, in average, GPDM benefits from
the largest increase in accuracy whereas dynGENIE3 and ARNI compete at a slightly
lower level for the experimental conditions presented. A saturation effect, however, can
be observed at AUPREC values of around 0.8 for GPDM, 0.63 for the ATA, and 0.58 for
ARNL

The analysis of the DREAM competition models delivers a different view on network

reconstruction as not all nodes are stimulated in a given system perturbation. For those
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Fig. 2.8 Evaluation of the effects of dynamical transients on the rhythmic model
(Millar 10). Statistical significance between predictions from transient dynamics and
other conditions are indicated by star symbols. They are computed with the Mann-
Whitney U-test (* = p < 0.05; ** = p < 0.01; *** = p < 0.001). The different light
conditions are LD: 48h with two light-dark cycles, Tr: 48h constant light, starting right
after the last dark period, LL: 48h constant light starting 48h after the transition from
regular cycles to constant light

networks, the benefit of additional system perturbations is considerable as they allow
investigation of novel, previously unstimulated segments of the network. In the experi-
mental design cases presented, none of the algorithms seemed to approach a saturation
point for the data combinations considered. While the GPDM succeeds in providing
the best accuracy for the DREAM networks as well, dynGENIE3 ranks second, ARNI
third, iCheMA fourth and ATA last. The reason why the linear modeling strategy is
surpassing dynGENIE3 and ARNI for the 1 perturbation only case and does not improve
for additional datasets is likely related to the partially stimulated nature of the whole
dynamical system and has yet to be investigated.
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Fig. 2.9 Example of results for the All-to-All on a DREAM Model.(A) The DREAM
model that serves as a benchmark. (B & C) The ROC and the Precision-Recall curve
resulting from the application of the All-to-All to the time series gene expression data,
respectively. The grey area represent the 95% confidence interval and is a result of
the stochastic simulations. (D) An example of transients data for one run of stochastic
simulation of the DREAM model 2 with a perturbation on node 9.

On the other hand, Figure 2.10 allows for proper visualization of experimental trade-
offs. Doubling the amount of datapoints by performing another experiment does not
provide the same level of information than doubling the amount of datapoints in a given
experimental setup. Table 2.2 summarizes the amount of datapoints in each of the pre-
sented experimental setups. While the cost of each datapoint might not be equivalent
whether it originates from a novel system perturbation or from longer recording, these
tables provide insight on how to choose an appropriate experimental scenario regard-
ing the performances of each of the algorithms presented in Figure 2.10. For instance,
sequencing a gene in WT every 4 hours during 72 hours requires a similar amount of
datapoints as the WT with 2 mutations for 24 hours or the WT with 1 mutation for 36
hours. In this case, the experimental design that provides the best results would be a
single recording of 72 hours resulting in an AUPREC of 0.84 using GPDM, compared to
0.75 or 0.7.

Regardless of the algorithm and assuming an equivalent cost per datapoint, it can be
observed that, as a general rule of thumb and for top performing strategies, it is often
preferable to observe the rhythmic system for a longer amount of time. By contrast,

increasing the sampling frequency of the steady-state systems only resulted in a marginal
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improvement in the accuracy of network reconstruction. Surely, a lower bound on the
sampling rate is required for a reliable construction of those systems but it was not reached

in this analysis.
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Fig. 2.10 Area Under the ROC curve and the Precision-Recall curve resulting from
the inference of the (a) Millar 10 Model (b) DREAM models, for multiple combina-
tions of observation lengths and system perturbations. (a) The bars are grouped by
the number of additional recordings resulting from perturbations applied to the system
(up to 3) and decomposed into data observation lengths of [24-36-48-60-72] hours (from
left to right). (b) The bars are grouped by the amount of systems perturbations (up to 4)
and decomposed into data quantity of [11-21-41] datapoints (from left to right).

Table 2.2 Experimental value. Left: Numbers of measurements in the Millar 10 experi-
ments. Sampling rate is always 4h. Right: Numbers of measurements in the DREAM
experiments. Window length is always 20.

Window (h) 24 36 48 60 72 At 2 1 05
WT 7 10 13 16 19 I Pert 11 21 41
WT+1Mut 14 20 26 32 38 2Pert 22 42 82
WT+2Mut 21 30 39 48 57 3Pert 33 63 123
WT+3Mut 28 40 52 64 76 4Pert 44 84 164
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2.4 Discussion

DyDE/ATA as a network inference strategy

Undoubtedly, the concept of using a linear modeling strategy for the identification of gene
regulatory dependencies is not new. However, the implementation design and the general
GRN modeling framework presented in this chapter are new and appear to be particularly
suited for the problems considered. A comprehensive analysis of its performance has
been performed under various experimental conditions and compared to state-of-the-art
network inference algorithms. In the current network inference literature, such steps are
often undertaken by roughly comparing few strategies, or algorithms such as those based
on correlation or mutual information that do not belong to state-of-the-art anymore. A
notable exception is the attempt undertaken by the DREAM competition, 7 years ago.
Even so, such comparisons are often biased in the sense that if more than one, only few
experimental designs are considered. Therefore, the presented performance might be
misleading and as a result, the applicability and suitability of the proposed algorithm
remain unclear for most practical cases. Hence, it is not rare to witness applications
papers that investigate the performance of multiple algorithms from scratch in the spe-
cific context of their experimental design and biological process. In fact, a thorough
comparison of state-of-the-art network inference algorithms was not found in the current
literature. Eventually, a benchmark framework that provides both computational and
experimental scientists with comprehensive trade-offs was lacking. This is the main
reason for which a step in this direction has been taken to provide a suitable evaluation
framework together with an updated, state-of-the-art comparison of network inference
algorithms under various realistic experimental designs. The field has now reached a
certain maturity, so that the relative performance of the mathematical paradigms presented

in this contribution are expected to remain conclusive.

In the light of the results presented in this chapter, the linear modeling approach
developed has been shown as an extremely valuable tool. Being very flexible with a
large supporting literature, linear models have shown that not only their performance in
recovering the structure of GRN from short time series data can impressively compete, but
even outperform, most of the latest algorithms for most of today’s real case experiments.
Moreover, they can also be interpreted and manipulated in such ways that are currently not
possible with nonlinear or nonparametric models. In this respect, the comprehensiveness

of linear models remains a major advantage for many practical applications.

Finally, the modeling strategy presented here has the considerable advantage of be-

ing applicable to very large datasets, or "big data", monitoring the gene expression of
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thousands of genes at a time. Indeed, DyDE scales very easily as a result of its pairwise

dynamical investigation.

It should be highlighted that the addition of static nonlinearities to the linear framework

developed here has been considered but the preliminary results were not satisfactory.

Optimal resources management for network reconstruction

Choosing between different experimental designs and network inference strategies de-
pends on the research question and the resource constraints. For this purpose, performing
a complete cycle study involving multiple inference strategies and specific benchmarks,
such as in [118], is not uncommon. However, while such analysis provides a compre-
hensive idea of the relevance of the inferred network topology, it represents a significant

investment of both time and money, and is sometimes not even possible.

In this chapter, the general effects of data quantity and system perturbations on the
accuracy of the GRN reconstruction were evaluated for one rhythmic model of gene
regulation and five steady-state models. Our contribution is threefold. We showed the
relevance of multifactorial benchmarks to assess the performances of network inference
strategies, the importance of an appropriate choice of model complexity given data avail-
ability, and revealed pragmatic considerations for experimental designs. Depending on
the cost of performing more experiments or increasing the amount of datapoints, one of

those choices should be preferred.

The algorithms considered here showed consistent performances across the 6 investi-
gated networks. All network inference strategies did not, however, benefit equally from
the increasing amount of data. Nevertheless, the fact that the parameter free, Gaussian
process strategy GPDM has been consistently outperforming all strategies presented is
noticeable and of further interest. In addition, by looking at the data expense and the
resulting reconstruction accuracy, it should be further noted that GRN inference algo-
rithms should improve the way various time series experiments originating from the same

biological system are taken into account.

[26] showed that, on average, a combination of network inference strategies leads
to the best network reconstruction. As such, it is noticed that the order in which the
links were inferred by each algorithm, and experiment, was different. Further research,
therefore, should learn the ranks, or confidence levels, of each link in the network recon-

struction process and design a proper combination of the algorithms that optimizes their
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synergy, depending on the experimental conditions.

Multifactorial studies such as the one presented here require a considerable amount of
simulations. Some algorithms, such as those involving MCMC sampling, took several
days to run on a 24 cores workstation. As such, a complete analysis of the experimental
design space is not possible but other decisional factors exist and require further inspec-
tion. Among those, [98] showed that denser sampling is preferable to additional replicates.
Such strategy could be particularly profitable for transient data and to algorithms that
explicitly estimate derivatives. [102] used time series data originating from the DREAM
4 challenge to show that using only half of the perturbation data (without the recovery to
steady-state) might be beneficial to some algorithms. Furthermore, some methods are
able to incorporate information on external inputs, such as perturbations (with the targets
still unknown), which increases the average performance. In addition, in practice, gene
regulatory networks are often of bigger dimension which is not always accessible to the

most computationally expensive algorithms.

Finally, this study did not take into account prior knowledge of the system, which
could potentially be iteratively integrated into each step of the network reconstruction. For
example, a strategy such as the one presented by [119] actively optimizes the precision
of the predictions by proposing the next most informative knock out. In such case,
the aforementioned results would likely underestimate the resulting accuracy of the
reconstruction. In fact, doubling the amount of data points by doubling the observation
time or by performing an additional experiment not only provides different levels of
information, but can reveal different parts of the network as well. Such strategy might be

necessary to cope with the most isolated genes.

Further Notes

It is important to notice that a key commonality between the most performant network
inference strategies is that they do not simultaneously reconstruct the network as a whole,
but rather through "separate", most likely, set of interactions. As a conclusion, even
for the most performant network inference strategies, the resulting network is not ready
to be simulated to reproduce their emergent dynamical behavior already, but instead

intermediate validations are yet still required.

The field has now reached a certain maturity and strengths and weaknesses of many
network inference algorithms have become more evident. However, it should be noted

that the amount of information that can be withdrawn from gene expression data about the
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circuitry of the GRN would eventually saturate (if not already), given the partial measure-
ments of the species involved. Furthermore, increasing amount of data are generated over
time and it becomes less common to study an entirely novel complex biological system
on its own. The next challenge would now eventually be heading towards focusing on
the best integration of multiple experiments data, the integration of prior knowledge, the
robust combination of network inference strategies or the optimization of the information

that can be gained from a following-up experiment.

2.5 Strengths and Limitations of the Study

As a summary, the DyDE/ATA modeling framework developed in this thesis holds the

following strengths and weaknesses:

* Strengths:

— Simplicity, efficiency, flexibility, interpretability, comparable, scalable.

— To date, it is the only network inference strategy that allows to infer dynamical
perturbations, since it relies on control theory tools developed for linear

systems.
¢ Limitations

— Given additional, more informative data, it might not remain the most efficient
technique to infer the gene regulatory network. However, the development
of gene regulatory network inference algorithm reached a sufficient maturity
so that one might now be interested in combining the results of different
paradigms, or how to rely on prior knowledge to build hypothesis about the

circuitry.

— The reconstruction of the circuitry of GRN through the linear modeling strat-
egy considered here is based on a individual, independent thresholding process
that does not inherently take into account the gene expression of the others
genes to compute the fitness score between two genes.

It is showed empirically that such approach works well: the highest fitness
scores are very likely to represent actual gene-gene interactions, which make
its performance comparable with more complex, state-of-the-art network re-
construction algorithms. As such, it is a valuable tool that should be further

considered at least as a complement to other techniques in the case the data
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would be more informative (10+ datapoints).

Nevertheless, the modeling strategy typically represent a heuristic approach.
Indeed, it is often considered in the network inference literature that genes can
be regulated by up to 3 parents genes at a time. There are, therefore, rooms
for improvements. A more biologically accurate version of the approach
considered here should therefore estimate the most relevant contribution of

multiple genes at a time, given the other genes expressions available.
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3.1 Contribution

The circadian oscillator, an internal time-keeping device found in most organisms, enables
timely regulation of daily biological activities by maintaining synchrony with the external
environment. The mechanistic basis underlying the adjustment of circadian rhythms to
changing external conditions, however, has yet to be clearly elucidated. We explored the
mechanism of action of nicotinamide in Arabidopsis thaliana, a metabolite that lengthens

the period of circadian rhythms, to understand the regulation of circadian period.

For this purpose, several computational methods were developped. First, a prediction
model was build to distinguish between rhythmic-non rhythmic gene expression data,
based on the optimization of a hand-designed skewed sinusoidal function and logistic
regression. Second, to identify the key mechanisms involved in the circadian response
to nicotinamide, we developed a systematic and practical modeling framework (DyDE)
based on the identification and comparison of gene regulatory dynamics. While theoreti-
cally tested with in silico models [93], this is the first successful application of the v-gap
methodology.

The results showed that the developped methodology was able to recover most of the
known structure of the Arabidopsis Circadian Network from a single experiment of 48
hours with a sampling rate of one data point per 4 hours. Subsequently, several novel
regulatory interactions were proposed. From a biological perspective, the methodology
developed for this paper allowed to identify genes that are particularly responsible for the
dynamical entrainment of the circadian clock, and validated those results experimentally.
On one hand, this provides additional knowledge on the dynamical effects of nicotinamide
and the role of blue light in the response of the circadian oscillator. On the other hand, it
provides novel knowledge on the mechanisms of synchronization of the physiological
rhythms of most organisms with the environment. Finally, being flexible, highly paral-
lelizable, the methodology was extended to the whole genome (1 000 000+ interactions)
to search for previously unknown genes that have the potential to be involved in the
dynamical regulation of the circadian oscillator and nicotinamide. While those results
remain to be validated, promising genes were identified. Such approach was not possible

for most currently highly performant state-of-the-art network inference algorithms.

Altogether, those results suggest that our methodology could be adapted to predict

mechanisms of drug action in complex biological systems.
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3.2 Introduction

The synchronization of physiological rhythms with the external environment is important
for nearly all organisms. Circadian oscillators are internal timing devices that produce
rhythms with a period of about 24 hours to regulate a wide range of biological processes.
Circadian rhythms maintain synchrony with the daily timing of light and dark cycles
resulting from Earth’s rotation by constantly integrating environmental signals. This pro-
cess of synchronization is called entrainment. Studying the mechanisms that dynamically
adjust circadian period and phase, therefore, is critical to understand the control of daily

biological activities.

In Arabidopsis thaliana, the circadian oscillator consists of a complex circuit of highly
connected transcriptional regulators. Together, they coordinate global transcript accu-
mulation and diverse biological processes, such as photosynthesis, hormone signaling,
hypocotyl elongation and plant-pathogen interactions [120, 121, 122, 123, 124]. The
light perception of the circadian oscillator is conferred by a suite of photoreceptors. The
photoreceptors are split into two classes: phytochromes (principally PHYA and PHYB),
that primarily sense the red portion of the spectrum [125] and cryptochromes (CRY! and
CRY?2) that are sensitive to blue light [126, 127, 128].

Recent studies have demonstrated a role for metabolism in regulating and entraining
the circadian oscillator of Arabidopsis thaliana. The primary metabolite sucrose acceler-
ates the circadian oscillator (i.e., reduces its period) through regulation of the morning
expressed gene PSEUDO RESPONSE REGULATOR (PRR) 7 [129], while GIGANTEA
(GI) has been identified as a necessary sucrose-signaling mediator in the dark [87]. An-
other metabolite, nicotinamide (NAM), a breakdown product of nicotinamide adenine
dinucleotide (NAD), causes long period of the circadian oscillator in all organisms tested
[130, 131]. The mode of action of NAM is uncertain: various mechanisms having been
proposed, including inhibition of the production of the Ca®*-agonist cyclic adenosine
diphosphate ribose (cADPR), inhibition of polyADP ribose polymerases and histone
modifications [130, 131, 132]. The goal of this study was to use NAM as a tool to identify
the processes responsible for a change in circadian period, which might be required for

circadian entrainment and homeostatic adjustment [133, 134, 135].

Typically, large sections of the transcriptome can be differentially expressed, despite
not being directly affected by the treatment (off-targets) (Figure 2.3). Due to the large
number of feedback loops involved in a complex and relatively small Gene Regulatory

Network (GRN) such as the circadian clock, this effect is particularly significant as a per-
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turbation anywhere in the network typically strongly affects all molecular concentrations.
Furthermore, as the perturbations induced by NAM in the circadian clock are intrinsically
related to changes in circadian period, a large part of the transcripts are differentially
expressed. Thus, Differential Expression (DE) analysis, the traditional approach used
to identify the mechanisms that alter biological behavior in response to drugs, environ-
mental signals or genetic lesions [136], will usually fail to identify the small number of
genes central to the biological perturbation. The main reason is that DE only performs
statistical analysis of changes in gene expression levels [23, 90]. As an alternative to the
DE analysis, the DyDE modeling framework has been used to identify and characterize
differentiated regulatory dynamics between genes to capture key mechanisms involved
in NAM-induced perturbations in the circadian system of Arabidopsis. By comparing
changes in both topology and subtle dynamic modifications of regulatory mechanisms,

we were able to considerably narrow down potential targets of NAM in the circadian clock.

The findings predicted by DyDE are experimentally tested and demonstrate the role
of the circadian gene PRR7 as a key regulator of dynamics adjustment of the circadian
clock. In addition, TIMING OF CAB EXPRESSION 1 (TOC1) and the interplay between
PRR7 and PSEUDO RESPONSE REGULATOR 9 (PRR9) are identified as the main
mediators of the circadian system response to NAM. The modeling insights also identified
alterations in CRY2 dynamics resulting from the NAM treatment. Therefore, we also
investigated the role of blue light in the circadian period change of NAM-treated plants.
In particular, we found that blue light regulates circadian oscillations of [Ca2+]cy, through
a NAM-sensitive pathway. These new perspectives contribute to the understanding of the
mechanistic details underlying the regulation of period of circadian oscillators. Overall,
the results suggest that DyDE is a useful tool to generate reliable hypothesis from time

series data for the identification of drug targets in complex biological systems.

3.3 Methods

To investigate how NAM might regulate the period of the circadian oscillator we first
used statistical tools to identify those transcripts that have circadian rhythms in abundance
in both untreated and NAM-treated plants. Then, we introduce the DyDE approach to
characterize altered dynamics within the circadian regulatory network of NAM-treated
plants. The hypothesis generated by DyDE were experimentally tested using genetic
mutant and physiological experiments in different light conditions. Finally, we extended

DyDE to the whole rhythmic transcriptome to further investigate clock period regulation.
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3.3.1 Statistical Characterization of Circadian Transcripts

To assess whether genes are regulated by the circadian oscillator, most methods take
advantage that circadian regulation of transcript abundance resemble a sinusoid. To
estimate circadian period of the regulation of a particular transcript, the main idea is to
find the sinusoid that most closely matches its abundance over time [137, 138]. However,
in NAM-treated plants the changes in abundance of circadian-regulated transcripts have
a considerable number of nonsinusoidal profiles (Figure 3.1). Furthermore, available
theoretical framework usually don’t hold for poorly sampled signals, especially when

corrupted with significant noise.

Pseudo-sinusoidal Functions

To overcome this problem, we devised a learning approach based on "pseudo-sinusoidal”
functions to properly assess the rhythmicity and the corresponding circadian period
of signals from gcRMA normalized microarray data of NAM treated plants. To infer
period, phase and amplitude, linear trends are eliminated by removing the best straightline
fit and pseudo-sinusoidal functions are fitted to each signal to minimize the 2-norm
error. Pseudo-sinusoidal functions account for many signals that are periodic but not
sinusoidal. Pseudo-sinusoidal functions are constructed by joining together two sinusoids
with different periods. Hence, a complete oscillation of a pseudo-sinusoidal function
consists of the first sinusoid (of period pp) in the first half-oscillation, and the second
sinusoid (of period p;) in the second half-oscillation (Figure 3.2A). The resulting period

of the pseudo-sinusoidal function is defined by p = @. This can be expressed by:

A*sin(i—’f xt+¢1),t €[0,5]
S =

A*sin(?)—f*(t—%+%)+¢l),;e 21,2 22

where A is a scaling factor that accounts for the amplitude of the signal and ¢, is
the phase of the signal. The algorithm searches possible combinations of p; and p, to
minimize the least square distance between pseudo-sinusoidal functions and the data. We
allowed periods p; and p; to vary between 12 and 36 hours. A perfect sinusoid gave a
high fit the for wild-type background dataset. We found that three periodic signals were
highly represented in the dataset. In particular, those with py, p; equal to p/2, p/2 (pure
sinusoid); p/2+ 3.8, p/2 — 3.8 (p; is greater than p,); and p/2—7.3, p/2+7.3 (p; is
smaller than p,) (Figure 3.2).
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Fig. 3.1 Detrended time series of circadian transcript in both untreated and NAM
condition. Data were gathered for 44 hours every 4 hours, 2 replicates, starting from 49
hours after the switch to constant light (i.e., third day of constant light). Data showed are
detrended, so that the rhythmic pattern is clear. LUX does not appear on this list, as the
probe also measured the expression of AT5G59570. CRY 1, PHYB, ELF3, ZTL and CHE
were not considered for the network inference step.
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Fig. 3.2 The effects of NAM on the circadian regulation of the transcriptome. (A)
[llustration of the shape of S. The first panel shows two period of a perfect sinusoidal
shape, whereas the second panel displays the segmentation of the period P into p; and p»,
where p; is greater than p,. p; and p; follows the formula: P = (p; + p2)/2. The last
panel displays the case were pj is smaller than p,. (B) Number of periodic transcripts that
have been identified in untreated and NAM-treated plants, as well as the intersection. (C)
Circadian period of untreated and NAM-treated transcripts plus minus standard deviation.
The mean increase of period following the NAM treatment is of 3.3h. (D) Amplitude
analysis (normalized) for the same transcripts
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Probabilistic Discriminative Model

We used a logistic regression framework to generate a probabilistic discriminative model
that estimates the probability of a gene to be rhythmic given its time course data. In this
case, the classification problem only contains two classes: rhythmic (C1) and arrhythmic
(C2). For each transcript, a set of 8 features x = X1, X>, ..., X3 is computed and empirically
believed to be crucial to distinguish between rhythmic and arrhythmic transcripts. The
features were computed from 2 signals: the first signal (A) corresponds to the average of
replicates and (B) being a single replicate for which the L2-norm error with the best fitted
pseudo-sinusoidal function is lower than for the other replicate. The following features

were computed:

Ratio of power in the 18-32 hours frequency range (of (A) and (B))

L2-norm of the error to the best fit of pseudo sinusoidal function (of (A) and (B))

The variance of the power spectrum (of (A) and (B))

The amplitude of the best fitted pseudo-sinusoidal function (of(A) and (B))

The log of the ratio of probabilities between the two classes, also known as the log
odds, 1s given by [139]:

I (S NP - S
)= ln(p(C—;\x)) = In(+——) = logit (o)

p(rhythmic|x)

p(arrhythmic|x)

The goal of the logistic regression is to estimate ¢ for a linear combination of the X,
features such that:

logit(c) = bo+ b1 X1 +b2Xp + ... + b, X,

The weights b; of the independent variables X; were estimated using the mnrfit
function in MATLAB. The algorithm is initially trained with a mix of 100 rhythmic and
100 arrhythmic transcripts randomly chosen from the dataset and visually inspected to
show clear (ar)rhythmicity. Finally, the decision boundary was set so that if p(Cj|x) >
0.5, the gene was classified as rhythmic, and vice versa. Our approach, therefore, is

inspired by the patterns observed in the dataset but not strictly constrained to pure cosine
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shapes. With the inclusion of the S function, we allow the search for asymmetric signals,
which represent a large part of the transcriptome. A main distinction with the previously
introduced algorithms, therefore, is the data-specific, learning approach devised to allow
for a wider range of periodic signals. However, this offers additional advantages such as
a dedicated way to handle noise between replicates, or the information in the frequency
domain of the signal, which are both learned from the data. Comparison of performances
with standard periodicity assessment tools is shown on Figure 3.3.

Trained

Trained
Algorithm COSOPT COSOPT

Algorithm

JTK JTK

Fig. 3.3 Assessment of circadian regulated transcripts from both the learning
methodology and standard tools. (A) Results correspond to untreated plants. The
trained algorithm, COSOPT [138] and JTK [137] respectively identified 3859, 1856 and
3698 circadian regulated transcripts. JTK and the trained algorithm identified most of the
genes labelled as periodic by COSOPT (resp. 87% and 81% of them). The rhythmicity
of 75% of the genes labelled rhythmic by JTK was confirmed by the learning strategy.
(B) Results corresponding to NAM-treated plants. The rhythmicity of 60% of the genes
labelled rhythmic by JTK was confirmed by the learning strategy while 1636 novel genes
were identified as rthythmic with a typical non-sinusoidal profile.

3.4 Results

We identified 3859 (18.4%) circadian-regulated transcripts for the untreated plants (Figure
3.2A). These were enriched for Gorilla terms ‘Circadian Rhythm’ and ‘Rhythmic Process’
(p =4.07E18; GEO No. GSE19271). A total of 2588 (12.3%) transcripts were identified
as rhythmic in NAM-treated plants (Figure 3.2B), with a mean increase in period from
24.0 £ 2.1 h (-NAM) to 27.4 = 2.6 h (+NAM) (Figure 3.2C) and without a noticeable
change in amplitude (Figure 3.2D).
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3.4.1 DyDE applied to the Arabidopsis circadian clock genes

We considered a total of 17 known clock genes: CCAI, LHY, PRRY, PRR7, PRR5, RVES,
GI, TOCI, ZTL, ELF4, ELF3, PHYA, PHYB, CRYI, CRY2, CHE and PRR3. However,
the core oscillator genes ZTL, ELF3, PHYB, CRY1, PRR3 and CHE were identified as
non-rhythmic in the presence of NAM, which was confirmed by visual inspection (Figure
3.1). Hence, these genes are excluded from the modeling of NAM targets as they cannot
be contributing to the rhythmic dynamics of the remaining oscillator components that are
measured in the presence of NAM.

As a first step, we computed models for all available pairs of the clock genes for both
conditions, totaling 220 SISO models (110 in untreated and 110 in NAM). We kept only
those models with good agreement with the data, i.e. above a fitness threshold. On one
hand, the userdefined threshold has to be set large enough to reliably capture the dynamics
involved between genes, and provide the v-gap analysis with comparable models. On the
other hand, the threshold has to be set sufficiently low to consider enough gene-to-gene
relationships to detect a dynamical perturbation in the network. Here, the fitness threshold
was set to 46% as we noted that below this threshold, the amount of unknown regulations

dramatically raised (Figure 3.4, Supplemental Table 3 (Online Material)).

In total, 70 regulatory links were retained for untreated plants and 55 links for
NAMtreated plants between the 11 clock genes. The untreated models describe 70% of
the known regulatory pathways among these 11 genes (Supplemental Table 3 (Online
Material); Figure 3.4). 64% of which, had the expected activation or inhibition effect.
These numbers are remarkable, taking into account the model simplicity, and confirms
that the majority of clock links can be represented by simple linear dynamics [85, 86, 88].

In particular, 28 links were present in the untreated samples but not in the NAM-
treated samples. These 28 links form a network from now on referred to as “regulation
loss” network, which captures the links abolished by NAM. In addition, 42 links are
present in both conditions which form a network, so called “common” network that is

common to both treated and untreated plants (Supplemental Table 3 (Online Material)).

We used the v-gap to identify those links among the common network whose dynam-
ics were significantly affected by NAM. Figure 3.5A and Table 3.1 depict the comparison
of the dynamics of each link with the v-gap. All regulatory interactions are somehow
affected by the treatment, which is expected from the interconnected circadian network.

Let us then consider the highest v-gap values, which are associated with the following
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Fig. 3.4 Coverage and false positive curves of the known regulatory links involved
in the circadian oscillator of Arabidopsis Thaliana, as inferred by DyDE. In DyDE,
linear Ordinary Differential equations (ODESs) of order one are computed between each
pair of genes to describe the dynamics of the whole system. To be further considered as
a good approximation of the dynamics involved, each dynamical model needs to pass a
validation criterion based on its agreement to the data (i.e. a user-defined threshold on
the goodness of fit). Decreasing the fitness threshold leads to a better coverage (upper
panel) of the system dynamics but increase the amount of false positives (lower panel).
The coverage describes the amount of links inferred over the amount of total true links in
the system (as defined by [33]). The number of false positive corresponds to links that
are not represented in Fogelmark et al. The maximum amount of possible false positives
is 32, while the total amount of links in the true system is of 40. The threshold of 46%
(represented by a red cross) is chosen for this analysis with a coverage of 70% (which
corresponds to 28 true positives and 21 false positives)
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Table 3.1 Sorted v-gap values corresponding to common links between untreated
and NAM (top S). v-gap values computed for each link inferred in both untreated and
NAM-treated networks. This table ranks the v-gap values from the largest to the smallest.

Rank v-gap value Input Output

1 0.500 TOC1 PRR9
0.471 CRY2 ELF4
0.424 CRY2 LHY
0.379 CRY2 RVES
0.356 PRR9 CRY2

N AW

links: TOC1 to PRR9 (0.5), those originating from CRY2 to ELF4 (0.47), LHY (0.42)
and RVES (0.37) and PRR9Y to CRY2 (0.35). Interestingly, the only inferred interaction
originating from CRY?2 that does not seem affected connects to TOC! (v-gap of 0.06).
These results suggest that a major dynamical change is induced to CRY2 in the dynamical
response of the circadian clock to NAM. In addition, the largest v-gap value suggests that
the causality within the time course data of TOCI and PRR9 has changed significantly
differently towards the treatment, as compared to the other parts of the circadian network.

We then used a standard network topology metric to identify the genes that are central
to the drastic changes in dynamics captured by the regulation loss network. This topology
metric accounts for the connectivity of a gene, i.e. the number of its incoming and
outgoing links. This measure is estimated for each gene of the regulation loss network.
As an example, PRR7 has six incoming links and nine outgoing links for untreated plants.
The connectivity of PRR7 in untreated plants is then equal to 15. Among those, only six
of were present in NAM-treated plants. PRR7, therefore, has a connectivity of nine in
the regulation loss network, which correspond to a loss of 60% of its connectivity from
untreated to NAM treated plants. As a result, CCAI (61%), PRR7 (60%), TOCI1 (57%)
exhibit the highest connectivity drop (Figure 3.5B; Table 3.2). This result identifies the
biological functions of CCAI, PRR7 and TOCI as being highly affected by NAM in the
regulation of the circadian clock.

DyDE, therefore, identifies the regulatory dynamics of TOCI-CRY2-CCA1-PRR7 as
being predominately affected by NAM as a result of both v-gap and connectivity analysis.
Accordingly, the strong emergence of the blue light receptor CRY2 in the v-gap analysis
suggests that nicotinamide alters the regulation of the interactions between light signaling
and the circadian oscillator. These findings are further examined through mutant analysis

and single wavelength light experiments.



3.4 Results 77

A B

T T T T T T T
I Connectivity loss at 46% Fitness
PRR5 PRR7 T o connectivity loss [41-51]% Fitness

N
&> e ¥
\\\ //? “é, w0
&l A——xV/ \CRYZ 3
// ~~ { g
2
Q 30F

SN B S UL e (g I 4
& O L& &L SF AN

PHYA

Fig. 3.5 DyDE applied to the Arabidopsis circadian oscillator genes. (A) Common
network and v-gap analysis. The common network displays the models that have been
validated in both untreated and NAM-treated plants. A directed arrow from gene a to gene
b (blue circles), therefore, represents a dynamical model that captures the dependency of
b on a. Red arrows represent the models associated with the top five highest v-gap values.
(B) Bar plot comparing the connectivity loss (%) associated to each gene. For a particular
gene, the connectivity loss corresponds to the total amount of incoming and outgoing
links that were validated in untreated plants but not in NAM-treated plants. Error bars
represent the standard deviation of connectivity loss for + 5% change in fitness threshold
selection.

3.4.2 PRR7/PRRY Inter-regulation together with TOC1 are Targets
of Nicotinamide

To test the predictions that TOCI, CRY2, CCAI and PRR7 are associated with the effect of
NAM on the circadian oscillator, the sensitivity of circadian mutants to NAM was experi-
mentally investigated. All mutants responded to NAM with increased circadian periods,
with the exception of two independent lines of the same T-DNA insertion allele of PRR7,
which were insensitive (prr7-3 p > 0.95; prr7-11 p > 0.95). The insensitivity of prr7-11 to
NAM was confirmed by measuring circadian rhythms of leaf movement. prr7-11 was not
affected by NAM at any tested concentration, contrasting with a dosedependent effect of
NAM on circadian period in other prr mutants and associated backgrounds (R2 > 0.9).

In contrast, toc1-2 and TOC1-ox had significantly greater responses to NAM than
wild type. These results support our predictions that NAM induces dynamical changes
specifically to PRR7 and TOC1. No dramatic changes of period, however, were observed
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Table 3.2 Connectivity loss corresponding to each gene, for untreated and NAM-
treated networks. Values are displayed for a fitness threshold of 46%.

Gene Connectivity Loss of Loss of
(Untreated)  Connectivity (count) Connectivity (%)
CCAI 13 8 61.5
TOCI 14 8 57.1
GI 12 4 333
PRRS5 12 2 16.7
PRR7 15 9 60
CRY2 11 5 45.5
PHYA 11 4 36.4
ELF4 12 4 334
LHY 12 5 41.7
PRR9 15 3 20
RVES 13 4 30.8

for cry2-1 and ccal-11, suggesting that these might not contribute directly to the response
to NAM.

Finally, derived from the v-gap analysis, the possible change in the dynamical behav-
ior of PRRY in mediating the effect of NAM on the clock was evaluated with a prr7-3 and
prr9-10 double mutant. prr7-3 and prr9-10 had an epistatic interaction, with the double
mutant responding to NAM by a 5.3 + 1.6 h increase of period, more than either the
insensitive prr7-3 or the oversensitive prr9-10 alone. The epistasis of prr9-10 to prr7-3

was confirmed at all concentrations of NAM tested.

3.4.3 Nicotinamide-induced Changes in Period are Associated with
a Blue Light Signaling Pathway

The mutant analysis did not confirm the modeling dynamical perturbation of CRY2 in the
response to NAM. However, CRY?2 is one of a pair of cryptochrome blue light photore-
ceptors and so mutant analysis might not be the most appropriate tool to investigate the
role of the blue light photoreceptor. To investigate further we also investigated the role of
blue light in the response to NAM using monochromatic light conditions. High frequency
measurements of the circadian promoter fusions PRR9:LUC, PRR7:LUC, TOC1:LUC,
CCA1:LUC, LHY:LUC and GI:LUC were collected in the presence or absence of 20 mM
nicotinamide under constant blue or red light.



3.4 Results 79

In the absence of blue light, NAM was without effect on the circadian period or ampli-
tude of CCA1:LUC and other promoter:luciferase fusions. This demonstrates that input
pathways associated with blue light are sensitive to NAM. Under blue light exposure, all
promoter:luciferase fusions considered had an increase in period in the presence of NAM.
Under red light exposure, the period response was either negligible (PRR9:LUC, CCA1:
LUC, LHY:LUC, GI:LUC) or negative (PRR7:LUC, TOC1:LUC). These results suggest
that blue light increase the response of circadian period to NAM, while red light decrease

its responsiveness.

Having previously proposed that the effects of NAM on the circadian system are due
to the inhibition of the production of the Ca®>*-agonist cADPR [130], we tested if the
response to NAM of prr7-11 is due to altered Ca®* signaling. We investigated, therefore,
the inhibitory effects of NAM on circadian [Cazﬂcyt oscillations in prr7-11 and in light
signaling mutants in red and blue light. 20 mM NAM was equally effective in abolishing
circadian thythms of [Ca*"]., in both Col-0, prr7-11 and prr7-3 prr9-10. This suggests
either that there are multiple sites of action of NAM or that PRR7 is downstream of the
effects of NAM on [Ca*"]y.

In constant blue light, there were robust oscillations of [Ca2+]cy, in plants with func-
tional CRY1 photoreceptors, being abolished in cryl and, crylcry2 but unaffected by
cry2, phototropins and Phy loss-of-function mutants. Under blue light, NAM abolished
[Ca®T],y oscillations but did not reduce oscillations further in cryl or crylery2. High
amplitude oscillations of [Ca2+]cyt were dependent on blue light because in constant red
light, [Ca2+]cy,increased early in each cycle but without a subsequent decrease. This red

light-induced increase in [Ca**],,; was dependent on PHYB.

To examine the role of PHYB further we measured [Ca*"],, in PhyB-ox and deter-
mined that in these plants [Ca*"],,; was rhythmic with a sinusoidal period of 25.0 0.5 h
in constant red light. NAM was without effect on [Ca”]cyt in constant red light, even in
the PHYB-ox background demonstrating that blue light regulates circadian oscillations
of [Cazﬂcy, through a NAM-sensitive pathway. This pathway appears to be required for
the major oscillatory dynamics of [Ca®t].y;.

3.4.4 Extension of DyDE to the Rhythmic Transcritome

DyDE was further adapted to explore the rhythmic genome for additional targets for
NAM and novel clock genes. For this purpose, models were computed between each pair
of the 988 genes that were scored rhythmic in both untreated and NAM treated conditions,
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resulting in 2 million models corresponding to potential interactions.

We selected the models that exhibit the highest goodness of fit (over 80%) in both
untreated and NAM-treated plants to minimize the identification of erroneous interactions
and computed their v-gap value to investigate dynamics affected by NAM. As a result,
out of ten, two models only were retained with a v-gap > 0.2. These models identified
the regulation of AT5G35970 (P-loop containing nucleoside triphosphate hydrolases
superfamily protein) by AT2G21860 (violaxanthin de-epoxidase-like protein) and the
regulation of ATG21660 (GRP7/CCR2) by ATIG78600 (LZF1/BBX22) as being altered
by NAM. The regulation of AT5G35970 by AT2G21860 may be important as AT5G35970
is identified by DyDE as being a hub regulated by four circadian oscillator genes. The
second link is easier to explain because GRP7 along with GRPS8 forms a slave oscillator
driven by the circadian clock that regulates ABA responses [140]. GRP7 is an RNA
binding protein regulated by ADP ribosylation [141]. As the enzymes that perform ADP
ribosylation are inhibited by NAD, this could suggest a role for nicotinamide inhibiting

ADP ribosylation of an oscillator or slave oscillator component.

Then, the fitness threshold was released to 60% to further investigate novel clock
components. For this purpose, we searched for those genes for which models can be
computed from/ to clock components. Models with a v-gap value above 0.2 were
discarded as a consistency criterion. Finally, candidates were ranked according to their
connectivity with the clock. As a result, 20 high potential genes were isolated. The
whole genome analysis of clock input and output hubs and the v-gap analysis suggest
interesting roles for previously characterized genes, including A73G47500 (CYCLING
DOF FACTOR3) [142], AT4G38960 (BBX19) [143], ATIG78600 (BBX22) [144, 145],
AT3G22840 (CRY3) [146], ATIG28330 (DRM1), AT2G33830 (DRM?2) [147, 148] and
uncharacterized genes including AT5G35970.

3.5 Discussion

Here, we considered the problem of inferring the entry point of a treatment in an organism
from limited time series data (in this case, the circadian clock in Arabidopsis). For this
purpose, we used simple dynamical models to capture gene regulatory dynamics and
compare those under different scenarios without making a priori assumptions on the
structure of the network. Subsequently, we showed that simple dynamical models have
the potential to identify crucial dynamical perturbations for complex systems such as the
circadian clock. However, it should be stressed that, as for the sole purpose of identifying
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the topology of the underlying network, our method competes well with the current

state-of-the-art of network inference strategies.

We further devised a learning algorithm to capture the specific pattern of oscillating
wave forms of genes affected by NAM. Since the period of oscillations of central clock
genes increases from 24 (wildtype) to roughly 28 (NAM) hours, we focused on those
genes. For a relatively small number of genes, DyDE efficiently narrowed down possible
targets of NAM that could then be verified experimentally. Since it is likely that other
genes may be targets of NAM, we further applied DyDE to all 988 circadian genes that
were scored rhythmic in both untreated and NAM treated conditions.

DyDE identified important changes in the regulatory dynamics of PRR7, TOCI, CCAl
and the blue light photoreceptor, CRY2, resulting from the treatment of plants to NAM
as well as suggesting a mediating role of PRR9. Mutants analysis confirmed DyDE
predictions of altered activity of PRR7, TOC1 and PRR9 and blue/red light experiments
demonstrated that the effect of NAM is blue light dependent. The latter also demonstrated
that blue light regulates circadian oscillations of [Ca2+]cy, through a NAM-sensitive
pathway.

The involvement of PRR7 with the dynamic adjustment of circadian period in re-
sponse to nicotinamide, revealed by the insensitivity of prr7-11 and prr7-3 to NAM and
confirmed by leaf movements analysis, is interesting because PRR7 is also required for
the response of the circadian oscillator to sugars [129, 149]. PRR7, however, is not a
direct target for NAM in the circadian oscillator because PRR7 is not required for the
response to NAM, as demonstrated by the hyper-sensitivity to NAM of the prr7-3 prr9-10
double mutant. Together, the insensitivity of prr7-3 and prr7-11 to NAM and hypersen-
sitivity in the prr7-3 prr9-10 double mutant indicates that PRR7 and PRRY regulate a
component or pathway influenced by NAM and that PRR7 might act upstream of PRR9 in
this regulation. The levels of expression of PRR7 and 9 appear to regulate the pace of the
circadian oscillator through feedback with CCAI/LHY and by acting as toggle switching
the oscillator from a morning state when CCA I/LHY are high to an evening state when
TOC1 is high [150, 151].

Additionally, the blue-light dependency of both circadian oscillations of [Cazﬂcyt
and NAM regulation of circadian period might suggest that Ca®* is associated with the
response of the oscillator to NAM. Furthermore, we recently reported that CALMODULIN-
LIKE 24 (CML24), is a Ca**-dependent regulator of circadian period and that its effects
are NAM sensitive [152]. A caveat to this argument is that our methodology identified
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Fig. 3.6 A blue light dependent module regulates the response of the circadian os-
cillator to NAM. NAM might regulates the circadian oscillator through regulation of
cADPR dependent circadian oscillations of [Ca?*]. CCA1 is a repressor of ADPRc. AD-
PRc generation of cADPR and [Ca®*] oscillations is inhibited by NAM. Both the effects
of NAM on the circadian oscillator and circadian oscillations of [Ca®*] are blue light
dependent. The regulation of [Ca’?*] on the circadian oscillator is indicated by a dotted
line. NAM could also regulate the circadian oscillator by [Ca®*] -independent events. We
determined that the NAM-induced changes in circadian period are mediated principally
by the interaction between PRR7 and PRR9, as well as TOC1. These interactions are
shown in red in the model.

NAD

CRY?2 regulation of the transcriptional network being altered by NAM but the circadian
oscillations of [Ca?*].,; were dependent on CRYI. NAM can also affect the oscillator
through Ca?*-independent mechanisms [132]. We propose that a module of circadian
oscillator components PRR7 and 9, TOCI and a Ca®>* signaling network contribute to the
blue light-dependent response of the circadian oscillator to NAM that regulates circadian

period 3.6.

Then, extension of DyDE to the whole circadian genome has also identified compo-
nents outside the core oscillator that might also be involved in response to NAM, including
the regulation of GRP7/CCR2 by LZF1/BBX22 and these will be candidates for future
investigation. Remarkably, five genes out of 22 that were isolated in our genome analysis
are known to interact with circadian regulators (BX19, CYCLING DOF FACTOR3) [142,
143], have been previously implicated in circadian regulation (BBX22) [144, 145], in
blue light signaling (CRY3) [146] or are being downregulated by ABA/cADPR (GRP?7,
BBX19, BBX22) [140, 141, 153]. This result is encouraging and opens the door to the
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identification of novel drivers of circadian rhythms in Arabidopsis.

Overall, we suggest that the description of gene regulatory dependencies and the
quantification of changes in dynamics computed by DyDE provide reliable hypotheses
for the investigation of drug targets in complex gene regulatory networks, which has a
broad range of applications in systems biology.

3.6 Strengths and Limitations of the Study

The DyDE modeling methodology has been applied to the circadian regulatory network
of Arabidopsis Thaliana. This strategy holds the following strengths and weaknesses:

* Strengths

— Identifying the source of a perturbation in a GRN is a challenging task, espe-
cially when large uncertainties remain about the circuitry of the underlying
network. Indeed, the identification of Arabidopsis clock genes and their inter-
action is yet a dynamic field, with various novel interactions or novel cores
genes being added over the years. The approach proposed here allows to
provide predictions that are independent of the current consensus of the core

network.

— In the previous chapter, it has been shown that DyDE is capable of provid-
ing reliable predictions of the network while relying on small amounts of
datapoints only. Given the length of NAM-treated recordings, this approach
appeared to be particularly suited. In particular, it is showed that the DyDE
not only provides good prediction of the underlying circuitry of the GRN, but
also gives reliable estimation of the dynamical properties of genes to genes
relationships.

— The simultaneous inference and comparison of gene to gene dynamics is
particularly new to the field, and showed promising performance. Such com-
parison of dynamic is not a straightforward task for nonlinear or nonparametric

models. In this sense, the use of a linear model is a considerable advantage.
* Limitations

— While the linear modeling strategy provided seemingly accurate predictions,
there remains room for improving the specificity of the perturbation targets.
For example, the modeling strategy only considers pairwise interactions,

which is a heuristic approach to identify links that are very likely to exist,
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but biological perturbations can have more complex behaviors that involve
concurrent genes, especially in such partially observable systems consisting

of many feedback loops.



Chapter 4

Predicting the Transcriptional Network
of the Barley Circadian Oscillator

Adapted from: Lukas M. Miiller*, Laurent Mombaerts*, Artem Pankin, Davis Seth,
Alex A. R. Webb, Jorge Goncalves and Maria von Korff. Dynamic modelling of the
barley circadian clock and transcriptome rhythmicity analysis reveal differential effects
of the day-night cues and circadian clock on gene transcription. (Submitted to Plant Cell)

4.1 Contribution

As a first step in the characterization of a novel complex system, this analysis aims at

inferring the main gene regulatory interactions that shape the circadian network of barley.

The All-to-All methodology was used together with the v-gap to infer for the first
time a transcriptional network between circadian genes in barley. For this purpose,
the capability of the developed methodology to recover accurately few links with high
confidence from limited data, together with its scalability, flexibility and interpretability,
were of particular importance for this study. Indeed, multi-input LTI systems were
subsequently built to explicitly integrate light patterns and further characterize genes
dynamics in the whole transcriptome. The respective contribution of each input was
visualized through Bode plots and their response magnitude quantified. This analysis
enabled to mathematically support that an unneglectable part of the genes for which the
phase is not correlated between diel and free-running conditions were mostly driven by

external light.
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4.2 Introduction

Barley (Hordeum vulgare L.) crop is the fourth most important cereal (preceded only by
wheat, rice and maize) and one of the most versatile cereal in such that it has adapted to
different global climates outside regions where other cereals live, from artic to tropical
regions [154]. It is a major source of animal feed and underlies the brewing industry, for
which Europe is the leading exporter. It can also be consumed as human food directly but
represents merely 6% of its production [154]. Identifying adaptation strategies is critical
to mitigate the negative effects of climatic variability on agriculture [155].

In plants, the circadian system controls many agronomically important processes, such
as metabolism, growth, photosynthesis, and flowering time [156]. It has been suggested
that the circadian clock is key to improving adaptation and performance of crop plants
[157, 35]. Putative circadian oscillator genes have been identified in the monocot crop
barley based on their homology with the Arabidopsis clock genes [34, 158]. Although the
circadian oscillator genes diversified via duplication independently between the monocot
and eudicot clades, their structure and expression patterns remained highly similar [34,
157, 35]. For example, in monocots, the morning expressed MYB-like transcription
factor CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) is the only ortholog of the Ara-
bidopsis paralogs AtCCA1 and LATE ELONGATED HYPOCOTYL (AtLHY) [159,
34]. HvCCAL1 overexpression in Arabidopsis causes arrhythmia, suggesting circadian
functionality [160]. AtCCA1 and LHY suppress the PSEUDO RESPONSE REGULA-
TORs (PRRs), which duplicated independently from three ancient PRR genes after the
divergence of monocots and eudicots such that the orthologous relationship within the
PRR3/7 and PRR5/9 clades of Arabidopsis and monocot plants cannot be immediately
resolved [161]. Partial complementation of Arabidopsis prr7-11 by HYPRR37 suggests
that the barley gene might retain some functionality of the Arabidopsis orthologue [160].
However, PRR37 orthologs in monocots, PPD1 in barley and wheat [162, 163] and
SbPRR37 in sorghum (Sorghum bicolor) [164], are major determinants of photoperiod
sensitivity and flowering time, whereas natural variation in PRR genes in Arabidopsis did
not have any notable effect on flowering time [165]. For EARLY FLOWERING 4 (ELF4),
which in Arabidopsis forms an evening complex with ELF3 and LUX ARRHYTHMO
(LUX), several ELF4-like homologs in monocots exist, including HVELF4-like 4 that can
complement an Arabidopsis Atelf4 null mutant [166, 167]. Circadian gene expression is
altered in the two barley mutants, early maturity 8 and 10 (eam8, eam10) , which carry
functional mutations in homologs of the Arabidopsis circadian clock regulators EARLY
FLOWERING 3 (ELF3) and LUX ARRHYTHMO (LUXT1), respectively [168, 169, 170].
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We generated diel and circadian RNAseq datasets of four barley genotypes, the
spring barley Bowman (BW WT) and three derived introgression lines with mutations in
HVELF3 (BW290), HvLUX1 (BW284), and EARLY MATURITY 7 (EAM7) (BW287)
[168, 170]. The candidate gene for EAM7 has not yet been identified, but loss of EAM7
function accelerates flowering by abolishing sensitivity to the photoperiod [171]. We
used the RNAseq time-course data to analyse the effects of barley clock genes on diel
and circadian transcriptome oscillations including changes in phase and period under
constant conditions and light and dark cycles. Dynamical modelling allowed us to predict
a molecular structure of the barley circadian oscillator and to uncover how circadian
oscillator components interact with day/night cues to regulate the global transcriptome in
barley.

4.3 Circadian and Environmental Regulation of the Bar-

ley Transcriptome

4.3.1 Rhythmic Analysis

To characterize oscillating barley transcriptomes, we generated the RNAseq datasets
from the barley cultivar Bowman and the derived introgression lines carrying mutations
in HVELF3 (BW290), HvLUX1 (BW284) and HYEAM7 (BW287) grown under two
different conditions - diel night/day cycles (ND; 12h/12h) and under constant light and
temperature (LL) (Figure 4.1). Among 18,500 transcripts expressed in all the investigated
lines, 84% were scored rhythmic under ND in Bowman. By contrast, under LL, about 23%
of the transcripts were rhythmic, which is a distinctive feature of clock-regulated genes.
The gene ontology (GO) analyses revealed that, in Bowman under LL, the circadian con-
trolled transcripts were primarily related to the processes of regulation of DNA-dependent
transcription, translation, electron transport, signal transduction, responses to salt stress
and cold, and metabolic processes, including amino-acid, sucrose and starch metabolism.
The molecular functions of the circadian controlled transcripts in Bowman in LL were
primarily represented by protein, zinc ion and ATP binding, DNA and nucleotide binding,
and sequence-specific DNA-binding transcription factor activity GO terms (Figure 4.2).

We found that the majority of the transcripts expressed rhythmically under LL were
also rhythmic in ND (20% of all the transcripts). This demonstrated that about one-quarter
of the Bowman transcriptome is modulated by the circadian clock. However, the largest
proportion of the rhythmic transcripts in ND required daily external environmental cues
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for the rhythmic expression.

The large impact of external transitions on transcriptome oscillations independent
of the clock was further supported by the analysis of the Hvelf3 plants deficient in the
circadian clock regulation. In Hvelf3, no transcript rhythms were detected under LL
demonstrating that a functional HVELF3 is required for self-sustained transcriptome
oscillations in barley. Environmental cues under ND restored oscillatory dynamics in the
Hvelf3 loss-of-function line with 83% of the global transcriptome being rhythmic in the
BW290 plants. The number and the identity of oscillating transcripts were comparable
between BW290 and Bowman plants under diel cycles. In Hvlux1 plants, only 2% of the
expressed transcripts were rhythmic under LL suggesting that, like HVELF3, HvLUX1 is
required for free-running oscillations under LL. Once again, ND cycles were sufficient
to restore transcriptional rhythms in the Hvlux1 mutant, i.e. 75% of the transcriptome
oscillated in BW284 plants under ND. Mutation of the EAM?7 locus in BW287 reduced
the pervasiveness of circadian transcriptional oscillations but did not completely abolish
them because 8% of the expressed transcripts cycled in LL in BW287, about a third
of the number of the oscillating transcripts in Bowman. Under ND, 80% of the global
transcriptome was rhythmic in BW287 and 72% of the rhythmic transcripts were common
between BW287 and the background Bowman plants.

Our data demonstrate that cycles of light and temperature and the circadian oscillator
drive rhythmic expression in barley. HVELF3, HvLUX1 and EAM7 contribute to free-
running oscillations under constant conditions while environmental rhythms are sufficient

to drive rhythmic expression in the absence of a free-running oscillator.

4.3.2 Bimodal phase distribution

To investigate temporal expression patterns of the circadian-regulated transcripts un-
der free running conditions, we estimated the phase and the period of every circadian-
regulated transcript in the two genotypes that sustained free-running circadian rhythms,
Bowman and BW287. In Bowman, the distribution of the circadian transcriptome expres-
sion phase followed a symmetrical bimodal pattern with the highest number of transcripts
peaking shortly before the transitions to subjective days and nights (Figure 4.2a). By
contrast, in BW287 this phase pattern of the cumulative circadian transcriptome was not
evident (Figure 4.2a). These findings indicated that EAM?7 is required to modulate the
characteristic bimodal pattern of the circadian transcriptome expression in barley. The
period estimates of the oscillating transcripts under LL ranged between 22 h and 34 h in

Bowman and BW287 and followed a bell shaped distribution with mean periods of 27.5
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Fig. 4.1 Fraction of transcripts detected as oscillating through computational anal-
ysis. BW WT: Background Bowman; BW290, BW287 and BW284: Clock mutant
genotypes in the Bowman background; ND: night/day cycles; LL: free-running condi-
tions of constant light and temperature. Fractions refer to a total of 18,500 transcripts
expressed in all genotypes.

h and 27.9 h in Bowman and BW287, respectively (Figure 4.2b, ¢). In both Bowman
and BW287, the standard deviation of the period distribution was higher under LL (6 h)
than under ND (2.5 h) (Figure 4.2b, c). This could arise from either the uncoupled nature
of cellular oscillations in free-running conditions or is a consequence from the period
estimation as the signal amplitude was lower in LL than in ND. A longer mean period of
oscillating expression patterns in BW287 suggested that the free-running period under
LL was extended in BW287 compared with Bowman.

4.3.3 Phase regulation

Next, we investigated the transcriptome oscillations under the diel ND conditions. In all
genotypes, including those that were arrhythmic in LL, the mean of the period distribution
was consistent with the enforced 24-h diel cycle and ranged between 23.5 and 23.6 h.
The phase was bimodally distributed over the day/night cycle in Bowman so that for
the highest number of transcripts the peak of expression occurred before dawn and dusk
and, the number of transcripts with the peak expression during the night and day was the

lowest (Figure 4.3a). This pattern was comparable with the phase distribution under LL
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(Figure 4.2a) and the transcripts that oscillated in both LL. and ND were also bimodally dis-
tributed under the diel cycles (Figure 4.3a). This suggested that the bimodal distribution of

transcriptome-wide gene expression is, at least partly, under control of the circadian clock.

The analysis of the clock mutants, however, suggested that the bimodal phase distri-
bution under ND is controlled by both the circadian clock and day/night cues. In Hvelf3
the phase was bimodally distributed under diel cycles similar to Bowman, however the
quantitative characteristics of the phase distribution differed. Namely, in Hvelf3, the
phase distribution showed higher peaks at dawn and dusk and deeper troughs during the
night or the day than in Bowman (Figure 4.3b). A large number of the transcripts that
peaked around the night-to-day and day-to-night transition in Hvelf3 (Figure 4.3b) peaked
during the day or the night in Bowman (Figure 4.3c,d). his demonstrated that HVELF3
modulates timing of peak expression of multiple transcripts in day/night cycles. This
effect was apparently completely or partially independent of the oscillator defect that
causes arrhythmia in the Hvelf3 plants under LL since the phase distribution in Hvlux1
mutants under ND was comparable to Bowman (Figure 4.3f), even though self-sustained
circadian oscillations were also absent in this genotype under LL conditions (Figure 4.1).
This was also evident from the transcriptome-wide comparison of the phase between
the barley clock mutants with Bowman under ND. Here, the phase distributions strongly
correlated between Hvlux1 and Bowman (Pearson correlation p=0.97,R2=O.94) while the
phase distributions in BW290 and Bowman were correlated to a lower degree (Pearson
correlation p=0.93, R>=0.86), even though both mutant genotypes harbor an arrested
oscillator under LL conditions (Figure 4.1).

Day/night cycles had strong effects on the phase distribution of the transcriptome as
demonstrated by the analysis of the BW287 (eam7) transcriptome. Whereas the phase
distribution was not bimodal in BW287 under LL (Figure 4.2d), under ND, the phase
distribution was bimodal similar to the one in Bowman (Figure 4.3e). Consistently, the
phase distributions under ND were highly correlated between BW287 and Bowman
(Pearson correlation p=0.96,R*=0.92). Consequently, external cues under ND controlled
the phase of the global transcriptome in BW287 to peak at the night/day transitions
despite the circadian defects observed in BW287 under LL. Together, these results
demonstrated that the bimodal distribution of the phase in diel cycles is controlled by
both day/night cues and the clock component HVELF3. The genetic defects and their
underlying circadian phenotypes in BW284 and BW287 have limited effects on the phase
of the global oscillating transcriptome in diel cycles despite their strong transcriptional
phenotypes under LL.
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points between 20h-24h in b)).
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4.4 Prediction of the Central Clock Mechanisms of Bar-
ley

4.4.1 Inferring Barley Clock Components

To reduce the identification of erroneous interactions we filtered all circadian transcripts
for those that were homologous to Arabidopsis genes representing transcription factors
that were labeled ““circadian” (www.geneontology.org), resulting in 138 transcripts. Im-
portantly, only genes that exhibit unambiguous dynamics are further considered, in the
sense of signal to noise ratio. This filtering step is necessary to ensure that we are not
identifying dynamics out of noise. Hence, genes for which their amplitude of oscillation
is lower than an arbitrary set value of 20 CPM in the last 24 hours were removed. The
choice of such filter is motivated by both the transitional nature of constant light data,
which typically shows a large decrease of amplitude after few hours in barley, and the
dependency of noise on gene expression level. Furthermore, genes that are constantly
up/down regulated without exhibiting further significant dynamics were similarly dis-
carded. This was performed by detrending the 24 last hours of constant light data before
applying the same filtering criterion. Consequently, out of 138, 49 and 47 genes passed
the filtering criterions respectively in WT and M287 datasets. M284 (LUX mutation) and
M?290 (ELF3 mutation) datasets were not considered in the following network inference
analysis as the clock has been perceptibly broken by such mutation. Finally, 7 genes
(Hv.21080, Hv.22191, Hv.23289, Hv.32914, Hv.33010, Hv.6793, MLOC7084.3) were
manually discarded from both subsets list of candidates as they were not DNA binding
transcription factors but rather enzymes in a metabolical process, leaving 42 and 40

transcripts for modeling respectively in the WT and M287 dataset.

Our data suggested that HYELF3 and HvLUX1 are integral components of the barley
oscillator as they were necessary to sustain transcriptome oscillations under LL (Figure
1). Therefore, we hypothesized that modeling a transcriptional network around HVELF3
and HvLUX1 could identify the regulatory relationships that shape the circadian clock in
barley. We followed an approach that searches the dynamic dependencies of HVELF3 and
HvLUXI1 expression on other transcripts. Unfortunately, ELF3 transcript was discarded
through the filtering step and could not be used to infer dynamical interactions. Then,
to investigate the potential regulators of LUX, a collection of independent 1st order LTI
models was estimated from each of the transcript to LUX in the Bowman background. In
each case, the parameters are estimated so that they together provide the best possible fit

to the LUX time course data. This step takes the following form:
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where n corresponds to the number of candidates, so that 42 models are finally com-
puted. Each model is characterized by a fitness metric that ranges from 0 to 100%,
representing its capability of describing the original regulatory system between genes.
A gene, therefore, would be further considered as a regulator for LUX if the model is
capable of reproducing the shape of LUX with a sufficient degree of precision, which
is characterized by a high goodness of fit. In this case, the fitness threshold was set to
60% to restrain false positives predictions of regulatory interactions while accounting for
sufficient gene regulatory models to describe the system of interest. The threshold was
chosen so that the inference strategy correctly identified 62% of the links it predicted,
which corresponds to 38% of the entire circuitry of the network being accurately recov-
ered (including the distinction between inhibition and activation) based on the in-silico
benchmarks of Chapter 2. This strategy aims at keeping the links with the highest confi-
dence only. These numbers are remarkable, considering the complexity of the network
and the amount of different experimental conditions investigated. As a result, 20 models

were validated.

4.4.2 Predicting the Circadian Transcriptional Network

To obtain a whole system representation of the regulatory interactions involved in the
barley circadian clock, the interactions between the potential regulators for which the
corresponding model was validated were estimated, as in (Equation 4.1). This step
produced a total amount of (21)*20 = 420 models (as we did not consider self-regulation,
and LUX is included to evaluate a potential feedback to its regulators), among which 79
were validated using the same fitness threshold than previously. We further narrowed down
the resulting regulatory interactions to the most relevant ones by estimating the consistency
of these models using the filtered M287 dataset. For this purpose, we identically evaluated
Ist order LTI models for each of the previously identified regulations, when possible, and
evaluated their goodness of fit in the M287 experimental condition. A fitness threshold of
60% was then applied on all the models computed. The resulting network is represented
in Figure 4.4.
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Hv.13935
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Fig. 4.4 Predicted regulatory interactions between the regulators of LUX1 that have
been identified in Bowman and further validated using the BW287 dataset. The grey
nodes represent those transcripts that did not pass the noise filter in constant light, in
BW287. The grey links represent those models for which their counterpart was not
validated using the BW287 dataset. Colored links represent the models that have been
validated in both Bowman and BW287. A blue arrow represents an activation while a red
arrow represents repression.

The networks computed from Bowman and BW287 were highly comparable so that
we only considered those regulatory links for our further analysis that were identified in
both datasets. Finally, we compared the dynamical features of pairs of analogous models
(WT and M287) using the well-established metric called the v-gap. As to keep the links
of highest relevance, we considered models that hold a small v-gap value only, as in [79].
Indeed, high gaps values can either suggests a link being affected by the mutation or a sign
for a false positive. Hence, it is reasonable to discard the high gap links from this network
as a first attempt of unveiling the core mechanisms of the clock. [93] suggested that values
above around 0.2 could be used to infer the main target of perturbation. Therefore, models
holding a v-gap above 0.2 between WT and M287 conditions were discarded from the
core network. This quality check is motivated by the assumption that two LTI models that
share identical dynamical properties while describing the same genetic regulation, with a
relatively high goodness of fit, in two different experimental conditions are more likely to

correctly identify the regulatory dynamics between the genes, thereby reducing the chance
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Fig. 4.5 The putative circadian network of the barley oscillator as predicted from
time series expression data. Genetic evidence but no model prediction allowed plac-
ing HVELF3 as a core clock component. The figure displays the inferred components
and interactions that constitute the barley circadian transcriptional network. Circadian
clock components are represented by circles and sorted in clockwise direction for the
time point of peak expression starting with HYLHY at dawn (yellow: morning, orange:
evening, grey: night). The regulatory interactions are represented by directed arrows,
where activation is marked in blue and inhibition in red. The components printed in bold
and the links highlighted in color are consistent with key components and key regulatory
principles present in circadian clock models from Arabidopsis. The clock components
in barley are named after their closest Arabidopsis homolog and identified by barley
UniGenes.

of identifying inexistent regulatory interactions. As a result, 6 regulatory interactions were
filtered out (Hv.10528 to Hv.27754, Hv.1530 (GI) to Hv.19411, Hv.19411 to Hv.20312
(LUX), Hv.19759 (TOC1) to Hv.20312 (LUX), Hv.5253 (LHY) to Hv.27754, Hv.9855
to Hv.18813 (PRR59)). It is interesting to note that this is where the only link of TOC1
with the central clock is lost. On the resulting conjunction network, we noted that PRR95
(Hv.4918) appeared as a hub with 8 connections, while the mean node connectivity being
3. Providing that LUX has 11 connections while being the origin of the graph, this
suggested a significant role for PRR95 in the regulation of the core circadian genes. We
repeated, therefore, the search for regulators of PRR95 (as in Equation 4.1), computed
their interactions in both datasets and checked their consistency. Consequently, 4 genes
were added to the final network (RVE1 (Hv.13356), Hv.16583, PRR73 (Hv.21000) and



4.4 Prediction of the Central Clock Mechanisms of Barley 97

LHY (Hv.5253) RVES (Hv.6145) BBX19 (Hv.10528)
800, 20|~ =
g 200- =~ pwis4 - 200- “ZBwass
$600
5
0] 100+~ - 100/
ga00] AT N LT N0 T
0 R RSN - 0 R S - 0 —
36 42 48 54 60 66 72 36 42 48 54 60 66 72 36 42 48 54 60 66 72
PRR73 (Hv.21000) % BT2 (Hv.31150) CYP450 (Hv.16583)
=200 60::
o
125
.5 40-
a
s
1001 20

36 42 48 54 60 66 72 36 42 48 54 60 66 72 36 42 48 54 60 66 72

PRR95 (Hv.4918) PRR59 (Hv.18813) FKF1 (Hv.4076)

150 —BwwT

— BW290
— BW287
-~ BW284

50

Expression (CPM)

0 - - - - : i i ; i 0 - r ;
36 4 48 54 60 66 72 36 42 48 54 60 66 72 36 42 48 54 60 66 72
GI (Hv.1530) LUX (Hv.20312)
~160- 300+
£
=)

=140-
2001

Expression
=
N
L

100

L

._.
=)
<

6 42 48 54 60 66 72 36 42 48 54 60 66 72
RVE1 (Hv.13356) HAM3 (Hv.9855)

- BWWT

w

Expression (CPM)

0 - - - : 2 : . : ' . —
36 42 48 54 60 66 72 36 42 48 54 60 66 72 36 42 48 54 60 66 72
Time of the day in LL (h) Time of the day in LL (h) Time of the day in LL (h)

Fig. 4.6 Expression profiles of predicted core clock components of the barley oscil-
lator in free-running conditions of constant light.
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BT2 (Hv.31150)) (Figures 4.5, 4.6). Further extension of the network around other genes
did not include additional genes to the core clock system.

In addition to LUX1 as a core of the model (Hv.20312), the predicted components
of barley circadian clock were barley homologs of LHY (Hv.5253) [172], REVEILLE
8 (RVESR) (Hv.6145) [157], PRR73 (Hv.21000) [173], PRR95 (Hv.4918) [173], PRR59
(Hv.18813) [174], FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) (Hv.4076)
[175], GIGANTEA (GI) (Hv.1530) [87], and ZEITLUPE (ZTL) (Hv.10907) [176]. Ho-
mology of the predicted barley clock components with well characterized Arabisopsis
core clock genes validated our approach to predict core components of barley clock.
Therefore, based on the timing of the peak expression starting with HYLHY expression
at subjective dawn, we arranged the predicted components into a model of the barley

circadian clockwork (Figure 4.5).

In addition to the barley homologs of known Arabidopsis oscillator genes, our anal-
ysis suggests several previously uncharacterized components of barley circadian clock
— HvBBX19 (Hv.10528) and REVEILLE1 (HVRVE1) (Hv.13356) (Figure 4.5). In the
model, both HYBBX19 and HVRVEI regulate HYPRR95 and are regulated by HVLHY
(Figure 4.5). Such connectivity of BBX and RVE1 with the known clock components
suggests that they might be a part of the oscillator network in barley. AtBBX19 and
AtRVE] have been proposed to have connections to the Arabidopsis oscillator [177, 178],
suggesting that our network modeling has identified two candidate oscillator components
in barley. The modeling predicted that HYRVE]1 represses HYPRR95 and HvBBX19
activates HYPRR73 and HvPRR95. Another predicted component of barley circadian
clock was a homolog of HAIRY MERISTEM3 (HAM3) (Hv.9855). Based on the model,
HvHAM3 is regulated by HYPRR73 and HvPRROS5 and regulates HYLUX1 and HvFKF1
(Figure 4.5), whereas, in Arabidopsis, HAM3 plays a role in cell differentiation and
cell polarity. The model predicted that barley homologs of BTB AND TAZ DOMAIN
PROTEIN 2 (BT2) (Hv.31150), CYTOCHROME 450 (CYP450) (Hv.16583), and PHOS-
PHATE STARVATION RESPONSE 1 (PHR1) (Hv.10457) are part of the core circadian
oscillator in barley. However, all of these genes were predicted to regulate clock compo-
nents but were not regulated themselves by the clock genes (Figure 4.5).

4.5 Modeling the Effect of the Light Signaling Pathway

Hereafter, the flexibility of the modeling strategy considered is exploited to model the
relative contribution of light signaling to circadian regulated genes. To this end, we used
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3642 transcripts that were identified as oscillating in both diel and free-running conditions
in the wild-type Bowman background. As a reference, we selected a formerly identified
clock gene peaking in the morning, HVLHY (Hv.5253), with a range of delays integrated
into the model to implicitly represent the clock input, as devised in [82]. The structure
of such models is schematically represented in Figure 4.7A. This way, the light input is
incorporated on two levels: explicitly, through the light input and implicitly through the
clock pathway. Mathematically:

dy(t
}c)i—t = QA1 Ujight (l — ulight) + arurfy (t - “light) - by<t>

Where ;o5 was assumed to be binary (1 = light; 0 = dark). We fixed the light delay
Miign: to Oh to represent the effect of rapid light signaling on the transcripts, and computed
delays ranging from O to 8h, every 0.2h, for LHY. The delay value that provided the
best fit to the data was selected independently for each transcript. Ultimately, models
were validated if they succeeded in capturing the regulatory dynamics involved with a
goodness of fit > 60%.

In systems theory, Bode plots are used to visualize the frequency response of linear
models. The frequency response of a model represents the response of an input signal
through the model. The magnitude and phase of the resulting output signals are therefore
visible for each possible input. In our case, we use the magnitude response of the signal
to assess the relative contribution of the inputs u;;g, (t) and uzyy (t) in each of the vali-
dated model, at a frequency of 24h (or .262 rad h~!). The contribution of each input is
computed in dB (decibels). In [82] it was observed that, for Arabidopsis, a threshold of 7
dB could be used to differentiate the contribution of each of the input signals. Therefore,
if the magnitude of the response of the light input was 7dB higher than the contribution
of the clock (represented by LHY potentially delayed), the circadian regulated gene
(the output of the model) was considered mostly driven by light. Conversely, it was
considered as being driven by the clock. If the magnitude difference was lesser than 7dB,
then the circadian regulated gene was considered regulated by both inputs equally. The

methodology is summarized in Figure 4.7B as well as a presentation of the results.

The analysis estimated that 43% of the transcripts that oscillate in both day/night cy-
cles and constant light were predominantly controlled by the circadian clock in light/dark
cycles and that 47% were co-regulated by the circadian clock and light/dark cues (Figure
4.8a). Only 10% of the transcripts were primarily controlled by light/dark cues (Figure
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Fig. 4.8 Relationship between external and internal cues to regulate the phase of
the barley transcriptome. a) Fractions of transcripts identified as clock-dominated,
co-dominated by the clock and light and light-dominated by the Bode-analysis. b)
Phase relationship between diel cycles (ND) and constant light (LL) for all transcripts
oscillating in ND and LL and those dominated by the circadian clock, co-regulated by the
circadian clock and light and light-dominated. ¢) Phase distribution of clock-dominated,
co-regulated and light-dominated transcripts in diel cycles (ND).

4.8a). This is consistent with the expected underrepresentation of light/dark controlled
transcripts in a set of genes that oscillate in the absence of environmental cues.

We also investigated the phase relationship between driven and free-running conditions
for transcripts predicted to be under the clock control, light control and co-regulation by
light and the clock by the Bode analysis (Figure 4.8b, ¢). The clock-dominated transcripts
revealed the highest correlation of the phase between day/night cycles and constant
light (R?>=0.54, Figure 4.8b) and the light dominated transcripts the lowest (R*=0.38,
Figure 4.8b). The correlation of the phase of co-regulated transcripts lay in between
(PR>=0.49, Figure 4.8b). This is consistent with the anticipated regulation because
transcripts dominated by the circadian clock are expected to preserve the phase against
changing light conditions, whereas transcripts dominated by light cues are expected to
reflect the changes in light. These findings suggested that the Bode analysis predicted
the main regulatory principles that determine the phase of oscillating transcription in
day/night cycles. Namely, it suggested that about 40% of the transcripts with clock-
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maintained oscillations reveal a phase dominated by the circadian clock in diel cycles.
For the remaining 60% of the transcripts with clock-maintained oscillations, the peak of
their expression is under the control of light signaling pathways or co-regulated by light
signaling and clock. This finding highlights the importance of light signaling pathways to
regulate the phase of oscillating transcription even for the transcripts, which rhythmicity
is maintained by the circadian clock.

4.6 Discussion

The circadian clock was estimated to control ~25% of the expressed transcripts under
constant conditions and regulated transcripts to peak in a bimodal pattern before subjective
dusk and dawn. The circadian-controlled transcripts were primarily related to the pro-
cesses of DNA dependent transcription, translation, amino-acid and carbon metabolism,
stress responses, electron transport, and signal transduction. Similarly, Arabidopsis, rice
(Oryza sativa) and poplar (Populus trichocarpa) exhibited circadian regulation of between
8 and 30% of the global transcriptomes [122, 179, 180, 181]. Furthermore, the cycling
transcriptomes in Arabidopsis and rice were also enriched for transcripts involved in tran-
scription, translation, and amino acid and carbon metabolism suggesting the conservation
of the circadian control of metabolic pathways and transcriptional networks among mono-
and dicotyledonous plants [179, 182, 183].

Our data demonstrated that the expression phase under LL conditions was generally
not a strong predictor of the transcript phase under ND conditions. However, the phasing
of clock-controlled transcripts showed higher correlations between constant and day-night
conditions than that of light-controlled transcripts indicating that the clock influences
expression phases of circadian transcripts also under diel conditions. Overall, day/night
cues imposed the strongest control on transcriptome oscillations. Foremost, the hvelf and
hvlux1 mutants with no cycling transcriptome under LL conditions, were characterized
by transcriptome oscillations under ND comparable to wild type Bowman. Second, the
majority of circadian transcripts was regulated by light/temperature or a combination of
the clock and light/temperature cues under ND conditions. In this context it is interesting
to note, that hvelf3 and hvlux1 mutants with a disrupted circadian clock, have been used to
breed for barley cultivars adapted to Northern European environments with strong diurnal
and seasonal changes in light and temperatures [168, 170, 184]. Neither of the two ar-
rhythmic mutants (hvelf3, hvlux1) have been reported to display any obvious impairment
in photosynthesis and growth under conditions of pronounced photo- and thermocycles in
contrast to the corresponding Arabidopsis mutants [168, 170, 185]. Similarly, [186] have
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reported that an osgi mutant in the field was not affected in photosynthesis and yield. Only
under atypical growing conditions with late transplanting dates in the field, fertility was
significantly reduced in osgi plants, indicating a loss of seasonal adaptability. Our data
suggested that diel cycles could compensate circadian defects in the barley clock mutants,
increase the number of oscillating transcripts compared to free-running conditions and

strongly influence the time point of transcript peak expression.

While the number of cycling transcripts was not different between the hvelf3 and
hvlux1 mutants and Bowman, we observed quantitative variation in the phase distri-
bution under diel conditions between the three genotypes. HVELF3 altered the timing
of transcript oscillations in day/night cycles by suppressing expression at the light and
dark interfaces. This effect was apparently completely or partially independent of the
oscillator defect that causes arrhythmia in the hvelf3 plants under LL. Loss of HVELF3,
but not of HvLUX1, altered clock gene expression and transcriptome regulation in diel
cycles although both mutants had a disrupted circadian clock. These results suggest that
HVELF3 is a strong regulator of the diel transcriptome in barley and that this regulation is
uncoupled from the role of HVELF3 in the endogenous oscillator. Our data supported
the notion that HVELF3 in barley, similar to Arabidopsis [187, 188], mediates diel inputs
of light and temperature into the oscillator during the night and that this regulation mit-
igates or even complements defects in the circadian network. This would explain why
clock gene expression and transcriptome regulation was restored to wild-type levels in
day/night cycles in the hvlux1-mutant BW284 and the clock mutant BW287 but not the
Hvelf3-mutant BW?290.

We also observed that HVELF3 has a specific function in the distribution of peak
expression of the global transcriptome because only the Hvelf3-mutant but not the hvlux1-
or eam7 mutants revealed transcriptional phenotypes in diel cycles. This is interesting
because out of the Arabidopsis core components of the Evening Complex (EC) ELF3-
ELF4-LUX only LUX has been identified as a transcription factor with direct DNA
binding activity [189]. It has been shown that LUX provides DNA binding specificity
for the EC at a large number of loci and recruits ELF3 to target loci [190]. On the other
hand, chromatin immune precipitation experiments demonstrated that ELF3 had many
more significant binding sites than LUX suggesting that ELF3 also binds independently
of LUX [190]. Our results suggest that ELF3 has a strong effect on the transcriptional
regulation of many different target genes. The different effects of hvelf3 and hvlux1 on
the diel transcriptome may also be caused by the different nature of the underlying muta-
tions, while the hvelf3 mutant line carries a premature stop codon leading to a truncated

HvELF3 protein, the hvlux1 mutant is characterized by a single amino-acid exchange
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in the Myb-domain which is important for the binding to cognate DNA sequences and
regulation of their target genes [168, 170]. Generally, it was reported before that different
clock mutants (lhyccal, prr7prr9, gi and tocl) affected specific sets of genes and proteins
[183]. Consequently, different clock genes may control very different functions and

output targets apart from their common role in maintaining circadian clock oscillations.

Based on RNA time series data we modeled a possible barley clock as a basis for
understanding its effects on physiology, metabolism, and agronomic performance. It is
important to emphasize that the resulting interactions between the individual components
of the clock represent one of the possible solutions of the barley circadian clock circuit,
which may serve as a null model in future studies aimed to experimentally resolve com-
position and regulation of this clock. The identification of gene regulatory networks is
a major challenge of systems biology. The methodology followed here (referred to as
"All-to-All" in Chapter 2) aims at providing reliable predictions of interactions between
genes given the specific informative potential of the generated dataset. Furthermore, it

does not rely on prior knowledge of the network, and is therefore unbiased.

Our modeling strategy used HvLUX1 to reveal the circadian circuitry, which therefore
appeared as a major hub in the barley clock. Nevertheless, this predicted central role of
HvLUX1 is consistent with the loss of self-sustained rhythms in the hvlux1 mutant. Un-
like HVELF3 and HVELF4, HvLUX1 comprises known DNA binding domains suggesting
that the transcriptional regulation of the EC converges on HVLUX1 [191]. Our model
predicted that HYLUX1 represses HvGI and is itself repressed by HVLHY, consistent
with the suggested repression of HvGI by the EC and CCA1/LHY repressing the Evening
Complex in Arabidopsis [157, 33].

Further, the regulatory predictions suggested that HYLHY and HvRVES are activators
of HYPRR73 and HvPRRY9S in the morning and, at the same time, repress HvLUXI.
The morning activation of the HvPRRs through HYLHY and HvRVES, together with
the repression of HYLHY and HVREVS through the HvPRRs later in the day, are also
a key regulatory principle of the Arabidopsis clock [33, 157]. This suggests that the
regulatory links between HVLHY, HVRVES, and the HvPRRs are conserved between
barley and Arabidopsis, despite the independent evolutionary history of LHY-like and
PPR-like genes in the barley and Arabidopsis clades [34, 159, 161].

Our model suggested that HvPRR73, the first PRR expressed in barley in the morning,
activates HvPRR95, which, in turn, activates HvPRR59 such that HyPRR73, HvPRR95

and HvPRRS9 are expressed in a sequential cascade. This resembles predictions by [31]
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who described the PRRs as a series of activators in the Arabidopsis clock, while other
models have predicted that direct interactions between the PRRs are negative and directed
from the later PRRs in the sequence to the earlier ones [33, 192, 193]. However, the
sequential regulation of the PRRs during the day appears to be a common feature of
the circadian clock in both barley and Arabidopsis, while the sequence of expression
of PRR genes is altered between Arabidopsis and barley. In Arabidopsis, the sequence
of PRR expression starts with PRR9 and ends with PRRS, while it the sequential PRR
expression wave started with PRR73 and ended with PRRS59 in our data [157]. Despite
up-regulation of PRR73, PRR59, and PRR95 in the hvelf3 and hvlux1 mutant plants, our
model did not predict repression of the PRR genes by HvLUXT, which is a key feature of
the Arabidopsis clock [33, 157]. However, while our LTI modeling strategy can reliably
identify few links with high confidence with respect to the informative potential of the
dataset investigated, it is likely that very complex regulatory interactions might not be
identified.

BBX19, RVEI, and HAM3 had several connections to putative barley core clock
genes suggesting that our network modeling identified three new candidate oscillator
components in barley. While the three genes have already been proposed to have con-
nections to the Arabidopsis oscillator, they have not been modeled as an integral part of
the circadian clock but rather as clock outputs in Arabidopsis [177, 178]. HAM3 has
been described as a gene controlling cell differentiation and polarity in Arabidopsis, but
it shows diurnal and circadian expression oscillations that are consistent with a gene
involved in circadian clock regulation [194]. RVEI is a transcription factor homologous
to the central clock genes CCA1/LHY and RVES and might have evolved functions in the
circadian clock in barley [177]. BBX19 with two conserved zinc finger B-boxes acts as a
gatekeeper of EC formation by mediating degradation of ELF3 [143] and is together with
BBX32 co-expressed and forms a protein complex with LHY in poplar. Its close homolog,
BBX32, is part of a regulatory loop with CCAland/or LHY, because overexpression of
BBX32 increases both their expression and circadian period length [195]. Further work
will be required to test the hypothesis on additional clock genes generated by the network
modeling. The model also predicted that barley homologs of BT2, CYP450, PHR1 are
part of the core circadian oscillator in barley. However, these genes were only predicted to
regulate other clock components and were not regulated themselves by clock genes. They
therefore displayed a low connectivity within the circadian network, consistent with their
known functions outside the central clock [196, 197, 198]. Therefore, these components
might provide input into the circadian network but are probably not components of the
barley oscillator.
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4.7 Strengths and Limitations of the Study

The present study holds the following strengths and limitations:

 Strengths

— The circadian system is key to improving adaptation and performance of

crop plants. However, the core components of the clock, their interactions
and the integration mechanisms of the light input are largely unknow. The
findings and datasets presented herre are a valuable resource for exploring the

circadian regulatory systems in crop plants.

The performances of our methodology were evaluated on in silico time series
data generated in condition that replicated those of the current dataset (no
prior knowledge of the system, 48 hours of transient data, 4 hours sampling
rate). As a result, the modeling strategy optimizes the informative potential of
the dataset.

Another advantage of the methodology here lies in the fact that the interactions
suggested are independent of each other. Hence, invalidating one causal
interaction between genes does not affect the others. This approach was
particularly relevant to construct a network of candidates around LUX and for

the general analysis of a novel complex system.

The findings of the key components of the clock are consistent with the current

understanding of the genes involved in clock systems in Aradidopsis.

— The flexibility of the methodology further allowed to study the contribution

of the light input on the regulation of the transcriptome.

¢ Limitations

— From a general point of view, while many interactions have been proposed,

extensive validations will be required to sequentially build knowledge of this

novel system.
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Chapter 5

Mathematical Preliminaries

5.1 Introduction

This chapter describes the mathematical preliminaries underlying the following investiga-
tion of both seizure characterization and early detection. Characterizing seizures signature
and the subtle signal abnormalities emerging during epileptogenesis requires tools that
allow to address the highly complex and multivariate nature of electrophysiological data.
Machine learning provides such tools that can identify complex patterns in very large
amounts of data. Machine learning plays a central role in many modern biomedical
applications (computer aided diagnosis, medical image categorization, among others)
and in the following analysis. Generally, it is a modeling process that encompasses a
large range of algorithms that allow to formulate a relationship - with various degrees of
complexity - between data and a specific outcome. Each algorithm has its own specifici-
ties, such as the assumptions it makes, the objective, the type of results or interpretability.
When the outcomes for some data are known, and the task is to observe both the inputs x;
and outputs y; of the system under study to formulate data-driven hypothesis or further
categorize unseen data, the modeling process is called supervised learning. In epilepsy
research as for most other applications in different fields, supervised learning represents

the vast majority of machine learning applications.

The typical supervised machine learning framework consists in assembling a series of
observations (x;,y;) and feeding them into a learning algorithm to identify the mapping
yi = f(x;) (Figure 5.1). Given a sufficiently large amount of observations or realizations,
such approach allows to build new knowledge on a given topic of interest. However, the
more complex the underlying phenomenon f is, the larger the amount of observations
needs to be. Due to the multiscale interactions of complex molecular and cellular-level
processes, understanding the brain system is one of the greatest challenges in contempo-
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Fig. 5.1 Typical Modeling Process of Supervised Learning Approaches. The objective
is to find a function f so that it maps the data x; to the results y;. The model parameters
are trained using past experience, that is, using data for which the results are known. This
is the Machine Learning step (ML). The hope is that the model will be close enough from
the real system to be useful for all sets of inputs to be encountered in practice. In such
case, the model accurately captured the mapping y; = f(x;). Such strategy implies that
such mapping, or pattern, exists and that sufficient data are available for its identification.

rary science [199]. Furthermore, electrophysical signals such as those generated by LFP
typically monitor the activity of hundreds or thousands of neurons at a time, therefore
blending relevant information together. A particularly successful strategy to analyze
those signals consists in reducing the high dimensionality of the original signal into a
lower dimensional space that represents its most salient characteristics or an abstraction
of its behavior. Those characteristics, or features, are signal transformations that aim at
guiding the algorithm towards the most important information underlying the data. Hence,
less relevant information are filtered out and the accuracy of the model is increased. In
practice, however, the relevant information are often hidden or untrivial so that they are
mostly unknown. Domain-specific knowledge (e.g. clinical expertise), therefore, is a con-
siderable asset to boost the performances of machine learning algorithms. Alternatively,
designing features such that they improve the performances ot the algorithm means that
novel and important aspects of the data were previously overlooked and are now captured.
Features engineering, therefore, is a task that serves both the purposes of enhancing
the performance of the model by approaching the phenomenon f more closely and of
generating novel knowledge on the properties of the system. As such, it is a challenging

task that requires meticulous analysis of the data and literature review.

The neurophysiological data in this thesis are time-series data monitoring of brain
activity in Zebrafish larvae. The machine learning algorithms that will be used are here
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Fig. 5.2 Signal Decomposition, Features Computation and Signal Classification. In
the case of LFP signal analysis, the signal is first decomposed into different relevant
frequency bands (represented by the 4 frequency bands in yellow). Then, features that
are believed to describe the most salient characteristics of the signal are then computed
on each of the resulting decomposed signals. In particular, features that describe the
dynamical properties of the signal, its (relative) energy and statistical properties are
investigated. Then, the overall feature vector is provided to a prediction model (classifier)
that learns to discriminate between the most important aspects of the signal.

introduced in more details, together with the mathematical technicalities required to
transform those signals into features x;. In order to create meaningful knowledge on the
underlying pathological biological process of epileptogenesis, interpretable models and
features are preferentially used, as opposed to black-box strategies which don’t offer
straightforward or human-interpretable decision rules. Furthermore, an important premise
of our approach is that the signal consists in a superposition of different functional mech-
anisms, e.g. a number of oscillating frequency components, operating at different time or
spatial scales. Notably, such composition of the signal has been taken benefit of to im-
prove the performances of numerous automatic seizures detection algorithms in humans
[48]. Therefore, further decomposition of the signal into several frequency sub-bands
(either arbitrarily large or into physiologically relevant ones) was considered to capture
and enhance the neuronal activity that is not directly obvious from the full-spectrum
recording [200, 201, 202, 203]. As such, features characterizing the neurophysiological
signals are here computed from both the original signal and the frequency sub-bands.

Figure 5.2 illustrates the approach undertook.
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For this purpose, the concepts underlying a time-frequency transformation of the
signal called wavelet transform are first introduced. The wavelet transform consists
in the analysis of the frequency components of the signal, but account for transients
signals so that it can be applied to non-stationary data. Specifically, it has the potential to
locate and quantify brief and specific neurophysiological abnormalities from LFP signals.
Second, the features derived from those signals are detailed. The features used in this
thesis aim at capturing the main dynamical properties of the signal, that is, changes in
brain mechanisms over time that would indicate the propensity and progression of the
condition and therefore potentially serve as biomarkers of epileptogenesis. Many features
are considered and believed to capture important aspects of the neurophysiological
signals. Indeed, it is unlikely that a single feature, or biomarker, would suffice to reliably
indicate the presence of a particular epileptogenic process [44]. In particular, features
originating from dynamical systems theory, statistics and nonlinear time series analysis
are emphasized. Finally, the statistical model used to discriminate brain signals using
such features is introduced. The random forest algorithm was further considered for its

flexibility, efficiency, interpretability and robustness to noise.

5.2 Wavelet Transform

The Fourier transform is a well known signal transformation that decomposes the signal
into its constituent frequencies. However, one assumption of the Fourier transform is that
the data are stationary, that is, the statistics of the data are constant over time. This is
clearly not the case for signals describing neurophysiological activity, because endoge-
nous and spontaneous processes occur. In this sense, the analysis of such signal requires
tools that account for the intrinsically transient and spontaneous dynamical nature of the

signal (Figure 5.3).

The wavelet transform can be thought of as an extension of the classic Fourier
transform, except that, instead of working in the frequency domain only, it provides a
time-frequency localization describing the dynamical patterns of the frequency structure
in a time-series. In the case of Fourier transform, we might be able to determine all the
frequencies present in the signal, but not when they are present. Alternatively, the wavelet
transform uses a convolution kernel that has a compact support, that is, it vanishes outside
a certain window interval. The latter is called the wavelet, which essentially consists in
small oscillations that are highly localized in time [204]. Because a convolution in the
time domain is equivalent to a multiplication in the frequency domain, the frequency-band
intersection between the data and the wavelet is therefore localized in both time and
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Fig. 5.3 Example of Stationary VS Nonstationary signals. Upper left: Stationary.
Upper right: Nonstationary. The main frequencies of both signals are the same but they
appear sequentially on the nonstationary signal. The variance, therefore, is not constant.
Below is the power spectra of the signal. Not only the Discrete Time Fourier Transform
(DTFT) does not provide information on the sequential changes in frequencies occuring in
the data, but it also biases the resulting frequency decomposition due to sudden dynamical
changes.

frequency. This property makes wavelets well-suited for the analysis of data with sharp

or transient discontinuities such as those occuring prior or during epileptic events.

Wavelets are flexible tools. Indeed, the wider the bandwidth of the kernel is, the
less temporally localized the information is but the more precise the information on
the frequency is. This crucial parameter, referred to as the number of wavelet cycles,
defines the trade-off between temporal and frequency precision. Hence, unlike sine
waves, wavelets do not contain energy in a single frequency but rather, in a range
of frequencies characterized by the wavelet pattern. As a consequence, the resulting
frequency information at each time point is a weighted sum of the frequency information
of surrounding time points, with the weight decreasing with increasing distance away

from the center of the wavelet. The mathematical formulations of both the Continuous
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Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT) are hereafter
detailed.

5.2.1 Continuous Wavelet Decomposition

Formally, the continuous wavelet decomposition (CWT) is written as [204]:
Vis.%) = [ FOF: cle)a 51)

where * denotes complex conjugation. This equation shows how a function f(¢) is
decomposed into a set of basis functions ‘¥ ; called the wavelets. The variables s and T
are the new dimensions, scale and translation, after the wavelet transform. The wavelets
are generated from a single basic wavelet W(¢), the so-called mother wavelet, by scaling

and translation:

¥ o (1) = —=¥(—) (5.2)

The wavelet transform, therefore, requires to specify the mother wavelet from which
the basis functions will be constructed. There exist many wavelet shapes for which the
suitability varies given certain kind of signals. However, not any function can be used as a
mother wavelet. The mother wavelet should be smooth, oscillatory and carry finite energy.
The choice of a particular optimal shape of the mother wavelet for signal decomposition
requires extensive investigation which was beyond the scope of this study. We used
Daubechies kernel functions that have good localizing properties both in temporal and

frequency domains. More specifically, they have shown promising results regarding the
analysis of LFP signals [200, 201, 202, 203].

For completeness, the inverse wavelet transform is written as:

£(0) = / / ¥(s,©)Ws < (1)deds (5.3)

An example of such time-frequency analysis is illustrated on Figure 5.4, where the
non-stationary signal of Figure 5.3 is analyzed with a continuous wavelet transform.
The effect of the number of cycles of the wavelet, that determines its bandwidth, is
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also illustrated. Importantly, as the wavelet transform is calculated by convolving the
signal with wavelets for continuous values of both scaling and translation, the obtained
decomposition is highly redundant and computationally heavy. To overcome those
problems and make the wavelet decomposition usable in practice, the discrete wavelet
transform (DWT) was used.

Nonstationary Signal

1 T T T T T T
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Continuous Wavelet Transform (Narrow Time Localization)
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Fig. 5.4 The CWT maps a one-dimensional signal into a two-dimensional time-scale
joint representation that displays the power spectra of the signal over time. The
first panel shows the original signal while the two following ones display the CWT
decomposition of the signal. The middle panel displays wavelets for which the bandwidth
is larger, so that the transformation displays a narrow frequency localization but less
precise in time. Conversely, a smaller bandwidth shows a more accurate localization
in time than in frequencies. Changes points in the underlying dynamics of the system
are visible from both panels, but the narrow bandwidth is more suited for detecting
transient activations whereas the larger bandwidth is more sensitive to long activations at
specific frequencies. As a trade-off to identify transients neurophysiological events, the
Daubechies 4 (db4) wavelet has been selected in this thesis.

5.2.2 Discrete Wavelet Decomposition

Discrete wavelet transform discretizes the signal decomposition into an orthonormal basis,

which has many benefits in signal analysis. As an orthonormal signal decomposition, the
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DWT has been widely used in engineering or mathematics with applications ranging from
signal processing or denoising to data compression, since noise is therefore uncorrelated
at the input and output. This is achieved by modifying the wavelet representation so that
[205]:

1 N l—kl’osé

) 5.4

J
S0

with j and k& integers and so > 1 is a dilation step. The translation factor 7, depends
on the dilation step. The time-scale space is now sampled at discrete intervals. Usually,
so = 2, so that the decomposition is called dyadic and 7y = 1 so that the sampling is also
dyadic on the time axis. The schematic dyadic DWT decomposition is illustrated on
Figure 5.5. The DWT decomposes a given signal by passing it through a series of related
low-pass h[n| and high-pass filters g[n], for which the coefficients correspond exactly to
those of the wavelet coefficients for a discrete set of child wavelets originating from the

mother wavelet W(¢). The range of the bandwidth, therefore, decreases exponentially.

The signal X [n] is therefore approximated by increasingly finer details such that:

X[n] = i 212 [kh[2"n — K] + i i 21124,k g[2"n — K] (5.5)
k=—o0 I=lpk=—o0

where [ represents the scale index and the coefficients (respectively called approxima-

tion a; and details d;) in the above expansion are calculated by:

ajlk] = i 2172 x[n]h[2!n — k]
k=—o0

dj[k] = i 212x[n)g[2!n — k]
k=—o0

(5.6)

The decrease by a factor of two of the wavelet coefficients at each step may, however,
represent a limiting factor to carry out statistical analysis. Furthermore, the coefficients
are not aligned with the events in the time-series. In the following paragraph, the

nondecimated wavelet transform and the multi-resolution analysis are introduced.



5.2 Wavelet Transform 117

A CWT Filter Bank C
iy NIX XX K KX A K KX AV
it \ f X ¥ X X Y
\/ / \ / \/
\

v

m - m

v
D1
500-1000Hz ¥

\ A A ’\\ \
\\‘,’4 A~ .‘\\. \ .
0-500Hz
200 300 400 500 600 700 800 900 1000
Frequency (Hz)
B DWT Filter Bank v
db4
:

Magnitude

D2
250-500Hz v

T
b1 0-250Hz
D2
D3|

A4 M
D3

125-250Hz ¥
m o m
v v
D4 A4

| i )
o] 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

62.5-125Hz 0-62.5Hz

Fig. 5.5 Dyadic Wavelet Decomposition. A Filter bank of the Continuous Wavelet
Transform (CWT). B Filter bank of the Discrete Wavelet Transform (DWT) using the
Daubechie 4 wavelet (db4). The CWT, as opposed to the DWT which is an orthonormal
transform, is a highly redundant signal decomposition. C To decompose the signal
following the DWT, the signal is sequentially passed through a series of high pass g and
low pass £ filters. At each step, the signal is downsampled by two, since the output signals
only hold half of the original frequency bandwidth. The outputs of the high pass and low
pass filters are called details and approximations, respectively.

5.2.3 Nondecimated Wavelet Transform and Multi-resolution Anal-
ysis

The nondecimated wavelet transform, or maximal overlap WT (MODWT), is called

overdetermined, that is, it is not an orthonormal transform anymore, and therefore

introduces some redundancy in the decomposition. Similarly to the DWT, the MODWT is

defined in terms of a pyramidal algorithm. While computationally heavier, the MODWT
has several advantages over the DWT [206]:

* The details and approximations coefficients are not downsampled by power of two
anymore, therefore enabling a more statistically relevant analysis of the decomposed

signal.

* The MODWT is a zero-phase filter, so that the events in the original signal are
exactly lined up with those of the decomposed signal.

* The coefficients of the MODWT are norm-preserving, that is, the sum of the energy
of the wavelet coefficients is equal to the energy (.2 norm squared) of the original

signal.
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Fig. 5.6 Maximal Overlap Discrete Wavelet Transform (MODWT) of a LFP Signal.
The signal is transformed into its details and approximation coefficients via a dyadic
decomposition. As compared to the DWT, the amount of coefficients is not downsampled
by a factor 2 at each step. Importantly, the events are lined up across frequency bands and
the original LFP signal.

* It is shift invariant, so that the MODWT does not depend on the starting point of the
analysis. Therefore, it can be used to perform a multi-resolution analysis (MRA).
The MRA is not norm-preserving, but the sum of the components of the MRA,

element by element, form the original time-series.

To achieve this, the filters 4 and g are renormalized so that:

h=— : g==2- 5.7
! 5 i 5 (5.7)

That is, the filters have the same widths but do not result in a downsampling of the

signal by 2 at each step anymore. Figure 5.6 displays an example of the decomposition
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of a LFP signal with the MODWT into 4 levels, using the db4 wavelets.
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Fig. 5.7 Cone of Influence (Boundary Effects). Although there are several ways to
reduce signal distortions at the edges, the signal cannot be decomposed into arbitrarily
smaller scales (low frequencies) without loss of accuracy. The cone of influence shows
areas potentially affected by edge-effects artefacts. Those effects arise from regions
where the signal convolution with the wavelets extend beyond the edge of the observable
signal. In red, the regions where boundary effects occur. In particular for those analysis
that divide the signals into rolling windows, boundary effects will apply. There is no
strict mathematical rule to determine the cone of influence. Because the bandwidth of
wavelets decay exponentially in time, the borders of the cone are approximated with a
time constant 1 /e, so that one time-domain standard deviation of the wavelet is removed
at both ends.

As a final note, it is important to emphasize that the signal cannot be decomposed into
infinitely smaller scales, as boundary effects occur. Boundary effects are typical signal
distortions that appear at the edges of the resulting decomposed signal as a consequence
of the convolution with the (wavelet) kernel on a finite-length window. Several strategies
can be applied to reduce such effects, such as zero-padding or symmetrization of the
data. In this thesis, the symmetrization strategy is used so that the external values of the
convolution are recovered by symmetrically replicating those. The range of the boundary

effect phenomenon is depicted on Figure 5.7 for a signal window of 1 second, sampled at
2000 Hz.
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5.3 Features Engineering

Feature engineering plays a key role in machine learning, statistical pattern recognition
and data mining. The capability of the algorithms to learn the hidden structure within the
data heavily relies on the balance between data availability, data and system complexity,
data representation and the outputs of the model to be constructed, among others. As a
very complex, highly dimensional nonlinear system, the investigation of brain dynamics
typically requires a considerable amount of data to thoroughly learn its key underlying
principles. In addition, biomedical systems are inherently stochastic and their monitoring
may suffer from low signal to noise ratio, intra-inter variance between patients and a
generally scarce availability. Navigating through the space of possible brain mechanisms
to formulate a model, therefore, is a challenging process even for the most sophisticated

machine learning tools.

Data representation concerns the meaningful reduction of the high dimensionality,
or data transformation, of the original data into features. Features engineering consists
in representing the most salient characteristics of the signal or an abstraction of their
properties, such as quantifying trends or whether a signal contains a recurrent pattern,
respectively. As a consequence, the machine learning algorithm does not see the raw
data anymore, but the features only, which are in turn mapped to a certain desired output.
Hence, designing appropriate features is a crucial step which requires a comprehensive
analysis of the signal and of the mathematical, physics, and biological literature. Doing
so confers the machine learning algorithm more robustness to noisy or ambiguous infor-

mation, but also further guides it to likely better results.

The choice of particular features is here inspired by the concepts of dynamical bifur-
cations introduced in Chapter 1. The key idea is to investigate distinct dynamical aspects
of the signal, with the aim of correlating those with specific neuronal and epileptogenesis
mechanisms. In particular, feature computation is performed on both the original and
decomposed signals. Indeed, it has been shown that signs of signal complexity and
organization were depending on the clinical frequency bands investigated, so that a wide
range of scales has to be considered for a comprehensive analysis [200]. In other words,
scale mixing blurs the effectiveness of features for the design of prediction algorithms
[61]. Hence, the algorithm will be provided with more information and left to choose the
most relevant scales upon which to rely for the identification of informative predictors.

To date, empirical studies have revealed few general biomarkers of electrical activity,

or precipitating factors, that appear near a dynamical bifurcation towards seizure: interictal
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epileptiform discharges (IEDs), high frequency oscillations and abnormal changes in the
electrical background activity [11]. The shape, occurrence and duration of those events,
however, appear to be highly variable across patients, and do not inevitably progress to a
seizure, so that no universal biomarker has yet been identified [44, 73]. The features used
in this thesis cover the aforementioned patterns of brain activity, but are not restricted to
them.

5.3.1 Features Description

The list of transformations of the original neurophysiological signal into features is
detailed hereafter. Overall, signal transformations can be separated into 4 classes that

contract the original signal into distinct dynamical aspects:

* System memory: Hurst Exponent (HE), Fractal Dimension (FD).

Signal complexity: Sample Entropy (SampEn), Lyapunov Exponent (LE).

Data distribution: statistical moments (variance, skewness, kurtosis).

Energy distribution: Relative Wavelet Energy (RWE).

Beside detecting seizures events, the goal is to reflect the underlying changes in the
stability of the brain system and its susceptibility to seizure occurrence. Generally, LFP
signals, which reflects the collective activity of a very number of dynamically coupled
neurons, appears to gain in predictability, that is, a general loss in complexity towards
seizure occurrence [11]. Such complexity loss has been reported to vary according to the
scale at which they were investigated (i.e. on different frequency bands) [61]. At this
stage, it is important to highlight that the metrics characterizing system memory (HE,
FD) and the LE are not computed from the decomposed signal data (from DWT), as the

resulting information does not have a clear mathematical nor biological support.

Various complexity measures have been developed over the years to distinguish
random signals (e.g. the brain at rest) to more organized ones (e.g. the brain during
seizures events). On one hand, the entropy exactly measures the randomness of the
information in a signal (and can be applied to nonlinear stochastic systems as well)
[207]. On the other hand, the Hurst Exponent, the Fractal Dimension and the Lyapunov
Exponent can also be thought as signal complexity measures [208, 209], albeit measuring
the dynamical predictability of the system by conceptually different approaches that
are detailed hereafter. For example, the FD is a local property of roughness while

the HE reflects the long-memory dependence of the system [210]. Overall, empirical
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studies showed that complexity measures such as those proposed here eventually behave
qualitatively consistently in the context of large deviations of dynamics in physiological

signals (e.g. seizures) [61].

Lyapunov Exponent

The early days of the application of complex computational tools inspired by dynamical
systems theory (and more precisely chaos theory) to the analysis of neurophysiologi-
cal data have led to the investigation of fluctuations in the Lyapunov Exponent in the
vicinity of a critical bifurcation. While more recent research suggested that such metric
empirically estimated from noisy time series suffers from substantial limitations to iden-
tify an approaching transition, its value for discriminating significantly different systems

states (i.e. between interictal and ictal activity) has been widely supported [211, 212, 213].

The Lyapunov Exponent (LE) is a dynamical invariant of nonlinear systems that
measures the exponential growth of an infinitesimal line segment in the phase-space. In
other words, the LE describes the evolution of a dynamical system from its trajectory in a
embedded space. The exponential growth of its trajectory echoes the sensibility of the
system to small perturbations, and hence, its predictability. A chaotic system holds at
least one positive LE. Typically, this measure can be calculated exactly given the multi-
dimensional nonlinear equations that describe the system. However, estimating it from the
observable one-dimensional behavior of a system is a non-trivial task. [214] demonstrated
that the trajectories of this kind of system can be recovered from a state-space embedding
given a sufficiently high amount of data and relatively low signal to noise ratio. Given
two neighboring points in the state-space at time 0 and a time ¢, the distance between

them is a function of time Ax(x,?), the largest LE is formally defined as:

1 1 |Ax(x07t)‘
with
Ax(x0,t) ~ Axe™  Ax — 0 (5.9)

In this thesis, the algorithm proposed by [215] to estimate the largest LE from time-

series data has been used. The algorithm consists in two steps. First, the user needs to
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define an embedding space for the time series data, and then the LE is estimated by the
aforementioned equation. The embedding space is defined such that:

X)) = (x(2),x(t+7),x(t +2%7T),....,x(t+ (m—1) % 7)) (5.10)

which requires prior estimation of two parameters: the embedding dimension m and
the delay 7. Such embedding of time series creates a trajectory in the m dimensional
space. As an example, periodic time series would become closed phase space orbits. In
practice, the delay 7 is chosen so that it corresponds to the smallest value that maximizes

the independence of the coordinates of the embedded vector [45].

For this purpose, a metric (here, the mutual information) is computed between the
signal and a delayed 7 version of itself. The delay 7 that corresponds to this criterion is
then the first minima of the average mutual information. The mutual information /(X;Y)

quantifies the amount of information random variables have in common. It follows:

P(X,',Yj
P(X;)P(Y;)

~—

1(X;Y) =Y Y P(X;,Y))log (5.11)
i

~

which can be computed empirically from time-series using histograms. The next
step is to estimate the embedding dimension, which is obtained using Cao’s method
[216]. As for 7, bigger is not necessarily better, as a single noisy point in the time series
will affect m points. Therefore, the aim is to obtain the smallest m that conserves a
topologically correct result. The strategy followed here is a type of false near neighbor
(FNN) algorithm. For each dimension m, the distance between each close neighbor of
each point is computed. The dynamics is considered as being correctly unfolded in the
selected embedding dimension when those distances do not change significantly anymore.
Note that estimating both parameters m and 7 simultaneously can also be a good strategy

but was not chosen here for simplicity. Mathematically:

1 N—1d
Ed)=y—zg X Wivwt =iy (5.12)

where i = 1,2,.N — 7d and x;; 4 is the nearest neighbor of x,; 4474 In the d-
dimensional space. Then, the embedding dimension is modified to obtain a measure of
the distance E(d) as a function of d so that the ratio E1(d) is defined:
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El(d)=—"""" (5.13)

In practice, seizure detection is relatively tolerant towards the exact choice of those
parameters [215], but it might impair the detection of more subtle dynamical changes

such as those related to epileptogenesis.

The state-space embedding and the estimation of the largest LE from time series data
originating from real (physiological) system suffer from several issues and limitations

that are briefly discussed below.

* Data length. Although looser bounds can be defined, the original embedding
theorem requires an infinite amount of data to unfold the dynamics of the true
underlying dynamical system [213]. Hence, obtaining robust estimations of the
LE might reveal itself challenging. As a rule of thumb, it is important to limit
the use of high embedding dimension m with relatively small amount of data (e.g.
estimating the manifold of the attractor in a six-dimensional embedding space using

100 datapoints should not be regarded as a robust representation of the system).

* Very high-dimensional systems. In practice, the nature of biological systems
is often not only high-dimensional but also spans across (unobserved) multiple
scales. In such case, it is not clear whether the actual attractor of the system can
be reconstructed from spatio-temporal dynamics contracted into univariate times

series data.

* Noise. Typically, noise in the time series will affect m of the points in the m-
dimensional embedding space, which can substantially hinder the estimation of the
dynamical trajectories.

Signal Entropy

The entropy is a quantity that measures the signal disorder, that is, signal complexity. A
more complex signal is typically less predictable. The entropy, as opposed to the LE,
can be applied to both deterministic chaotic and stochastic systems, and are suited for
noisy and finite-length experimental data [217]. In particular, entropy measures receive a
considerable interest for quantifying the complexity of biomedical time-series data, such
as for the diagnosis of diverse brain functional or pathological states (e.g. Alzheimer)
[218, 219], or heart rate variability [220, 221].
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A robust measure of the entropy from physiological signals called the Sample Entropy
(SampEn) has been used in this thesis [60]. The SampEn is capable of detecting changes
in the signal, which are not reflected in peak occurrences or amplitudes [222]. Large
values of the SampEn mean that the underlying system generating the time series data
is more complex, and its future behavior less predictable. SampEn is a function of 3
parameters m,n, R, given by the following formula:

SampEn(m,r,N) = —In( ) (5.14)

where m corresponds to the embedding dimension, r the tolerance parameter used in
the Heaviside function and N the amount of data points. C,, is the correlation integral
defined as:

_ {number of all pairs (i,j) with [’ — x| < r,i # j}

C = 5.15
m(7) {number of all pairs, i.e. (N—m~+1)(N—m)} (5.15)

where |x" — x;”| represents the distance between points x;" and x?. x;" and x’/' corre-
spond to all possible pairs of points in the embedded vector. Hence, the SampEn is a
measure of how close two consecutive data points remain similar in the next point (m+1).
It has been shown that SampEn has a better statistical validity for m = 1 or 2 and the
range of the tolerance parameter r around 0.1 x ¢ to 0.25 x ¢ [60]. Parameters values

were here chosen sothat m =2 and r = 0.2 X ©.

Fractal Dimension

The fractal dimension characterizes the local self-similarity in the signal. It can be also
thought as a quantification of the roughness or correlation structure of a time-series as
the scale becomes infinitesimally fine. Interestingly, fractal behavior has been observed
in a large number of physical, biological and financial systems [223, 224, 225, 226].
Conveniently, the FD is particularly appropriate to capture transient events in the data
and does not require the reconstruction of the attractor in a multidimensional state-space
(such as the SampEn or LE). As such, it is a very computationally efficient measure.

There exist many methods to estimate the fractal dimension from time series data, but

they all share the following scheme [227]:
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* A certain numerical property Q of the time-series is estimated as a function of scale
€.

* The scale € is made infinitesimally small (¢ — 0) and a power law is derived
(Q(g) o< €P) such that:

— The scaling exponent f3 is a linear function of the fractal dimension D.

— D is estimated through linear regression of logQ(¢€) on loge.

Here, the fractal dimension has been estimated through the computation of an exten-
sive measure: the empirical variogram. Variograms can be interpreted as a statistically
more efficient and robust estimator of fractal dimension than the classical box-counting
algorithms [227]. The robustness of the estimator is of particular importance for the
analysis of neurophysiological signals, since the aim is to differentiate between subtle

brain functions from short recordings hindered by a relatively high signal to noise ratio.

Originally developed to describe the degree of spatio-temporal dependence of spa-
tial random field, the variogram can be naturally generalized to time series data. The
variogram Y of a stochastic process X; is defined as :

1
y@:iwn—mﬂf (5.16)

which corresponds to one-half times the expectation of the square of an increment
at lag t. Hence, for a stationary Gaussian process, the variogram satisfies y(t) = |cz|%,
with o (0,2[ being the fractal index, which therefore relates the fractal dimension to the
variogram in such that:

D=d+1—-—= (5.17)

where d corresponds to the topological dimension (1 for time series, > 2 for surfaces).
Interestingly, this formulation allows to relate the properties of a Gaussian stochastic pro-
cess to the measure of the fractal dimension, which then directly relates to the covariance
function o(t) = cov(X,, X;+4), so that:

(1) =06(0)—o(r) (5.18)
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Estimating the moments of ¥ from time series data can be typically formulated as:

V(l/n)

i/n— l l /n| (5.19)

where p corresponds to a power index here chosen to be equal to 1 (so-called mado-
gram) and |.| denotes the norm. The fractal dimension D is obtained via regression fit
of log V(¢) on logt, which therefore yields the following robust variogram estimator, via
equation (6.17) [227]:

) 1 1ogV,(2/n) —logV,(1/n)
N )4 log2

(5.20)

For time series data, the fractal dimension is bounded between 1 and 2. Hence, 1.5
corresponds to serially uncorrelated processes. The rougher the time series are (i.e. it
fills more space), the larger the fractal dimension is. On the opposite, a smooth curve is

associated with a low value of FD.

Hurst Exponent

The Hurst Exponent (HE) is an estimate of the long-term memory dependence of time
series data. Conceptually, it can be used to estimate the presence of long-term feedback
processes in physiological signals. The HE and FD are two notions that are closely
linked to each other, but are only equal for strictly self-similar processes, where the local
properties of the system are reflected in the global ones [226]. This is obviously not
the case for nonstationary processes such as those observables from neurophysiological
signals, that is, LFP or EEG.

The HE is bounded between 0 and 1. Low numbers of HE indicate a mean-reversive
process, while values close to 1 represent a trend persistence in the signal. A random
process is characterized by a HE of 0.5. The HE is here computed via the Detrended
Fluctuation Analysis (DFA) algorithm [228], which works in the following way, given a

time series X;:

* X, is detrended so that (with (x) representing the mean of the signal):

X, =) (xi—(x)) (5.21)
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* A straight-line fit ¥; is estimated by minimizing the squared error and the Root-
Mean-Squared (RMS) deviation from the trend. The fluctuation F(n) is obtained:

1 N
F(n) = \/ ¥ ;(XI—Y,)Z (5.22)

» Steps 1 and 2 are repeated for a range of different window sizes, obtained by
dividing the original signal X; into arbitrarily smaller windows. The values of F (n)
and reported against n on a log-log graph.

* The scaling coefficient corresponding to the Hurst Exponent is calculated by esti-
mating the slope of the resulting curve on the log-log graph.

Statistical Moments

During recordings of resting brain activity, the signal is well described by simple linear
statistics. Indeed, despite originating from a large collection of coupled neurons, their
average activity converges to a Gaussian probability distribution, even if the individual
processes are non-Gaussian, because neurons spiking are largely uncorrelated. However,
a variety of empirical studies showed that often those distribution, while conforming with
the assumption of simple probability distribution, are often heavy-tailed as a result of
the erratic modulation or synchronization of the firing rates of ensemble of neurons [229,
230, 231, 232]. Hence, higher statistical moments are here considered. The skewness is a

measure of the asymmetry of a distribution:

(= () pia
n=—3"" (5.23)

where 62 = ((x — (x))?) p(x) 1s the variance of x with respect to p(x). A positive

skewness means the distribution has a heavy tail to the right, and inversely.

The kurtosis is a measure of how peaked around the mean a distribution is:

(= D)) pa
p=—— (5.24)

A distribution with a positive kurtosis has more mass around its mean than would a

Gaussian with the same mean and variance, and inversely. The kurtosis is defined so that
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a Gaussian has a kurtosis equals to 3. Typically, multiscale recruitment of neurons into
large synchronous ensembles in the vicinity of a bifurcation characterized by a critical

slowing down causes the variance to shrink and the kurtosis to increase [233, 234].

Computing those values from the wavelets coefficients of the decomposed signal
accounts for the estimation of the conditional spectral moments around those specific
frequencies originating from the dyadic decomposition. Hence, it is capable of capturing
transient high frequency oscillatory phenomena.

Relative Wavelet Energy

The MODWT partitions the energy across the various scales and scaling coefficients:
lo
[1X117= Y e | P+ asy | (5.25)
=1

Where X is the input data, d; are the detail coefficients at scale / and the g, are the

final-level scaling coefficients. Therefore, we define the relative wavelet energy:

Es

tot

RWEs =

(5.26)

Conceptually, computing the relative wavelet energy captures the spectral moments
of the signal, which can be used to evaluate the frequency slowing down and hence, an
indicator of the approaching transition to a different dynamic regime. Indeed, it has been
demonstrated that energy switches occur between frequency bands in the event of an

approaching seizure, or in the general case of critical dynamical transition [234].

5.4 Random Forest as a Statistical Model for Classifica-
tion

Among machine learning methods, Random Forest (RF) notably benefits from several
advantages such as their interpretability, as opposed to black-box classification algo-
rithms such as Support Vector Machine (SVM) or Artificial Neural Networks (ANN),
and their great generalization and noise robustness properties which take their origin in
their inherent bagging scheme. Moreover, RF offers a flexible framework with only few

hyperparameters, the possibility to tailor the objective function and to formulate its results
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in a probabilistic fashion [235]. As such, RF have been applied to a broad spectrum of
biomedical research, mostly formulated as classification tasks [236]. Nevertheless, they

can also be applied to solve regression and multiple class clustering tasks, among others.

Random forests belong to a category of machine learning algorithms called ensemble
techniques which combine the results of multiple models, thereby reducing the overfit-
ting potential of the general model [237]. In this case, the RF algorithm constructs an
ensemble of decorrelated decision trees and assembles their individual predictions, such
as through the averaging of the predicted probabilities.

A x1 =3
Yes l No
X, =2 x, =25
Yes No Yes No
Cy C, X126 Cy
Yes No
G, Gy

Fig. 5.8 Decision Tree. A A Hypothetical decision tree that classifies the data into two
groups C; and C, given 2 discrete features x; and x;. B Corresponding classification
function / surface.

A decision tree is a classifier that consists in a sequence of binary decisions organized
in a hierarchical fashion (Figure 5.8) [238]. Individual decision trees are intuitively ap-
pealing, since they are based on a recursive dichotomic partitioning of the data following
an optimal separating decision rule at each node. Each decision tree of the RF only
sees a subset of the data (with replacement, so that the size of the input data set remains
identical), a process referred to as bagging. In the training phase, decision trees can be
built using different decision rules, or split criterion, with a random subset of features
for each tree. At each split, the data are divided into two groups so that the data are
more similar within each group than across groups, picking the feature that produces
the most separation. One of the most widely used split criterion is the Gini index [235],
which measures the similarity of data in each group, or their "purity". For example, for

regression tasks, the measure of impurity is the variance of the data in each group.
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Hence, the data are iteratively split into two groups until reaching a stopping crite-
rion (a leaf node) where the data are attributed to a certain class. When no stopping
criterion is specified, the construction of the tree stops when each leaf node consists
either in a single data point or a group of data belonging to the same class. Deep trees
(i.e. involving a large amount of data split) are capable of approximating any arbitrarily
complex functions for classification, regression or clustering task. However, they tend
to overfit the data. Thus, three stopping criteria can be defined to prune trees. Those
are (1) the maximum depth of the tree (2) the minimum number of samples per leaf and
(3) the minimum amount of samples required to split a node. Given the relatively small
amount of hyperparameters, the optimal set of values can be evaluated through grid search.

Estimating a tree is computationally fast so that it can be applied to large datasets. Fur-
thermore, they are naturally suited for multiclass classification problems. The drawback
is that individual decision trees tend to be sensitive to the set of data considered. Hence,
they are particularly suitable for ensemble algorithms such as the RF, which computes
the average performance of individual models each computed from a bootstrap replica of

the data (e.g. random selection of samples with replacement).

Discrimination between classes can be visualized with the ROC and PR curves. Unless
stated otherwise, performances of the algorithms are evaluated at classification thresholds
that optimize the sensitivity and specificity of the detection. This optimization corresponds
to the choice of the point in the upper left corner on the ROC curve. Altogether, the
performances of the classification tasks are reported with their confusion matrix, the
precision, sensitivity, specificity and their respective area under the ROC (AUROC) and
PR curves (AUPREC).

It is worth noticing that, while the simple rules of single decision trees make their
interpretation straightforward, it is not necessarily the case for a large collection of
decisions trees generated from random data samples. Nevertheless, the value of each
individual feature can still be estimated by considering the accumulated decrease in
the split-criterion due to the use of this variable in each tree. As a result, a metric
that characterizes the relative importance of each feature can be computed. Feature
importance is particularly valuable to estimate the features that are the most valuable
to discriminate between several classes. When the features are related to biologically
meaningful intensities, such strategy permits the evaluation of the most important aspects

of the processes involved.
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5.4.1 Feature Selection

Generally, the feature engineering step provides a set of features for which it is not
known in advance which of those are the most important. In order to reduce the risk of
overfitting the data (when the number of training patterns is comparatively small to the
amount of features) and improving the performances of the algorithm, one strategy is to
further reduce the dimensionality of the feature space. The problem of feature selection

is well-known in the machine learning field.

Depending on the number of features considered, some feature selection strategy
can be preferred. In this thesis, a relatively small amount of features is considered, so
that a greedy optimization technique based on recursive feature elimination (RFE) has
been chosen to find the best performing subset of features [7]. First, the model is trained
using the initial set of features and individual features importance is estimated. Then, the
least important features are recursively removed from the features set until a stopping
criterion is reached. Here, the stopping criterion has been chosen so that there is no further
statistically significant improvements of model performances. By doing so, recursive
feature elimination has the advantage of implicitly taking into account multivariable
associations. Furthermore, the RFE has been demonstrated to be more robust to data

overfitting than other methods [7].



Chapter 6

Detection and Characterization of
Epileptic Seizure Events in Zebrafish

6.1 Contribution

Seizure occurrence in Zebrafish larvae is of several orders of magnitude higher than for
humans. Their manual identification from LFP signals, therefore, is a time-consuming
task. Hence, a novel and highly performant automatic seizure extraction algorithm is
developed and applied to recordings of scnllab, PTX-treated and PTZ-treated Zebrafish
LFP recordings. This approach constitutes a novel framework for the offline (i.e. retro-
spective) automated extraction of seizures events from neurophysiological signals, which

is typically performed manually.

In addition, the morphological signature of seizures of scnllab, PTZ-treated and
PTX-treated Zebrafish is investigated. For the first time, it is shown that a combination
of dynamical biomarkers computed from the brain dynamical activity during seizures
events correlate with specific biological mechanisms of the disease. For this purpose,
this study leverages the large amount of Zebrafish seizures (923 in total) generated
by distinct pathological mechanisms to formulate a discriminative model by means of
interpretable machine learning techniques. As a result, the model developed is capable of
differentiating between scnllab, PTZ-treated and PTX-treated Zebrafish larvae seizures

with a high degree of precision.
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6.2 Introduction

To date, more than 500 genetic mutations have been associated with the epileptic condi-
tion in humans [37]. Yet, only few of these can precisely pinpoint the circuitry involved
in seizures emergence [239]. Furthermore, genetic factors account for approximately 30%
of the causes of recurrent seizures in patients [239]. In fact, seizures can be triggered by a
wide range of brain insults (e.g. strokes, brain trauma, Alzheimer disease, etc.), infectious
diseases or autoimmune diseases [37]. The current identification of the aetiology of
epilepsy, however, remains principally based on its resulting phenotype (e.g. spasms,
impaired awareness), or on the spatial aspect of seizures (localized or generalized) [37],

which does not allow specific diagnosis of the underlying epileptogenetic mechanisms.

Recently, an universal framework based on dynamical bifurcation theory has been
proposed to describe the initiation and termination of seizures in mice, humans and Ze-
brafish [10]. However, while general characteristics of the brain functional reorganization
towards seizures can be formulated, distinct pathological aspects of the disease have
been shown to influence seizure-onset patterns [62]. In particular, [62] has investigated
the presence of static patterns such as bursts of polyspike or low-voltage fast activity
at seizure onsets, but without being able to distinguish the underlying epileptogenetic

mechanisms, as each pattern was shared by at least two or more pathologies.

To the best of our knowledge, the classification of the effects of the underlying pathol-
ogy on the resulting morphology of the neurophysiological signals generated during
seizures events has never been attempted with general dynamical measures. Such ap-
proach, however, has the potential to contribute to the understanding of the relationship
between the collective neuronal dynamics as recorded by LFP and the specific biological
processes involved in the disruption of the balance of neuronal activity. Furthermore, this
classification is of broad significance for the precise diagnosis and personalized treatment
of the epileptic condition. Ultimately, automatic detection and prediction algorithms
would further benefit from a better understanding of morphological patterns that are
subject-specific.

In this regard, the use of Zebrafish represents a considerable advantage to elucidate the
specificity of dynamical patterns of seizures from LFP. Indeed, seizures in Zebrafish are
several orders of magnitude more frequent than for humans, which allows a more robust
evaluation of the intra-inter variability of their patterns across recordings. Furthermore,
as an animal model, seizures mechanisms can be selectively triggered by several means

(induced by drugs, or inherited by mutations) [51]. Chemoconvulsants drugs inserted
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in the bathing medium, for instance, can reproduce acute seizures events, which might
be subsequently used for rapid screening of antiepileptic drugs (AED). On the opposite,
Zebrafish mutations often seek to reproduce the spontaneous and recurrent aspect of
chronic seizures in humans. Finally, seizures induced in Zebrafish models have shown
to closely resemble those in mammals from both physiological and behavioral aspects
[240].

In this chapter, the correlation between the morphology of seizures events in neu-
rophysiological signals and the underlying epileptogenic mechanism is investigated
from LFP recordings of Zebrafish larvae. For this purpose, three seizures models were
used: a genetic mutant (scnllab) and two seizures inducing drugs, picrotoxin (PTX) and
pentylenetetrazol (PTZ). On one hand, the sodium voltage-gated channel alpha subunit
1 mutation (scnla) is a loss of function mutation which induces a dysfunction in the
sodium voltage-gated channels. Voltage-gated sodium channels have a critical role in the
generation and propagation of action potentials in the central and peripherical nervous
systems. In the initial phase of the action potential, voltage-gated sodium channels are
activated as a response of a membrane depolarization, causing the voltage across the
neuronal membrane to increase. The membrane is then repolarized in response to a fast
spontaneous inactivation of voltage-gated sodium channels, promoted by the activation
of voltage-gated potassium channels. This is the falling phase of the action potential,
characterized by a decrease in voltage across the membrane. Voltage-gated sodium
channels then undergo a recovery phase, or deinactivation, where the inactivation gates
reopen and the activation gates close, until they are ready to participate to another action
potential. A common form of dysfunction in the sodium voltage-gated channel induced by
mutations associated with epilepsy is a defect in their inactivation, caused by incomplete
closure of the inactivation gate [241]. As a result, non-inactivating Na™ current may
facilitate neuronal hypercitability by reducing the threshold for an action potential to
be triggered. However, the exact biophysical mechanisms of epileptogenesis caused by
mutations of voltage-gated sodium channels remain uncertain. In particular, mutations
in this channel have been found to cause genetic epilepsy and are specifically involved
in Dravet syndrome (also known as severe myoclonic epilepsy of infancy) which is a
rare form of early childhood epilepsy [242]. For this genetic model of Zebrafish, seizure
emergence occurs naturally. On the other hand, Picrotoxin (PTX) and pentylenetetrazol
(PTZ) are two chemoconvulsant drugs which bind to the GABA receptors inhibiting
the flux of chloride ions in the post-synaptic neuron generating seizures by blocking
the inhibitory synapse. For these two models, seizures were triggered by adding the
drugs in the medium of wild type animals. In total, the data consisted in LFP recordings
of 33 scnllab, 31 PTX and 10 PTZ Zebrafish, each of 30 minutes. This rather large
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Zebrafish individual cohort allowed to formulate statistically significant relationships
between seizures morphology and the source of the epileptic condition.
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Fig. 6.1 Summary of the Modeling Strategy to Automatically Detect and Character-
ize Seizures Originating from Different Zebrafish Models. LFP recordings from 3
Zebrafish models (one genetic mutant and 2 seizures inducing drugs) are analyzed and
used to extract a total of 923 seizures. Calcium imaging was used to validate seizures
occurrence in LFP. The first step consists in extracting those seizures from the entire LFP
signals. For this purpose, every abnormal brain activity has been extracted with a multi-
resolution convolution filter and seizures subsequently discriminated with a machine
learning approach. Once extracted for each Zebrafish model, the distinct characteristics of
seizure types are investigated, which is formulated as a multi-class classification problem.
Grey boxes represent those steps that involve the design of machine learning algorithms.
Finally, the red lines illustrate seizure availability.

The investigation of the distinctive features between Zebrafish models is presented in
two main steps (Figure 6.1). First, seizures are automatically extracted from retrospective
LFP recordings using a newly introduced multi-resolution, convolution-based framework.
Then, the investigation of the (in)variants features between seizures events is formulated
as a multi-class classification task. To those ends, several interpretable machine learning
prediction models were developed and their performance assessed. As a result, it is shown
that the underlying epileptogenesis mechanisms can be distinguished with a high degree
of accuracy by the use of dynamical measures applied at different scales of the signal.

Notably, those measures are not subject- but pathology-specific.
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6.3 Automatic Extraction of Seizures

6.3.1 Signal Processing and Events Extraction

The automatic extraction of seizures is a multi-resolution, convolution-based algorithm.
The key ideas consist in extracting every abnormal brain dynamical behavior from the

recordings and further classifying them into (non-)seizure events.

The original LFP signal is downsampled from 100kHz to 2000Hz. Indeed, it is very
unlikely that any relevant biologically related mechanism would occur at frequencies
higher than 2000Hz. Then, the SOHz signal artefact was removed with a notch filter
for which the Q factor was adapted to remove ~ 2.5-3Hz around the notch. Finally, for
the extraction step, the resulting signal is decomposed into a 10th level multi-resolution
framework using the Maximal Overlap Discrete Wavelet Transform (MODWT) with a
Daubechie 4 (db4) wavelet filter (see Chapter 5 for mathematical details). The wavelet
transform is a time-frequency transformation of the signal that is particularly suited
for the analysis of brief, transients events in non-stationary data. Such decomposition
of the signal into its frequency bands (either arbitrarily large or into physiologically
relevant ones) was considered in order to enhance the difference between neuronal activ-

ities that operate at different scales, which is not obvious from the full-spectrum recording.

Hence, the original signal is decomposed into its frequency sub-bands through a recur-
sive filtering that follows a dyadic decomposition (following a power of 2) into increas-
ingly smaller frequency bands. Conveniently, such dyadic decomposition of the original
signal sampled at 2000Hz isolates the neuronal activity of Zebrafish into frequency bands
that correspond to physiologically relevant brain rhythms in humans, thereby allowing
straight comparison. The following frequency bands are then obtained: [1000-2000]Hz,
[500-1000]Hz, [250-500]Hz, [125-250]Hz, [62-125]Hz, [31-62]Hz (gamma waves), [16-
31]Hz (beta waves), [8-16]Hz (alpha waves), [4-8]Hz (theta waves), [2-4]Hz (high delta
waves) and [0-2]Hz (low delta waves).

A brain activity signal was considered as abnormal if the LFP signal reaches the
tail of its distribution in some frequency sub-bands of interest for seizures (Figure 6.2).
To extract such activity from the entire recording, the signals of 3 frequency sub-bands
([62-125Hz],[31-62Hz],[15-31Hz]) are squared and passed through a rectangular convo-
lution filter. The length of the convolution filter was chosen to be 1 second for scnllab
and PTX recordings and 2 seconds for PTZ recordings, because of the longer dura-

tion of seizures events in the latter. Those frequency bands were chosen for both their
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Fig. 6.2 Continuous Wavelet Transform (CWT) of a typical (scnllab) Zebrafish
seizure. The top panel represents the seizure as recorded from Local Fields Poten-
tial (LFP). The middle and top panel depicts the time-frequency decomposition of the
seizure. The bottom one corresponds to a zoomed-in version (in the frequencies) of the
middle one. On one hand, it can be seen that the very beginning of the seizure is marked
by a peak in the high frequencies, with most of its energy centered around 100Hz. On the
other hand, there is a pronounced change in the energy levels around the low frequencies
during the whole seizure event.

sensitivity and specificity to seizures events. Then, a general threshold is applied on
each frequency band to extract every seizure candidate. The threshold is chosen suffi-
ciently low to extract every seizure from the signal but sufficiently high to frame the
seizure event only. This threshold was chosen to be the 90th percentile of the distribution
of the resulting convolved signals for scnllab mutants and PTZ treated zebrafish. For
PTX zebrafish, it was chosen to be the 70th percentile of the [125-250] Hz frequency band.

Finally, a machine learning algorithm is trained to differentiate between artefacts,
interictal events and seizures. Here, Random Forests (RF) will be used for their inter-
pretability, efficiency and robustness to noise. More specifically, the aim is to identify the
features that contribute the most to the discrimination of seizure events from background
activity, which carry potentials for further biomarkers development.
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6.3.2 Discrimination of Seizure Events

A supervised RF classification task was implemented to automatically discriminate be-
tween seizures and non-seizures events. The following paragraphs detail the development
of the predictive models for the extraction of both PTZ and scnllab mutants seizures. As
regards to PTX seizures, the thresholding procedure introduced previously was sufficient
to extract seizures events only with a high degree of accuracy, so that training a statistical

model was not required for those recordings specifically.

scnllab Zebrafish

The candidates, i.e. extracted signals comprising seizures and non-seizures events, were
first separated into three groups. One group to train the machine learning algorithm,
another to validate it and the last one to ensure its generalization potential on totally
unseen recordings. The first and second groups account for seizures originating from the
same sub-set of individuals. The last group accounts for individuals that the algorithm has
never seen at all. The purpose of this separation is to further avoid overfitting of seizure
patterns due to a larger inter-variability than intra-variability of patterns originating from

different LFP recordings (seizures events within a single recording tend to be similar).

The groups were organized so that the first and second groups together consisted in 14
recordings, while the third group consisted in 17 recordings from another set of individu-
als. Each recording has been performed on a different Zebrafish so that 31 individuals

were used in total.

Candidates extracted from the first and second groups (608) were manually separated
by experts into seizures and non-seizures events, therefore unveiling 84 seizures events.
60% of the seizures events was then randomly selected to train the prediction model
(first group) and the remaining 40% for its validation (second group). The proportion
of seizures and non-seizures candidates in each group was kept identical to retain class

imbalance.

Features for the RF algorithm were selected based on their potential to discriminate
brain dynamical behavior of different natures (during seizures and during background
activity). For mathematical details, intuitive explanations and further motivations for the
choice of each of the features mentioned hereafter, the reader is referred to the mathemati-
cal preliminaries of Chapter 5. On one hand, the Lyapunov Exponent (LE) computed from
a reconstruction of the brain dynamics via delay-coordinate embedding in the phase-space
will be used to characterize the loss of brain resilience and its temporal organization
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during seizure and non-seizure events. On the other hand, the entropy (SampEn) of the
signal will be estimated to investigate signal’s predictability. Overall, both measures
characterize the complexity of the brain temporal dynamics observed from LFP signals.
The Hurst Exponent (HE) and the Fractal Dimension (FD), which correspond to measures
of the system’s memory, were not considered here due to the brief duration of candidate
signals. It has been further reported that changes in the spatiotemporal patterns of neural
activity during and towards seizures events often exhibit observable changes in the energy
repartition over frequency sub-bands [200]. As such, the Relative Wavelet Energy (RWE)
of each frequency band resulting from the MODWT decomposition of each candidate
was considered. Finally, statistical measures (variance, skewness and kurtosis) were
additionally computed over each frequency bands to characterize the distribution of high
and low frequency components and potential differences, as dynamical changes might
not be spread out equally across the entire spectrum [229]. To avoid boundary effects to
dominate the signal information at the smallest scales (see Chapter 5 for further details on
multi-resolution analysis with the wavelet transform), each candidate signal was decom-
posed following a 8-th level wavelet decomposition with db4 wavelets. The following
frequency bands are then obtained for each seizure events: [1000-2000]Hz, [500-1000]Hz,
[250-500]Hz, [125-250]Hz, [62-125]Hz, [31-62]Hz (gamma waves), [16-31]Hz (beta
waves), [8-16]Hz (alpha waves) and [0-8]Hz (theta waves and delta waves).

To summarize, the following features were computed (50 in total):

* LE, SampEn, Variance, Skewness and Kurtosis from the original signal, leading to

5 features.

* SampEn, Variance, Skewness and Kurtosis for each of the signal sub-bands, leading
to 4 x 9 = 36 features.

* The RWE for each frequency sub-band, leading to 9 features.

Due to the imbalance in the amount of seizures against non-seizures events proposed
as candidates, a class-sensitive cost function was chosen to optimize the RF algorithm
in order to raise the penalty resulting from missing a seizure event. Furthermore, the
following hyperparameters were optimized using a grid search and 3 fold cross-validation
to obtain the best possible generalization trade-off: number of trees in the forest (or
estimators), maximum depth of the decision trees, minimum number of samples to make
a split and minimum number of samples to be defined as a leaf. The best classifications
results were obtained for 30 estimators, a maximum depth of 10 splits, 2 samples mini-
mum to make a split and one single sample minimum to be defined as a leaf.
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Predicted Condition Predicted Condition
Group 2 | Seizure | Interictal Activity Group 3 | Seizure | Interictal Activity
Seizure 32 1 Seizure 46 1
Actual Interictal Interictal
Condition Activity 1 210 Activity 3 582

Table 6.1 Confusion Matrices for the Automatic Extraction of Seizures from scnllab
Zebrafish. On the left-hand side, the results for group 2, which consists in a set of seizures
originating from the same individuals as from the training set. Those results correspond
to a precision 97%, a specificity of 99.5% and a sensitivity of 97%. On the right-hand side,
the results for group 3, which consists in seizures extracted from previously completely
unseen individuals. Those results correspond to a precision 93.9%, a specificity of 99.5%
and a sensitivity of 97.9%.

The confusion matrices describing the resulting classification performances are dis-
played on Table 6.1. A precision of 97%, 99.5% specificity and 97% sensitivity were
obtained for the test set that corresponds to partially seen recordings (group 2, 14 indi-
viduals). For this test set, the discrimination algorithm showed a AUROC value of 0.999
and AUPREC of 0.997 (Figure 6.3). Performances of the RF on totally unseen recordings
(group 3, 17 individuals), were as following: 93.9% precision, 99.5% specificity and
97.9% sensitivity. For this generalization test set, the discrimination algorithm showed a
AUROC value of 0.999 and AUPREC of 0.994 (Figure 6.3). In biomedical applications
such as the one presented here, a particularly important aim is to avoid missing infor-
mation related to the clinical condition under investigation, while providing as few false
negatives as possible. Here, it is worth noticing that only two seizure events have been
misclassified as non-seizure events over the entire course of the classification task over
both groups, which totals 876 candidates. Furthermore, the performances between the
two test groups are very much similar, hence suggesting that the predictive model captures
the key characteristics of seizures events across Zebrafish larvae. The performances of
the classifier were further evaluated on their capability of discriminating seizures from
a “normal” brain behavior (baseline) and subsequently achieved a perfect classification.
This result suggests that the automatic detection algorithm could be further extended for

the purpose of a real-time monitoring framework.

The importance of each feature for distinguishing between seizure and non-seizure
events was investigated via Recursive Feature Elimination (RFE). Following this ap-
proach, multiple RF classifiers were trained using a subset of features of decreasing
size and their performances estimated, hence ranking predictors according to their con-
tribution to the model outcome. It should be noted, however, that the features that are
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Fig. 6.3 Receiver Operating Characteristic (left) and Precision-Recall Curve (right)
of the Automatic Detection of scnllab Seizures. The optimal decision thresholds are
represented by the blue dot on all graphs.

removed at last do not necessarily account for those that are individually the most relevant.
Only the subset of the top ranked features taken together is optimal in this sense. No-
tably, such strategy conveniently accounts for multivariable associations between features.

As a result, the information across the highest frequency bands was selected as highly
discriminative of seizures events within the signal (among other brain dynamical states or
artefacts). More precisely, the entropy and variance of frequency sub-bands [250-500Hz]
and [500-1000Hz] appeared in the top most discriminative features and accounted for most
of the total feature importance (~70%) (Figures 6.4 and 6.5 and Table 6.2). This result is
consistent with the literature that describes the appearance of very high frequency oscil-
lations (HFO) during epileptic seizure events [69, 243, 244, 245, 246, 247, 248, 249, 250].

Further analysis of seizures candidates revealed that a majority of non-seizures events
were capturing so called interictal events (IEDs) from the signal. It is interesting to notice
that, as a classification between seizures and non-seizures candidates, our analysis further
supports that IEDs and seizures hold distinct temporal and spectral features [251].
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Fig. 6.4 Feature Importance for the Automatic Detection of Seizures Events in
scnllab Zebrafish. The entropy (S in the graph), energy (RWE) and statistical mo-
ments (Var.; Kurt.; Skew.) were computed from both the original signal and for each
frequency sub-bands. Each sub-band has been assigned a code which corresponds to
the decomposition level. Hence, D* and A* respectively corresponds to the detail and
approximation coefficients of the discrete wavelet transform. Then, D1 = [1000-2000]Hz,
D2 = [500-1000]Hz, D3 = [250-500]Hz, D4 = [125-250]Hz, DS = [62-125]Hz, D6 =
[31-62]Hz, D7 = [16-31]Hz, D8 = [8-16]Hz and A8 = [0-8]Hz.
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Fig. 6.5 Top 2 Most Important Features for the Automatic Detection of Seizures
Events in scnllab Zebrafish. The top 2 tanked features are displayed (Entropy in the
[250-500]Hz and [500-1000]Hz frequency bands). Those 2 features together account for
50% of the overall feature importance. As such, clusters are clearly visible from the first
panel.
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Seizures Interictal Activity
(IQR) (IQR)
[5013?&)(2)%%2 0.82[0.65 — 0.95] 1.40[1.36 — 1.43]
[25(;1.:88]sz 0.49(0.43 — 0.55] 0.70[0.68 — 0.72]
[So\éﬁiggg(]aHz 2.92[1.74 —4.54](e ™) | 0.40[0.30 —0.53](¢~*)
n;’gg%%ﬁ{z 3.16[1.84 —4.99](e~*) | 0.26[0.20—0.37](e )

Table 6.2 Feature Importance represented in interquartile ranges (IQR) for the Dis-
crimination of Seizure vs Non Seizures Events in scnllab Zebrafish.

PTZ Zebrafish

The same modeling procedure has been applied to classify candidates extracted from
entire recordings of brain activity in PTZ treated Zebrafish. Hence, features selection and
model optimization were performed identically. However, due to the relatively smaller set
of available recordings (10 individuals), the data have only been separated into a training
set (60% of the candidates) and a test set (40% of the candidates), that is, without a second
test set where the candidates originates from entirely unseen individuals. Seizures events

were validated by the co-occurrence of a peak in the recordings of calcium activity.

As a result, the training set consisted in 87 seizures and 376 non-seizures events,
while the test set comprised 51 seizures and 259 non-seizures events. Hyperparameters
were tuned so that the model structure that provided the best discriminative algorithm
was obtained with the following values: 120 estimators, a maximum depth of 20 splits, 2
samples minimum to make a split and one single sample minimum to be considered as a
leaf. A precision of 79.3%, 95.4% specificity and 90.2% sensitivity were obtained for the
test set, suggesting that either differentiating the seizures from background activity in PTZ
treated Zebrafish is a more challenging task than for scnllab mutants for an automatic
extraction algorithm or that PTZ induced seizures have more diversified patterns. The
algorithm showed a AUROC value of 0.982 and AUPREC value of 0.913 (Figure 6.6).

The confusion matrix is illustrated on Table 6.3.

Feature importance was computed as before with RFE. As a result, the brain activity
captured by the kurtosis and the entropy in the relatively high frequency bands ([125-
250]Hz and [250-500]Hz) were identified as the most discriminative between the seizures

and non seizures candidates extracted by the multi-resolution convolution filter (Figures
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Predicted Condition
Seizure | Interictal Activity
Actual Seizure 46 5
Condition | Interictal Activity 12 247

Table 6.3 Confusion Matrix for the Automatic Extraction of Seizures from PTZ
induced seizures. A class-sensitive cost function has been designed to further penalize
the amount of false negative, so that the algorithm favors the detection of seizures over
false positive predictions.

6.7 and 6.8 and Table 6.4). This result further supports that IEDs and seizures hold distinct
temporal and spectral features in PTZ-induced seizures as well, since the non-seizures
candidates mostly consist of IEDs. Furthermore, the contribution of each individual
feature appears more diluted than for the model that discriminates between seizures and
non seizures in scnllab Zebrafish, which suggests that the bifurcation towards the seizure
state in PTZ-treated Zebrafish is the result of more complex dynamical mechanisms that
span across additional scales (i.e. frequency bands, or different dynamical relationships
between neurons). More specifically, starting from phenomena occurring at 125Hz and

above, up to 1000Hz, as compared to [250-1000]Hz in mutant (scnllab) seizures.
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Fig. 6.6 Receiver Operating Characteristic (left) and Precision-Recall Curve (right)
of the Automatic Detection of PTZ Seizures. The optimal decision threshold is repre-
sented by the blue dot on both graphs.

6.4 A Dynamical Signature of Seizure Models in Zebrafish

One of the major issues in identifying consistent biomarkers for epilepsy is its wide and
heterogenous range of pathological mechanisms. Hence, the investigation of epilepto-

genic mechanisms is intrinsically hindered by the inherent difficulty of constituting a



146 Detection and Characterization of Epileptic Seizure Events in Zebrafish

1)

Non Sorted Feature Importances Automatic Detection (PTZ) - Discrimination with other events

o
2 0.1004
g
2 0.075
I
5 0.050
8
£ 00251
L
2 0.000 T T T T T T
3 WEZANMLTN ORNO®QZANMTN ONRNOOZANMTN ONDOZANMTNONDOANMNIINONODD
uw j;DDDODODD(QDDQDDDDD(;ODODODOD(gﬂﬂﬂDDDDO(DDDDDDDD(
BBl ddl s s 332322222 " gy yuy
@ 8888858888 3 52333232332
SS>55>55>5>5>5>32000v0000 €33333333
S R R R R R R R A R
[
'F Sorted Feature Importances Automatic Detection (PTZ) - Discrimination with other events
ks
£ 0.100 A
g
2 0.075
£
5 0.050
8
£ 00251
L
2 0.000
3 M TLTOUNTNDMODNDO O S W TMODMNOONCTOMEO ST EPWOOEIMNMNINSSOO N o~
s DCXDDDDDDDDDODDDDDEjD;DDDDDDDDOD(g(DDD<<(<(DDD£DDDQDD
R N N R - R N N e - - o -
$2 2355Z3S8%3%35 Y28 $eSZeESiogic gzgazvs g:
[ gn [l w g [ ) »

Fig. 6.7 Feature Importance for the Automatic Detection of Seizures Events in PTZ
Zebrafish. The entropy (S in the graph), energy (RWE) and statistical moments (Var.;
Kurt.; Skew.) were computed from both the original signal and for each frequency sub-
bands. Each sub-band has been assigned a code which corresponds to the decomposition
level. Hence, D* and A* respectively corresponds to the detail and approximation
coefficients of the discrete wavelet transform. Then, D1 = [1000-2000]Hz, D2 = [500-
1000]Hz, D3 = [250-500]Hz, D4 = [125-250]Hz, D5 = [62-125]Hz, D6 = [31-62]Hz, D7
=[16-31]Hz, D8 = [8-16]Hz and A8 = [0-8]Hz.
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Fig. 6.8 Top 2 Most Important Features for the Automatic Detection of Seizures
Events in PTZ Zebrafish. The top 2 tanked features are displayed (Entropy in the
[250-500]Hz and [125-250]Hz frequency bands). Those 2 features together only account
for 22% of the overall feature importance. As such, clusters are not clearly differentiable
by only illustrating the relationship between the top 2 ranked features.
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Seizures Interictal Activity

QR) (IQR)
[zi)‘ﬁggfm 0.59 [0.55-0.63] | 0.72[0.70 - 0.73]
128950k, | 03910.29-048] | 0.60[0.59-0.61)
[250‘?88}; 11.95[8.88 - 17.20] | 3.19 [3.02 - 3.06]
[élztggi]sHZ 17.33 [13.86 - 28.61] | 3.31 [2.98 - 4.51]

Table 6.4 Feature Importance represented in interquartile ranges (IQR) for the Dis-
crimination of Seizure vs Non Seizures Events in PTZ-treated Zebrafish.

database of patients sharing an identical condition. In this sense, the use of an animal
model is particularly suited to study distinct seizures mechanisms. This study takes
advantage of a large cohort of Zebrafish individuals (74 in total) with 3 distinct epilep-
togenic mechanisms to explore the association between LFP signals patterns and the
corresponding cellular mechanisms responsible for seizures emergence. An attempt is
made to discriminate seizures patterns according to their associated epileptogenic mech-
anisms. This problem is formulated as a three-class classification problem where a RF
algorithm is trained to differentiate between PTX, PTZ and scnllab Zebrafish individuals
based on the morphology of their respective seizures. Features weights are retained
from the classification task and further analyzed to gain novel biological insights on the

dependence of the intrinsic characteristics of seizures towards their generating mechanism.

The Random Forest algorithm was used to discriminate the seizures types based on the
Zebrafish model it originates from. The features considered were the SampEn, the RWE
and the statistical moments. Indeed, due to the brief duration of mutant seizures, features
characterizing system memory, i.e. the Hurst Exponent and the Fractal Dimension (see
Chapter 5), were not computed. Furthermore, the Lyapunov Exponent was not used as
a potentially discriminative dynamical feature due to the intrinsic lack of robustness of
its estimation from short-time series data generated by nonlinear deterministic processes
(see Chapter 5 for details). The MODWT decomposition was performed on 8 levels with
db4 wavelets filters. As a summary, the following features were used (49 in total):

* SampEn, Variance, Skewness and Kurtosis from the original signal, leading to 4

features.
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» SampEn, Variance, Skewness and Kurtosis for each of the signal sub-bands, leading
to 4 x 9 = 36 features.

* The RWE for each frequency sub-band, leading to 9 features.

6.4.1 Two Classes Classification (Drug - Mutant)

First, the problem of differentiating between drug-induced seizures and spontaneous
seizures of the scnllab Zebrafish mutant is addressed. The data were separated into two
groups, the training set and the test set, which respectively comprised of 60% and 40%
of the total amount of available seizures. Class imbalance has been maintained in both
training set and test set, which therefore consisted in 479/74 Drug/Mutants seizures and
313/57 Drug/Mutants seizures respectively. The objective function of the RF has been
modified to account for the high class imbalance, so that the performance of the algorithm
are not artificially inflated because of incorrectly predicting outcomes to be part of the
largest class only (in this case, drug-induced seizures). The hyperparameters of the RF
were optimized using a grid search and 3 fold cross-validation. The best classification
performances were obtained for the following hyperparameters: 160 estimators, a max-
imum depth of 20 splits, 2 samples minimum to make a split and one single sample
minimum to be considered as a leaf. The algorithm obtained a perfect classification with
an AUROC value of 1, so that both the sensitivity and specificity were of 100%. As a
result, we suggest that there exist significant dynamical differences between the seizures
patterns that have been produced by two distinct pathways, that is, drug induced (PTX or
PTZ) or by a genetic mutation (scnllab).

Feature importance was obtained as before and the results displayed on Figures
6.9 and 6.10. Interestingly, the entropy in both the lowest frequency band (theta and
delta waves) and very high frequencies ([S00-1000Hz]) account for a significantly large
importance in discriminating between the seizures being induced by the drugs and those
that are naturally occurring with scnllab Zebrafish. As a conclusion, the main differences
between drug-induced seizures and mutant ones occur simultaneously on the very high
and very low frequency bands. The distributions of both the entropy in the [0-8]Hz and
[500-1000]Hz frequency sub-bands are detailed on Table 6.6 (IQR).

6.4.2 'Two Classes Classification (PTX - PTZ)

The problem of differentiating the morphology of seizures induced by the two types of
drugs, i.e. PTX and PTZ, is here addressed. The data were separated into two groups, the
training set and the test set, which respectively comprised of 60% and 40% of the total
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Non-Sorted Feature Importances (Drug (PTX & PTZ) vs Mutant (scnllab))
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Fig. 6.9 Feature Importance for Two Classes Classification Task (both drug induced
seizures (PTX - PTZ) against the genetic variant scnllab Zebrafish). The entropy (S
in the graph), energy (RWE) and statistical moments (Var.; Kurt.; Skew.) were computed
from both the original signal and for each frequency sub-bands. Each sub-band has
been assigned a code which corresponds to the decomposition level. Hence, D* and
A* respectively corresponds to the detail and approximation coefficients of the discrete
wavelet transform. Then, D1 = [1000-2000]Hz, D2 = [500-1000]Hz, D3 = [250-500]Hz,
D4 =[125-250]Hz, D5 = [62-125]Hz, D6 = [31-62]Hz, D7 = [16-31]Hz, D8 = [8-16]Hz
and A8 = [0-8]Hz.
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Fig. 6.10 Feature Importance for Two Classes Classification Task (both drug in-
duced seizures (PTX - PTZ) against the genetic variant scnllab Zebrafish). The top
2 tanked features are displayed (Entropy in the [0-8]Hz and [500-1000]Hz frequency
bands). Those 2 features respectively represent the theta and delta waves and the very
high frequency bands, which together account for 32% of the overall feature importance.
As such, clusters are clearly visible from the first panel.
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Predicted Condition
Mutant Seizure | Drug Seizure
(scnllab) (PTX + PTZ)
Mutant Seizure 57 0
(scnllab)
Actual Drug Seizure
Condition (PTX + PTZ) 0 313

Table 6.5 Confusion Matrix of the Two-Class Classification Task (Drug (PTX-PTZ)
and Mutant (scnllab) seizures).

Drug Seizures

Mutant Seizures

(PTX + PTZ) (scnllab)
(IQR) (IQR)
Entropy
[500-1000]Hz 1.22 [1.17 - 1.28] 0.82 [0.65 - 0.95]
Entropy B 0 B I
0.8)Hy | 0-311022-0.46)(7™) | 1.65[1.27 - 2.12)(e™)

Table 6.6 Top 2 Ranked Feature Importance represented in interquartile ranges
(IQR) for the Discrimination of Drug-induced seizures (PTX + PTZ) and Mutant
seizures (scnllab) Zebrafish.

amount of available seizures. Class imbalance has been maintained in both training set
and test set, which therefore consisted in 393/83 PTX/PTZ seizures and 262/55 PTX/PTZ
seizures respectively. The objective function of the RF has been modified to account for
the high class imbalance. The hyperparameters of the RF were optimized using a grid
search and 3 fold cross-validation. The best classification performances were obtained
for the following hyperparameters: 180 estimators, a maximum depth of 10 splits, 2
samples minimum to make a split and one single sample minimum to be considered
as a leaf. The algorithm obtained an AUROC value of 0.986, a sensitivity of 96.4%
and a specificity of 94.7% (Figure 6.11). The confusion matrix at the optimal decision
threshold is displayed on Table 6.7. Hence, distinguishing PTX seizures out of both PTX

and PTZ drug-induced seizures can be performed with a relatively high degree of accuracy.

Feature importance was obtained as before and the results displayed on Figures 6.12
and 6.13. In a similar observation than for the distinction between drugs-induced and
mutant seizures, the entropy seems to account for a large part of overall feature importance,
meaning that seizures hold an intrinsically different dynamics in each of those Zebrafish

models as well. However, we note significant differences with the previously developed
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prediction model. In particular, the discrimination between the PTX and PTZ-induced
seizures occurs mostly in the low frequencies. Hence, the Relative Wavelet Energy
(RWE) in the delta-theta waves ([0-8]Hz) and the entropy in the gamma waves ([31-
62]Hz) together account for the two most important features. The distributions of both the
RWE in the [0-8]Hz and the entropy in the [31-62]Hz frequency sub-bands are detailed
on Table 6.8 (IQR).

Predicted Condition

PTZ PTX
Seizure Seizure
Sel:)iZfre = 2
Actual PTX
Condition . 14 248
Seizure

Table 6.7 Confusion Matrix of the Two-Class Classification Task (PTX-PTZ induced
seizures).
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Fig. 6.11 Two Classes Receiver Operating Characteristic of the discrimination of
PTX and PTZ-induced seizures. The optimal decision thresholds are represented by
the blue dot on all graphs.

6.4.3 Three Classes Classification (PTX - PTZ - scnllab)

In this paragraph, a predictive model is trained to distinguish between all kinds of seizures
types together, that is, between PTX-treated, PTZ-treated and scnllab mutant Zebrafish

seizures. From a clinical point of view, this experimental setup is more realistic since
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Non-Sorted Feature Importances (PTX vs PTZ Seizures)
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Fig. 6.12 Feature Importance for Two Classes Classification Task (drug induced
seizures PTX and PTZ). The entropy (S in the graph), energy (RWE) and statistical
moments (Var.; Kurt.; Skew.) were computed from both the original signal and for each
frequency sub-bands. Each sub-band has been assigned a code which corresponds to
the decomposition level. Hence, D* and A* respectively corresponds to the detail and
approximation coefficients of the discrete wavelet transform. Then, D1 = [1000-2000]Hz,
D2 = [500-1000]Hz, D3 = [250-500]Hz, D4 = [125-250]Hz, DS = [62-125]Hz, D6 =
[31-62]Hz, D7 = [16-31]Hz, D8 = [8-16]Hz and A8 = [0-8]Hz.
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Fig. 6.13 Feature Importance for Two Classes Classification Task (drug induced
seizures (PTX - PTZ) and genetic variant scnllab). The top 2 tanked features are
displayed (Relative Wavelet Energy in the [0-8]Hz and entropy in the [31-62]Hz frequency
bands). Those 2 features together account for 22% of the overall feature importance. As
such, clusters are only slightly visible on the first panel.
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PTZ PTX
Seizures Seizures
(IQR) (IQR)

Rel. Wav. Energy
[0-8]Hz (%)
Entropy
[31-62]Hz

75.98 [61.39 - 87.60] 95.35[91.94 - 97.92]

0.89[0.53 — 1.24](e 1) | 1.49[1.25 —1.69](e~ ")

Table 6.8 Top 2 Ranked Feature Importance represented in interquartile ranges
(IQR) for the Discrimination of Drug-induced seizures (PTX + PTZ).

seizures can be triggered by a significantly wide range of pathological causes and as such,
patient datasets are intrinsically vastly heterogeneous. Hence, this study investigates the
possibility for the specific identification of the biological mechanisms responsible for
seizure emergence from the resulting dynamical patterns of seizures. For this purpose, the
problem of differentiating seizures types by their underlying pathological mechanisms is
here formulated as three-class classification problem. In particular, Random Forest was
used to gain insights on the most important signal characteristics that have the potential
to serve as biomarkers. Such methodology evaluates the signal properties that remain
similar across class and those that remain similar within a single class and different from
the others. The latter can be further used to discriminate the underlying mechanisms of
seizure genesis. Interestingly, it is already worth noticing that seizures lasted on average
491+2.62,6.91 +5.07 and 0.97 £ 0.36 seconds for PTX, PTZ and mutants zebrafish
models respectively, which could already serve as a valuable predictor. The respective
durations of seizures for the scnllab and the PTZ-treated Zebrafish models are in line
with the findings of [56]. Nevertheless, the focus is here on the morphology of seizures

themselves across different resolutions and biological triggers.

The data were separated into two groups, the training set and the test set, which
respectively comprised of 60% and 40% of the total amount of available seizures. Class
imbalance has been maintained in both training set and test set, which therefore con-
sisted in 397/82/74 PTX/PTZ/scnllab seizures and 257/56/57 PTX/PTZ/scnllab seizures
respectively. The objective function of the RF has been modified to account for class im-
balance, so that samples weights in the overall performances of the algorithm are modified
according to their occurrence in their respective class. The following hyperparameters
were optimized using a grid search and 3 fold cross-validation to obtain the best possible

performances on the test set: number of trees in the forest (or estimators), maximum
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Predicted Predicted Predicted
Condition Condition Condition
PTZ PTX PTX
PTX + PTZ + scnllab +
scnllab scnllab PTZ
PTX 247 10 PTZ 53 3 scnllab 57 0
Actual PTZ PTX PTX
Condition + 6 107 + 14 300 + 0 313
scnllab scnllab PTZ

Table 6.9 Confusion Matrices of the Three-Class Classification Task (PTX - PTZ -

scnllab). The algorithm is less efficient in discriminating between PTX and PTZ than
scnllab seizures and any others.

Specificity (%) | Sensitivity (%) | Support
PTX Seizures 97.3 96.1 257
PTZ Seizures 95.5 94.6 56
scnllab Seizures 100 100 57
Weighted avg/total 97.4 96.5 370

Table 6.10 Classification Report for the Three-Class Classification Task (PTX - PTZ
- senllab). Specificity and sensitivity are reported as a one-versus-all classification
performance (in %). It is worth noticing that scnllab seizures benefit from perfect
precision, meaning that once a scnllab seizure has been identified, it almost certainly

belongs to the mutant seizure class. The support value illustrates the amount of seizures
considered.

PTX PTZ scnllab
Seizures Seizures Seizures
(IQR) (IQR) (IQR)
RWE 95.4[91.9 - 97.9] 76.0 [61.4 - 86.0] 53.1 [36.2 - 68.7]
[0_8]HZ (%) . . = . . . - . . . - .
Kurtosis
g 6.36 [4.62 - 9.35] 6.72 [5.41 - 8.91] 2.24[1.97 - 2.93]
[Eon_tgrj’ﬁi 0.290.20 — 0.40](e~2) | 0.56[0.36 — 0.77)(¢~ ) | 1.65[1.26 —2.11](e~2)

Table 6.11 Top 3 Ranked Features Importance represented in interquartile ranges

(IQR) for the discrimination of seizures originating from different animal models
(PTX-PTZ-scnllab).
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Fig. 6.14 Multi-Class Receiver Operating Characteristic of the discrimination of
seizures originating from different animal models (PTX-PTZ-scnllab). The optimal
decision thresholds are represented by the blue dot on all curves.

depth of the decision trees, minimum number of samples to make a split and minimum
number of samples to be defined as a leaf. The best classifications results were obtained
for 160 estimators, a maximum depth of 20 splits, 2 samples minimum to make a split
and one single sample minimum to be defined as a leaf. For a three-class classification
problems, the specificity and sensitivity are computed for a one-versus-all identification
(Table 6.10). In other words, their respective performance metrics correspond to the task
of discriminating the current class against all the others. The confusion matrices of the
resulting classifications performances on the test set at the optimal operating points are
displayed on Tables 6.9 and 6.10 and the ROC curves on Figure 6.14.

The importance of each feature in the classification was computed as before. In
particular, 3 features accounted for the highest discriminative potential across Zebrafish
models. The features were the following: the relative energy (RWE) of the [0-8]Hz
frequency band (theta and delta waves), the kurtosis of the [8-16]Hz (alpha waves) and
the entropy (SampEn) of the [0-8]Hz frequency sub-band (Figures 6.15, 6.16, 6.17 and
Table 6.11). Notably, among the top 4 contributing features are those that describe the
brain activity at the lowest frequency bands ([0-8]Hz, i.e. theta and delta waves). The
appearance of the kurtosis of the signal in the alpha frequency sub-bands is an interesting
predictor. Indeed, the kurtosis is an indicator of data distribution around the mean. A
lower kurtosis value in the [8-16]Hz frequency sub-band for scnllab seizures illustrates

a larger amount of wide oscillations, which might suggest a more prominent neuronal
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Non-Sorted Feature Importances (PTX vs PTZ vs Scnllab)
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Fig. 6.15 Feature Importance for Three Classes Classification Task (PTX - PTZ -
scnllab). The entropy (S in the graph), energy (RWE) and statistical moments (Var.;
Kurt.; Skew.) were computed from both the original signal and for each frequency sub-
bands. Each sub-band has been assigned a code which corresponds to the decomposition
level. Hence, D* and A* respectively corresponds to the detail and approximation
coefficients of the discrete wavelet transform. Then, D1 = [1000-2000]Hz, D2 = [500-
1000]Hz, D3 = [250-500]Hz, D4 = [125-250]Hz, D5 = [62-125]Hz, D6 = [31-62]Hz, D7
=[16-31]Hz, D8 = [8-16]Hz and A8 = [0-8]Hz.

activity at this scale. Moreover, quantitative measures of signal complexity and dynamics
appeared consistently among the top ranked features (6 out of 10). In total, the entropy
accounts for 38% of feature importance compared to 22% for the kurtosis, 18% for
the variance, 16% for the relative energy and 6% for the skewness of each frequency
sub-band. This result suggests that the seizure specific dynamics, as recorded by LFP,
holds the potential to distinguish between the underlying epileptogenic mechanisms. In
other words, intrinsic dynamical patterns can be extracted from seizures generated by
distinct biological mechanisms such as those resulting from the scnllab genetic variant,
PTX-induced and PTZ-induced seizures.

Overall, the resulting high classification performance supports that such discrimination
can be done in Zebrafish with a relatively high degree of accuracy. Eventually, designing
a two-steps classification model could improve the classification performances by first
identifying seizures that are very likely to belong to scnllab Zebrafish, and then further
distinguish between PTZ-treated and PTX-treated Zebrafish.
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Fig. 6.16 Feature Importance for the Three Classes Classification Task (PTX - PTZ
- scnllab). The top 3 ranked features are displayed (Energy and Entropy in the [0-8]Hz
range and Kurtosis in the [8-16]Hz range). Interestingly, the mutant seizures seem to form
a separate cluster in all 3 comparisons, which is also visible from the histograms of the
bottom panels. Table 6.11 displays the distribution (IQR) of the top 3 ranked predictors.
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6.5 Discussion

The automatic monitoring of seizures events in animal models is essential for the identi-
fication of epileptic phenotypes and the evaluation of the effects of AED [252]. In this
chapter, a highly efficient automatic detection algorithm based on a novel mathematical
framework was proposed to extract seizures of scnllab mutants, PTX and PTZ-treated
Zebrafish. To the best of our knowledge, similar approaches to automatically extract
seizures events from Zebrafish LFP or EEG signals were only attempted in [56, 253]. For
the former, a cross-correlation index between multichannel electrodes was computed to
detect events of neuronal activity that differ from baseline, which did not allow precise
extraction of seizure events. For the latter, an approach based on non-interpretable ma-
chine learning tools was proposed. It uses a number of statistical and frequency measures
computed from LFP signals of a genetic mutant (scnllab) and a chemically-induced
model of seizures (PTZ), which then makes their detection approach directly comparable
with our study. As a result, the performances of the approach proposed in [56] did not
reached high-level trade-offs standards between specificity and sensitivity towards seizure
events in scnllab mutants. Indeed, for the genetic mutant model, the sensitivity was of
70.8%, the specificity of 99.8% and the precision of 78.0%, which is significantly lower
than the performance of our algorithm: 97% sensitivity, 99.5% specificity and precision
97%. On the contrary, the performances of both algorithms on the automatic detection of
PTZ-induced seizures were more comparable with: 60.6% sensitivity, 99.7% specificity
and 94.9% precision for their algorithm and 90.2% sensitivity, 95.4% specificity and
79.3% precision for the approach proposed in this thesis. While the direct comparison of
the performances of the proposed method with its counterpart in humans or mice is not
straightforward, we note that such levels of accuracy are at the level of the most recent
and performant algorithms for automatic seizure extraction [48]. In addition, a notable
advantage of our approach is that the length of seizures does not need to be specified
a priori, thereby allowing greater flexibility. Finally, our knowledge-based approach
allowed us to identify the importance of each feature in the decision system, which is

typically not feasible with most of the automatic detection algorithms [48].

In particular, we note that the top 2 most important features for the automatic detection
of seizures events in scnllab Zebrafish involve the entropy of the signal at very high
frequencies ([250-1000]Hz) (Figures 6.4 and 6.5). Detailed analysis of the distribution
of this dynamical measure at different scales of the signal revealed that during seizures
events, the entropy is significantly lower than for the interictal activity, which is consistent
with the synchronized behavior of neurons during seizures (Table 6.2). Indeed, neurons

synchronization is reflected by a more organized, less complex and more predictable
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signal in LFP data. Furthermore, the presence of high frequency oscillations has previ-
ously been associated with seizures events in humans [69, 243, 244, 245, 246, 247, 248,
249, 250]. Similarly, we report that PTZ-induced seizures can be further distinguished
from the normal brain activity with high frequency signal ([125-500]Hz) (Figures 6.7 and
6.8, Table 6.4), which has never been suggested so far. Altogether, those results support
that high-to-very-high frequency signals carry most potential for accurate seizure de-

tection, which is a specificity of seizure events across humans, mice and Zebrafish models.

The extracted seizure patterns (923) were then subsequently compared. As a result,
we propose that specific neuronal dynamics during seizures events retain some of the
information that characterizes the pathological mechanisms underlying the disease. This
proposal is in line with the recent idea of an universal mathematical framework to analyze
seizure patterns from the amplitude and frequency scaling of oscillations during the
pre-ictal state [10], in the sense it suggests that dynamical measures hold the potential to

further reveal specific brain functional machinery.

We note that the patterns of inherited and induced seizures in Zebrafish can be dis-
criminated with a very high degree of accuracy (perfect accuracy for the data used in
this thesis). For this task, the entropy computed at both very high ([500-1000]Hz) and
low ([0-8]Hz) frequencies appear as important mathematical biomarkers (Figures 6.9
and 6.10). The distribution of the entropy values at the very high frequencies was sig-
nificantly lower for scnllab seizures than for drug-induced seizures, and vice versa for
the low frequencies (Table 6.6). The fact that drugs and mutants seizure patterns can be
discriminated from very high frequency oscillations ([500-1000]Hz) is consistent with
the results of the automatic seizures extraction algorithm. Interestingly, the significant
difference lies in the distribution of the entropy at the lowest frequency band ([0-8]Hz
- delta and theta waves), which might represent a biomarker of drug induced-seizures.
Indeed, the comparison of PTX and PTZ-induced seizure patterns revealed that most of
the discriminative potential lies in the analysis of the low frequency bands, with most
of the energy of PTX seizures being distributed over the [0-8]Hz frequency band (IQR:
95.35[91.91 - 97.92] %). It is worth noticing that the morphological patterns of PTX and
PTZ-induced seizures could not be perfectly separated (illustrated by a smaller precision
of the classification algorithm), which might either be explained by shared biological
mechanisms or because PTZ treated Zebrafish significantly displayed more irregular
patterns. As a final note, the signal of PTZ-induced seizures is more predictable, that is,
with more neuronal synchronization in the [31-62]Hz frequency band (gamma waves)
(Figures 6.12 and 6.13, Table 6.8).
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Then, a three-class classification task was proposed to distinguish between the patho-

logical causes of seizures, which constitutes a more clinically relevant setup. The results

show that seizures patterns originating from different Zebrafish models can be reliably

differentiated (Figure 6.14), which hold further potential for the precise diagnosis and

personalized therapy of the epileptic condition in humans. Notably, dynamical measures

based on the entropy of the signal accounted for most of the feature discriminative poten-

tial, as compared to the statistical and energy measures. Finally, the fact that the kurtosis

of the signal was generally chosen as a feature of high importance is of further interest.

6.6 Strengths and Limitations of the Study

The study presented in this chapter has the following strengths and limitations:

 Strengths

A large number of events was considered to formulate a robust statistical
model of seizures dynamical patterns originating from distinct pathological

causes of seizures.

While the inter-variability of seizures patterns is higher than their intra-
variability, it did not affect the classification algorithm. We suggest that the

set of mathematical biomarkers proposed in this chapter are robust metrics.

The use of both performant and interpretable machine learning tools allowed
to classify seizures in a knowledge-oriented approach, which contrasts with

most of the available literature on seizure detection.

In particular, the wavelet decomposition of the signal at different resolutions
allowed to simultaneously gain in model accuracy and formulate hypothesis
on the specific functioning of the Zebrafish brain at those scales.

¢ Limitations

Only one dynamical metric could be computed due to the brief duration of
seizure events. Indeed, the Fractal Dimension and the Hurst Exponent did not
provide consistent results for the short time-series data considered (during
seizures events across recordings of mutants, PTX and PTZ treated Zebrafish).
Alternatively, other nonlinear metrics such as the permutation entropy [254]
or the multiscale entropy [255] could be further considered to improve the
performances of the algorithms proposed.
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— Translation of findings from animal models to human applications is not
straightforward. Indeed, although the electrical patterns generated during
epileptic events share fundamental characteristics with those in humans, the
direct applicability of the currently available tools and methods developed for
characterizing seizure dynamics in Zebrafish or rodents is not yet perfectly
clear. The investigation of the possible cross-application of the tools proposed
in this thesis and in the literature has the potential to reveal fundamental
resemblances or dissimilarities in the epileptic mechanism between species,
which is of great interest for further evaluation of a variety of anti-epileptic
treatments or therapies.






Chapter 7

Prediction of Epileptic Seizure Events
in Zebrafish

7.1 Contribution

For the first time, the predictability of seizures of both scnllab and PTZ-treated Zebrafish
larvae is investigated from LFP recordings. In particular, changes in the frequency of
Interspike Epileptiform Discharges (IED) in the vicinity of seizures events are investigated
as a distinguishable feature of the system transition from the healthy state to the epileptic
seizure state. The results show that, on average, a reshaping of the distribution of IED

occurs in the proximity of a seizure event.

In addition, a probabilistic prediction model is designed to evaluate the potential of
seizure predictability from restrospective recordings by integrating multiple dynamical
measures. The results show that the neurophysiological signals recorded by LFP in Ze-
brafish larvea brains (at least) partially retain some of the information about the functional
reorganization of the system towards seizure. This finding is illustrated by significantly
above-average performances of the prediction algorithm in the last 10 seconds before

seizure emergence.

Finally, the feasibility of an automated seizure prediction algorithm from continuous
recordings of Zebrafish’s brain activity with LFP signals has been analyzed. In a con-
tinuous setup, however, robust classification of events between pre-ictal and interictal
could not be reliably achieved from LFP signals only, which is due to an overall lack of
precision of the predictions. The latter can be attributed to various causes, including the
difficulty of formulating the "false positive" event, the lack of distinctive information in
LFP signals, or the inherent variability in the electrode placement.
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7.2 Introduction

The seemingly unpredictable nature of epileptic seizures may have a particularly debili-
tating effect on the patient’s quality of life, especially for individuals with drug-resistant
disease. However, to date, no universal biomarker has been found to consistently forecast

the likelihood of seizure events across individuals [256].

In the recent years, the field of computational epilepsy research has generally acknowl-
edged the feasibility of seizure prediction [74, 75, 76]. Notably, in 2013, a large clinical
trial showed promises for the anticipation of seizures for some patients using surgically
implanted devices [73]. In 2014, a seizure prediction competition was conducted on the
Kaggle platform (kaggle.com) by crowdsourcing long-term intracranial recordings of
canine brain activity with naturally occurring seizures [257]. As a result, the best ranked
algorithms of the competition reached precision levels that were significantly higher than
chance predictors. Together, those study provided convincing evidences that seizures are
not random events, but rather that a reorganization of the brain activity occurs preceding
a seizure [258, 259, 260, 261], which can be inferred by prospective algorithms from
the neuronal activity recorded by intracranial electrodes. It is worth noticing, however,
that the performances of the algorithms were not equivalent across individuals, so that
the suitability of the prediction systems differed across patients. Despite those advances,
important improvements are still required in both the sensitivity and specificity of the

prediction algorithms for a robust implementation in a clinical setting.

Since then, progress has been made in the understanding of the mechanistic pro-
cesses involved in the brain transition to seizures. During interictal and pre-ictal periods,
the presence of pathologically connected groups of neurons may manifest as transient
episodes of synchronous activity. Interspike Epileptiform Discharges (IED) are recurrent
and morphologically similar events that are clearly distinguishable from the background
LFP activity. Their duration is typically short compared to seizures events. IEDs have
been observed in humans, mice and, more recently, in Zebrafish [10]. The role for IED
has been a matter of debate within the concerned community. On one hand, studies
examining changes in IED properties in humans have found that their frequency can both
increase and decrease in advance of a seizure [72], and that this relationship might be
subject-specific. In such case, IED may either hold pro-seizure (feedforward mechanisms)
or anti-seizure effects (feedback mechanisms) [11, 262, 263]. Conceptually, the anti-
seizure effect would be achieved by suppressing the brain neuronal activity, shifting the
dynamical state back towards a more resilient state, while the pro-seizure effect would be

achieved by lowering the "seizure threshold" and bringing the brain system closer to the
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separatrix. On the other hand, it has been proposed that IED and seizure events are not
dependent, but merely co-occurrent events [264]. However, this difference might be due
to the existence of different underlying cellular mechanisms of epileptogenesis, that is,
different dynamical routes to seizure initiation [265]. In addition, the robust quantification
of the role of IEDs in seizure emergence is challenging. Indeed, the patterns of such
fluctuations are notably variable across individuals and pathologies [72], do not inevitably
progress to a seizure [73], and are dominated by the normal baseline activity. Recently, a
general framework has been proposed to interpret the emergence of such patterns as the
visible manifestation of the slow bifurcation from the healthy state of the brain towards
the epileptic state. Based on dynamical bifurcation theory, IED are then interpreted as the
subthreshold oscillations that typically occur when a nonlinear system is pushed out of
its stable regime in the vicinity of a dynamical bifurcation, so-called Hopf bifurcation.
Hence, the occurrence of IED at least corresponds to a reflection of the dynamical state

of the brain system, which is analogous to the definition of a pre-ictal state.

The aim of this chapter is threefold. First, investigating the existence of dynamical
changes in IED as a distinguishable feature of brain activity near the transition towards
seizure events. Second, diverse measures of brain dynamical activity are computed in the
vicinity of a seizure event and statistically compared to the baseline activity with machine
learning tools. Third, based on the predictions models estimated in the previous step, the
relevance of a clinically realistic setup to continuously evaluate the likelihood of a seizure

emergence over time is analyzed.

7.3 Sub-threshold Oscillations towards Seizures Events

In our dataset, IEDs have been observed for both scnllab mutants and PTZ-treated Ze-
brafish. However, clear and consistent morphological LFP patterns were only identified
across scnllab Zebrafish. On the opposite, they are not visible at all for PTX-treated
Zebrafish, which might suggest that PTX brings the brain already in a state very close
to the seizure state, where stochastic perturbations are the main trigger of rapid critical

bifurcation towards seizures.

The aim of this section is to investigate the changes in subthreshold oscillations occur-
rence over time and evaluate their potential for characterizing the closeness of the brain
system state to a sudden seizure event in scnllab mutant Zebrafish. Indeed, fluctuations of
such morphological biomarkers have the potential to indicate an approaching dynamical
bifurcation.
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7.3.1 Methods

Based on the detection algorithm developed in Chapter 6, pre-ictal windows of 60 seconds
were extracted before seizures onsets for each seizure detected in scnllab Zebrafish larvae.
Seizures that were not at least separated by 60 seconds from the previous seizure onset

were discarded. In total, 104 seizures were considered across 33 Zebrafish recordings.

Subthresholds oscillations were identified by first bandpass filtering the pre-ictal win-
dows in the [0.5-16]Hz frequency band using the MODWT and then localizing the peaks
occurrence using the build-in findpeaks function in Matlab. The threshold for the detection
of peaks occurrence has been selected by visual inspection to maximize the detection rate
(Figure 7.1). It has been suggested in [10, 11] that subthreshold oscillations are a reflec-
tion of the system state toward seizures. Hence, a change in the subthreshold dynamics
would be a marker of the brain susceptibility to seizures. To analyze this hypothesis, the
preictal windows were separated into sub-windows of 20, 10 and 5 seconds and their
occurrence investigated (Figure 7.2). Statistical significances between their distributions
over time were analyzed with the Mann-Whitney U-test. As a result, distributions of
the closest and farthest distance towards seizures on each subgraph showed statistical
significance: p-values of 0.0325, 0.0031 and 0.0028 were observed for the 20, 10 and 5
seconds windows respectively. No statistical significances were observed between the two
closest distributions towards seizures onsets. While there is only a relatively small amount
of observable IEDs per pre-ictal subwindow, the latter observation might be the result of

a slow change in the brain system dynamics followed by a faster transition toward seizures.

The dynamical behavior of subthreshold oscillations were further analyzed by re-
porting their interspike interval (ISI) over time. Indeed, variations of intervals between
subthreshold oscillations are typical hallmarks of an approaching dynamical bifurcation.
To vizualize the progressive transition of the brain state dynamics, the distribution of ISI
was represented using the 20 seconds subwindow size. The results are represented on
Figure 7.3. It can be observed that the occurrence of subthreshold oscillations becomes
faster as the seizure is approaching, which is depicted by a smaller ISI average (7. (1S))

of the 20 seconds window that is the closest from the seizure (in blue).

Morphologically similar events like IEDs are the result of punctual and synchronous
interactions between large population of neurons. Hence, these results support that
functional changes in the brain system of Zebrafish larvae are occurring at an interpretable
scale before a seizure, and therefore that the latter might be predicted from LFP signals.

This topic is further investigated in the following section.
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Fig. 7.1 Illustration of the Automatic Detection Framework for Subthreshold Oscil-
lations. 104 Pre-ictal windows of 60 seconds were considered before seizure onset. The
top panel represents the original signal while the bottom panel represents the bandpass
filtered signal ([0.5-16]Hz). Red circles depict the peak automatically detected using the
findpeaks function in Matlab.

7.4 A Probabilistic Model for Seizure Prediction from
LFP

In its core, the mathematical framework behind the development of a prediction model is
not different than of a detection model. Instead of differentiating between the presence
and the absence of an event, the discrimination is performed between the signal preceding
the event and the absence of such event. If such difference exists and a reliable classifica-
tion can be performed, the model is said to predict the upcoming emergence of this event.
Hence, in a machine learning framework, the key difference lies in the data that are used
to train and validate the statistical classifiers. Mathematically, reliable predictions of the
diseases states of highly dimensional systems such as the brain represent a much harder
task than for their mere detection, as early manifestation of diseases are often barely
perceptible from clinically observable signals. In addition, this task is hindered by the
inherent variability of disease progression across individuals. Robust predictive modeling,
therefore, requires a sufficiently large collection of examples to learn the hidden patterns
of pre-disease states. This claim is of particular relevance for the identification of pre-ictal
patterns from LFP recordings since it represents the average neuronal activity of a large
region of the Zebrafish brain.

Typically, a seizure prediction methodology can be addressed by two distinct ap-

proaches. In the first approach, pre-ictal and interictal windows are extracted and a
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Fig. 7.2 Counts of Subthreshold Oscillations as a Function of Distance before
Seizure Onset. 104 Pre-ictal windows of 60 seconds were considered before seizure
onset. The occurrence of subthreshold oscillations was investigated by dividing the
pre-ictal windows into subwindows of 20, 10 and 5 seconds.

model is trained to discriminate the signals originating from different states. In such
case, the ictal and post-ictal segments do not contribute to seizure prediction, so those
signals are discarded. This strategy is referred to offline prediction, since it relies on
retrospective signal extraction and differentiation. This strategy can be used to learn
the most distinctive characteristics between signals classes and as a proof-of-concept of
system’s predictability. The second approach consists of the use of a sliding window
across the entire recording to continuously classify the signal into either interictal or
pre-ictal regions. This approach is referred to as online prediction. A particular advantage
of the latter strategy is that it represents a clinically relevant setup where the location of

seizures events in the signal are not known a priori.

This section addresses both approaches. First, a retrospective analysis of pre-ictal
events is performed to investigate the predictability of seizure events in scnllab mutant
and PTZ-treated Zebrafish larvae from LFP signals. Then, the suitability of the prediction

models under a continuous monitoring framework is evaluated.

7.4.1 Offline Prediction of Seizures Events

Sequences of 10 seconds before seizure events were extracted from the pre-ictal windows
previously considered. Such window size has been selected to maximize the discrimi-
native potential between the interictal and pre-ictal patterns. At this stage, it is worth

noticing that if the window size is chosen too short, capturing the slowly varying aspect
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Seizures. ISI are normalized by the average ISI per pre-ictal window. The top panel

represents the average between ISI (7}, (ISI)) versus the standard deviation (o(1SI)) for
the distribution of specific 20 seconds subwindows.

of the system would not be possible, so that prediction of seizure emergence has to be
performed using a sufficiently long-time window to reflect the reorganization of the brain
system. Then, interictal windows of 10 seconds duration were randomly extracted from
the recordings under two conditions:

* The interictal window must be distant by at least 60 seconds before a seizure onset
as detected with the automatic detection algorithm developed in Chapter 6.

* The interictal window must be separated by at least 5 seconds of another seizure.

In particular, a larger amount of interictal events have been randomly extracted to
account for the considerable variability of interictal patterns. The data are separated into
three groups. Two groups are used to train and validate the prediction model. The last
group consists of previously unseen recordings from another set of Zebrafish individuals,
hence constituting the external validation group. Such separation intends at evaluating

the effects of intra-inter variability between Zebrafish individuals on the performances of
the classification algorithm.

The Random Forest algorithm was used to generate a predictive model due to both

its high performance and robustness to noise inherited from its bagging scheme. For
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scnllab Zebrafish, pre-ictal windows that did not contained IED were discarded from
the training set, which ultimately showed better performance on both test groups. Such
result further supports that IED are representative of the system state towards seizures.
For scnllab Zebrafish, 28 pre-ictal windows and 134 interictal windows were used to
train the model, 17 pre-ictal windows and 91 interictal windows were used to test the
model on the same population of Zebrafish and 32 pre-ictal windows and 160 interictal
windows were used to externally validate the model on unseen recordings. An external
validation group was not formed for PTZ-treated Zebrafish due to the smaller number of
recordings (11). Hence, the corresponding training and test group consisted in 86/407
pre-ictal/interictal windows and 51/278 pre-ictal/interictal windows, respectively. The

following features (52) were computed to capture the signature of pre-ictal events:

* The Relative Wavelet Energy (RWE) of each frequency band (8th-level decomposi-

tion with db4 wavelets), totalling 10 features.

* The statistical moments (variance, skewness and kurtosis) of each frequency band,
totalling 30 features.

* The Entropy of the original signal and of the wavelets coefficients of each frequency

bands, totalling 9 features.

e The Hurst Exponent (HE) and Fractal Dimension (FD) computed from the raw

signal, to reflect system’s memory.

* The count of IED computed from the bandpass filtered window considered, due to

its increase before seizure onset (Figures 7.2 and 7.3).

The objective function of the RF has been modified to account for the class imbal-
ance, so that a class-sensitive cost function was optimized to raise the penalty resulting
from missing a pre-ictal event. Feature selection was considered with RFE, but did not
improve the performance of the prediction models, which is due to the fact that feature
importance was uniformly spread across the 52 features. The following hyperparameters
were optimized using a grid search and 3 fold cross-validation to obtain the best possible
generalization trade-off: number of trees in the forest (or estimators), maximum depth of
the decision trees, minimum number of samples to make a split and minimum number of
samples to be defined as a leaf. The best classification results were obtained for 30/120
estimators (resp. scnllab/PTZ), a maximum depth of 10 splits, 2 samples minimum
to make a split and one single sample minimum to be defined as a leaf. Probability
calibration was performed on hold-out data to reflect the observed probability of event

occurrence.
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The ROC and Precision-Recall curves are displayed on Figure 7.4 for scnllab and
7.5 for PTZ-treated Zebrafish. As a result, the prediction algorithms were capable of
differentiating between pre-ictal and interictal events to a moderate degree in both cases.
On one hand, the scnllab prediction model showed an AUROC value of 0.84 and an area
under the Precision-Recall curve of 0.48 for the internal validation group. For the external
validation group, the AUROC value was of 0.74 and the area under the Precision-Recall
curve of 0.33. At the optimal decision point, the model showed the following classification
performances: 42.8% precision, 82.4% specificity and 70.5% sensitivity for the internal
validation group and 35.7% precision, 77.5% specificity and 62.5% sensitivity for the ex-
ternal validation group. The corresponding confusion matrices are displayed on Table 7.1.
The PTZ prediction model, on the other hand, showed both a lower AUROC value of 0.70
and lower an area under the Precision-Recall curve of 0.28. At the optimal decision point,
the model showed the following classification performances: 24.2% precision, 64% speci-
ficity and 62.7% sensitivity. The corresponding confusion matrix is displayed on Table 7.2.
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Fig. 7.4 Receiver Operating Characteristic (left) and Precision-Recall Curve (right)
for the Prediction of scnllab Seizures from Retrospectively Extracted Pre-ictal Win-
dows of 10 Seconds Duration. The optimal decision thresholds are represented by a
blue dot on each graph.
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Predicted Condition Predicted Condition
Pre-ictal | Interictal Pre-ictal | Interictal
Actual Pre-ictal 12 5 Pre-ictal 20 12
Condition | Interictal 16 75 Interictal 36 124

Table 7.1 Confusion Matrices for the Prediction of Seizure Events from scnllab
Zebrafish. On the left-hand side, the result of the internal validation, which consists
of a set of pre-ictal segments extracted from the same recordings as the training set.
Those results correspond to a precision of 42.8%, a specificity of 82.4% and a sensitivity
of 70.5%. On the right-hand side, the results for the external validation group, which
consists of seizures extracted from previously completely unseen recordings. Those
results correspond to a precision of 35.7%, a specificity of 77.5% and a sensitivity of
62.5%.

While not being sufficiently high for a robust discrimination of pre-ictal segments, the
aforementioned classification performances are consistently higher than random guesses
(16.6% precision), suggesting that a change in brain system dynamics is indeed occurring
at least in the latest 10 seconds before spontaneous seizure emergence in both scnllab
and PTZ Zebrafish larvae. The low precision and area under the Precision-Recall curve,
however, might indicate that such brain reorganization is not specific to the seizure state.
Nevertheless, it is worth noticing that the concept of false positive is hard to formulate in
the context of seizure prediction. Indeed, while the algorithm might be sensitive enough to
identify characteristic patterns of brain system dynamics before a seizure, such dynamical
state might not ultimately lead to seizures events. In other swords, the state of the brain is
brought close from the "seizure threshold" but the inherent stochastic noise might not be
sufficient enough to make it cross the separatrix, hence reverting the system back to a
more healthy state over time. In such case, the algorithm would ideally identify the brain
system as being in the vicinity of a seizure event, but this outcome would be considered
as a false positive since no seizure is observed in the following 60 seconds. Furthermore,
it is possible that the prediction algorithm appear to be incorrectly predicting seizures

while in fact correctly identifying smaller epileptic events [72].

7.4.2 Online Prediction of Seizures Events

In this section, a clinically relevant setting is tested to automatically predict the emergence
of seizure event over time using the previously trained probabilistic models. For this
purpose, a sliding window of 10 seconds is passed through the time series data and used
to sequentially estimate the probability of the segment to belong to the pre-ictal state or
to the interictal state of the brain. Several mathematical setups were considered:
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Fig. 7.5 Receiver Operating Characteristic (left) and Precision-Recall Curve (right)
for the Prediction of PTZ Seizures from Retrospectively Extracted Pre-ictal Win-
dows of 10 Seconds Duration. The optimal decision thresholds are represented by a
blue dot on each graph.

Predicted Condition

Pre-ictal | Interictal
Actual Pre-ictal 32 19
Condition | Interictal 100 178

Table 7.2 Confusion Matrix for the Prediction of Seizure Events from PTZ-treated
Zebrafish. Those results correspond to a precision of 24.2%, a specificity of 64% and a
sensitivity of 62.7%.

* The sliding window has been passed through the data both with and without
overlapping (80% overlap was considered, that is, increments of 2 seconds per 10

seconds window).

* Various operating points (i.e. probability thresholds) were evaluated to maximize

the overall accuracy of predictions.

For each window, an alarm is raised whenever the output of the predictive model is
classified as pre-ictal. An alarm was considered as a false prediction if it was separated
by at least by 60 seconds from a seizure event. The functioning of the prediction algo-
rithm is illustrated on Figure 7.6. Performances were reported in terms of false positive
rate, sensitivity and specificity per Zebrafish recording on both the internal and external
validation sets (Figure 7.7).

For scnllab mutants, the best performances were obtained for the following decision
points on the ROC curves: 94.1% sensitivity and 59.3% specificity for the internal val-
idation and 81.2% sensitivity and 63.7% specificity for the external validation set. On
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average, the prediction model produced 0.94 false positive per minute for the internal vali-
dation group and 0.32 false positive per minute for the external validation group, which is
significantly lower than for random classifiers (2.14 FP/min and 2.25 FP/min respectively).

For PTZ-treated Zebrafish, the best performances were obtained for the following
decision point: 45.1% sensitivity and 77.3% specificity. On average, the prediction model
produced 1.32 false positive per minute, as compared to 1.81 FP/min for a random classi-

fier. The results for each recording are displayed on Figure 7.8.

It is worth mentioning that, allowing the algorithm to trigger an alarm for a threshold
different than the one defined by the optimal operating point (represented in blue on
Figures 7.4 and 7.5) permitted an overall increase of the online performances. Finally,
while not drastically affecting the outcomes of the algorithm, the performances were
maximized without the use of an overlapping sliding window. Nevertheless, the trade-off
between the sensitivity and specificity of the models appears to be highly subject-specific
and significantly higher when the model has been partially trained on the same individual
(corresponding to the internal validation group), as illustrated by Figure 7.7, so that
further tuning of a predictive algorithm might be required to improve the suitability of the
algorithm to each individual.

As a conclusion, when formulated as an online prediction approach, the model is
lacking overall precision towards pre-ictal events. This result is consistent with the ROC
curves previously evaluated on retrospectively extracted pre-ictal segments. Indeed, in a
continuous approach, the data segments that are seen by the algorithm are not perfectly

aligned with the future emergence of seizure, hence decreasing its overall accuracy.

7.5 Discussion

In this chapter, it has been shown that the occurrence of IED is increasing in the vicinity of
a seizure event for scnllab mutants Zebrafish (Figure 7.3). In particular, the distributions
of ISI at the 3 distances considered closely resemble the results of a time-dependent
Poisson process for which the mean distance between events decreases over time. The
reshaping of this distribution is further interesting in such that a decrease of the standard
deviation can be observed towards seizure, suggesting that the stochastic component of
IED emergence is reduced. In line with the results of [10], we suggest that IED carry
information on the likelihood of seizure emergence, despite the involved stochasticity.
It is important to notice that the relationship between the time towards seizure and the
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distribution of ISI did not, however, consistently apply for all seizures and Zebrafish

considered, but rather results from the average behavior of IED across 104 seizures.

Those results further permitted the formulation of a pre-ictal window that was sub-
sequentially used to design a prediction algorithm. Indeed, a common mistake in the
anticipation of a critical dynamical transition is to look at changes in dynamical markers
in the close vicinity of the bifurcation point. However, in the case of scnllab epileptic
seizures, signs of an emerging transition were identified from LFP signals at a scale of (at

least) 10 seconds before a seizure event.

Finally, the study demonstrated the feasability of seizure prediction in scnllab mutant
and PTZ-treated Zebrafish by designing prediction algorithms for which the performances
lie above those of random predictors. However, the overall lack of precision of the
algorithms, even in reproducible experimental conditions (provided by the use of an
animal model such as Zebrafish larvae), highlights the challenge underlying the anticipa-
tion of seizure events. Indeed, large variabilities in the performances of the prediction
algorithm were found across individuals. As such, there remain significant theoretical
and technological hurdles in developing a clinically efficient continuous prediction system.

As a further note, it is worth mentioning that hand-designed features might not

be the best predictors of seizure likelihood. For instance, deep learning techniques
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approaches have shown a median gain in accuracy of 5.4% across all relevant studies [58].
In addition, given sufficiently long recordings of individuals, adaptive or personalized
strategies might greatly benefit to the performances of the prediction algorithms. For
instance, [73, 266] used the very first seizures of patients to calibrate model parameters
or select more informative electrodes. From a general point of view, however, single
LFP traces in Zebrafish are unlikely to provide a full understanding of seizure genesis
given the spatiotemporal nature of the problem. Nevertheless, the results suggests that
LFP signals contain information on the current brain system state, so that it should be at
least used in combination with other recording mechanisms, such as calcium imaging.
To the best of our knowledge, combining physiological information with recordings of

neurophysiological activity has never been attempted for seizure prediction.

7.6 Strengths and Limitations of the Study

The study presented in this chapter has the following strenghts and limitations:

* Strengths

— The study confirms the presence of changing IED dynamics in another animal
model of epilepsy.

— The analysis presented in this chapter is the first to study seizure predictability
from LFP signals in Zebrafish.

e Limitations

— While PTZ-treated Zebrafish exhibited IED in the LFP signal, their extraction
was particularly challenging due to patterns variability. The development of
further signal processing tools might be required to address IED occurrence

in such model.






Chapter 8
Conclusion

In this thesis, multiple tools and models were developed to describe and predict the
dynamical properties of biological systems from time series data. Biological systems are
inherently complex, stochastic and their observation is limited. Therefore, generating
meaningful biomedical knowledge from large amounts of data required careful calibration
of model complexity and design of proper validation frameworks. For this purpose, this
thesis integrated technical background originating from various fields such as system
identification, systems control, nonlinear dynamical systems theory, time series analysis,

statistics, signal processing and machine learning.

Two problems were addressed: the inference of dynamical relationships between
genes from short time series data and the characterization of dynamically differentiable
brain states in Zebrafish from rich time series data (originally sampled at 100kHz). In
both cases, the aim was to provide a reliable and interpretable modeling framework that
suited the informative potential of each dataset, which involved a thorough biological and

computational literature review, as well as a close collaboration with biologists.

This chapter briefly summarizes the main findings of each chapter and provides

potential future directions for research.

8.1 Gene Regulatory Networks

8.1.1 Main Findings

In chapter 2, a novel modeling framework based on LTI systems and control theory
tools was proposed to simultaneously reverse-engineer the structure of GRNs and provide
comparable dynamical description of their underlying mechanisms. We showed that our
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approach is particularly suitable for short time series data, so that reliable predictions can
be formulated in practical cases. The performances of our approach were compared to
state-of-the-art network inferences methodologies under various experimental conditions.
For this purpose, realistic in silico data were generated from biologically relevant GRN
models by means of stochastic differential equations. This approach led to two main
findings, which were subsequently presented in [95, 96]. First, we showed that, for the
sole purpose of recovering the structure of GRN from time series data, the performances
of the introduced linear modeling approach compete with, but even outperform, most
of the latest algorithms in the field. Second, the study unveiled general effects of data
quantity and system perturbations on the accuracy of the GRN reconstruction. In particu-
lar, for rhythmic systems such as the circadian clock, sampling the dynamical behavior
of the system in its transition from one dynamical state to another has the potential
to significantly improve the accuracy of the reconstruction. Furthermore, we reported
that currently available network inference algorithms do not benefit equally from data
increments, thereby revealing pragmatic considerations for experimental designs. Hence,
for rhythmic systems, it is generally more profitable for network inference strategies to
be run on long time series rather than short time series with multiple perturbations. By
contrast, for the non-rhythmic systems, increasing the number of perturbations yielded
better results than increasing the sampling frequency.

In chapter 3, the mechanisms of action of nicotinamide, a metabolite that lengthens
the period of circadian rhythms, were investigated as a mean to understand the regulation
of circadian period in Arabidopsis Thaliana [79]. From a mathematical point of view, this
study involved the development of a prediction model to distinguish between rhythmic
and non-rhythmic gene expression data based on a hand-designed skewed sinusoidal
function and logistic regression. Then, the Dynamical Differential Expression (DyDE)
modeling framework was used to identify the sources of subtle dynamical changes in
the circadian network of Arabidopsis Thaliana, which were subsequently validated. In
particular, the methodology was capable of recovering most of the dynamical structure
of the circadian network from a single experiment of 48 hours with a sampling rate of
one data point per 4 hours. From a biological perspective, the study further provided
novel knowledge on the dynamical effects of nicotinamide and the role of blue light in

the circadian oscillator.

In chapter 4, the network inference methodology was adapted to reconstruct the main
regulatory interactions that shape the circadian network of Barley, using relatively few
information. Based on the performances of the algorithm on in silico data, few links

were identified with a high degree of confidence. The flexibility of the methodology was
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further exploited to integrate light patterns and further characterize the contribution of
light on the regulation of the whole transcriptome.

8.1.2 Future Perspectives

The network inference algorithms considered as a comparison to our approach carried
fundamentally different mathematical assumptions. Further investigation of the individual
model predictions revealed that the dynamical relationships inferred by each algorithm
were different. As such, future research may want to consider the potential synergy
between algorithms to improve the overall accuracy of the network reconstruction step.
Finally, it is worth mentioning that the tools developed in this thesis aimed a reverse-
engineering a GRN of interest without prior knowledge of the network. While this is
a necessary condition for the study of the main gene regulatory interactions that shape
a novel complex system of interest, developing a methodology that explicitly allows to
integrate prior knowledge might be required in the future. Finally, single-cell sequencing
technologies provide information on the per-cell variability of gene expression, which
has great potential for many applications of GRN inference. For this purpose, a more
probabilistic-oriented formulation of gene expression will be necessary to take advantage
of those data.

8.2 Epileptic Seizure and Epileptogenesis Characteriza-

tion

8.2.1 Main Findings

Chapter 6 and 7 addressed the characterization and prediction of brain states in Zebrafish
from LFP signals. The study involved the development of 1) an automatic seizure
detection algorithm from LFP signals, 2) two classification models to differentiate between
seizures generated by distinct pathological mechanisms, 3) a multi-class prediction model
to evaluate the discriminative potential of the morphological signatures of seizures using
heterogenic data, 4) a pattern recognition algorithm to investigate the occurrence of
interictal spikes in the signal and 5) an online seizure prediction model. In particular, we
showed that the automatic extraction of seizures from LFP recordings of Zebrafish can
be performed with a very high degree of accuracy. Furthermore, as a knowledge-based
approach, the most important dynamical aspects of the signal and their contribution to the
classification performances were subsequently analyzed for the models 1), 2) and 3). The
latter revealed that seizures induced by drug or genetic variants models in Zebrafish can be

reliably discriminated using the dynamical measures proposed in this thesis. Finally, for
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the first time, we showed that the neurophysiological information captured by LFP signals
in PTZ-treated and scnllab Zebrafish (at least) partially retains some of the information
about the functional reorganization of the brain system towards seizure. The approach,

however, highlighted inherent technical and theoretical hurdles in seizure prediction.

8.2.2 Future Perspectives

In Zebrafish, calcium imaging of the neuronal activity across regions of the brain is
expected to provide further information on the spatiotemporal reorganization of brain
activity in the vicinity of a seizure event. Furthermore, calcium imaging can capture
heart rhythms activity, which has the potential to serve as a biomarker for diagnostic and
therapeutic purposes in humans. Indeed, in humans, epileptic seizures events have been
associated with co-occurring cardiovascular dysfunctions [267]. Notably, patients with
a long-lasting or a more severe epileptic condition seem to be more prone to chronic
disruptions of cardiovascular functions. In this regard, the integration of additional
physiological signals such as body temperature or respiratory rate have the potential to
enhance the performances of seizure anticipation algorithms [76]. External factors, such
as the time of the day or month can also be exploited to improve the accuracy of predictive
algorithms, as patient’s circadian profile has been shown to influence seizure emergence
[268].
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